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ParceLiNGAM: A causal ordering method robust

against latent confounders

Tatsuya Tashiro∗, Shohei Shimizu†, Aapo Hyvärinen‡and Takashi Washio§

Abstract

We consider learning a causal ordering of variables in a linear non-Gaussian
acyclic model called LiNGAM. Several existing methods have been shown to
consistently estimate a causal ordering assuming that all the model assump-
tions are correct. But, the estimation results could be distorted if some as-
sumptions actually are violated. In this paper, we propose a new algorithm for
learning causal orders that is robust against one typical violation of the model
assumptions: latent confounders. The key idea is to detect latent confounders
by testing independence between estimated external influences and find subsets
(parcels) that include variables that are not affected by latent confounders. We
demonstrate the effectiveness of our method using artificial data and simulated
brain imaging data.

1 Introduction

Bayesian networks have been widely used to analyze causal relations of variables
in many empirical sciences (Bollen, 1989; Pearl, 2000; Spirtes, Glymour, & Scheines,
1993). A common assumption is linear-Gaussianity. But this poses serious iden-
tifiability problems so that many important models are indistinguishable with no
prior knowledge on the structures. Recently, it was shown by (Shimizu, Hoyer, Hyvärinen, & Kerminen,
2006) that the utilization of non-Gaussianity allows the full structure of a linear
acyclic model to be identified without pre-specifying any causal orders of vari-
ables. The new model, a Linear Non-Gaussian Acyclic Model called LiNGAM
(Shimizu et al., 2006), is closely related to independent component analysis
(ICA) (Hyvärinen, Karhunen, & Oja, 2001).

Most existing estimation methods (Shimizu et al., 2006, 2011; Hyvärinen & Smith,
2013) for LiNGAM learn causal orders assuming that all the model assumptions
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hold. Therefore, these algorithms could return completely wrong estimation re-
sults when some of the model assumptions are violated. Thus, in this paper, we
propose a new algorithm for learning causal orders that is robust against one
typical model violation, i.e., latent confounders. A latent confounder means a
variable which is not observed but which exerts a causal influence on some of
the observed variables. Many real-world applications including brain imaging
data analysis (Smith et al., 2011) could benefit from our approach.

This paper1 is organized as follows. We first review LiNGAM (Shimizu et al.,
2006) and its extension to latent confounder cases (Hoyer, Shimizu, Kerminen, & Palviainen,
2008) in Section 2. In Section 3, we propose a new algorithm to learn causal
orders in LiNGAM with latent confounders. We empirically evaluate the per-
formance of our algorithm using artificial data in Section 4 and simulated fMRI
data in Section 5. We conclude this paper in Section 6.

2 Background: LiNGAMwith latent confounders

We briefly review a linear non-Gaussian acyclic model called LiNGAM (Shimizu et al.,
2006) and an extension of the LiNGAM to cases with latent confounding vari-
ables (Hoyer et al., 2008).

In LiNGAM (Shimizu et al., 2006), causal relations of observed variables xi

(i = 1, · · · , d) are modeled as:

xi =
∑

k(j)<k(i)

bijxj + ei, (1)

where k(i) is a causal ordering of the variables xi. In this ordering, the variables
xi graphically form a directed acyclic graph (DAG) so that no later variable
determines, i.e., has a directed path on any earlier variable. The ei are external
influences, and bij are connection strengths. In matrix form, the model (1) is
written as

x = Bx+ e, (2)

where the connection strength matrix B collects bij and the vectors x and e col-
lect xi and ei. Note that the matrix B can be permuted to be lower triangular
with all zeros on the diagonal if simultaneous equal row and column permu-
tations are made according to a causal ordering k(i) because of the acyclicity.
The zero/non-zero pattern of bij corresponds to the absence/existence pattern
of directed edges. External influences ei follow non-Gaussian continuous distri-
butions with zero mean and non-zero variance and are mutually independent.
The non-Gaussianity assumption on ei enables identification of a causal ordering
k(i) based on data x only (Shimizu et al., 2006). This feature is a major advan-
tage over conventional Bayesian networks based on the Gaussianity assumption
on ei (Spirtes et al., 1993).

1Some preliminary results were presented in (Tashiro, Shimizu, Hyvärinen, & Washio,
2012), which corresponds to Section 3.1 of this paper.
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Next, LiNGAM with latent confounders (Hoyer et al., 2008) can be formu-
lated as follows:

x = Bx+Λf + e, (3)

where the difference with LiNGAM in Eq. (2) is the existence of latent confound-
ing variable vector f . A latent confounding variable is a latent variable that is a
parent of more than one observed variable. The vector f collects non-Gaussian
latent confounders fj with zero mean and non-zero variance (j = 1, · · · , q).
Without loss of generality (Hoyer et al., 2008), latent confounders fj are as-
sumed to be mutually independent. The matrix Λ collects λij which denotes
the connection strength from fj to xi. For each j, at least two λij are non-zero
since a latent confounder is defined to have at least two children (Hoyer et al.,
2008). The matrix Λ is assumed to be of full column rank.

