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Abstract

Information-maximization clustering learns a probabilistic classifier in an unsuper-
vised manner so that mutual information between feature vectors and cluster as-
signments is maximized. A notable advantage of this approach is that it only in-
volves continuous optimization of model parameters, which is substantially easier
to solve than discrete optimization of cluster assignments. However, existing meth-
ods still involve non-convex optimization problems, and therefore finding a good
local optimal solution is not straightforward in practice. In this paper, we propose
an alternative information-maximization clustering method based on a squared-loss

variant of mutual information. This novel approach gives a clustering solution an-

alytically in a computationally efficient way via kernel eigenvalue decomposition.
Furthermore, we provide a practical model selection procedure that allows us to
objectively optimize tuning parameters included in the kernel function. Through
experiments, we demonstrate the usefulness of the proposed approach.

Keywords

Clustering, Information Maximization, Squared-Loss Mutual Information.

1 Introduction

The goal of clustering is to classify data samples into disjoint groups in an unsupervised
manner. K-means (MacQueen, 1967) is a classic but still popular clustering algorithm.
However, since k-means only produces linearly separated clusters, its usefulness is rather
limited in practice.

http://arxiv.org/abs/1112.0611v1
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To cope with this problem, various non-linear clustering methods have been developed.
Kernel k-means (Girolami, 2002) performs k-means in a feature space induced by a repro-
ducing kernel function (Schölkopf and Smola, 2002). Spectral clustering (Shi and Malik,
2000; Ng et al., 2002) first unfolds non-linear data manifolds by a spectral embed-
ding method, and then performs k-means in the embedded space. Blurring mean-shift
(Fukunaga and Hostetler, 1975; Carreira-Perpiñán, 2006) uses a non-parametric kernel
density estimator for modeling the data-generating probability density, and finds clusters
based on the modes of the estimated density. Discriminative clustering learns a discrim-
inative classifier for separating clusters, where class labels are also treated as parameters
to be optimized (Xu et al., 2005; Bach and Harchaoui, 2008). Dependence-maximization
clustering determines cluster assignments so that their dependence on input data is max-
imized (Song et al., 2007; Faivishevsky and Goldberger, 2010).

These non-linear clustering techniques would be capable of handling highly complex
real-world data. However, they suffer from lack of objective model selection strategies1.
More specifically, the above non-linear clustering methods contain tuning parameters
such as the width of Gaussian functions and the number of nearest neighbors in kernel
functions or similarity measures, and these tuning parameter values need to be manually
determined in an unsupervised manner. The problem of learning similarities/kernels was
addressed in earlier works (Meila and Shi, 2001; Shental et al., 2003; Cour et al., 2005;
Bach and Jordan, 2006), but they considered supervised setups, i.e., labeled samples are
assumed to be given. Zelnik-Manor and Perona (2005) provided a useful unsupervised
heuristic to determine the similarity in a data-dependent way. However, it still requires
the number of nearest neighbors to be determined manually (although the magic number
‘7’ was shown to work well in their experiments).

Another line of clustering framework called information-maximization clustering ex-
hibited the state-of-the-art performance (Agakov and Barber, 2006; Gomes et al., 2010).
In this information-maximization approach, probabilistic classifiers such as a kernelized
Gaussian classifier (Agakov and Barber, 2006) and a kernel logistic regression classifier
(Gomes et al., 2010) are learned so that mutual information (MI) between feature vectors
and cluster assignments is maximized in an unsupervised manner. A notable advantage of
this approach is that classifier training is formulated as continuous optimization problems,
which are substantially simpler than discrete optimization of cluster assignments. Indeed,
classifier training can be carried out in computationally efficient manners by a gradient
method (Agakov and Barber, 2006) or a quasi-Newton method (Gomes et al., 2010). Fur-
thermore, Agakov and Barber (2006) provided a model selection strategy based on the
information-maximization principle. Thus, kernel parameters can be systematically opti-
mized in an unsupervised way.

However, in the above MI-based clustering approach, the optimization problems are
non-convex, and finding a good local optimal solution is not straightforward in practice.
The goal of this paper is to overcome this problem by providing a novel information-
maximization clustering method. More specifically, we propose to employ a variant of

1 ‘Model selection’ in this paper refers to the choice of tuning parameters in kernel functions or
similarity measures, not the choice of the number of clusters.
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MI called squared-loss MI (SMI), and develop a new clustering algorithm whose solution
can be computed analytically in a computationally efficient way via kernel eigenvalue
decomposition. Furthermore, for kernel parameter optimization, we propose to use a
non-parametric SMI estimator called least-squares MI (LSMI; Suzuki et al., 2009), which
was proved to achieve the optimal convergence rate with analytic-form solutions. Through
experiments on various real-world datasets such as images, natural languages, accelero-
metric sensors, and speech, we demonstrate the usefulness of the proposed clustering
method.

The rest of this paper is structured as follows. In Section 2, we describe our proposed
information-maximization clustering method based on SMI. Then the proposed method
is compared with existing clustering methods qualitatively in Section 3 and quantitatively
in Section 4. Finally, this paper is concluded in Section 5.

2 Information-Maximization Clustering with

Squared-Loss Mutual Information

In this section, we describe our proposed clustering algorithm.

2.1 Formulation of Information-Maximization Clustering

Suppose we are given d-dimensional i.i.d. feature vectors of size n,

{xi | xi ∈ R
d}ni=1,

which are assumed to be drawn independently from a distribution with density p∗(x).
The goal of clustering is to give cluster assignments,

{yi | yi ∈ {1, . . . , c}}
n
i=1,

to the feature vectors {xi}
n
i=1, where c denotes the number of classes. Throughout this

paper, we assume that c is known.
In order to solve the clustering problem, we take the information-maximization ap-

proach (Agakov and Barber, 2006; Gomes et al., 2010). That is, we regard clustering as
an unsupervised classification problem, and learn the class-posterior probability p∗(y|x)
so that ‘information’ between feature vector x and class label y is maximized.

The dependence-maximization approach (Song et al., 2007;
Faivishevsky and Goldberger, 2010, see also Section 3.7) is related to, but substantially
different from the above information-maximization approach. In the dependence-
maximization approach, cluster assignments {yi}ni=1 are directly determined so that their
dependence on feature vectors {xi}ni=1 is maximized. Thus, the dependence-maximization
approach intrinsically involves combinatorial optimization with respect to {yi}ni=1. On
the other hand, the information-maximization approach involves continuous optimization
with respect to the parameter α included in a class-posterior model p(y|x;α). This
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continuous optimization of α is substantially easier to solve than discrete optimization
of {yi}

n
i=1.

Another advantage of the information-maximization approach is that it naturally al-
lows out-of-sample clustering based on the discriminative model p(y|x;α), i.e., a cluster
assignment for a new feature vector can be obtained based on the learned discriminative
model.

2.2 Squared-Loss Mutual Information

As an information measure, we adopt squared-loss mutual information (SMI). SMI be-
tween feature vector x and class label y is defined by

SMI :=
1

2

∫ c∑

y=1

p∗(x)p∗(y)

(
p∗(x, y)

p∗(x)p∗(y)
− 1

)2

dx, (1)

where p∗(x, y) denotes the joint density of x and y, and p∗(y) is the marginal probability
of y. SMI is the Pearson divergence (Pearson, 1900) from p∗(x, y) to p∗(x)p∗(y), while
the ordinary MI (Cover and Thomas, 2006),

MI :=

∫ c∑

y=1

p∗(x, y) log
p∗(x, y)

p∗(x)p∗(y)
dx, (2)

is the Kullback-Leibler divergence (Kullback and Leibler, 1951) from p∗(x, y) to
p∗(x)p∗(y). The Pearson divergence and the Kullback-Leibler divergence both belong
to the class of Ali-Silvey-Csiszár divergences (which is also known as f -divergences, see
Ali and Silvey, 1966; Csiszár, 1967), and thus they share similar properties. For example,
SMI is non-negative and takes zero if and only if x and y are statistically independent,
as the ordinary MI.

In the existing information-maximization clustering methods (Agakov and Barber,
2006; Gomes et al., 2010, see also Section 3.8), MI is used as the information measure. On
the other hand, in this paper, we adopt SMI because it allows us to develop a clustering
algorithm whose solution can be computed analytically in a computationally efficient way
via kernel eigenvalue decomposition.

2.3 Clustering by SMI Maximization

Here, we give a computationally-efficient clustering algorithm based on SMI (1).
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Expanding the squared term in Eq.(1), we can express SMI as

SMI =
1

2

∫ c∑

y=1

p∗(x)p∗(y)

(
p∗(x, y)

p∗(x)p∗(y)

)2

dx

−

∫ c∑

y=1

p∗(x)p∗(y)
p∗(x, y)

p∗(x)p∗(y)
dx+

1

2

=
1

2

∫ c∑

y=1

p∗(y|x)p∗(x)
p∗(y|x)

p∗(y)
dx−

1

2
. (3)

Suppose that the class-prior probability p∗(y) is set to a user-specified value πy for y =
1, . . . , c, where πy > 0 and

∑c
y=1 πy = 1. Without loss of generality, we assume that

{πy}
c
y=1 are sorted in the ascending order:

π1 ≤ · · · ≤ πc.

