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Partial least squares (PLS) is a class of methods that makes use of a set of
latent or unobserved variables to model the relation between (typically)
two sets of input and output variables, respectively. Several flavors, de-
pending on how the latent variables or components are computed, have
been developed over the last years. In this letter, we propose a Bayesian
formulation of PLS along with some extensions. In a nutshell, we provide
sparsity at the input space level and an automatic estimation of the op-
timal number of latent components. We follow the variational approach
to infer the parameter distributions. We have successfully tested the pro-
posed methods on a synthetic data benchmark and on electrocorticogram
data associated with several motor outputs in monkeys.

1 Introduction

Partial least squares (PLS) (Wold, Sjöström, & Eriksson, 2001) is a family
of techniques originally devised for modeling two sets of observed vari-
ables, which we shall call input and output components, by means of some
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(typically low-dimensional) set of latent or unobserved components. This
model can also be extended to deal with more than two sets of components
(Wangen & Kowalsky, 1989). It is commonly used for regression but is also
applicable to classification (Barker & Rayens, 2003). In this letter, we focus
on the regression paradigm. Latent components are generated by some lin-
ear transformation of the input components, while the output components
are assumed to be generated by some linear transformation of the latent
components.

The difference between PLS and related techniques lies in how the latent
components are estimated (Hastie, Tibshirani, & Friedman, 2008; Rosipal
& Krämer, 2006). Unlike PLS, principal components regression (PCR), for
example, does not consider the output when constructing the latent com-
ponents. Also, PLS differs from canonical correlation analysis (CCA) in that
CCA treats the input and output spaces symmetrically (Hardoon, Szed-
mak, & Shawe-Taylor, 2004). A complete comparison between PLS, PCR
and classical shrinkage regression from a statistical perspective is given by
Frank and Friedman (1993), and further insight into the shrinkage proper-
ties of PLS can be found, for instance, by Goutis (1996). There exist Bayesian
formulations of some latent component models in the literature, such as
PCA (Bishop, 1998; Nakajima, Sugiyama, & Babacan, 2011), CCA (Fuji-
wara, Miyawaki, & Kamitani, 2009; Virtanen, Klami, & Kaski, 2011; Wang,
2007) and mixtures of factor analyzers (Beal, 2003; Ghahramani & Beal,
2000). To our knowledge, however, a Bayesian version of PLS has not yet
been proposed.

Different varieties of PLS regression arise by the way they extract latent
components (Rosipal & Krämer, 2006). In its classic form, PLS aims to maxi-
mize the covariance among the latent components, which are constrained to
be orthogonal, using the nonlinear iterative partial least squares (NIPALS)
algorithm (Wold, 1975). This is more an algorithmic than a traditional sta-
tistical approach, and, hence, the analysis of its properties is less obvious. A
more rigorous approach (from a statistical perspective) is taken by de Jong
(1993), who directly formulates the latent space as a linear projection of the
input space and solves the resulting optimization problem by the so-called
SIMPLS algorithm. The SIMPLS algorithm is equivalent to NIPALS only
when the output space is unidimensional. Sparsifying accounts of PLS are
proposed by van Gerven, Chao, and Heskes (2012) and Chun and Keleş
(2010). A kernelized approach has been introduced by Lindgren, Geladi,
and Wold (1993) and Rosipal and Trejo (2001).

The main goal of this letter is to develop a Bayesian approach for PLS
regression. We use variational inference (Jaakkola, 2001) for estimating the
parameters. Let X be an N × p input matrix and Y be an N × q output
matrix, with elements xni and ynj and rows xn and yn. Assuming centered
data, we follow the definition of PLS given by

Z = XP + εZ, Y = ZQ + εY ,
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Figure 1: Bayesian hierarchy of the proposed Bayesian PLS model, where Z lies
in the latent space.

where P and Q are, respectively, p × k and k × q loading matrices, Z is the
N × k latent score matrix, with elements zil and rows zn, and εZ and εY are the
matrices of residuals. We use an intermediate k-dimensional latent space,
k typically being lower than p and q. We consider a Bayesian hierarchy
defined through several normal Wishart distributions for the latent and
output variables, as well as for the loading matrices:

z′ ∼ N (x′P,�), �−1 ∼ W(A, ι), pl ∼ N (0,�l ), �−1
l ∼ W(Bl, νl ),

y′ ∼ N (z′Q,�), �−1 ∼ W(C, κ ), q j ∼ N (0,� j), �−1
j ∼ W(D j, ς j),

(1.1)

with l = 1, . . . , k and j = 1, . . . , q, and where pl is the lth column of P and q j
is the jth column of Q. A, Bl,C, D j are the scale matrix hyperparameters of
the Wishart prior distributions, and ι, νl, κ, ς j are the corresponding degrees
of freedom. (See Figure 1 for a graphical representation using plate nota-
tion.) In the remainder, we suppress the hyperparameters in our notation
when it is clear from the context.

