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Abstract

We consider the problem of multi-class adaptive classification for brain computer in-

terfaces and propose the use of multi-class pooled mean linear discriminant analysis

(MPMLDA), a multi-class generalization of the adaptation rule introduced by (Vidau-

rre et al., 2010) for the binary class setting. Using publicly available EEG datasets

and the tangent space mapping (Barachant et al., 2012) as feature extractor, we demon-

strate that MPMLDA can significantly outperform state-of-the-art multi-class static and

adaptive methods. Furthermore, efficient learning rates can be achieved using data from

different subjects.

1 Introduction

Brain computer interfaces (BCI) (Vidal, 1973) aim to provide human subjects with con-

trol over devices or computer applications while bypassing the traditional muscular

paths. In other words these interfaces might allow humans to control devices using only

their measured brain activity as measured by e.g. electroencephalogram (EEG) (Haas,

2003) . The control of such devices could offer an additional channel of communi-

cation/action that could improve the quality of life for people with severe disabilities

(Wolpaw et al., 2002).

The most common procedure for setting up a BCI is as follows: the user partici-

pates in a training (i.e. calibration) session in which the user is instructed to perform a

specific mental task, while the brain activity generated is recorded. The recorded data

(usually designated as ’training data’) are used to extract discriminative features asso-

ciated with various user intentions. The data are subsequently used to train a classifier

that predicts the user’s intention during the testing (feedback) session (van Gerven et al.,

2009). To optimise the feature extraction procedure, a time window of interest should

be selected, as well as the most discriminative frequency bands. This choice is typically

experimental and subject dependent and it usually requires some level of prior physio-

logical knowledge. Several algorithms are available for automatically optimizing these

parameters (Blankertz et al., 2011; Fernandez-Vargas et al., 2013; Ang et al., 2012). In a
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multi-class BCI problem, the most common feature extractors are based on supervised

data projections, such as one-against-one common spatial patterns (CSP) (Blankertz

et al., 2008; Dornhege et al., 2004) or multi-class CSP (MCSP) (Grosse-Wentrup et al.,

2008). Another interesting approach that has been introduced recently is tangent space

mapping (TSM) (Barachant et al., 2012), which is an unsupervised nonlinear projection

of the data covariance matrices that can be used to optimise its classification.

Usually the binary class BCI classification problem is considered linear (Müller et

al., 2003; Farquhar, 2009) and a linear discriminant analysis (LDA) classifier (Fisher,

1936) can be used effectively. When the dimension of the feature space is large in

relation to the number of samples (training data), the classifier must be regularized

(Bishop, 2007; Blankertz et al., 2011). In the multi-class case, the multi-class LDA

(MLDA) has been shown to be the best choice (Yang et al., 2009; Felix et al. , 2005;

Tang et al., 2008).

One common problem encountered by the classifiers in EEG-based BCIs involves

changes in the feature statistics over time, due to the non-stationary character of the

EEG data (Krauledat, 2008). These changes generally result in poor classifier gener-

alization performance (Shenoy et al., 2006; Millán, 2004). To overcome this problem,

several methods that adapt the feature space or the classifier parameters have been pro-

posed (Tomioka et al., 2006; Hasan et al., 2009; Llera et al., 2012).

The most common (i.e. the safest) strategy is to update the model parameters that

are class-independent, while keeping the rest fixed. In the case of binary LDA, this

strategy can be used to update the global average covariance matrix (or its inverse)

(Vidaurre et al., 2006) or the global mean of the data (Vidaurre et al., 2010). When

the adaptation is performed in the feature space and not in the classifier parameters, the

strategy can be used to reduce the non-stationary effect by transforming the CSP filters

(Tomioka et al., 2006) or, more generally, the actual testing data (Arvaneh et al., 2013)

in a linear fashion.

To adapt class-dependent classifier parameters, it is necessary to introduce uncer-

tainty into the model, as in the unsupervised adaptive Gaussian mixture model classi-

fier (Hasan et al., 2009). To the best of our knowledge, the unsupervised adaptation of

class-dependent feature space extraction parameters has yet to deliver any applicable

results.

Updating the global mean of the data allows the adaptation of the bias of the bi-

nary LDA discriminant function. This is usually a robust technique for BCI classifier

adaptation and it is referred to as the pooled mean linear discriminant analysis (Pmean)

(Vidaurre et al., 2010). It is able to adapt to shifts in the feature space that are commonly

attributed to non-class-related non-stationarity in EEG-based imaginary movement bi-

nary BCI (Shenoy et al., 2006). Despite its simplicity, Pmean can achieve state-of-

the-art binary unsupervised adaptive classification performance. Moreover, it has been

shown to be a valuable tool for helping to increase the number of possible BCI users

(Vidaurre et al., 2011). Similar binary performance has been reported using Data Space

Adaptation (DSA), a feature-based adaptation method proposed recently by (Arvaneh

et al., 2013).