If {πy}cy=1 is unknown, we may merely adopt the uniform class-prior distribution:

p∗(y) =
1

c
for y = 1, . . . , c, (4)

which will be non-informative and thus allow us to avoid biasing clustering solutions2.
Substituting πy into p∗(y), we can express Eq.(3) as

1

2

∫ c∑

y=1

1

πy
p∗(y|x)p∗(x)p∗(y|x)dx−

1

2
. (5)

Let us approximate the class-posterior probability p∗(y|x) by the following kernel
model:

p(y|x;α) :=
n∑

i=1

αy,iK(x,xi), (6)

where α = (α1,1, . . . , αc,n)
⊤ is the parameter vector, ⊤ denotes the transpose, andK(x,x′)

denotes a kernel function with a kernel parameter t. In the experiments, we will use a
sparse variant of the local-scaling kernel (Zelnik-Manor and Perona, 2005):

K(xi,xj) =





exp

(
−
‖xi − xj‖2

2σiσj

)
if xi ∈ Nt(xj) or xj ∈ Nt(xi),

0 otherwise,

(7)

2 Such a cluster-balance constraint is often employed in existing clustering algorithms (e.g.,
Shi and Malik, 2000; Xu et al., 2005; Niu et al., 2011).
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where Nt(x) denotes the set of t nearest neighbors for x (t is the kernel parameter), σi is

a local scaling factor defined as σi = ‖xi − x
(t)
i ‖, and x

(t)
i is the t-th nearest neighbor of

xi.
Further approximating the expectation with respect to p∗(x) included in Eq.(5) by

the empirical average of samples {xi}ni=1, we arrive at the following SMI approximator:

ŜMI :=
1

2n

c∑

y=1

1

πy
α⊤

y K
2αy −

1

2
, (8)

where αy := (αy,1, . . . , αy,n)
⊤ and Ki,j := K(xi,xj).

For each cluster y, we maximize α⊤
y K

2αy under3 ‖αy‖ = 1. Since this is the
Rayleigh quotient, the maximizer is given by the normalized principal eigenvector of K
(Horn and Johnson, 1985). To avoid all the solutions {αy}cy=1 to be reduced to the same
principal eigenvector, we impose their mutual orthogonality: α⊤

y αy′ = 0 for y 6= y′. Then
the solutions are given by the normalized eigenvectors φ1, . . . ,φc associated with the
eigenvalues λ1 ≥ · · · ≥ λn ≥ 0 of K. Since the sign of φy is arbitrary, we set the sign as

φ̃y = φy × sign(φ⊤
y 1n),

where sign(·) denotes the sign of a scalar and 1n denotes the n-dimensional vector with
all ones.

On the other hand, since

p∗(y) =

∫
p∗(y|x)p∗(x)dx ≈

1

n

n∑

i=1

p(y|xi;α) = α⊤
y K1n,

and the class-prior probability p∗(y) was set to πy for y = 1, . . . , c, we have the following
normalization condition:

α⊤
y K1n = πy.

Furthermore, probability estimates should be non-negative, which can be achieved by
rounding up negative outputs to zero.

Taking these normalization and non-negativity issues into account, cluster assignment
yi for xi is determined as the maximizer of the approximation of p(y|xi):

yi = argmax
y

[max(0n,Kφ̃y)]i

π−1
y max(0n,Kφ̃y)⊤1n

= argmax
y

πy[max(0n, φ̃y)]i

max(0n, φ̃y)⊤1n

,

where the max operation for vectors is applied in the element-wise manner and [·]i denotes

the i-th element of a vector. Note that we used Kφ̃y = λyφ̃y in the above derivation. For
out-of-sample prediction, cluster assignment y′ for new sample x′ may be obtained as

y′ := argmax
y

πy max
(
0,
∑n

i=1K(x′,xi)[φ̃y]i

)

λy max(0n, φ̃y)⊤1n

.

We call the above method SMI-based clustering (SMIC).

3Note that this unit-norm constraint is not essential since the obtained solution is renormalized later.
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2.4 Kernel Parameter Choice by SMI Maximization

The solution of SMIC depends on the choice of the kernel parameter t included in the ker-
nel function K(x,x′). Since SMIC was developed in the framework of SMI maximization,
it would be natural to determine the kernel parameter t so as to maximize SMI. A direct
approach is to use the SMI estimator ŜMI (8) also for kernel parameter choice. However,

this direct approach is not favorable because ŜMI is an unsupervised SMI estimator (i.e.,
SMI is estimated only from unlabeled samples {xi}

n
i=1). On the other hand, in the model

selection stage, we have already obtained labeled samples {(xi, yi)}ni=1, and thus super-
vised estimation of SMI is possible. For supervised SMI estimation, a non-parametric
SMI estimator called least-squares mutual information (LSMI; Suzuki et al., 2009) was
shown to achieve the optimal convergence rate. For this reason, we propose to use LSMI
for model selection, instead of ŜMI (8).

LSMI is an estimator of SMI based on paired samples {(xi, yi)}ni=1. The key idea of
LSMI is to learn the following density-ratio function,

r∗(x, y) :=
p∗(x, y)

p∗(x)p∗(y)
, (9)

without going through density estimation of p∗(x, y), p∗(x), and p∗(y). More specifically,
let us employ the following density-ratio model:

r(x, y; θ) :=
∑

ℓ:yℓ=y

θℓL(x,xℓ), (10)

where θ = (θ1, . . . , θn)
⊤ and L(x,x′) is a kernel function with a kernel parameter γ. In

the experiments, we will use the Gaussian kernel:

L(x,x′) = exp

(
−
‖x− x′‖2

2γ2

)
, (11)

where the Gaussian width γ is the kernel parameter.
The parameter θ in the above density-ratio model is learned so that the following

squared error is minimized:

min
θ

1

2

∫ c∑

y=1

(
r(x, y; θ)− r∗(x, y)

)2
p∗(x)p∗(y)dx. (12)

Let θy be the parameter vector corresponding to the kernel bases {L(x,xℓ)}ℓ:yℓ=y, i.e.,
θy is the sub-vector of θ = (θ1, . . . , θn)

⊤ consisting of indices {ℓ | yℓ = y}. Let ny be the
length of θy, i.e., the number of samples in cluster y. Then an empirical and regularized
version of the optimization problem (12) is given for each y as follows:

min
θy

[
1

2
θ⊤
y Ĥ

(y)θy − θ⊤
y ĥ

(y) +
δ

2
θ⊤
y θy

]
, (13)
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where δ (≥ 0) is the regularization parameter. Ĥ(y) is the ny × ny matrix and ĥ(y) is the
ny-dimensional vector defined as

Ĥ
(y)
ℓ,ℓ′ :=

ny

n2

n∑

i=1

L(xi,x
(y)
ℓ )L(xi,x

(y)
ℓ′ ),

ĥ
(y)
ℓ :=

1

n

∑

i:yi=y

L(xi,x
(y)
ℓ ),

where x
(y)
ℓ is the ℓ-th sample in class y (which corresponds to θ̂

(y)
ℓ ).

A notable advantage of LSMI is that the solution θ̂(y) can be computed analytically
as

θ̂(y) = (Ĥ(y) + δI)−1ĥ(y).

Then a density-ratio estimator is obtained analytically as follows4:

r̂(x, y) =

ny∑

ℓ=1

θ̂
(y)
ℓ L(x,x

(y)
ℓ ).

The accuracy of the above least-squares density-ratio estimator depends on the choice
of the kernel parameter γ included in L(x,x′) and the regularization parameter δ in
Eq.(13). Suzuki et al. (2009) showed that these tuning parameter values can be systemat-
ically optimized based on cross-validation as follows: First, the samples Z = {(xi, yi)}ni=1

are divided into M disjoint subsets {Zm}Mm=1 of approximately the same size (we use
M = 5 in the experiments). Then a density-ratio estimator r̂m(x, y) is obtained using
Z\Zm (i.e., all samples without Zm), and its out-of-sample error (which corresponds to
Eq.(12) without irrelevant constant) for the hold-out samples Zm is computed as

CVm :=
1

2|Zm|2

∑

x,y∈Zm

r̂m(x, y)
2 −

1

|Zm|

∑

(x,y)∈Zm

r̂m(x, y).

This procedure is repeated for m = 1, . . . ,M , and the average of the above hold-out error
over all m is computed as

CV :=
1

M

M∑

m=1

CVm.

4 Note that, in the original LSMI paper (Suzuki et al., 2009), the entire parameter θ = (θ1, . . . , θn)
⊤

for all classes was optimized at once. On the other hand, we found that, when the density-ratio model
r(x, y; θ) defined by Eq.(10) is used for SMI approximation, exactly the same solution as the original
LSMI paper can be computed more efficiently by class-wise optimization. Indeed, in our preliminary
experiments, we confirmed that our class-wise optimization significantly reduces the computation time
compared with the original all-class optimization, with the same solution. Note that the original LSMI
is applicable to more general setups such as regression, multi-label classification, and structured-output
prediction. Thus, our speedup was brought by focusing on classification scenarios where Kronecker’s
delta function is used as the kernel for class labels in the density-ratio model (10).



9

Input: Feature vectors X = {xi}ni=1 and the number c of clusters
Output: Cluster assignments Y = {yi}

n
i=1

For each kernel parameter candidate t ∈ T
Y (t) ←− SMIC(X , t, c);
LSMI(t)←− LSMI(X ,Y (t));

end

t̂←− argmax
t∈T

LSMI(t);

Y ←− Y (t̂);

Figure 1: Pseudo code of information-maximization clustering based on SMIC and LSMI.
The kernel parameter t refers to the tuning parameter included in the kernel function
K(x,x′) in the cluster-posterior model (6). Pseudo codes of SMIC and LSMI are described
in Figure 2 and Figure 3, respectively.