By imposing separate gaussian priors for each column of P (and Q), we
are allowing different input (and latent) variable couplings for each com-
ponent l = 1, . . . , k (and j = 1, . . . , q). An obvious simplification, which we
take in the rest of the letter, is to let �l = � (and � j = �), so that information
is borrowed among the latent components and responses and the number of
parameters is reduced. The derivation of the general case is straightforward.

It might appear that for large p scenarios, a large number of parameters
is associated with the full precision matrix �−1. However, as we will show,
the estimation of these matrices is low rank, so that the effective number of
parameters is kept reasonably low.

Note that E[y′|x′] = x′PQ. Since PQ has at most rank k, this formula-
tion is related to reduced rank methods (Izenman, 1975) and approaches
that penalize the nuclear norm of the coefficient matrix (Yuan, Ekici, Lu,
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& Monteiro, 2007). There is also a connection with the multivariate group
Lasso (Obozinski, Wainwright, & Jordan, 2011), which imposes an L1/L2-
penalty on the coefficient matrix so that a common sparsity pattern is shared
by all responses. However, the multivariate group Lasso does not account
for correlated errors. The sparse multivariate regression with covariance
estimation approach (Rothman, Levina, & Zhu, 2010), on the other hand,
does consider correlation between the responses by simultaneously esti-
mating the coefficient matrix and the (full) inverse covariance matrix of the
response variables. The coefficient matrix is L1-regularized, and then the
sparsity pattern can vary for each response. Our approach is also some-
what related to the multitask feature learning problem, where each task
has a different set of inputs and the goal is to find some shared structural
parameterization that is beneficial for the individual tasks. For example, the
method proposed by Argyriou, Evgeniou, and Pontil (2006) seeks a low-
rank linear transformation such that the outputs are encouraged to share
a common input sparsity pattern. The method introduced by Ando and
Zhang (2005) is formulated so that unlabeled data can be used for learn-
ing common underlying predictive functional structures. However, these
approaches do not build on a generative, model and it is not possible to
express a Bayesian formulation that leads to the same estimator.

The rest of the letter is organized as follows. Section 2 introduces the
variational approximation in the basic setting. Section 3 describes how to
achieve a sparse solution. Section 4 proposes an improved model that aims
to estimate the optimal number of latent components and increase the
accuracy. Section 5 presents a simulation study with comparisons to other
methods. Section 6 provides some results for real neural signal decoding.
Finally, section 7 provides conclusions and directions for future work.

2 Variational Parameter Inference

We are interested in the posterior distribution Pr(P, Q | X ,Y ), given by

∫
P(P, Q, Z,�−1,�−1,�−1,�−1 | X ,Y ) dZ d�−1 d�−1 d�−1 d�−1.

For computational reasons, we approximate the posterior distribution of
the parameters given Y by a variational distribution with the following
factorization:

P(P, Q, Z,�−1,�−1,�−1,�−1 | X ,Y )

≈ F(P, Q, Z,�−1,�−1,�−1,�−1) = F(Z)F(P,�−1,�−1, Q,�−1,�−1).

The variational approximation automatically (i.e., without the need for
further assumptions) factorizes into F(Z)F(P,�−1,�−1)F(Q,�−1,�−1).
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This can be easily verified by inspecting the functional F(P,�−1,�−1, Q,

�−1,�−1), defined as the log of the joint distribution when we take the
expectation with respect to Z (Beal, 2003). Since Z separates P,�−1,�−1

from Q,�−1,�−1 in the Bayesian hierarchy, the resulting expression for
F(P,�−1,�−1, Q,�−1,�−1) does not have interaction terms between the
two groups of variables.

Also on computational grounds, we assume F(P,�−1,�−1) = F(P)

F(�−1,�−1) and, analogously, F(Q,�−1,�−1) = F(Q)F(�−1,�−1). From
this, we have an automatic factorization between �−1 and �−1 (�−1 and
�−1). Finally, F(Z) automatically factorizes into

∏N
n=1 F(zn), so that up to a

constant, we have

F(zn)= EP,Q,�−1,�−1 [log P(zn|X , P,�−1) + log P(y|zn, Q,�−1)]

= −1
2

z′
n(E[�−1]+E[Q�−1Q′])zn+(x′

nμPE[�−1]+y′
nE[�−1]μQ)zn,

where μP and μQ are the expectations of, respectively, P and Q. Expectations
are with regard to the variational distribution. Completing the square, we
have

F(zn) = N (zn;μzn
, Szn

) (2.1)

with Szn
= (E[�−1]+E[Q�−1Q′])−1 and μzn

= Szn
(E[�−1]μ′

Pxn + μQE[�−1]
yn). We can compute

E[Q�−1Q′] = μQE[�−1]μ′
Q +

q∑
j1=1

q∑
j2=1

E[�−1
j1 j2

]SQ j1 j2

,

where SQ j1 j2

denotes the k × k cross-covariance matrix relative to the j1th

and j2th columns of the loading matrix Q.
For �−1, we have, up to a constant,

log F(�−1) = EZ,P[log P(Z|X , P,�−1) + log P(�−1)]