The central problem of causal discovery based on the latent variable LiNGAM
in Eq. (3) is to estimate as many of causal orders k(i) and connection strengths
bij as possible based on data x only. This is because in many cases only an
equivalence class of the true model whose members produce the exact same
observed distribution is identifiable (Hoyer et al., 2008).

In (Hoyer et al., 2008), an estimation method based on overcomplete ICA
(Lewicki. & Sejnowski, 2000) was proposed. However, overcomplete ICA meth-
ods are often not very reliable and get stuck in local optima. Thus, in (Entner & Hoyer,
2011), a method that does not use overcomplete ICA was proposed to first find
variable pairs that are not affected by latent confounders and then estimate a
causal ordering of one to the other. However, their method does not estimate a
causal ordering of more than two variables. A simple cumulant-based method
for estimating the model in the case of Gaussian latent confounders was further
proposed by (Chen & Chan, 2013).

3 A method robust against latent confounders

In this section, we propose a new approach for estimating causal orders of more
than two variables without explicitly modeling latent confounders.

3.1 Identification of causal orders of variables that are not

affected by latent confounders

We first provide principles to identify an exogenous (root) variable and a sink
variable which are such that are not affected by latent confounders in the latent
variable LiNGAM in Eq. (3) (if such variables exist) and next present an estima-
tion algorithm. Recent estimation methods (Shimizu et al., 2011) for LiNGAM
in Eq. (2) and its nonlinear extension (Hoyer, Janzing, Mooij, Peters, & Schölkopf,
2009; Mooij, Janzing, Peters, & Schölkopf, 2009) learn a causal ordering by find-
ing causal orders one by one either from the top downward or from the bottom
upward assuming no latent confounders. We extend these ideas to latent con-
founder cases.
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We first generalize Lemma 1 of (Shimizu et al., 2011) for the case of latent
confounders.

Lemma 1 Assume that all the model assumptions of the latent variable LiNGAM

in Eq. (3) are met and the sample size is infinite. Denote by r
(j)
i the residuals

when xi are regressed on xj : r
(j)
i = xi −

cov(xi,xj)
var(xj)

xj (i 6= j). Then a variable

xj is an exogenous variable in the sense that it has no parent observed variable

nor latent confounder if and only if xj is independent of its residuals r
(j)
i for all

i 6= j.

Next, we generalize the idea of (Mooij et al., 2009) for the case of latent con-
founders.

Lemma 2 Assume that all the model assumptions of the latent variable LiNGAM
in Eq. (3) are met and the sample size is infinite. Denote by x(−j) a vec-

tor that contains all the variables other than xj. Denote by r
(−j)
j the resid-

ual when xj is regressed on x(−j), i.e., r
(−j)
j = xj − σT

(−j)jΣ
−1
(−j)x(−j), where

Σ =

[

σj σT
j(−j)

σj(−j) Σ(−j)

]

is the covariance matrix of [xj ,x
T
(−j)]

T . Then a vari-

able xj is a sink variable in the sense that it has no child observed variable nor

latent confounder if and only if x(−j) is independent of its residual r
(−j)
j .

The proofs of these lemmas are given in the appendix.2

Thus, we can take a hybrid estimation approach that uses these two princi-
ples. We first identify an exogenous variable by finding a variable that is most
independent of its residuals and remove the effect of the exogenous variable
from the other variables by regressing it out. We repeat this until independence
between every variable and all of its residuals is statistically rejected. Depen-
dency between every variable and any of its residuals implies that an exogenous
variable as defined in Lemma 1 does not exist or some model assumption of
latent variable LiNGAM in Eq. (3) is violated. Similarly, we next identify a
sink variable in the remaining variables by finding a variable such that its re-
gressors and its residual are most independent and disregard the sink variable.
We repeat this until independence is statistically rejected for every variable.3

To test independence, we first evaluate pairwise independence between vari-
ables and the residuals using a kernel-based independence measure called HSIC
(Gretton et al., 2008) and then combine the resulting p-values pi (i = 1, · · · , c)
using a well-known Fisher’s method (Fisher, 1950) to compute the test statis-
tic −2

∑c

i=1 log pi, which follows the chi-square distribution with 2c degrees of
freedom when all the pairs are independent.

Since all the causal orders are not necessarily identifiable in the latent vari-
able LiNGAM in Eq. (3) (Hoyer et al., 2008), we here aim to estimate a d × d

2We prove the lemmas without assuming the faithfulness (Spirtes et al., 1993) unlike our
previous work (Tashiro et al., 2012).