Finally, the kernel parameter γ and the regularization parameter δ that minimize the
average hold-out error CV are chosen as the most suitable ones.

Finally, based on an expression of SMI (1),

SMI = −
1

2

∫ c∑

y=1

r∗(x, y)2p∗(x)p∗(y)dx+

∫ c∑

y=1

r∗(x, y)p∗(x, y)dx−
1

2
,

an SMI estimator called LSMI is given as follows:

LSMI := −
1

2n2

n∑

i,j=1

r̂(xi, yj)
2 +

1

n

n∑

i=1

r̂(xi, yi)−
1

2
, (14)

where r̂(x, y) is a density-ratio estimator obtained above. Since r̂(x, y) can be computed
analytically, LSMI can also be computed analytically.

We use LSMI for model selection of SMIC. More specifically, we compute LSMI as a
function of the kernel parameter t of K(x,x′) included in the cluster-posterior model (6),
and choose the one that maximizes LSMI. A pseudo code of the entire SMI-maximization
clustering procedure is summarized in Figures 1–3. Its MATLAB implementation is avail-
able from

‘http://sugiyama-www.cs.titech.ac.jp/~sugi/software/SMIC’.

3 Existing Clustering Methods

In this section, we review existing clustering methods and qualitatively discuss the relation
to the proposed approach.

http://sugiyama-www.cs.titech.ac.jp/~sugi/software/SMIC
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Input: Feature vectors X = {xi}ni=1, kernel parameter t,
and the number c of clusters

Output: Cluster assignments Y = {yi}
n
i=1

K ←− Kernel matrix for samples X and kernel parameter t;
φy ←− y-th principal eigenvectors of K for y = 1, . . . , c;

φ̃y ←− φy × sign(φ⊤
y 1n) for y = 1, . . . , c;

yi ←− argmax
y∈{1,...,c}

[max(0n, φ̃y)]i

max(0n, φ̃y)⊤1n

for i = 1, . . . , n;

Y ←− {yi}
n
i=1;

Figure 2: Pseudo code of SMIC (with the uniform class-prior distribution). The kernel
parameter t refers to the tuning parameter included in the kernel function K(x,x′) in the
cluster-posterior model (6). If the class-prior probability p∗(y) is set to a user-specified

value πy for y = 1, . . . , c, yi is determined as argmax y
πy[max(0n,φ̃y)]i

max(0n,φ̃y)⊤1n
.

Input: Feature vectors X = {xi}ni=1 and cluster assignments Y = {yi}ni=1

Output: SMI estimate LSMI

Z ←− {(xi, yi)}ni=1;
{Zm}Mm=1 ←− M disjoint subsets of Z;
For each kernel parameter candidate γ ∈ Γ

For each regularization parameter candidate δ ∈ ∆
For each fold m = 1, . . . ,M

r̂γ,δ,m(x, y)←− Density ratio estimator for (γ, δ) using Z\Zm;
CVm(γ, δ)←− Hold-out error of r̂γ,δ,m(x, y) for Zm;

end

CV(γ, δ)←−
1

M

M∑

m=1

CVm(γ, δ);

end
end

(γ̂, δ̂)←− argmin
γ∈Γ,δ∈∆

CV(γ, δ);

r̂(x, y)←− Density ratio estimator for (γ̂, δ̂) using Z;

LSMI←− −
1

2n2

n∑

i,j=1

r̂(xi, yj)
2 +

1

n

n∑

i=1

r̂(xi, yi)−
1

2
,;

Figure 3: Pseudo code of LSMI. The kernel parameter γ refers to the tuning parameter
included in the kernel function L(x,x′) in the density-ratio model (10).
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3.1 K-Means Clustering

K-means clustering (MacQueen, 1967) would be one of the most popular clustering algo-
rithms. It tries to minimize the following distortion measure with respect to the cluster
assignments {yi}ni=1:

c∑

y=1

∑

i:yi=y

‖xi − µy‖
2, (15)

where µy :=
1
ny

∑
i:yi=y xi is the centroid of cluster y and ny is the number of samples in

cluster y.
The original k-means algorithm is capable of only producing linearly separated clusters

(Duda et al., 2001). However, since samples are used only in terms of their inner products,
its non-linear variant can be immediately obtained by performing k-means in a feature
space induced by a reproducing kernel function (Girolami, 2002).

As the optimization problem of (kernel) k-means is NP-hard (Aloise et al., 2009),
a greedy optimization algorithm is usually used for finding a local optimal solution in
practice. It was shown that the solution to a continuously-relaxed variant of the kernel
k-means problem is given by the principal components of the kernel matrix (Zha et al.,
2002; Ding and He, 2004). Thus, post-discretization of the relaxed solution may give a
good approximation to the original problem, which is computationally efficient. This idea
is similar to the proposed SMIC method described in Section 2.3. However, an essential
difference is that SMIC handles the continuous solution directly as a parameter estimate
of the class-posterior model.

The performance of kernel k-means depends heavily on the choice of kernel functions,
and there is no systematic way to determine the kernel function. This is a critical weakness
of kernel k-means in practice. On the other hand, our proposed approach offers a natural
model selection strategy, which is a significant advantage over kernel k-means.

3.2 Spectral Clustering

The basic idea of spectral clustering (Shi and Malik, 2000; Ng et al., 2002) is to first unfold
non-linear data manifolds by a spectral embedding method, and then perform k-means
in the embedded space. More specifically, given sample-sample similarity Wi,j ≥ 0 (large
Wi,j means that xi and xj are similar), the minimizer of the following criterion with
respect to {ξi}ni=1 is obtained under some normalization constraint:

n∑

i,j

Wi,j

∥∥∥∥∥
1√
Di,i

ξi −
1√
Dj,j

ξj

∥∥∥∥∥

2

,

where D is the diagonal matrix with i-th diagonal element given by Di,i :=
∑n

j=1Wi,j.
Consequently, the embedded samples are given by the principal eigenvectors of
D− 1

2WD− 1

2 , followed by normalization. Note that spectral clustering was shown to be
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equivalent to a weighted variant of kernel k-means with some specific kernel (Dhillon et al.,
2004).

The performance of spectral clustering depends heavily on the choice of sample-sample
similarity Wi,j. Zelnik-Manor and Perona (2005) proposed a useful unsupervised heuristic
to determine the similarity in a data-dependent manner, called local scaling :

Wi,j = exp

(
−
‖xi − xj‖

2

2σiσj

)
,

where σi is a local scaling factor defined as

σi = ‖xi − x
(t)
i ‖,

and x
(t)
i is the t-th nearest neighbor of xi. t is the tuning parameter in the local scaling

similarity, and t = 7 was shown to be useful (Zelnik-Manor and Perona, 2005; Sugiyama,
2007). However, this magic number ‘7’ does not seem to work always well in general.

If D− 1

2WD− 1

2 is regarded as a kernel matrix, spectral clustering will be similar to
the proposed SMIC method described in Section 2.3. However, SMIC does not require
the post k-means processing since the principal components have clear interpretation as
parameter estimates of the class-posterior model (6). Furthermore, our proposed approach
provides a systematic model selection strategy, which is a notable advantage over spectral
clustering.

3.3 Blurring Mean-Shift Clustering

Blurring mean-shift (Fukunaga and Hostetler, 1975) is a non-parametric clustering
method based on the modes of the data-generating probability density.

In the blurring mean-shift algorithm, a kernel density estimator (Silverman, 1986) is
used for modeling the data-generating probability density:

p̂(x) =
1

n

n∑

i=1

K
(
‖x− xi‖

2/σ2
)
,

where K(ξ) is a kernel function such as a Gaussian kernel K(ξ) = e−ξ/2. Taking the
derivative of p̂(x) with respect to x and equating the derivative at x = xi to zero, we
obtain the following updating formula for sample xi (i = 1, . . . , n):

xi ←−

∑n
j=1Wi,jxj∑n
j′=1Wi,j′

,

where Wi,j := K ′
(
‖xi − xj‖

2/σ2
)
and K ′(ξ) is the derivative of K(ξ). Each mode of the

density is regarded as a representative of a cluster, and each data point is assigned to the
cluster which it converges to.

Carreira-Perpiñán (2007) showed that the blurring mean-shift algorithm can be
interpreted as an expectation-maximization algorithm (Dempster et al., 1977), where
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Wi,j/(
∑n

j′=1Wi,j′) is regarded as the posterior probability of the i-th sample belonging
to the j-th cluster. Furthermore, the above update rule can be expressed in a matrix
form as X ←− XP , where X = (x1, . . . ,xn) is a sample matrix and P := WD−1 is a
stochastic matrix of the random walk in a graph with adjacency W (Chung, 1997). D is
defined as Di,i :=

∑n
j=1Wi,j and Di,j = 0 for i 6= j. If P is independent of X, the above

iterative algorithm corresponds to the power method (Golub and Loan, 1996) for finding
the leading left eigenvector of P . Then, this algorithm is highly related to the spectral
clustering which computes the principal eigenvectors of D− 1

2WD− 1

2 (see Section 3.2).
Although P depends on X in reality, Carreira-Perpiñán (2006) insisted that this analysis
is still valid since P and X quickly reach a quasi-stable state.