= ι − k − N − 1
2

log |�| − 1
2

Tr((E[Z′Z] + E[P′X ′XP]

−μ′
ZXμP − μ′

PX ′μZ + A−1)�−1),

where we have used standard properties of the trace operator. Here, we can
identify a Wishart distribution,

F(�−1) = W(�−1; Ã−1, ι̃), (2.2)
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with ι̃ = ι + N and Ã−1 = (E[Z′Z] + E[P′X ′XP] − μ′
ZXμP − μ′

PXμZ +
A−1)−1, where E[Z′Z] = ∑N

n=1 E[znz′
n] = ∑N

n=1(Szn
+ μzn

μ′
zn

).

If we set �−1 to be diagonal, then the variational distribution F(P) fac-
torizes over columns and we get a gamma distribution for each element
�−1

ll :

F(�−1
ll ) = G(�−1

ll ; ι̃, Ã−1
ll ) (2.3)

with ι̃ = ι + N
2 and Ã−1

ll = 1
2 (E[Z·lZ

′
·l] + E[p′

lX
′X pl] − 2 μ′

Z·l
Xμpl

) + A−1
ll ,

where Z·l denotes the lth column of Z.
If we do not factorize F(P), that is, if �−1 is not chosen to be diagonal,

then we have, up to a constant,

log F(P)

= EZ,�−1,�−1

[
log P(Z|X , P,�−1) +

k∑
l=1

log P(pl |�)

]

= −
N∑

n=1

(
1
2

x′
nPE[�−1]P′xn − x′

nPE[�−1]μzn

)
− 1

2

k∑
l=1

p′
lE[�−1]pl .

We define p̃ as the concatenation of the rows of P and p̃∗ as the concatenation
of the rows of the p × k least-squares solution (X ′X )−1X ′μZ, so that after
some algebra, we can identify a pk-dimensional gaussian distribution,

F(P) = N (P;μP, SP) (2.4)

with Sp̃ = (E[�−1] ⊗ Ik + X ′X ⊗ E[�−1])−1 and μp̃ = Sp̃

(
X ′X ⊗ E[�−1]

)
p̃∗,

where Ik is the k × k identity matrix and ⊗ denotes the Kronecker product.
From this expression, we can reconstruct μP and SP.

When �−1 is diagonal, we can simplify F(P) = ∏k
l=1 F(pl ). For each fac-

tor, we have

F(pl ) = N (pl;μpl
, Spl

) (2.5)

with Spl
= (E[�−1] + E[�−1

ll ]X ′X )−1 and μpl
= E[�−1

ll ]Spl
X ′μZ·l

.

For �−1, we have, up to a constant,

log F(�−1) = Epl

[
log P(�−1) +

k∑
l=1

log P(pl |�−1)

]

= νl − p − k − 1
2

log |�−1| − 1
2

Tr((E[PP′] + B−1
l )�−1),
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where we can identify a Wishart distribution:

F(�−1) = W(�−1; B̃
−1

, ν̃), (2.6)

with B̃
−1 = (E[PP′] + B−1)−1 and ν̃ = ν + k.

Note that the matrix E[PP′] is not full rank as far as p > k, which is typi-
cally the case. It has, in fact, rank k. Then the effective number of parameters
of this matrix is not p(p − 1)/2, but, at most, pk + 1 − k(k − 1)/2. When p is
high relative to N, it becomes necessary to borrow information between the
components l = 1, . . . , k, suggesting the choice �−1

l = �−1.
Calculations for Q and dependent distributions are similar to those of P

and are given in appendix A. Brown & Zidek (1980) theoretically showed
that an adaptive joint estimation dominates an independent estimation
for each of the outputs separately when the number of inputs is con-
siderably larger than the number of outputs, but this domination breaks
down when the number of outputs approaches the number of inputs. In
our situation, when estimating Q, the number of outputs q typically even
exceeds the number of hidden units k. This suggests that the factoriza-
tion F(Q) = ∏q

j=1 F(q j), mimicking independent estimation, is the sensible
choice for q > k, which is often the case.

In short, the proposed approach proceeds as follows:

1. Initialize Z to the k first principal components of Y .
2. Compute the distributions of �−1, P and �−1 using equations 2.2,

2.4, and 2.6.
3. Compute the distributions of �−1, Q and �−1 using equations A.1,

A.3, and A.5.
4. Compute the distribution of Z using equation 2.1.
5. Repeat steps 2 to 4 until convergence.