In the multi-class setting, the adaptation process clearly becomes more complex and

poses harder challenges. State-of-the-art unsupervised multi-class methods, such as en-

hanced Bayesian LDA (EBLDA) (Xu et al., 2011), perform unsupervised retraining of
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each of the pair-wise Bayesian LDA classifiers (BLDA) (MacKay, 1992). This adap-

tive approach uses a generative model for class-conditional distributions, and its per-

formance is strongly dependent upon the quality of the initialization. For binary prob-

lems, however, evidence suggest that the performance of the Pmean update approaches

that obtained using supervised updates Vidaurre et al. (2010), thus often outperforming

adaptive unsupervised generative models (e.g. EBLDA).

In this paper we introduce a novel multi-class extension of the binary Pmean adap-

tation of the LDA classifier and demonstrate that this kind of adaptation is better suited

for multi-class adaptation than are the previously mentioned state-of-the-art methods.

In Section 2, we present the proposed method, followed by a description of the three

EEG datasets used in this work (Section 3). The results are presented in Section 4. The

paper concludes with a discussion (Section 5).

2 Methods

In this section, we present the methods for feature extraction and classification that

we consider in the rest of the work. In Sub-section 2.1 we specify the feature extrac-

tion procedure: tangent space mapping (TSM). We describe multi-class LDA in Sub-

section 2.2 and present the proposed algorithm for multi-class adaptive classification,

the MPMLDA, in Sub-section 2.3.

2.1 Tangent Space Mapping (TSM)

Tangent space mapping (TSM) as feature space was recently presented for BCIs in the

context of the tangent space linear discriminant analysis (TSLDA) (Barachant et al.,

2012). The referenced work highlights the potential of TSM as a feature extractor for

the multi-class classification of covariance matrices in the context of BCI.

In light of the observation that covariance matrices belong to the Riemannian man-

ifold of symmetric positive-definite matrices (M) (Moakher, 2011), TSM performs a

non-linear projection of the spatial covariance matrices of the data into the tangent space

(do Carmo, 1976) ofM at the Riemannian (or geometric) mean (Heath, 1981) of the

spatial covariance matrices of the training data. The Riemannian mean (CR) of a set of

covariance matrices {C1, . . . , Cn} ∈ M is defined as

CR = argminC∈M

n
∑

k=1

dR(Ck, C)2 (1)

where dR : (M×M) → R≥0 denotes the Riemannian distance induced by the Rie-

mann geometry on M and it can be computed as a generalized eigenvalue problem

(Moakher, 2005). More precisely, for any two Ck1 , Ck2 ∈M

dR(Ck1 , Ck2) =

[

m
∑

i=1

log2 λi

]1/2

(2)

where λi, i ∈ {1, . . . ,m}, are the eigenvalues of C−1

k1
Ck2 .
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The geometric mean exists within the considered manifold, and it is unique (Karcher,

1977). Although there is no closed-form solution for its computation, it can be com-

puted efficiently using iterative algorithms. In this work we consider the algorithm

presented by (Fletcher et al., 2004).

Given a set of covariance matrices and denoting their geometric mean as CR, the

tangent space mapping at CR of a given covariance matrix Ck is (after several trivial

simplifications) given by

TSMCR(Ck) = log(CR
−1

2 CkCR
−1

2 ), (3)

where the log is the logarithm of a matrix derived from its diagonalization (Barbaresco,

2008).

TSMCR(Ck) is a symmetric matrix that, in vectorized form (after eliminating re-

dundant elements due to symmetry) can be used as features for classification in BCI

problems (Barachant et al., 2012). In most cases and particularly in this work, one

unique CR is computed using all of the covariances matrices in the training set, thus

rendering TSM an unsupervised feature extractor for covariance classification.

2.2 Multi-class Linear Discriminant Analysis (MLDA)

The multi-class linear discriminant analysis (MLDA) classifier (Bishop, 2007) is de-

fined by a discriminant function Di,j(x) of the input feature vector x ∈ R
n for each

class pair (i, j). A majority vote or a probabilistic interpretation of the results can be

used to produce unique output from each pair of binary classifiers (Tax et al., 2002).

Given a K-class classification problem and a set of m labeled data vectors {x1, . . . ,xm},
for each k ∈ {1, . . . , K} we can compute the class-wise means µk ∈ R

n and covari-

ance matrices Ck ∈ Mn×n. Defining the per-class-pair average covariance matrices as

Σi,j =
Ci+Cj

2
for j > i ∈ {1, . . . , K}, we define the discriminant function between

classes i and j as

Di,j(x) =
[

bi,j,w
⊺

i,j

]

[

1
x

]

(4)

wi,j = Σ−1

i,j

(

µj − µi

)

(5)

bi,j = −w
⊺

i,jµi,j (6)

µi,j =
1

2

(

µi + µj

)

(7)

where each wi,j ∈ R
n describes the vector of weights and bi,j ∈ R the bias term of the

discriminant function between classes i and j. For each {(i, j) : j > i ∈ {1, . . . , K}},
an input feature vector x is classified as class j if Di,j(x) > 0, and as class i otherwise.