An attractive property of blurring mean-shift is that the number of clusters is automat-
ically determined as the number of modes in the probability density estimate. However,
this choice depends on the kernel parameter σ and there is no systematic way to determine
σ, which is restrictive compared with the proposed method. Another critical drawback
of the blurring mean-shift algorithm is that it eventually converges to a single point (i.e.,
a single cluster, see Cheng, 1995, for details), and therefore a sensible stopping criterion
is necessary in practice. Although Carreira-Perpiñán (2006) gave a useful heuristic for
stopping the iteration, it is not clear whether this heuristic always works well in practice.

3.4 Discriminative Clustering

The support vector machine (SVM; Vapnik, 1995) is a supervised discriminative classifier
that tries to find a hyperplane separating positive and negative samples with the maximum
margin. Xu et al. (2005) extended SVM to unsupervised classification scenarios (i.e.,
clustering), which is called maximum-margin clustering (MMC).

MMC inherits the idea of SVM and tries to find the cluster assignments y =
(y1, . . . , yn)

⊤ so that the margin between two clusters is maximized under proper con-
straints:

min
y∈{+1,−1}n

max
λ

2λ⊤1n − 〈K ◦ λλ
⊤,yy⊤〉

subject to − ε ≤ 1⊤
ny ≤ ε and 0n ≤ λ ≤ C1n,

where ◦ denotes the Hadamard product (also known as the entry-wise product), and ε
and C are tuning parameters. The constraint −ε ≤ 1⊤

ny ≤ ε corresponds to balancing
the cluster size.

Since the above optimization problem is combinatorial with respect to y and thus
hard to solve directly, it is relaxed to a semi-definite program by replacing yy⊤ (which
is a zero-one matrix with rank one) with a real positive semi-definite matrix (Xu et al.,
2005). Since then, several approaches have been developed for further improving the com-
putational efficiency of MMC (Valizadegan and Jin, 2007; Zhao et al., 2008; Zhang et al.,
2009; Li et al., 2009; Wang et al., 2010).

The performance of MMC depends heavily on the choice of the tuning parameters ε
and C, but there is no systematic method to tune these parameters. The fact that our
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proposed approach is equipped with a model selection strategy would practically be a
strong advantage over MMC.

Following a similar line to MMC, a discriminative and flexible framework for clus-
tering (DIFFRAC; Bach and Harchaoui, 2008) was proposed. DIFFRAC tries to solve
a regularized least-squares problem with respect to a linear predictor and class labels.
Thanks to the simple least-squares formulation, the parameters in the linear predictor
can be optimized analytically, and thus the optimization problem is much simplified. A
kernelized version of the DIFFRAC optimization problem is given by

min
y∈{+1,−1}n

tr(ΠΠ⊤κΓ(ΓKΓ + nκIn)
−1Γ),

where Π is the n× c cluster indicator matrix, which takes 1 only at one of the elements
in each row (this corresponds to the index of the cluster to which the sample belongs)
and others are all zeros. κ (≥ 0) is the regularization parameter, and Γ := In −

1
n
1n1

⊤
n

is a centering matrix. In practice, the above optimization problem is relaxed to a semi-
definite program by replacing ΠΠ⊤ with a real positive semi-definite matrix. However,
DIFFRAC is still computationally expensive and it suffers from lack of objective model
selection strategies.

3.5 Generative Clustering

In the generative clustering framework (Duda et al., 2001), class labels are determined by

ŷ = argmax
y

p∗(y|x) = argmax
y

p∗(x, y),

where p∗(y|x) is the class-posterior probability and p∗(x, y) is the data-generating prob-
ability. Typically, p∗(x, y) is modeled as

p(x, y;β,π) = p(x|y;β)p(y;π),

where β and π are parameters. Canonical model choice is the Gaussian distribution for
p(x|y;β) and the multinomial distribution for p(y;π).

However, since class labels {yi}ni=1 are unknown, one may not directly learn β and π

in the joint-probability model p(x, y;β,π). An approach to coping with this problem is
to consider a marginal model,

p(x;β,π) =
c∑

y=1

p(x|y;β)p(y;π),

and learns the parameters β and π by maximum likelihood estimation (Duda et al., 2001):

max
β,π

n∏

i=1

p(xi;β,π).
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Since the likelihood function of the above mixture model is non-convex, a gradient method
(Amari, 1967) may be used for finding a local maximizer in practice. For determining
the number of clusters (mixtures) and the mixing-element model p(x|y;β), likelihood
cross-validation (Härdle et al., 2004) may be used.

Another approach to coping with the unavailability of class labels is to regard
{yi}ni=1 as latent variables, and apply the expectation-maximization (EM) algorithm
(Dempster et al., 1977) for finding a local maximizer of the joint likelihood:

max
β,π

n∏

i=1

p(xi, yi;β,π).

A more flexible variant of the EM algorithm called the split-and-merge EM algorithm
(Ueda et al., 2000) is also available, which dynamically controls the number of clusters
during the EM iteration.

Instead of point-estimating the parameters β and π, one can also consider their distri-
butions in the Bayesian framework (Bishop, 2006). Let us introduce prior distributions
p(β) and p(π) for the parameters β and π. Then the posterior distribution of the pa-
rameters is expressed as

p(β,π|X ) ∝ p(X |β,π)p(β)p(π),

where X = {xi}
n
i=1. Based on the Bayesian predictive distribution,

p̂(y|x,X ) ∝

∫∫
p(x, y|β,π)p(β,π|X )dβdπ,

class labels are determined as

max
y

p̂(y|x,X ).

Because the integration included in the Bayesian predictive distribution is compu-
tationally expensive, conjugate priors are often adopted in practice. For example, for
the Gaussian-cluster model p(x|y;β), the Gaussian prior for the mean parameter and
the Wishart prior is assumed for the precision parameter (i.e., the inverse covariance)
are assumed; the Dirichlet prior is assumed for the multinomial model p(y;π). Other-
wise, the posterior distribution is approximated by the Laplace approximation (MacKay,
2003), the Markov chain Monte Carlo sampling (Andrieu et al., 2003), or the variational
approximation (Attias, 2000; Ghahramani and Beal, 2000). The number of clusters can
be determined based on the maximization of the marginal likelihood :

p(X ) = argmax
y

∫∫
p(X |β,π)p(β)p(π)dβdπ. (16)

The generative clustering methods are statistically well-founded. However, density
models for each cluster p∗(x|y) need to be specified in advance, which lacks flexibility
in practice. Furthermore, in the Bayesian approach, the choice of cluster models and
prior distributions are often limited to conjugate pairs in practice. On the other hand,
in the frequentist approach, only local solutions can be obtained in practice due to the
non-convexity caused by mixture modeling.
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3.6 Posterior-Maximization Clustering

Another possible clustering approach based on probabilistic inference is to directly max-
imizes the posterior probability of class labels Y = {yi}ni=1 (Bishop, 2006):

max
Y

p∗(Y|X ).

Let us model the cluster-wise data distribution p∗(X |Y) by p(X |Y ,β).
An approximate inference method called iterative conditional modes

(Kurihara and Welling, 2009) alternatively maximizes the posterior probabilities of
Y and β until convergence:

Ŷ ←− p(Y|X , β̂),

β̂ ←− p(β|X , Ŷ).

When the Gaussian model with covariance identity is assumed for p(Y|X ,β), this algo-
rithm is reduced to the k-means algorithm (see Section 3.1) under the uniform priors.

Let us consider the class-prior probability p∗(Y) and model it by p(Y|π). Introducing
the prior distributions p(β) and p(π), we can approximate the posterior distribution of
Y as

p(Y|X ) ∝

∫∫
p(X |Y ,β)p(β)p(Y|π)p(π)dβdπ.

Similarly to generative clustering described in Section 3.5, conjugate priors such as the
Gauss-Wishart prior and the Dirichlet prior are practically useful in improving the compu-
tational efficiency. The number of clusters can also be similarly determined by maximizing
the marginal likelihood (16). However, direct optimization of Y is often computationally
intractable due to cn combinations, where c is the number of clusters and n is the number
of samples. For this reason, efficient sampling schemes such as the Markov chain Monte
Carlo are indispensable in this approach.

A Dirichlet process mixture (Ferguson, 1973; Antoniak, 1974) is a non-parametric
extension of the above approach, where an infinite number of clusters are implicitly con-
sidered and the number of clusters is automatically determined based on observed data.
In order to improve the computational efficiency of this infinite mixture approach, vari-
ous approximation schemes such as Markov chain Monte Carlo sampling (Neal, 2000) and
variational approximation (Blei and Jordan, 2006) have been introduced. Furthermore,
variants of Dirichlet processes such as hierarchical Dirichlet processes (Teh et al., 2007),
nested Dirichlet processes (Rodŕıguez et al., 2008), and dependent Dirichlet processes
(Lin et al., 2010) have been developed recently.

However, even in this non-parametric Bayesian approach, density models for each
cluster still need to be parametrically specified in advance, which is often limited to
Gaussian models. This highly limits the flexibility in practice.
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3.7 Dependence-Maximization Clustering

The Hilbert-Schmidt independence criterion (HSIC; Gretton et al., 2005) is a dependence
measure based on a reproducing kernel function K(x,x′) (Aronszajn, 1950). Song et al.
(2007) proposed a dependence-maximization clustering method called clustering with
HSIC (CLUHSIC), which tries to determine cluster assignments {yi}ni=1 so that their
dependence on feature vectors {xi}

n
i=1 is maximized.