This grouping of the updates is motivated by the structure of the Bayesian
hierarchy and the variational factorization in equation 2.1. A variant of the
basic scheme, by assuming diagonality of �−1 and �−1, arises by substitut-
ing equation 2.2 by 2.3, 2.4 by 2.5, A.1 by A.2, and A.3 by A.4. A variational
lower bound of the evidence is given in appendix B.

3 Sparsity in P and Q

For achieving sparsity on the input variables, we may impose a group-
sparsifying prior on P, so that the groups are the k-dimensional rows of
P. By setting an individual regularization parameter on each group and
integrating out P, the maximum likelihood value of such regularization
parameters will effectively discard some groups. This is an example of
groupwise automatic relevance determination (see, for example, Virtanen
et al., 2011).
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To achieve this objective, we set priors

Pi· ∼ N (0, σ 2
i Ik),

where Pi· is the ith row of P. This way, we will effectively drop the useless
inputs (rows of P). We define the precisions σ−2

i to be gamma distributed.
The variational approximation of the posterior of pl becomes a gaus-
sian distribution with parameters Spl

= (diag(E[σ−2]) + E[�−1
ll ]X ′X )−1 and

μpl
= E[�−1

ll ]Spl
X ′μZ·l

.

The derivation for nonfactorized P is straightforward. For σ−2
i , we have

E[σ−2
i ] = 2ν + k

E[P′
i·Pi·] + 2B−1

ii
= 2ν + k∑k

l=1(SPil,il
+ μ2

Pil
) + 2B−1

ii

.

Also, we impose a similar groupwise prior on Q:

Ql· ∼ N (0, γ 2
l Iq),

with the precision γ −2
l being gamma distributed. The idea is to obtain a

data-driven estimation of the importance of each latent component when
estimating Q. The variational approximation of q j is a gaussian distri-
bution with parameters Sq j

= (diag(E[γ−2]) + E[�−1
j j ]E[Z′Z])−1 and μq j

=
E[�−1

j j ]Sq j
μ′

ZY · j.

Again, we follow a variational approximation to obtain

E[γ −2
l ] = 2ς + q

E[Q′
l·Ql·] + 2D−1

ll

= 2ς + q∑q
j=1(SQl j,l j

+ μ2
Ql j

) + 2D−1
ll

.

Then a value σ−2
i (γ −2

l ) close to zero means that the corresponding input
(latent) variable can be considered irrelevant.

4 Adaptive P and Automatic Selection of k

The proposed estimation of P disregards Y and uses only the current state
of Z. Put differently, equal attention is paid to all latent components when
estimating P, no matter the contribution of each latent component to the
prediction of Y . A possible improvement would be to focus on those latent
components that are more useful for modeling Y , regularizing more the
latent components that are relatively useless—those whose coefficients in
Q are lower.

Here, we impose groupwise priors on P for both rows and columns so
as to achieve two goals. First, we provide a more adaptive estimation of
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P, which we hope will reduce the bias. Second, starting with a reasonably
high value of k, we will be better able to obtain an estimate of the adequate
dimension for the latent space. Hence, the purpose of this section is to im-
prove the model performance for a given number of latent components.
A proper model selection scheme, which would compare the model evi-
dence (see appendix B) for different values of k, would be an alternative (or
complementary) way to go.

We consider the variational approximation with P and Q factorized over
columns. We let γ−2 also influence P so that it indeed controls the latent
space for both projection matrices. We balance the regularization effect of
γ−2 with an additional variable φ−2, so that the relative contributions of σ−2

and γ−2 are adaptively estimated from data. We choose φ−2 to be gamma
distributed for keeping conjugacy. Specifically, we propose

Pil ∼ N (0, (σ−2
i + φ−2γ −2

l )−1), φ−2 ∼ G(e, ϕ).

The variational distribution of pl is a gaussian distribution whose param-
eters are Spl

= (diag(E[σ−2]) + E[φ−2]E[γ −2
l ]Ip + E[�−1

ll ]X ′X )−1 and μpl
=

E[�−1
ll ]Spl

X ′μZ·l
.

For γ−2, we have

E[γ −2
l ] = 2ς + p + q

φ−2
∑p

i=1(SPil,il
+ μ2

Pil
) + ∑q

j=1(SQl j,l j
+ μ2

Ql j
) + 2d−1

l

,

and, for φ−2,

E[φ−2] = 2ϕ + p k∑p
i=1

∑k
l=1 γ −2

l (SPil,il
+ μ2

Pil
) + 2e−1

.

Then, by automatic relevance determination, the number of coordinates
of γ−2 significantly greater than zero at convergence is an estimation of the
optimal number of latent variables k.

5 Synthetic Experiments

In order to test in practice the performance of the algorithms, we now
present a synthetic simulation study where we compare the sparse approach
proposed in section 3 (SPLS for short) with other methods. For simplicity,
we do not present results for the nonfactorized estimation of P and Q or for
full matrices �−1 and �−1.