3The issue of multiple comparisons arises in this context, which we would like to study in
future work.
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causal ordering matrix C=[cij ] that collects causal orderings between two vari-
ables, which is defined as

cij :=















−1 if k(i) < k(j)
1 if k(i) > k(j)
0 if it is unknown whether either of the two cases

above (−1 or 1) is true.

(4)

Thus, the estimation consists of the following steps:

Algorithm 1: Hybrid estimation of causal orders of variables that are not affected
by latent confounders

INPUT: Data matrix X and a threshold α

1. Given a d-dimensional random vector x, a d×n data matrix of the random
vector asX and a significance level α, define U as the set of variable indices
of x, i.e., {1, · · · , d} and initialize an ordered list of variables Khead := ∅
and Ktail := ∅ and m := 1. Khead and Ktail denote the first |Khead|
variable indices and the last |Ktail| variable indices respectively, where
each of |Khead| and |Ktail| denotes the number of elements in the list.

2. Let x̃ := x and X̃ := X and find causal orders one by one from the top
downward:

(a) Do the following steps for all j ∈ U \ Khead: Perform least squares
regressions of x̃i on x̃j for all i ∈ U \ Khead (i 6= j) and compute

the residual vectors r̃(j) and the residual matrix R̃(j). Then, find a
variable x̃m that is most independent of its residuals:

x̃m = arg max
j∈U\Khead

PFisher(x̃j , r̃
(j)), (5)

where PFisher(x̃j , r̃
(j)) is the p-value of the test statistic defined as

−2
∑

i log{PH(x̃j , r̃
(j)
i )}, where PH(x̃j , r̃

(j)
i ) is the p-value of the HSIC.

(b) Go to Step 3 if PFisher(x̃m, r̃(m)) < α, i.e., all independencies are
rejected.

(c) Append m to the end of Khead and let x̃ := r̃(m) and X̃ := R̃(m). If
|Khead| = d − 1, append the remaining variable index to the end of
Khead and terminate. Otherwise, go back to Step (2a).

3. If |Khead| < d− 2, let x′ = x and X′ = X and U ′ := U \Khead and find
causal orders one by one from the bottom upward 4:

4We do not examine remaining two variables in this step since it is already implied in
Step 2 that some latent confounders exist. If there were no latent confounders between the
remaining two, their causal orders would have already been estimated in Step 2.
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(a) Do the following steps for all j ∈ U ′ \Ktail: Collect all the variables
except x′

j in a vector x′
(−j). Perform least squares regressions of x′

j

on x′
(−j) and compute the residual r′

(−j)
j . Then, find such a variable

x′
m that its regressors and its residual are most independent:

x′
m = arg max

j∈U ′\Ktail

PFisher(x
′
(−j), r

′(−j)
j ). (6)

(b) Terminate if PFisher(x
′
(−m), r

′(−m)
m ) < α, i.e., all independencies are

rejected.

(c) Append m to the top of Ktail and let x′ = x′
(−m)X

′ = X′
(−m).

Terminate 4 if |U ′ \Ktail| < 3 and otherwise go back to Step (3a).

4. Estimate a causal ordering matrix C based on Khead and Ktail as follows.
Estimate cij by -1, i.e., k(i) < k(j) in either of the following cases: i) i is
earlier than j in Khead; ii) i is earlier than j in Ktail; iii) i is in Khead and
j is in Ktail; iv) i is in Khead and j is neither Khead nor Ktail. Estimate
cij by 1, i.e., k(i) > k(j) in either of the following cases: i) i is later than
j in Khead; ii) i is later than j in Ktail; iii) i is in Ktail and j is in Khead;
iv) i is in Ktail and j is neither Khead nor Ktail. Estimate cij by 0, i.e.,
the ordering is unknown if i and j are neither in Ktail nor Khead. Note
that causal orders of variables that are not in Khead or Ktail are no later
than any in Ktail and no earlier than any in Khead.

OUTPUT: Ordered lists Khead and Ktail and a causal ordering matrix C

3.2 A new estimation algorithm robust against latent con-

founders

Algorithm 1 outputs no causal orders in cases where exogenous variables and
sink variables as in Lemmas 1 and 2 do not exist. For example, in the left of
Fig. 1, there is no such exogenous variable or sink variable that is not affected
by any latent confounder since the latent confounder f1 affects the exogenous
variable x1 and the sink variable x4. Therefore, Algorithm 1 would not find
any causal orders. However, if we omit x4 as in the right of Fig. 1 and apply
Algorithm 1 on the remaining x1, x2, x3 only, it will find all the causal orders of
x1, x2, x3 since f1 does not affect any two of x1, x2, x3 and is no longer a latent
confounder. The same idea applies to the case that x1 is omitted.