More specifically, CLUHSIC tries to find the cluster indicator matrix Π (see Sec-
tion 3.4) that maximizes

tr(KΠAΠ⊤),

where Ki,j := K(xi,xj) and A is a c × c cluster-cluster similarity matrix. Note that
ΠAΠ⊤ can be regarded as the kernel matrix for cluster assignments. Song et al. (2007)
used a greedy algorithm to optimize the cluster indicator matrix, which is computationally
demanding. Yang et al. (2010) gave spectral and semi-definite relaxation techniques to
improve the computational efficiency of CLUHSIC.

HSIC is a kernel-based independence measure and the kernel function K(x,x′) needs
to be determined in advance. However, there is no systematic model selection strategy
for HSIC, and using the Gaussian kernel with width set to the median distance between
samples is a standard heuristic in practice (Fukumizu et al., 2009). On the other hand,
our proposed approach is equipped with an objective model selection strategy, which is a
notable advantage over CLUHSIC.

Another line of dependence-maximization clustering adopts mutual information (MI)
as a dependency measure. Recently, a dependence-maximization clustering method called
mean nearest-neighbor (MNN) clustering was proposed (Faivishevsky and Goldberger,
2010). MNN is based on the k-nearest-neighbor entropy estimator proposed by
Kozachenko and Leonenko (1987).

The performance of the original k-nearest-neighbor entropy estimator depends on the
choice of the number of nearest neighbors, k. On the other hand, MNN avoids this
problem by introducing a heuristic of taking an average over all possible k. The resulting
objective function is given by

c∑

y=1

1

ny − 1

∑

i 6=j:yi=yj=y

log(‖xi − xj‖
2 + ǫ), (17)

where ǫ (> 0) is a smoothing parameter. Then this objective function is minimized with
respect to cluster assignments {yi}ni=1 using a greedy algorithm.

Although the fact that the tuning parameter k is averaged out is convenient, this
heuristic is not well justified theoretically. Moreover, the choice of the smoothing param-
eter ǫ is arbitrary. In the MATLAB code provided by one of the authors, ǫ = 1/n was
recommended, but there seems no justification for this choice. Also, due to the greedy op-
timization scheme, MNN is computationally expensive. On the other hand, our proposed
approach offers a well-justified model selection strategy, and the SMI-based clustering
gives an analytic-form solution which can be computed efficiently.
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3.8 Information-Maximization Clustering with Mutual Infor-

mation

Finally, we review methods of information-maximization clustering based onmutual infor-
mation (Agakov and Barber, 2006; Gomes et al., 2010), which belong to the same family
of clustering algorithms as our proposed method.

Mutual information (MI) is defined and expressed as

MI :=

∫ c∑

y=1

p∗(x, y) log
p∗(x, y)

p∗(x)p∗(y)
dx

=

∫ c∑

y=1

p∗(y|x)p∗(x) log p∗(y|x)dx−

∫ c∑

y=1

p∗(y|x)p∗(x) log p∗(y)dx. (18)

Let us approximate the class-posterior probability p∗(y|x) by a conditional-probability
model p(y|x;α) with parameter α. Then the marginal probability p∗(y) can be approxi-
mated as

p∗(y) =

∫
p∗(y|x)p∗(x)dx ≈

1

n

n∑

i=1

p(y|xi;α). (19)

By further approximating the expectation with respect to p∗(x) included in Eq.(18) by
the empirical average of samples {xi}ni=1, the following MI estimator can be obtained
(Agakov and Barber, 2006; Gomes et al., 2010):

M̂I :=
1

n

n∑

i=1

c∑

y=1

p(y|xi;α) log p(y|xi;α)

−
c∑

y=1

(
1

n

n∑

i=1

p(y|xi;α)

)
log

(
1

n

n∑

j=1

p(y|xj;α)

)
. (20)

In Agakov and Barber (2006), the Gaussian model,

p(y|x;α) ∝ exp

(
−
‖x− cy‖2

2s2y
+ by

)
,

(or its kernelized version) is adopted, where α = {cy, sy, by}cy=1 is the parameter. Then a

local maximizer of M̂I with respect to the parameter α is found by a gradient method.
On the other hand, in Gomes et al. (2010), the logistic model

p(y|x;α) ∝ exp
(
α⊤

y x
)
, (21)

(or its kernelized version) is adopted, where α = {αy}cy=1 is the parameter. Then a local

maximizer of M̂I with respect to the parameter α is found by a quasi-Newton method.
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Finally, cluster assignments {yi}ni=1 are determined as

yi = argmax
y

p(y|xi; α̂),

where α̂ is a local maximizer of M̂I. Below, we refer to the above method as MI-based
clustering (MIC).

In the kernelized version of MIC, the user needs to determine parameters included
in the kernel function such as the kernel width or the number of nearest neighbors.
Agakov and Barber (2006) proposed to choose the kernel parameters so that M̂I (20)
is maximized. Thus, cluster assignments and kernel parameters can be consistently de-
termined under the common guidance of maximizing M̂I. However, since M̂I is an unsu-
pervised estimator of MI, it is not accurately enough; in the model selection stage, clus-
ter labels {yi}

n
i=1 are available and thus supervised estimation of MI is more favorable.

Indeed, there exists a more powerful supervised MI estimator called maximum-likelihood
MI (MLMI; Suzuki et al., 2008), which was proved to achieve the optimal non-parametric
convergence rate.

The derivation of MLMI follows a similar line to LSMI explained in Section 2.4, i.e.,
the density-ratio function (9) is learned. More specifically, the following density-ratio
model r(x, y; θ) is used:

r(x, y; θ) :=
∑

ℓ:yi=y

θℓL(x,xℓ),

where θ = (θ1, . . . , θn)
⊤ and L(x,x′) is a kernel function with a kernel parameter γ.

Then the parameter θ is learned so that the Kullback-Leibler divergence from p∗(x, y)
to r(x, y; θ)p∗(x)p∗(y) is minimized5. An empirical version of the MLMI optimization
problem is given as

max
θ

1

n

n∑

i=1

log r(xi, yi; θ)

s.t.
1

n2

n∑

i,j=1

r(xi, yj; θ) = 1 and θ ≥ 0n,

where 0n denotes the n-dimensional vector with all zeros and the inequality for vectors
is applied in the element-wise manner. This is a convex optimization problem, and thus
the global optimal solution θ̂, which tends to be sparse, can be easily obtained by, e.g., a
projected gradient method (Sugiyama et al., 2008).

Then an MI estimator called MLMI is given as follows:

MLMI :=
1

n

n∑

i=1

log r(xi, yi; θ̂).

The kernel parameter γ included in the kernel function L(x,x′) can be optimized by
cross-validation, in the same way as LSMI (Suzuki et al., 2008).

5 Note that r(x, y; θ)p∗(x)p∗(y) can be regarded as a model of p∗(x, y).
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4 Experiments

In this section, we experimentally evaluate the performance of the proposed and existing
clustering methods.

4.1 Illustration

First, we illustrate the behavior of the proposed method using the following 4 artificial
datasets with dimensionality d = 2 and sample size n = 200:

(a) Four Gaussian blobs: For the number of classes c = 4, samples in each class are
drawn from the Gaussian distributions with mean (2, 2)⊤, (−2, 2)⊤, (2,−2)⊤, and
(−2,−2)⊤ and covariance matrix 0.25I2, respectively.

(b) Circle & Gaussian: For c = 2, samples in one class are drawn from the 2-
dimensional standard normal distribution, and samples in the other class are equi-
distantly located on the origin-centered circle with radius 5. Then noise following
the origin-centered normal distribution with covariance matrix 0.01I2 is added to
each sample.

(c) Double spirals: For c = 2, the i-th sample in one class is given by
(ℓi cos(mi), ℓi sin(mi))

⊤, and the i-th sample in the other class is given by
(−ℓi cos(mi),−ℓi sin(mi))

⊤, where ℓi = 1 + 4(i− 1)/n and mi = 3π(i− 1)/n. Then
noise following the origin-centered normal distribution with covariance matrix 0.01I2
is added to each sample.

(d) High & low densities: For c = 2, samples in one class are drawn from the 2-
dimensional standard normal distribution, and samples in the other class are drawn
from the 2-dimensional origin-centered normal distribution with covariance matrix
0.01I2.

The class-prior probability was set to be uniform. The generated samples were centralized
and their variance was normalized in the dimension-wise manner (see the top row of
Figure 4). A MATLAB code for generating these samples are available from

‘http://sugiyama-www.cs.titech.ac.jp/~sugi/software/SMIC’.

As a kernel function, we used the sparse local-scaling kernel (7) for SMIC, where the
kernel parameter t was chosen from6 {1, . . . , 10} based on LSMI with the Gaussian kernel
(11).

The top graphs in Figure 4 depict the cluster assignments obtained by SMIC with
the uniform class-prior, and the bottom graphs in Figure 4 depict the model selection
curves obtained by LSMI (i.e., the values of LSMI as functions of the model param-
eter t). The clustering performance was evaluated by the adjusted Rand index (ARI;

6 We confirmed that t larger than 10 was not chosen in this experiment.

http://sugiyama-www.cs.titech.ac.jp/~sugi/software/SMIC
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(a) Four Gaussian blobs (b) Circle & Gaussian (c) Double spirals (d) High & low densities

Figure 4: Illustrative examples. Cluster assignments obtained by SMIC (top) and model
selection curves obtained by LSMI (bottom).
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Figure 5: Illustrative examples. Cluster assignments obtained by MIC (top) and model
selection curves obtained by MLMI (bottom).
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Hubert and Arabie, 1985) between inferred cluster assignments and the ground truth cat-
egories (see Appendix for the details of ARI). Larger ARI values mean better performance,
and ARI takes its maximum value 1 when two sets of cluster assignments are identical.
The results show that SMIC combined with LSMI works well for these toy datasets.