We have tested some alternative PLS methods: the NIPALS and
SIMPLS algorithms and the frequentist sparse PLS from Chun and Keleş
(2010) (sSIMPLS). All the PLS methods have been provided with four latent
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components. Also, we have tested a number of non-PLS univariate and mul-
tivariate regression techniques. Univariate methods are separately applied
for each response; these include ordinary least squares regression (OLS),
ridge regression, and the Lasso (Hastie et al., 2008). From the multivariate
side, we have tested the multivariate group lasso (MGL) (Obozinski et al.,
2011) and the sparse multivariate regression with covariance estimation
approach (MRCE) (Rothman et al., 2010). The regularization parameters for
the non-Bayesian methods have been chosen by cross-validation.

The design of the simulation study is as follows. In all experiments,
the number of input variables is p = 50, and the number of responses is
q = 8. We have covered several different situations, varying the number of
hidden components, which we denote as k0, and the amount of training
data (N = 100, 500). We have set k0 = 1, 2, 4, 8. Within each situation, we
generated 100 random replications. For each of them, we have sampled
1000 testing data points. Then, for each situation and each model, reports
are shown over 100 × 1000 × 8 = 800,000 residuals.

For each random replication, the input matrix was generated according
to a multivariate gaussian distribution with zero mean and covariance ma-
trix M, whose elements were set as Mi1i2

= r
|i1−i2|
1 , and r1 was sampled from

the uniform distribution with support [0, 1]. Hence, depending on r1, the
degree of collinearity in the input matrix is different among the replications.
Of course, the testing input matrix was sampled using the same covariance
matrix M.

When k0 < 8, the latent components were generated as Z = XP + εZ.
Sparsity was enforced by setting each row of P to zero with probability 0.8
(ensuring at least two relevant input variables). The rest of the rows were
sampled from a standard normal distribution. The noise εZ was gener-
ated from a gaussian distribution with zero mean and diagonal covariance
matrix �, with �ll = r2 sd(X pl ), where sd(·) denotes the sample standard
deviation and the value r2 was sampled from the uniform distribution with
support [0.01, 0.1] (separately for each each diagonal element).

We generated the responses as Y = ZQ + εY . We did not consider spar-
sity in Q, whose elements were sampled from a standard normal dis-
tribution. The noise εY was sampled from a gaussian distribution with
zero mean and diagonal covariance matrix �, with diagonal elements
� j j = r3 sd(Zq j), where r3 was sampled from the uniform distribution with
support [0.25, 0.5].

When k0 = 8, the response was computed as Y = XF + εY , where F has
rank q. Since q > k, F has a higher number of effective parameters than
PQ in the factorized (k0 < 8) case. F was sampled from a normal standard
distribution, considering sparsity as before.

Figures 2, 3, 4, and 5 show box plots with the performance of the different
methods for all situations. Results are in terms of the explained variance
R2. In short, these graphs illustrate how the methods behave for different
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Figure 2: Box plot of the R2 values for k0 = 8 and N = 100, 500.
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Figure 3: Box plot of the R2 values for k0 = 1 and N = 100, 500.

complexities of the true response function and amounts of training input
data.

When k0 = 8, the response function does not factorize and has the highest
number of parameters. In this case, the PLS methods have fewer parame-
ters than the actual true response function and tend to underfit. This is in
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Figure 4: Box plot of the R2 values for k0 = 2 and N = 100, 500.
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particular the case for N = 500, when there are sufficient data for a reliable
estimation of all the parameters. Interestingly, SPLS is the only PLS method
that does not perform much worse than ridge regression, the Lasso, MGL,
and MRCE for N = 100 and also for N = 500.

The k0 = 1 case is the opposite extreme. Whereas the full-rank methods
aim to estimate pq = 400 parameters, the PLS methods, which are set to
use four latent components, estimate 4p + 4q = 232 parameters. Still, this
is much more than the true number of parameters (p + q = 58). For this
reason, the PLS methods are not much better than the others. Indeed, SPLS
and the Lasso appear to be the more effective in controlling the complexity
of the model. Note that the differences between the methods are very subtle
for N = 500.

When k0 = 2, the true response function has 116 parameters. In this case,
for N = 100, SPLS and the Lasso clearly outperform the other methods.
SPLS is slightly better than the Lasso. Surprisingly, SIMPLS and NIPALS do
not perform better than OLS. For N = 500, SPLS, OLS, ridge regression, the
Lasso, and MGL are almost indistinguishable and better than the others.

Finally, when k0 = 4, the true number of parameters (232) matches that of
the PLS methods. Surprisingly, for N = 100, SIMPLS, sSIMPLS, and NIPALS
are again less accurate than any of the univariate regression methods, MGL
and MRCE. On the contrary, SPLS, followed by the Lasso, are the better
methods. For N = 500, SPLS, the univariate regression methods (including
OLS) and MGL have the same performance, which is not far from the
optimal Bayes error.