Thus, we propose applying Algorithm 1 on every subset of variables with the
size larger than one. This enables learning more causal orders than analyzing
the whole set of variables if a subset of variables has exogenous variables or sink
variables that are not affected by latent confounders. In practice, Algorithm 1
could give inconsistent causal orderings between a pair of variables for different
subsets of variables because of estimation errors. To manage possible incon-
sistencies in the many causal orderings thus estimated, we rank the obtained
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Figure 1: Left: An example graph where Algorithm 1 finds no causal orders.
The f1 is a latent confounder that affects x1 and x4. Right: Algorithm 1 finds
the causal orders of x1, x2 and x3 if x4 is omitted and only x1, x2 and x3 are
analyzed.

causal ordering matrices by plausibility based on the statistical significances
(this will be defined below). Then, considering any pair of two variables, we use
the causal ordering given by the causal ordering matrix which has the highest
plausibility and does contain an estimated causal ordering (i.e., the ordering
was not considered unknown) between those two variables.

We evaluate the plausibility of every causal ordering matrix by the p-value
of the test statistic created based on Fisher’s method combining all the p-values
computed to estimate the causal orders Khead and Ktail in Algorithm 1. A
higher p-value can be considered to be more plausible. The test statistic is
computed based on X, Khead and Ktail as follows:

− 2(
∑

m∈Khead

∑

i:k(i)>k(m)

log{PH(x̃m, r̃
(m)
i )}+

∑

m∈Ktail

∑

i:k(i)<k(m)

log{PH(x′
i, r

′(−m)
m )}), (7)

where PH(x̃m, r̃
(m)
i ) and PH(x′

i, r
′(−m)
m ) are the p-values computed to estimate

ordered lists Khead and Ktail in Algorithm 1.
Thus, the estimation consists of the following steps:

Algorithm 2: Applying Algorithm 1 on every subset of variables and merging
results

INPUT: Data matrix X and a threshold α

1. Take all the l-combinations of variable indices {1, · · · , d} for l = 2, · · · , d.

Denote the subsets of variable indices by U
(s)
subset (s = 1, · · · , S) and the
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corresponding data matrices by X
(s)
subset (s = 1, · · · , S), where S is the

number of the subsets.

2. Apply Algorithm 1 on X
(s)
subset using the threshold α to estimate K

(s)
head,

K
(s)
tail and C(s) for all s ∈ {1, · · · , S}, where K

(s)
head and K

(s)
tail are ordered

lists of Subset U
(s)
subset and C(s) is a causal ordering matrix of Subset

U
(s)
subset.

3. Compute the p-value of the test statistic in Eq. (7) to evaluate the plau-
sibility of C(s) for all s ∈ {1, · · · , S}.

4. Estimate every element cij (i 6= j) of a causal ordering matrix C by the
causal ordering between xi and xj of the causal ordering matrix that has
the highest plausibility and does contain an estimated causal ordering
between xi and xj , that is, k(i) < k(j) or k(j) < k(i).

OUTPUT: A causal ordering matrix C

Algorithm 2 is a brute force approach since it applies Algorithm 1 on ev-
ery subset (parcel) of variables. We could alleviate the computational load by
first applying Algorithm 1 on the whole set of variables and then applying Algo-
rithm 2 on the remaining variables whose causal orders have not been estimated
after the effects of estimated exogenous variables are removed by regression.
Thus, we finally propose the following algorithm called ParceLiNGAM:

Algorithm 3: The ParceLiNGAM algorithm

INPUT: Data matrix X and a threshold α

1. Given a d-dimensional random vector x and a d × n data matrix of the
random vector as X, define U as the set of variable indices of x, i.e.,
{1, · · · , d}. initialize a d× d causal ordering matrix C by the zero matrix.

2. Apply Algorithm 1 on X using the threshold α to estimate Khead and
Ktail and update C.

3. Let Ures := U \ (Khead

⋃

Ktail). Denote by Cres the corresponding causal
ordering matrix. Denote by |Ures| the number of elements in Ures. Go to
Step 6 if |Ures| ≤ 2.

4. Collect variables xj with j ∈ Ures in a vector xres. Collect variables
xj with j ∈ Khead in a vector xhead. Perform least squares regressions of
xhead on the i-th element of xres for all i ∈ Ures and collect the residuals in
the residual matrix Rres whose i-th row is given by the residuals regressed
on xi.

5. Apply Algorithm 2 on Rres using the threshold α to estimate Cres. Re-
place every cij (i 6= j) of C by the corresponding element of Cres if cij is
zero and the corresponding element of Cres is 1 or -1.
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6. Estimate connection strengths bij if all the non-descendants of xi are es-
timated, i.e., the i-th row of C has no zero. This can be done by doing
multiple regression of xi on all of its non-descendants xj with k(j) < k(i).

OUTPUT: A causal ordering matrix C and a set of estimated connection
strength bij .