Figure 5 depicts the cluster assignments and model selection curves obtained by MIC
with MLMI (see Section 3.8), where pre-training of the kernel logistic model using the
cluster assignments obtained by self-tuning spectral clustering (Zelnik-Manor and Perona,
2005) was carried out for initializing MIC (Gomes et al., 2010). The figure shows that
qualitatively good clustering results were obtained for the datasets (a) and (b). However,
for the datasets (c) and (d), poor results were obtained due to local optima of the objective
function (20).

Figure 6 and Figure 7 depict class-posterior probabilities estimated by SMIC and MIC,
respectively. The plots show that, for the datasets (a), (b), and (c) where the clusters are
clearly separated, the estimated class-posterior probabilities are almost zero-one functions
and thus the class prediction is highly certain. On the other hand, for the dataset (d)
where the two clusters are overlapped, the estimated class-posterior probabilities tend to
take intermediate class-posterior probabilities.

4.2 Influence of Imbalanced Class-Prior Probabilities

Next, we experimentally investigate how imbalanced class-prior probabilities (i.e., the
sample size in each cluster is significantly different) influence the clustering performance
of SMIC.

We continue using the 4 artificial datasets used in Section 4.1, but we set the true
class-prior probability as

p∗(y = 1) = p∗(y = 2) = 0.1, 0.15, 0.2, 0.25,

p∗(y = 3) = p∗(y = 4) =
1− p∗(y = 1)− p∗(y = 2)

2
,

for the dataset (a), and

p∗(y = 1) = 0.2, 0.3, 0.4, 0.5,

p∗(y = 2) = 1− p∗(y = 1),

for the datasets (b)–(d). The following 2 approaches are compared:

SMIC: SMIC with the uniform class-prior probabilities π1 = π2 = 1/2.

SMIC∗: SMIC with the true class-prior probabilities π1 = p∗(y = 1) and π2 = p∗(y = 2).

The mean and standard deviation of ARI over 100 runs are plotted in Figure 8, showing
that the difference between SMIC and SMIC∗ is negligibly small. Indeed, the two methods
were judged to be comparable to each other in terms of the average ARI by the t-test at
the significance level 1% for all tested cases. This implies that SMIC is not sensitive to the
choice of class-prior probabilities. Thus, in practice, SMIC with the uniform class-prior
distribution may be used when the true class-prior is unknown.
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(d) High & low densities

Figure 6: Illustrative examples. Class-posterior probabilities estimated by SMIC.
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Figure 7: Illustrative examples. Class-posterior probabilities estimated by MIC.
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Figure 8: Illustrative examples. The mean ARI over 100 runs as functions of the class-
prior probability p∗(y = 1). The two methods were judged to be comparable in terms of
the average ARI by the t-test at the significance level 1%.

4.3 Performance Comparison

Finally, we systematically compare the performance of the proposed and existing clus-
tering methods using various real-world datasets such as images, natural languages, ac-
celerometric sensors, and speech.

4.3.1 Setup

We compared the performance of the following methods, which all do not contain open
tuning parameters and therefore experimental results are fair and objective:

KM: K-means (MacQueen, 1967, see also Section 3.1). We used the software included
in the MATLAB Statistics Toolbox, where initial values were randomly generated
100 times and the best result in terms of the k-means objective value was chosen as
the final solution.

SC: Spectral clustering (Shi and Malik, 2000; Ng et al., 2002, see also Section 3.2) with
the self-tuning local-scaling similarity (Zelnik-Manor and Perona, 2005). We used
the MATLAB code provided by one of the authors7, where the post k-means process-

7 http://webee.technion.ac.il/~lihi/Demos/SelfTuningClustering.html

http://webee.technion.ac.il/~lihi/Demos/SelfTuningClustering.html
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ing was repeated 10 times with heuristic initialization: the first center was chosen
randomly from samples, and then the next center was iteratively set to the farthest
sample from the previous ones. The best result in terms of the k-means objective
value out of 10 repetitions was chosen as the final solution.

MNN: Mean nearest-neighbor clustering (Faivishevsky and Goldberger, 2010, see also
Section 3.7). We used the MATLAB code provided by one of the authors8. Following
the suggestions provided in the program code, the number of iterations was set to
10 and the smoothing parameter ǫ (see Eq.(17)) was set to ǫ = 1/n.

MIC: MI-based clustering with kernel logistic models and the sparse local-scaling kernel
(Gomes et al., 2010, see also Section 3.8), where model selection is carried out by
maximum-likelihood MI (MLMI; Suzuki et al., 2008). We implemented this method
using MATLAB, which is a combination of the MIC code personally provided by
one of the authors, and the MLMI code available from the web page of one of the
authors9. Following the suggestion provided in the original program code, MIC was
initialized by pre-training of the kernel logistic model using the cluster assignments
obtained by spectral clustering. The tuning parameter t included in the sparse
local-scaling kernel (7) was chosen from {1, . . . , 10} based on MLMI with Gaussian
kernels (see Section 3.8). The Gaussian kernel width in MLMI was chosen from
{10−2, 10−1.5, 10−1, . . . , 102} based on cross-validation. As suggested in the MLMI
code provided by the author, the number of kernel bases in MLMI was limited to
200, which were randomly chosen from all n kernels.

SMIC: SMI-based clustering with the sparse local-scaling kernel and the uniform class-
prior distribution (see Section 2.3), where model selection is carried out by least-
squares MI (LSMI; Suzuki et al., 2009, see also Section 2.4). We implemented SMIC
and LSMI using MATLAB by ourselves. The tuning parameter t included in the
sparse local-scaling kernel (7) was chosen from {1, . . . , 10} based on LSMI with
Gaussian kernels (see Section 2.4). The Gaussian kernel width and regulariza-
tion parameter included in LSMI were chosen from {10−2, 10−1.5, 10−1, . . . , 102} and
{10−3, 10−2.5, 10−2, . . . , 101}, respectively, based on cross-validation. Similarly to
MLMI, the number of kernel bases in LSMI was limited to 200, which were ran-
domly chosen from all n kernels.

In addition to the clustering quality in terms of ARI, we also evaluated the computa-
tional efficiency of each method by the CPU computation time.

4.3.2 Datasets

We used the following 6 real-world datasets.

8 http://www.levfaivishevsky.webs.com/NIC.rar
9 http://sugiyama-www.cs.titech.ac.jp/~sugi/software/MLMI/index.html

http://www.levfaivishevsky.webs.com/NIC.rar
http://sugiyama-www.cs.titech.ac.jp/~sugi/software/MLMI/index.html
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Digit (d = 256, n = 5000, and c = 10): The USPS hand-written digit dataset10, which
contains 9298 digit images. Each image consists of 256 (= 16× 16) pixels and rep-
resents a digit in {0, 1, 2, . . . , 9}. Each pixel takes a value in [−1,+1] corresponding
to the intensity level in gray-scale. We randomly chose 500 samples from each of
the 10 classes, and used 5000 samples in total.

Face (d = 4096, n = 100, and c = 10): The Olivetti Face dataset11, which contains 400
gray-scale face images (40 people; 10 images per person). Each image consists of
4096 (= 64× 64) pixels and each pixel takes an integer value between 0 and 255 as
the intensity level. We randomly chose 10 people, and used 100 samples in total.

Document (d = 50, n = 700, and c = 7): The 20-Newsgroups dataset12, which contains
20000 newsgroup documents across 20 different newsgroups. We merged the 20
newsgroups into the following 7 top-level categories: ‘comp’, ‘rec’, ‘sci ’, ‘talk ’,
‘alt ’, ‘misc’, and ‘soc’. Each document is expressed by a 10000-dimensional bag-
of-words vector of term-frequencies. Following the convention (Joachims, 2002),
we transformed the term-frequency vectors to the term frequency/inverse document
frequency (TFIDF) vector, i.e., we multiplied the term-frequency by the logarithm
of the inverse ratio of the documents containing the corresponding word. We ran-
domly chose 100 samples from each of the 7 classes, and used 700 samples in total.
We applied principal component analysis (PCA; Pearson, 1901; Jolliffe, 1986) to the
700 samples, and extracted 50-dimensional feature vectors.

Word (d = 50, n = 300, and c = 3): The SENSEVAL-2 dataset13 for word-sense disam-
biguation. We took the noun ‘interest ’ appeared in 1930 contexts, having 3 different
meanings: ‘advantage, advancement or favor’, ‘a share in a company or business’,
and ‘money paid for the use of money’ (i.e., 3 classes). From each surrounding
context, we extracted a 14936-dimensional feature vector (Niu et al., 2005), which
includes three types of features: part-of-speech of neighboring words with posi-
tion information, bag-of-words in the surrounding context, and local collocation
(Lee and Ng, 2002). We randomly chose 100 samples from each of the 3 classes,
and used 300 samples in total. We applied PCA to the 300 samples, and extracted
50-dimensional feature vectors.