The output of the discriminant functionDi,j(x) ∈ R can be interpreted probabilistically

by assuming that the probabilities of classes i and j are given by a binomial distribution

on the sigmoidal mapping of the discriminant function value (MacKay, 2003).

More concretely, given the discriminant function Di,j , j > i between classes i and

j, we define the probability of x belonging to class i as Qi,j(i|x) := σ(Di,j(x)) and,
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consequently Qi,j(j|x) := 1− σ(Di,j(x)) with

σ(Di,j(x)) =
1

1 + exp(−Di,j(x))
. (8)

Note that this probabilistic interpretation of the discriminant function of the LDA

classifier makes a connection between the LDA and the logistic regression model.

The MLDA procedure produces probabilistic output from all of the pair-wise prob-

abilities Qi,j in the following manner. For simplicity of notation, we define for j < i,

Qi,j(k|x) = Qj,i(k|x). We then define the probability vector P containing in the i-th

coordinate the probability of class i given x as

Pi(x) =

∑

j 6=i Qi,j(i|x)
∑

k

∑

j 6=k Qk,j(k|x)
. (9)

The final output of this MLDA classifier is assigned to the most probable class under

this measure k̄ = maxi Pi(x).

2.3 Multi-class pooled mean LDA (MPMLDA)

In the binary setting, under the assumption of balanced classes, the bias of the discrim-

inant function can be adapted in an unsupervised manner using the global data mean

(Vidaurre et al., 2010). See Appendix A for additional information.

In the multi-class setting, not every sample contributes to all discriminant functions.

For this reason, not all discriminant functions must be updated with every sample. We

extend the pooled-mean approach to the multi-class case using a probabilistic update

for the pairwise class means µi,j in equation (7) as

µ
′
i,j = (1− γi,j(x)β)µi,j + γi,j(x)βx (10)

where µ
′
i,j represents the updated µi,j , β ∈ R is the learning rate and γi,j(x) is defined

using the probability vector P(x) of equation (9) as:

γi,j(x) := Pi(x) +Pj(x). (11)

The update (10) allows for the adaptation of each bias bi,j through equation (6). The

MPMLDA algorithm is summarized in algorithm 1.

In the binary setting, equations (10) and (11) reduce to the binary Pmean update

when γ1,2(x) = 1. The multi-class MPMLDA is thus a natural extension of the original

pooled-mean adaptation rule.

One particular feature of MPMLDA is that, given a new data point x, the adaptation

is automatically stronger for discriminant functions between pairs of classes that are

more relevant, as demonstrated in equation (11). In a supervised scenario (i.e. Pi = δi,k,

with k being the true class label), it is easy to see that MPMLDA updates only the

boundaries between the real label k and the other classes.
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Algorithm 1 Multi-class pooled mean LDA (MPMLDA)

Require: Di,j j > i ∈ {1, . . . , K} constructed from labeled training data using (4)-(7).

Learning rate β.

x new feature sample to classify.

1: P(x)← Di,j(x) using (8) and (9).

2: Compute the classifier output k̄ = maxi Pi(x).
3: Update µi,j using (11) and (10).

4: Update each bias bi,j of each Di,j using (6)

5: return

k̄: Class membership of x;

Di,j: updated discriminant functions.

3 Data sets and evaluation

We consider three different datasets, all containing multi-class imagery-movement tasks.

Physiobank: 2 (Goldberger et al. (2000); Schalk et al. (2004)). This dataset contains

data from 109 subjects performing various combinations of real and imagined

movements in one day of recordings. In this work we consider only the data re-

lated to imagery movement of the left hand, right hand and both feet. Each subject

performed 22 trials of each class (≈ 3 seconds per trial) and the EEG data were

recorded using 64 electrodes. Due to the computational load required by the ex-

tended analysis presented in this work, we focus only on 20 EEG electrodes over

the sensorimotor cortex. The large number of users makes this dataset convenient

to evaluate the impact of feature extraction on a large scale.

BCI competition IV-2a: 3 (Brunner et al. (2008)). This dataset provides data from 9
subjects performing 4 different imagery movement tasks (right hand (RH), left

hand (LH), both feet (F), tongue (T)) during 2 different days of recordings. Each

day the subjects performed 72 trials of each task (3 seconds per trial) and the EEG

data were recorded using 20 electrodes.