In cases of no latent confounders, Algorithm 3 is essentially equivalent to
DirectLiNGAM (Shimizu et al., 2011). Matlab codes for performing Algorithm 3
are available at http://www.ar.sanken.osaka-u.ac.jp/~sshimizu/code/Plingamcode.html.

4 Experiments on artificial data

We compared our method with two estimation methods for LiNGAM in Eq. (2)
called ICA-LiNGAM (Shimizu et al., 2006) and DirectLiNGAM (Shimizu et al.,
2011) that do not allow latent confounders and an estimation method for la-
tent variable LiNGAM in Eq. (3) called Pairwise LvLiNGAM (Entner & Hoyer,
2011). If there are no latent confounders, all the methods should estimate cor-
rect causal orders for large enough sample sizes. The numbers of variables were
5, 10, and 15, and the sample sizes tested were 500, 1000, and 1500. The orig-
inal networks used were shown in Fig. 2 to Fig. 4. The e1, e4, e7, e10, e13, f1
and f4 followed a multimodal asymmetric mixture of two Gaussians, e2, e5, e8,
e11, e14, f2 and f5 followed a double exponential distribution, and e3, e6, e9,
e12, e15, f3 and f6 followed a multimodal symmetric mixture of two Gaussians.
The variances of the ei were set so that var(ei)/var(xi)=1/2. We permuted the
variables according to a random ordering. The number of trials was 100. The
significance level α was 0.05.

First, to evaluate performance of estimating causal orders k(i), we computed
the percentage of correctly estimated causal orders among estimated causal or-
ders between two variables (Precision) and the percentage of correctly estimated
causal orders among actual causal orders between two variables (Recall). We
also computed the F-measure defined as 2 × Precision × Recall/(Precision +
Recall), which is the harmonic mean of Precision and Recall. The reason why
only pairwise causal orders were evaluated was that Pairwise LvLiNGAM only
estimates causal orders of two variables unlike our method and DirectLiNGAM.
Tables 1, 2 and 3 show the results. Regarding recalls and F-measures, the
maximal performances when no statistical errors occur are also shown in the
right-most columns. For example in Fig. 2, Pairwise LvLiNGAM can find all the
causal orderings except k(2) < k(4), k(2) < k(5), k(3) < k(4) and k(3) < k(5).
ParceLiNGAM further can find k(2) < k(5) and k(3) < k(5) since it estimates
causal orderings between more than two variables. In some cases, the empirical
recalls and F-measures were higher than their maximal performances. This is
because causal orders of some variables that are affected by latent confounders
happened to be correctly estimated. Regarding precisions and F-measures, our
method ParceLiNGAM worked best for all the conditions. Regarding recalls,

9

http://www.ar.sanken.osaka-u.ac.jp/~sshimizu/code/Plingamcode.html


 

 

0.5 

-0.7 

-0.5 

0.8 

 

 

1.2 

-0.8 

1.2 

1 1.2 

 

 

 

Figure 2: 5 variable network
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Figure 3: 10 variable network
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Figure 4: 15 variable network
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ParceLiNGAM worked best for most conditions and was the second-best but
comparable to the best method DirectLiNGAM for the other conditions.

Next, to evaluate the performance in estimating connection strengths bij , we
computed the root mean square errors between true connection strengths and
estimated ones. Note that Pairwise LvLiNGAM does not estimate bij . Table 4
show the results. Our method was most accurate for all the conditions.

Table 5 shows average computation times. The amount out computation
of our ParceLiNGAM was larger than the other methods when the sample size
was increased. However, its amount of computation can be considered to be
still tractable. For larger numbers of variables, we would need to select a subset
of variables to decrease the number of variables to be analyzed. However, this
selection does not bias results of our method since it allows latent confounders.

Table 1: Precisions
Sample size

500 1000 1500

ParceLiNGAM dim.=5 1.0 1.0 1.0
dim.=10 0.81 0.88 0.93
dim.=15 0.81 0.89 0.92

PairwiseLvLiNGAM dim.=5 0.87 0.94 0.94
dim.=10 0.75 0.79 0.81
dim.=15 0.67 0.76 0.75

DirectLiNGAM dim.=5 0.82 0.88 0.85
dim.=10 0.59 0.71 0.73
dim.=15 0.78 0.80 0.82

ICA-LiNGAM dim.=5 0.80 0.75 0.76
dim.=10 0.62 0.62 0.58
dim.=15 0.58 0.59 0.58

Table 2: Recalls
Sample size Max. performance

500 1000 1500

ParceLiNGAM dim.=5 0.86 0.82 0.80 0.80(8/10)
dim.=10 0.79 0.85 0.91 0.91(41/45)
dim.=15 0.80 0.87 0.89 0.94(99/105)

PairwiseLvLiNGAM dim.=5 0.65 0.62 0.59 0.60(6/10)
dim.=10 0.50 0.55 0.54 0.49(22/45)
dim.=15 0.39 0.45 0.43 0.46(48/105)