Accelerometry (d = 5, n = 300, and c = 3): The ALKAN dataset14, which contains 3-
axis (i.e., x-, y-, and z-axes) accelerometric data collected by the iPod touch. In
the data collection procedure, subjects were asked to perform three specific tasks:
walking, running, and standing up. The duration of each task was arbitrary, and the
sampling rate was 20Hz with small variations. Each data-stream was then segmented

10 http://www.gaussianprocess.org/gpml/data/
11 http://www.cs.toronto.edu/~roweis/data.html
12 http://people.csail.mit.edu/jrennie/20Newsgroups/
13 http://www.senseval.org/
14 http://alkan.mns.kyutech.ac.jp/web/data.html

http://www.gaussianprocess.org/gpml/data/
http://www.cs.toronto.edu/~roweis/data.html
http://people.csail.mit.edu/jrennie/20Newsgroups/
http://www.senseval.org/
http://alkan.mns.kyutech.ac.jp/web/data.html
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in a sliding window manner with window width 5 seconds and sliding step 1 second
(Hachiya et al., 2011). Depending on subjects, the position and orientation of the
accelerometer was arbitrary—held by hand or kept in a pocket or a bag. For this
reason, we took the ℓ2-norm of the 3-dimensional acceleration vector at each time
step, and computed the following 5 orientation-invariant features from each window:
mean, standard deviation, fluctuation of amplitude, average energy, and frequency-
domain entropy (Bao and Intille, 2004; Bharatula et al., 2005). We randomly chose
100 samples from each of the 3 classes, and used 300 samples in total.

Speech (d = 50, n = 400, and c = 2): An in-house speech dataset, which contains short
utterance samples recorded from 2 male subjects speaking in French with sampling
rate 44.1kHz. From each utterance sample, we extracted a 50-dimensional line spec-
tral frequencies vector (Kain and Macon, 1988). We randomly chose 200 samples
from each class, and used 400 samples in total.

For each dataset, the experiment was repeated 100 times with random choice of sam-
ples from the database, where the cluster size is balanced. Samples were centralized
and their variance was normalized in the dimension-wise manner, before feeding them to
clustering algorithms.

4.3.3 Results

The experimental results are described in Table 1. For the digit dataset, MIC and SMIC
outperform KM, SC, and MNN in terms of ARI. The entire computation time of SMIC
including model selection is faster than KM, SC, and MIC, and is comparable to MNN
which does not include a model selection procedure. For the face dataset, SC, MIC, and
SMIC are comparable to each other and are better than KM and MNN in terms of ARI.
For the document and word datasets, SMIC tends to outperform the other methods. For
the accelerometry dataset, MNN and SMIC work better than the other methods. Finally,
for the speech dataset, MIC and SMIC work comparably well, and are significantly better
than KM, SC, and MNN.

Overall, MIC was shown to work reasonably well, implying that the MLMI-based
model selection strategy is practically useful. SMIC was shown to work even better than
MIC, with much less computation time. The accuracy improvement of SMIC over MIC
was gained by computing the SMIC solution in a closed-form without any heuristic initial-
ization. The computational efficiency of SMIC was brought by the analytic computation
of the optimal solution and the class-wise optimization of LSMI (see Section 2.4).

The performance of MNN and SC was rather unstable because of the heuristic averag-
ing of the number of nearest neighbors in MNN and the heuristic choice of local scaling in
SC. In terms of computation time, they are relatively efficient for small- to medium-sized
datasets, but they are expensive for the largest dataset, digit. KM was not reliable for the
document and speech datasets because of the restriction that the cluster boundaries are
linear. For the digit, face, and document datasets, KM was computationally very expen-
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Table 1: Experimental results on real-world datasets (with equal cluster size). The average
clustering accuracy (and its standard deviation in the bracket) in terms of ARI and the
average CPU computation time in second over 100 runs are described. Larger ARI is
better, and shorter computation time is preferable. The best method in terms of the
average ARI and methods judged to be comparable to the best one by the t-test at the
significance level 1% are described in boldface. Computation time of MIC and SMIC
corresponds to the time for computing a clustering solution after model selection has
been carried out. For references, computation time for the entire procedure including
model selection is described in the square bracket, which depends on the number of
model candidates (in the current setup, we had 81 (= 9× 9) candidates.

Digit (d = 256, n = 5000, and c = 10)
KM SC MNN MIC SMIC

ARI 0.42(0.01) 0.24(0.02) 0.44(0.03) 0.63(0.08) 0.63(0.05)
Time 835.9 973.3 318.5 84.4[3631.7] 14.4[359.5]

Face (d = 4096, n = 100, and c = 10)
KM SC MNN MIC SMIC

ARI 0.60(0.11) 0.62(0.11) 0.47(0.10) 0.64(0.12) 0.65(0.11)
Time 93.3 2.1 1.0 1.4[30.8] 0.0[19.3]

Document (d = 50, n = 700, and c = 7)
KM SC MNN MIC SMIC

ARI 0.00(0.00) 0.09(0.02) 0.09(0.02) 0.01(0.02) 0.19(0.03)
Time 77.8 9.7 6.4 3.4[530.5] 0.3[115.3]

Word (d = 50, n = 300, and c = 3)
KM SC MNN MIC SMIC

ARI 0.04(0.05) 0.02(0.01) 0.02(0.02) 0.04(0.04) 0.08(0.05)
Time 6.5 5.9 2.2 1.0[369.6] 0.2[203.9]

Accelerometry (d = 5, n = 300, and c = 3)
KM SC MNN MIC SMIC

ARI 0.49(0.04) 0.58(0.14) 0.71(0.05) 0.57(0.23) 0.68(0.12)
Time 0.4 3.3 1.9 0.8[410.6] 0.2[92.6]

Speech (d = 50, n = 400, and c = 2)
KM SC MNN MIC SMIC

ARI 0.00(0.00) 0.00(0.00) 0.04(0.15) 0.18(0.16) 0.21(0.25)
Time 0.9 4.2 1.8 0.7[413.4] 0.3[179.7]
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Table 2: Experimental results on real-world datasets under imbalanced setup. ARI values
are described in the table. Class-imbalance was realized by setting the sample size of the
first class m times larger than other classes. SMIC was computed with the uniform prior
(i.e., the non-informative prior). The results for m = 1 are the same as the ones reported
in Table 1.

Digit (d = 256, n = 5000, and c = 10)
KM SC MNN MIC SMIC

m = 1 0.42(0.01) 0.24(0.02) 0.44(0.03) 0.63(0.08) 0.63(0.05)
m = 2 0.52(0.01) 0.21(0.02) 0.43(0.04) 0.60(0.05) 0.63(0.05)

Document (d = 50, n = 700, and c = 7)
KM SC MNN MIC SMIC

m = 1 0.00(0.00) 0.09(0.02) 0.09(0.02) 0.01(0.02) 0.19(0.03)
m = 2 0.01(0.01) 0.10(0.03) 0.10(0.02) 0.01(0.02) 0.19(0.04)
m = 3 0.01(0.01) 0.10(0.03) 0.09(0.02) -0.01(0.03) 0.16(0.05)
m = 4 0.02(0.01) 0.09(0.03) 0.08(0.02) -0.00(0.04) 0.14(0.05)

Word (d = 50, n = 300, and c = 3)
KM SC MNN MIC SMIC

m = 1 0.04(0.05) 0.02(0.01) 0.02(0.02) 0.04(0.04) 0.08(0.05)
m = 2 0.00(0.07) -0.01(0.01) 0.01(0.02) -0.02(0.05) 0.03(0.05)

Accelerometry (d = 5, n = 300, and c = 3)
KM SC MNN MIC SMIC

m = 1 0.49(0.04) 0.58(0.14) 0.71(0.05) 0.57(0.23) 0.68(0.12)
m = 2 0.48(0.05) 0.54(0.14) 0.58(0.11) 0.49(0.19) 0.69(0.16)
m = 3 0.49(0.05) 0.47(0.10) 0.42(0.12) 0.42(0.14) 0.66(0.20)
m = 4 0.49(0.06) 0.38(0.11) 0.31(0.09) 0.40(0.18) 0.56(0.22)

sive since a large number of iterations were needed until convergence to a local optimum
solution.

Finally, we performed similar experiments under imbalanced setup, where the sample
size of the first class was set to be m times larger than other classes with the total
number of samples fixed to the same number15. The results are summarized in Table 2,
showing that the performance of all methods tends to be degraded as the degree of cluster
imbalance increases. Thus, clustering becomes more challenging if the cluster size is
imbalanced. Among the compared methods, the proposed SMIC (with the uniform prior)
still worked better than other methods.

Overall, the proposed SMIC combined with LSMI was shown to be a useful alternative
to existing clustering approaches.

15 Because of the dataset size, this experiment was carried out only for several cases. See Table 2.
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5 Conclusions

In this paper, we proposed a novel information-maximization clustering method that
learns class-posterior probabilities in an unsupervised manner so that the squared-loss
mutual information (SMI) between feature vectors and cluster assignments is maximized.
The proposed algorithm, called SMI-based clustering (SMIC), allows us to obtain cluster-
ing solutions analytically by solving a kernel eigenvalue problem. Thus, unlike the previous
information-maximization clustering methods (Agakov and Barber, 2006; Gomes et al.,
2010), SMIC does not suffer from the problem of local optima. Furthermore, we proposed
to use an optimal non-parametric SMI estimator called least-squares mutual information
(LSMI) for data-driven parameter optimization. Through experiments, SMIC combined
with LSMI was demonstrated to compare favorably with existing clustering methods.

In experiments, the proposed clustering method was shown to be useful for various
types of data. However, the amount of improvement is large for some datasets, while it is
mild for other datasets. It is thus practically important to have more insights on in what
case the proposed method is advantageous.