It is noticeable that SPLS is the only PLS method that works as well as
the Lasso, and even beats it in some situations (N = 100 and k0 = 1, 2). The
good performance of the univariate regression techniques (in particular,
ridge regression and the Lasso) is very likely because � is diagonal, even
when there is a coupling due to �. The poor performance of MRCE probably
comes from the estimation of a full inverse covariance matrix of the response
variables.

In these experiments, the performance of APLS (not shown) is not very
different from that of SPLS. This is not surprising, because the synthetic
data sets were generated according to equations 1.1, which correspond to
the SPLS model. In the next section, we shall see an example where the
adaptive version is clearly better.

6 Electrocorticogram Data Decoding

In this section we describe some experimental results on a neuroscien-
tific data set. In particular, we aim to decode the motor output from elec-
trocorticogram (ECoG) signals collected in monkeys. ECoG signals were
recorded at a sampling rate of 1 kHz per channel, for 32 electrodes im-
planted in the right hemisphere, and filtered. Afterward, the signals were
bandpass-filtered from 0.3 to 500 Hz. A time-frequency representation of
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Figure 6: R2 value for each response for a different number of latent components
k = 2, . . . , 7.

the ECoG signals containing p = 1600 variables (32 electrodes, 10 frequency
bins, and 5 time lags) was used as the input for the algorithms. The monkey’s
movements were captured at a sampling rate of 120 Hz. Seven degrees of
freedom of the monkey’s movements (q = 7) are to be modeled and pre-
dicted. From the available data, we have used N = 5982 time points for
training and 5982 more for testing. More details about the data can be
found in van Gerven et al. (2012).

Given the high dimensionality of the data, we have run the simplest
version of the algorithms; we have factorized P and Q, and �−1 and �−1

are taken to be diagonal.
Figure 6 illustrates the performance (explained variance R2 over test-

ing data) of the proposed approaches compared to SIMPLS and sSIMPLS.
Although not included in the plot, the results of NIPALS are almost in-
distinguishable from SIMPLS. It is remarkable that APLS performs better
than the other methods for most of the responses and is always better than
the nonadaptive algorithm. Note that APLS appears to need fewer latent
components to give a reasonable estimation. Moreover, APLS is more ro-
bust to the choice of k than the other algorithms (including SPLS). Only for
the wrist abduction response is the APLS accuracy clearly decreased when
k > 5. On the other hand, SPLS performs worse in general for high values
of k.
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j=1 |P′
i·q j| for SPLS and APLS. (b) Vector

γ−2 and vector of individual latent component variances for APLS. Each line,
labeled with a different type of symbol, represents a different run with a different
maximum number of latent components.

Figure 7a shows, for SPLS and APLS, a histogram with the values of∑q
j=1 |P′

i·q j| as a measure of the importance of each input variable for the
output prediction. (Note that σ−2 reflects the importance of each input
for predicting the latent variables and hence is not a good measure of
importance of each input variable for the output prediction.) It is worth
noting that APLS yields sparser solutions than SPLS in this sense.

Figure 7b shows the values of γ−2 and the variance of the latent com-
ponents for six executions of APLS, each with a different number of latent
components k = 2, . . . , 7. Each line, labeled with a different type of sym-
bol, corresponds to a different value k. Note that latent variables that have
a high value γ −2

l (left graph) or exhibit a low variance (right graph) are
given less importance. From the graph, we can conclude that the first two
latent components are the most important for the prediction. For example,
the line with the × symbol corresponds to k = 5 and has five components
(symbols). Each component of this line corresponds to a latent component
in the model. The lowest value of γ −2

l (or the highest variance of Zl) for this
model pertains to the first two components. Hence, for this model, the two
relevant components are l = 1, 2. For the models with k = 6, 7 components
(whose lines have the � and � symbols), however, the last components have
the lowest values for γ−2. The accuracy in these cases is worse than the ac-
curacy that can be obtained with lower k values (see Figure 6). In summary,
for all runs, there are two predominant latent components (either the first
two or the last two), which indicates that k = 2 is a reasonable estimate of
the optimal value of latent components.

Finally, Figure 8 demonstrates the trajectories decoded by SIMPLS and
APLS. We have used k = 7 for SIMPLS and k = 2 for APLS. The two
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predicted by SIMPLS and APLS. Two latent variables for APLS and seven latent
variables for SIMPLS have been used.

algorithms turn out to do well. APLS is a bit smoother (less noisy) than
SIMPLS. Again, the outcome for NIPALS is very similar to SIMPLS.

Table 1 illustrates the results of APLS versus OLS, ridge regression, the
Lasso, MGL, and MRCE. Interestingly, the performance of APLS is higher
than the other methods for all responses. Most differences are statistically
significant according to a t-test. MGL does worse than ridge regression and
the Lasso. MRCE, however, is also quite competitive.