DirectLiNGAM dim.=5 0.82 0.88 0.85 -
dim.=10 0.59 0.71 0.73 -
dim.=15 0.78 0.80 0.82 -

ICA-LiNGAM dim.=5 0.80 0.75 0.76 -
dim.=10 0.62 0.62 0.58 -
dim.=15 0.58 0.59 0.58 -

5 Experiments on simulated fMRI data

Finally, we tested our method on simulated functional magnetic resonance imag-
ing (fMRI) data generated in (Smith et al., 2011) based on a well-known mathe-
matical brain model called the dynamic causal modeling (Friston, Harrison, & Penny,
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Table 3: F-measures
Sample size Max. performance

500 1000 1500

ParceLiNGAM dim.=5 0.92 0.90 0.89 0.89
dim.=10 0.80 0.86 0.92 0.95
dim.=15 0.81 0.88 0.90 0.97

PairwiseLvLiNGAM dim.=5 0.75 0.75 0.72 0.75
dim.=10 0.60 0.65 0.65 0.66
dim.=15 0.49 0.56 0.54 0.63

DirectLiNGAM dim.=5 0.82 0.88 0.85 -
dim.=10 0.59 0.71 0.73 -
dim.=15 0.78 0.80 0.82 -

ICA-LiNGAM dim.=5 0.80 0.75 0.76 -
dim.=10 0.62 0.62 0.58 -
dim.=15 0.58 0.59 0.58 -

Table 4: Root Mean Square Errors
Sample size

500 1000 1500

ParceLiNGAM dim.=5 0.030 0.020 0.016
dim.=10 0.078 0.060 0.052
dim.=15 0.083 0.046 0.031

DirectLiNGAM dim.=5 0.22 0.16 0.18
dim.=10 0.16 0.083 0.089
dim.=15 0.096 0.074 0.070

ICA-LiNGAM dim.=5 0.11 0.11 0.10
dim.=10 0.16 0.15 0.15
dim.=15 0.16 0.14 0.13

Table 5: Computational Times
Sample size

500 1000 1500

ParceLiNGAM dim.=5 0.66 sec. 1.7 sec. 4.4 sec.
dim.=10 10 sec. 1.5 min. 8.1 min.
dim.=15 8.5 min. 5.3 hrs. 19 hrs.

PairwiseLvLiNGAM dim.=5 0.64 sec. 2.6 sec. 7.0 sec.
dim.=10 2.8 sec. 12 sec. 30 sec.
dim.=15 6.6 sec. 29 sec. 74 sec.

DirectLiNGAM dim.=5 0.23 sec. 0.84 sec. 1.2 sec.
dim.=10 1.7 sec. 7.3 sec. 11 sec.
dim.=15 6.4 sec. 29 sec. 44 sec.

ICA-LiNGAM dim.=5 0.12 sec. 0.051 sec. 0.047 sec.
dim.=10 0.34 sec. 0.18 sec. 0.10 sec.
dim.=15 0.81 sec. 0.68 sec. 0.53 sec.
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Figure 5: The network used in the simulated fMRI experiments. We omitted
x1 to create a latent confounder.

2003). We used Simulation 2 data and Simulation 6 data. Both datasets con-
sisted of 10 variables whose causal structure is shown in Fig. 5. The session
durations were 10 minutes (200 time points) and 60 minutes (1200 time points),
respectively. We also created a dataset of 30 minutes (600 time points) by taking
the first half of Simulation 6 data. Although these data are time-series, we did
not add lag-based approaches including vector autoregressive models into com-
parison as in (Hyvärinen & Smith, 2013) since it was shown by (Smith et al.,
2011) that lag-based methods worked poorly on these Simulation 2 data and
Simulation 6 data.

For each of the three different duration settings, we gave the 50 datasets
(one by one) to ParceLiNGAM, PairwiseLvLiNGAM, DirectLiNGAM and ICA-
LiNGAM after omitting x1 to create a latent confounder and randomly permut-
ing the other variables. Table 6 shows the precision, recalls, and F-measures of
causal orders. Regarding precisions, we excluded such variable pairs xi and xj

that one has no directed path to the other, e.g., x2 and x6, since both k(i) < k(j)
and k(i) > k(j) are correct. This was because estimation of causal directions is
the main topic of this paper. The significance level α was 0.05. For all of the
cases, ParceLiNGAM worked better than the others.

6 Conclusions

We proposed a new algorithm for learning causal orders, which is robust against
latent confounders. In experiments on artificial data and simulated fMRI data,
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Table 6: Results on simulated fMRI data
sim2 (10 min.) sim6 (30 min.) sim6 (60 min.)