The sparse local-scaling kernel (7) was shown to be useful in experiments. Since this
produces a sparse kernel matrix, the computation of SMIC (i.e., solving a kernel eigenvalue
problem) can be carried out very efficiently. However, if model selection is taken into
account, the proposed clustering procedure is still computationally rather demanding
due to the repeated computation of LSMI, which requires to solve a system of linear
equations. In the experiments, we used the Gaussian kernel (11) for LSMI and found it
useful in practice. However, it produces a dense kernel matrix and thus a dense system
of linear equations need to be solved, which is computationally expensive. If a sparse
kernel is used also for LSMI, its computational efficiency will be highly improved. In our
preliminary experiments, the use of the sparse local-scaling kernel for LSMI improved the
computational efficiency, but it did not perform as well as the Gaussian kernel. Thus, our
important future work is to find a sparse kernel that gives an accurate approximation of
SMI with high computational efficiency.

As addressed in Song et al. (2007), kernelized methods can be applied to cluster-
ing of non-vectorial structured objects such as strings, trees, and graphs by employing
kernel functions defined for such structured data (Lodhi et al., 2002; Duffy and Collins,
2002; Kashima and Koyanagi, 2002; Kondor and Lafferty, 2002; Kashima et al., 2003;
Gärtner et al., 2003; Gärtner, 2003). Since these structured kernels usually contain tuning
parameters, the performance of clustering methods without systematic model selection
strategies depends on subjective parameter tuning, which is not preferable in practice.
For Gaussian kernels, there exists a popular heuristic that the Gaussian width is set to
the median distance between samples (Fukumizu et al., 2009). However, there seems no
such common heuristic for structured kernels. In such scenarios, the proposed method
will be highly advantageous because it allows systematic model selection for any kernels.
We will explore this direction in our future work.

We experimentally showed that the proposed method with the uniform class-prior
distribution still works reasonably well even when the true class-prior probability is not
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uniform. This is a useful property in practice since the true class-prior probability is often
unknown. Another way to address this issue is to estimate the true class-prior probability
in a data-driven fashion, for example, iteratively performing clustering and updating the
class-prior probabilities. We will investigate such an adaptive approach in our future
work.

The proposed method uses SMI as the common guidance for clustering, although we
are using two SMI approximators: ŜMI defined by Eq.(8) for finding clustering solutions

and LSMI defined by Eq.(14) for selecting models. Since ŜMI does not explicitly include
cluster labels {yi}ni=1, it has a simple form and therefore is suited for efficient maximization.
Indeed, we can obtain an optimal solution analytically by solving an eigenvalue problem.
However, since ŜMI is an unsupervised estimator where the cluster labels {yi}ni=1 are not
used, it may not be accurate enough for model selection purposes. Indeed, our preliminary
experiments showed that the use of ŜMI is not appropriate as a model selection criterion.
On the other hand, since LSMI achieves the optimal non-parametric convergence rate, its
high accuracy is suitable for model selection purposes. However, LSMI explicitly requires
cluster labels {yi}ni=1 and thus is not suited for efficient maximization. Based on the
optimality of LSMI, we ideally want to use LSMI consistently for both finding clustering
solutions and selecting models. However, its optimization involves discrete optimization
of {yi}ni=1, which is cumbersome in practice. Our future challenge is to develop a practical
clustering algorithm based directly on LSMI.
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Appendix: Rand Index and Adjusted Rand Index

Here, we review the definitions of the Rand index (RI; Rand, 1971) and the adjusted
Rand index (ARI; Hubert and Arabie, 1985), which are used for evaluating the quality of
clustering results. Let {y∗i }

n
i=1 be the ground-truth cluster assignments, and let {yi}ni=1 be

a clustering solution obtained by some algorithm. The goal is to quantitatively evaluate
the similarity between {yi}

n
i=1 and {y∗i }

n
i=1.

The most direct way to evaluate the discrepancy between {yi}ni=1 and {y
∗
i }

n
i=1 would be

to naively verify the correctness of the predicted labels. However, in clustering, predicted
class labels {yi}ni=1 do not have to be equal to the true labels {y∗i }

n
i=1, but only their

partition matters. The correctness of the partition may be evaluated by verifying the
correctness of the predicted labels for all possible label permutations. However, this is
computationally expensive if the number of classes is large. RI and ARI are alternative
performance measures that can overcome this computational problem in a systematic way.
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Table 3: Notation for Rand index and adjusted Rand index.

(a) (b)

C∗1 · · · C∗c Sum
C1 n1,1 · · · n1,c n1
...

...
. . .

...
...

Cc nc,1 · · · nc,c nc

Sum n∗
1 · · · n∗

c n

Pairs in {C∗y′}
c
y′=1

Same Different
Pairs in Same mC,C∗ mC,C̄∗

{Cy}cy=1 Different mC̄,C∗ mC̄,C̄∗

For the two partitions {yi}ni=1 and {y∗i }
n
i=1, let Cy and C∗y (y = 1, . . . , c) be sets of

indices of samples in cluster y, respectively:

Cy = {yi | yi = y},

C∗y = {y∗i | y
∗
i = y}.

Let ny,y′ be the number of samples that are assigned to the cluster Cy and the cluster C∗y′ .
Let ny (resp. n∗

y) be the number of samples that are assigned to the cluster Cy (resp. C∗y′).
The notation is summarized in Table 3(a).

Let mC,C∗ , mC,C̄∗, mC̄,C∗ , and mC̄,C̄∗ be defined as

mC,C∗ :=

c∑

y,y′=1

(
ny,y′

2

)
,

mC,C̄∗ :=

c∑

y=1

(
ny

2

)
−mC,C∗ ,

mC̄,C∗ :=
c∑

y′=1

(
n∗
y′

2

)
−mC,C∗ ,

mC̄,C̄∗ :=

(
n
2

)
−mC,C∗ −mC,C̄∗ −mC̄,C∗,

where mC,C∗ denotes the number of pairs of samples that are assigned to the same cluster
both in {Cy}cy=1 and {C∗y′}

c
y′=1, mC,C̄∗ denotes the number of pairs of samples that are

assigned to the same cluster in {Cy}cy=1 but are assigned to different clusters in {C∗y′}
c
y′=1,

mC̄,C∗ denotes the number of pairs of samples that are assigned to the same cluster in
{C∗y′}

c
y′=1 but are assigned to different clusters in {Cy}cy=1, and mC̄,C̄∗ denotes the number

of pairs of samples that are assigned to different clusters both in {Cy}cy=1 and {C∗y′}
c
y′=1.

mC,C∗ + mC̄,C̄∗ can be considered as the number of ‘agreements’ between {Cy}cy=1 and
{C∗y′}

c
y′=1, while mC,C̄∗ +mC̄,C∗ can be regarded as the number of ‘disagreements’ between

{Cy}
c
y=1 and {C∗y′}

c
y′=1. The notation is summarized in Table 3(b).
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The Rand index (RI; Rand, 1971) is defined and expressed as

RI :=
mC,C∗ +mC̄,C̄∗

mC,C∗ +mC,C̄∗ +mC̄,C∗ +mC̄,C̄∗

= (mC,C∗ +mC̄,C̄∗)
/(n

2

)
.

The Rand index lies between 0 and 1, and takes 1 if the two clustering solutions {Cy}cy=1

and {C∗y′}
c
y′=1 agree with each other perfectly.

A potential drawback of the Rand index is that its expected value is not a constant
(say, 0) if two clustering solutions are completely random. To overcome this problem, the
adjusted Rand index (ARI) was proposed (Hubert and Arabie, 1985). ARI is defined as

ARI :=
mC,C∗ +mC̄,C̄∗ − µ

mC,C∗ +mC,C̄∗ +mC̄,C∗ +mC̄,C̄∗ − µ
.

µ is the expected value of mC,C∗ +mC̄,C̄∗ :

µ := E
[
mC,C∗ +mC̄,C̄∗

]
,

where E denotes the expectation over cluster assignments. ARI takes the maximum value
1 when two sets of cluster assignments are identical, and takes 0 if the index equals its
expected value.

Under the assumption that the clustering solutions {Cy}cy=1 and {C
∗
y′}

c
y′=1 are randomly

drawn from a generalized hyper-geometric distribution, it holds that

E [mC,C∗ ] = (mC,C∗ +mC,C̄∗)(mC,C∗ +mC̄,C∗)
/(n

2

)
,

E
[
mC̄,C̄∗

]
= (mC,C̄∗ +mC̄,C̄∗)(mC̄,C∗ +mC̄,C̄∗)

/(n
2

)
.

Then ARI can be expressed as

ARI =

(
n
2

) c∑

y,y′=1

(
ny,y′

2

)
−

c∑

y=1

(
ny

2

) c∑

y′=1

(
n∗
y′

2

)

1

2

(
n
2

)[ c∑

y=1

(
ny

2

)
+

c∑

y′=1

(
n∗
y′

2

)]
−

c∑

y=1

(
ny

2

) c∑

y′=1

(
n∗
y′

2

) .

Note that RI and ARI can be defined even when two sets of cluster assignments {yi}
n
i=1

and {y∗i }
n
i=1 have different numbers of clusters, i.e., {Cy}cy=1 and {C

∗
y′}

c′

y′=1 with c 6= c′. This
is highly convenient in practice since, when the number of true clusters is large, clustering
algorithms often produce clustering solutions with a smaller number of clusters (i.e., some
of the clusters have no samples). Even in such cases, RI and ARI can still be used for
evaluating the quality of clustering solutions.
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