7 Discussion

We have proposed a Bayesian formulation of PLS, with extensions for spar-
sity, adaptive modeling of P, and automatic determination of k, and we
empirically showed that they perform well on ECoG data decoding.

The proposed approximation relies on the Bayesian paradigm, and,
hence, regularization is performed in a data-driven fashion with low risk
of overfitting. An advantage is interpretability of the model: using diag-
onal matrices �−1 = diag(σ−2) and �−1 = diag(γ−2), automatic relevance
determination provides a measure of the relevance of each input and latent
component. If, in addition, we use the adaptive extension proposed in sec-
tion 4, we can obtain a reasonable estimate of the optimal number k of latent
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Table 1: Mean Absolute Error (and Standard Deviations) for APLS (k = 2), OLS,
Univariate Ridge, Univariate Lasso, Multivariate Group Lasso (MGL), and Mul-
tivariate Regression with Covariance Estimation (MRCE).

APLS OLS Ridge Lasso MGL MRCE

SA 0.59(±0.003) 0.92(±0.004) 0.70(±0.003) 0.77(±0.003) 0.90(±0.004) 0.60(±0.003)

SF 0.64(±0.003) 0.92(±0.004) 0.72(±0.003) 0.79(±0.003) 0.91(±0.004) 0.72(±0.002)

P 0.51(±0.002) 0.70(±0.003) 0.56(±0.002) 0.60(±0.002) 0.70(±0.003) 0.51(±0.002)

WA 0.57(±0.002) 0.84(±0.004) 0.62(±0.003) 0.74(±0.003) 0.84(±0.003) 0.68(±0.002)

SR 0.55(±0.002) 0.81(±0.003) 0.61(±0.002) 0.70(±0.003) 0.80(±0.003) 0.57(±0.002)

EF 0.53(±0.002) 0.84(±0.004) 0.70(±0.003) 0.68(±0.003) 0.81(±0.003) 0.66(±0.002)

WF 0.54(±0.002) 0.75(±0.003) 0.58(±0.002) 0.65(±0.002) 0.74(±0.003) 0.66(±0.002)

Notes: Each row corresponds to a motor output: shoulder abduction (SA), shoulder flexion
(SF), pronation (P), wrist abduction (WA), shoulder rotation (SR), elbow flexion (EF), and
wrist flexion (WF). The best method is highlighted in bold.

components from γ−2. Unlike other PLS formulations, the adaptive model
appears to be robust to the choice of k.

For automatically selecting k, we can run the algorithm with several
values of k and then select the one that reaches the highest model evi-
dence (see appendix B). A more sophisticated solution is to move toward
a nonparametric method, where a proper prior on Z would automati-
cally select the optimal number of latent components. However, the model
would probably lose its conjugacy, so that variational inference would no
longer be practicable, and we would have to resort to sampling methods of
inference.

Note that up to permutation of the latent components and sign flips, the
model is identifiable thanks to the priors over P and Q, even when neither
Q nor the latent components are forced to be orthonormal. Furthermore,
although the model is unidentifiable with respect to permutations of the
latent components, due to the initialization of Z (step 1 of the algorithm
in section 2), the method will always produce the same order in the latent
components across different runs.

Future developments can involve a Markovian consideration of the time
dynamics. By means of this extension, a connection between PLS and an
input-output linear dynamical system (Beal, 2003) can be established.

Appendix A

We now formulate the variational update equations for �−1, Q,�−1. For a
full matrix �−1, we have a Wishart distribution,

F(�−1) = W(�−1; C̃
−1

, κ̃ ), (A.1)

with C̃
−1 = (Y ′Y + E[Q′Z′ZQ]− Y ′μZμQ− μ′

Qμ′
ZY + C−1)−1 and κ̃ = κ + N.
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For diagonal �−1, we have the diagonal components to be gamma dis-
tributed:

F(�−1
j j ) = G(�−1

j j ; κ̃, C̃−1
j j ), (A.2)

with κ̃ = κ + N
2 and C̃−1

j j = 1
2 (Y · jY

′
· j + E[q′

jZ
′Zq j] − 2Y ′

· jμZμq j
) + C−1

j j .

For Q, we have, in the general case, a kq-dimensional gaussian distribu-
tion,

F(Q) = N (Q;μQ, SQ), (A.3)

whose parameters can be reconstructed from Sq̃ = (E[�−1] ⊗ Iq + E[Z′Z] ⊗
E[�−1])−1 and μq̃ = Sq̃(E[Z′Z] ⊗ E[�−1])q̃∗, where q̃ is defined like p̃ and
q̃∗ is the concatenation of the rows of (μ′

ZX )−1μ′
ZY . If we choose to factorize

F(Q), which follows from taking �−1 to be diagonal, we have

F(q j) = N (q j;μq j
, Sq j

), (A.4)

with Sq j
= (E[�−1] + E[�−1

j j ]E[Z′Z])−1 and μq j
= E[�−1

j j ]Sq j
μ′

ZY · j

With regard to �−1
j , we have

F(�−1) = W(�−1; D̃
−1

, ς̃ ), (A.5)

with D̃
−1 = (E[QQ′] + D−1)−1 and ς̃ = ς + q.