ParceLiNGAM Precision 0.54 0.56 0.60
Recall 0.53 0.55 0.58
F-measure 0.53 0.55 0.59

PairwiseLvLiNGAM Precision 0.31 0.25 0.24
Recall 0.22 0.15 0.14
F-measure 0.26 0.19 0.18

DirectLiNGAM Precision 0.50 0.51 0.45
Recall 0.50 0.51 0.45
F-measure 0.50 0.51 0.45

ICA-LiNGAM Precision 0.49 0.47 0.47
Recall 0.49 0.47 0.47
F-measure 0.49 0.47 0.47

our methods learned more causal orders correctly than existing methods. An
important problem for future research is to develop computationally more effi-
cient algorithms. One approach might be to develop a divide-and-conquer al-
gorithm that divides variables into subsets with moderate numbers of variables
and integrates the estimation results on the subsets.
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Appendix

We first give Darmois-Skitovitch theorem (Darmois, 1953; Skitovitch, 1953):

Theorem 1 (Darmois-Skitovitch theorem (D-S theorem)) Define two ran-
dom variables y1 and y2 as linear combinations of independent random variables
si(i=1, · · · , q): y1 =

∑q

i=1 αisi, y2 =
∑q

i=1 βisi. Then, if y1 and y2 are inde-
pendent, all variables sj for which αjβj 6= 0 are Gaussian.

In other words, this theorem means that if there exists a non-Gaussian sj for
which αjβj 6=0, y1 and y2 are dependent.
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Proof of Lemma 1

i) Assume that xj has at least one parent observed variable or latent con-
founder. Let Pj denote the set of the parent variables of xj . Then one can write
xj=

∑

ph∈Pj
wjhph+ej, where the parent variables ph are independent of ej and

the coefficients wjh are non-zero. Let a vector xPj
and a column vector wPj

collect all the variables in Pj and the corresponding connection strengths, respec-
tively. Then, the covariances between xPj

and xj areE(xPj
xj) = E{xPj

(wT
Pj
xPj

+

ej)} = E(xPj
xT
Pj
)wPj

. The covariance matrix E(xPj
xT
Pj
) is positive definite

since the external influences and latent confounders are mutually independent
and have positive variances. Thus, the covariance vector E(xPj

xj) = E(xPj
xT
Pj
)wPj

above cannot equal the zero vector, and there must be at least one variable in
Pj with which xj covaries.

i-a) Suppose that xi is a parent of xj in Pj that covaries with xj . For such
xi, we have

r
(j)
i = xi −

cov(xi, xj)

var(xj)
xj (8)

= xi −
cov(xi, xj)

var(xj)
(
∑

ph∈Pj

wjhph + ej) (9)

=

{

1−
wjicov(xi, xj)

var(xj)

}

xi −
cov(xi, xj)

var(xj)

∑

ph∈Pj ,ph 6=xi

wjhph

−
cov(xi, xj)

var(xj)
ej . (10)

Each of those parent variables (including xi) in Pj is a linear combination of
external influences other than ej and latent confounders that are non-Gaussian

and independent. Thus, the r
(j)
i and xj can be written as linear combinations

of non-Gaussian and independent external influences including ej and latent

confounders. Further, the coefficient of ej on r
(j)
i is non-zero since cov(xi, xj) 6=

0 aforementioned and that on xj is one by definition. These imply that r
(j)
i and

xj are dependent since r
(j)
i , xj and ej correspond to y1, y2, sj in D-S theorem,

respectively.
i-b) Next, suppose that xj has a latent confounder fk in Pj that covaries with

xj . The latent confounder fk should have a non-zero coefficient on at least one
other observed variable xi. Without loss of generality, it is enough to consider
two observed variable cases that we only observe xi and xj :

xi = bijxj + λikfk + ei +
∑

h 6=k

λihfh (11)

xj = bjixi + λjkfk + ej +
∑

l 6=k

λilfl, (12)

where λik and λjk are non-zero since fk is a latent confounder of xi and xj .
Since the model is acyclic, bijbji = 0.
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First, suppose that bij is zero. Then, we have

r
(j)
i = xi −

cov(xi, xj)

var(xj)
xj (13)

= {λik −
cov(xi, xj)

var(xj)
(bjiλik + λjk)}fk

+{1−
cov(xi, xj)

var(xj)
bji}ei −

cov(xi, xj)

var(xj)
ej +D1, (14)

where D1 is a linear combinations of non-Gaussian and independent latent con-

founders other than fk. If cov(xi, xj) is zero, the coefficient of fk on r
(j)
i is

λik and is non-zero. If cov(xi, xj) is non-zero, the coefficient of ej on r
(j)
i is

− cov(xi,xj)
var(xj)

and is non-zero. Thus, in both of the cases, r
(j)
i and xj are depen-

dent due to D-S theorem. Remember that the coefficient of ej on xj is one by
definition.

Next, suppose that bji is zero. Then, we have

r
(j)
i = xi −

cov(xi, xj)

var(xj)
xj (15)

= {(bijλjk + λik)−
cov(xi, xj)

var(xj)
λjk}fk

+ei + (bij −
cov(xi, xj)

var(xj)
)ej +D2, (16)

where D2 is a linear combinations of non-Gaussian and independent latent con-
founders other than fk. If cov(xi, xj) is zero and bij is zero, the coefficient of

fk on r
(j)
i is λik and is non-zero. If cov(xi, xj) is zero and bij is non-zero, the

coefficient of ej on r
(j)
i is bij and is non-zero. If cov(xi, xj) is non-zero and bij

is zero, the coefficient of ej on r
(j)
i is − cov(xi,xj)

var(xj)
and is non-zero. If cov(xi, xj)

is non-zero and bij is non-zero, either of the followings holds: a) the coefficient

of ej on r
(j)
i is non-zero, that is, bij 6= cov(xi, xj)/var(xj) or b) the coefficient

of ej on r
(j)
i is zero and hence the coefficient of fk on r

(j)
i is λik and is non-zero.

Thus, in all of the cases, r
(j)
i and xj are dependent due to D-S theorem.

ii) The converse of contrapositive of i) is straightforward using the model
definition. From i) and ii), the lemma is proven.

Proof of Lemma 2

i) Assume that a variable xj has at least one child observed variable or latent
confounder. First, without loss of generality, one can write

x =

[

xj

x(−j)

]

= (I−B)−1(Λf + e) = A(Λf + e) (17)

=

[

1 aT
j(−j)

a(−j)j A(−j)

] [

λλλT
j f + ej

Λ(−j)f + e(−j)

]

, (18)
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where each of A (= (I−B)−1) and A(−j) is invertible and can be permuted to
be a lower triangular matrix with the diagonal elements being ones if the rows
and columns are simultaneously permuted according to the causal ordering k(i).
The same applies to the inverse of A:

A−1 =

[

(1 − aT
j(−j)A

−1
(−j)a(−j)j)

−1 −aT
j(−j)D

−1

−D−1a(−j)j D−1

]

, (19)

where D = A(−j) − a(−j)ja
T
j(−j). Thus, 1− aT

j(−j)A
−1
(−j)a(−j)j = 1.

Then,

r
(−j)
j = xj − σT

(−j)jΣ
−1
(−j)x(−j) (20)

= λλλT
j f + ej + aT

j(−j)(Λ(−j)f + e(−j))

−σT
(−j)jΣ

−1
(−j){a(−j)j(λλλ

T
j f + ej) +A(−j)(Λ(−j)f + e(−j)) (21)

= {λλλT
j + aT

j(−j)Λ(−j) − σT
(−j)jΣ

−1
(−j)(a(−j)jλλλ

T
j +A(−j)Λ(−j))}f

+{1− σT
(−j)jΣ

−1
(−j)a(−j)j}ej + {aT

j(−j) − σT
(−j)jΣ

−1
(−j)A(−j)}e(−j).(22)

In Eq.(22), if aT
j(−j) − σT

(−j)jΣ
−1
(−j)A(−j) = 0T , then we have

r
(−j)
j = {λλλT

j (1− aT
j(−j)A

−1
(−j)a(−j)j)}f + {1− aT

j(−j)A
−1
(−j)a(−j)j}ej(23)

= λλλT
j f + ej . (24)

Thus, the coefficient of ej on r
(−j)
j is one. Now, suppose that xj has a child

xi. If the coefficient of ej on xi is non-zero, r
(−j)
j and x(−j) are dependent

due to D-S theorem. Even if it is zero, i.e., cancelled out to be zero by special
parameter values of the connection strengths, the coefficient of ej on at least
one other variable in x(−j) is non-zero since there must be such an observed
variable to cancel out the coefficient of ej on xi to be zero. It implies that

r
(−j)
j and x(−j) are dependent due to D-S theorem. Next, suppose that xj has
a latent confounder fi. Then, in Eq.(24), the corresponding element in λλλj is

not zero, i.e., the coefficient of fi on r
(−j)
j is not zero. Further, fi has a non-

zero coefficient on at least one variable in x(−j) due to the definition of latent

confounders. Therefore, r
(−j)
j and x(−j) are dependent due to D-S theorem.

On the other hand, in Eq.(22), if aT
j(−j) − σT

(−j)jΣ
−1
(−j)A(−j) 6= 0T , at least

one of the coefficients of the elements in e(−j) on r
(−j)
j is not zero. By definition,

every element in e(−j) has a non-zero coefficient on the corresponding element

in x(−j), Thus, r
(−j)
j and x(−j) are dependent due to D-S theorem.

ii) The converse of contrapositive of i) is straightforward using the model
definition. From i) and ii), the lemma is proven.
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