Appendix B

In this appendix, we derive a variational lower bound of the evidence
from model 1. This can be used to monitor the inference process and check
convergence. The lower bound is defined as

L= E[ln P(�−1)] +
k∑

l=1

E[ln P(pl |�−1)] + E[ln P(�−1)]

+
N∑

n=1

E[ln P(zn|xn, P,�−1)] + E[ln P(�−1)] +
q∑

j=1

E[ln P(q j|�−1)]

+ E[ln P(�−1)] +
N∑

n=1

E[ln P(yn|zn, Q,�−1)] +
k∑

l=1

E[ln F(pl )]
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+ E[ln F(�−1,�−1)] +
N∑

n=1

E[ln F(zn)] +
q∑

j=1

E[ln F(q j)]

+ E[ln F(�−1,�−1)]. (B.1)

Particularizing for full matrices �−1 and �−1, we have

E[ln P(�−1)]

= −ν

2
ln |B−1| − ln

(
2νp/2 π p(p−1)/4

p∏
i=1

G
(ν + 1 − i

2

))

+ ν − p − 1
2

( p∑
i=1

ψ
( ν̃ + 1 − i

2

)
+ p ln 2 + ln

∣∣B̃−1∣∣) − ν̃

2
Tr(BB̃

−1
),

E[ln P(pl |�−1)]

= − p
2

ln(2π) + 1
2

( p∑
i=1

ψ
( ν̃ + 1 − i

2

)
+ p ln 2 + ln

∣∣B̃−1∣∣)

− ν̃

2
μ′

pl
B̃

−1
μpl

− ν + k
2

Tr
(
Spl

B̃
−1)

,

E[ln P(�−1)]

= − ι

2
ln |Ã−1| − ln

(
2ιk/2 π k(k−1)/4

k∏
l=1

G
( ι + 1 − l

2

))

+ ι − k − 1
2

(
k∑

l=1

ψ
( ι̃ + 1 − l

2

)
+ k ln 2 + ln

∣∣Ã−1
∣∣) − ι̃

2
Tr(AÃ−1),

E[ln P(zn|xn, P,�−1)]

= − p
2

ln(2π) + 1
2

(
k∑

l=1

ψ

(
ι̃ + 1 − l

2

)
+ k ln 2 + ln

∣∣Ã−1
∣∣)

− ι̃

2
x′

n

(
μPÃ−1μ′

P +
k∑

l=1

Ã−1
ll Spl

)
xn,

E[ln P(yn|zn, Q,�−1)]

= − q
2

ln(2π) + 1
2

( q∑
j=1

ψ

(
κ̃ + 1 − j

2

)
+ q ln 2 + ln

∣∣C̃−1∣∣)
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− κ̃

2
μ′

zn

(
μQC̃

−1
μ′

Q +
q∑

j=1

C̃−1
j j Sq j

)
μzn

− κ̃

2
Tr

(
Szn

(
μQC̃

−1
μ′

Q +
q∑

j=1

C̃−1
j j Sq j

))
− κ̃

2
y′

nC̃
−1

yn + κ̃y′
nC̃

−1
μ′

Qμzn
,

where G(·) and ψ(·) are the gamma and digamma functions. The expres-
sions for E[ln P(�−1)], E[ln P(q j|�−1)] and E[ln P(�−1)] are analogous to
E[ln P(�−1)], E[ln P(pl |�−1)], and E[ln P(�−1)], respectively, and are not
shown.

The rest of the terms in equation B.1 correspond to the negative entropies
of the F(·) distributions—for example:

E[ln F(pl )] = 1
2

ln |Spl
| + p

2
(1 + ln(2π)),

E[ln F(�−1,�−1)]

= − ι

2
ln |Ã−1| − ln

(
20.5ι̃k π k(k−1)/4

k∏
l=1

G
(

ι̃ + 1 − l
2

))

− ι̃ − k − 1
2

(
k∑

l=1

ψ

(
ι̃ + 1 − l

2

)
+ k ln 2 + ln

∣∣Ã−1
∣∣) + ι̃k

2

−ν

2
ln |B̃−1| − ln

(
20.5ν̃p π p(p−1)/4

p∏
i=1

G
(

ν̃ + 1 − i
2

))

− ν̃ − p − 1
2

( p∑
i=1

ψ

(
ν̃ + 1 − i

2

)
+ p ln 2 + ln

∣∣B̃−1∣∣) + ν̃p
2

,

E[ln F(zn)] = 1
2

ln |Szn
| + k

2
(1 + ln(2π)).

The variational lower bound for other variations of the method can be
easily computed following the same line of argument.
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