BSI-RIKEN: 4(Cichocki, A. & Zhao, Q. (2011)). This dataset provides data from

several subjects performing binary or multi-class imagery movement tasks. In

this work we consider only the two subjects performing multi-class problems

(LH, RH, F) on different, well defined days (Subjects B and C). Subject B was

recorded on 2 different days and Subject C in seven different days. Each day

they performed ≈ 65 trials (3-4 seconds) of each task and the EEG data were

recorded using 5 or 6 electrodes. In this work we always consider the same 5
EEG electrodes, ’C3’, ’Cp3’, ’C4’, ’Cp4’ and ’Cz’.

The dataset also contains three long additional sessions for Subject C (≈ 268
trials per session) spreaded across a different day. We denote these data as Subject

2http://www.physionet.org/physiobank/database
3http://www.bbci.de/competition/iv
4http://www.bsp.brain.riken.jp/˜qibin/homepage/Datasets.html
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C2.

In this work, all of the datasets were pre-processed in a similar way before the

feature extraction step. In all cases, the data were divided into trials containing the

imagery movement period. Channels and trials contaminated with artefacts were elim-

inated from the training set using an automatic variance based routine (Nolan et al.,

2010). The contaminated channels were also removed from the testing set, after which

the data were detrended and band-pass-filtered into the frequency bands 8-30 Hz. To

reduce the presence of filter-induced artefacts in the data, we discarded the starting and

ending half seconds from each trial.

We measure BCI performance using the Cohen’s Kappa coefficient (Kraemer, 1982),

which assigns a value of zero to random classification and a value of one to perfect clas-

sification. This measure is commonly used in multi-class BCI problems (Schlögl et al.,

2007).

We use the Physiobank dataset only to compare the different feature extractors, and

not to evaluate adaptive methods. Note that the reduced ammount of trials per class

available per subject in this dataset does not allow the proper evaluation of any adaptive

method. In this case, we report classification results based on leave one out cross-

validation.

We use the BCI-IV-2a and BSI-RIKEN datasets to evaluate and compare the per-

formance of the different classifiers in terms of adaptation. We perform training on the

data from one day and testing on data from a subsequent day. Because these data were

recorded on different days, they are more likely to present hard non-stationarities.

For subject C2, however, each model was trained and tested on the different sessions

taking on the same day. Even though all recordings denoted as subject C2 were per-

formed within the same day, we decided to include them in the analysis as each session

provides many trials and the three sessions were distributed throughout the day, thereby

allowing the presence of clear non stationary changes. This procedure yielded a total of

9 evaluations for the BCI-IV-2a dataset and 25 evaluations for the BSI-RIKEN dataset,

which are decomposed to a value of 1 for subject B, 21 for subject C (6 + 5 + ... + 1)

and 3 for subject C2.

4 Results

This section describes the results. First, given that TSM has only recently been intro-

duced and it is largely unknown in the BCI community, we present novel results that

confirm the quality of TSM as an algorithm for multi-class feature extraction when us-

ing static classification. We then analyse and compare the performance of the proposed

multi-class adaptive method. In Sub-section 4.3 we consider the method’s dependence

on the learning rate and, in Sub-section 4.4 we provide a qualitative analysis of the

dynamic changes occurring in the feature space. We assess the significance of the per-

formance differences between methods according to Wilcoxon statistical tests (Demšar.,

2006). The observed differences are with either single or double asterisks to indicate

p-values less than 0.05 and 0.01, respectively.
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4.1 TSM as feature space for non-adaptive classification

In this subsection, we illustrate the ability of TSM to serve as multi-class feature extrac-

tor for BCI imagery movement problems on a large scale. We present results accord-

ing to a static MLDA classifier (Section 2.2) and the three datasets considered in this

work. Figure 1 provides a comparison of the Kappa values obtained using TSM and
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Figure 1: Kappa values obtained through MCSP (x axis) plotted against Kappa values

obtained by TSM for the three datasets under consideration. The values printed in upper

left and lower right corners of each figure represent the mean Kappa values obtained

by each method. Wilcoxon statistical tests indicate the significance of the observed

differences, noted by single or double asterisks representing p-values smaller than 0.05

and 0.01, respectively.

multi class CSP (MCSP) (Grosse-Wentrup et al., 2008), which is commonly used for

multi-class BCI feature extraction. For the BCI-IV-2a dataset (middle panel), subject

numbers are indicated inside the circles. For the BSI-RIKEN dataset (right panel), the

circles represent Subject C, the square represents Subject B and the crosses represent

the different possible test sessions of Subject C2 during one day. The mean Kappa val-

ues are displayed in the upper left (for TSM) and lower right (MCSP) corners of each

panel.

For Physiobank and BCI-IV-2a datasets, TSM provides a significantly better feature

space than MCSP does. These results confirm that TSM can be considered a state-of-

the-art feature extractor for multi-class BCI problems. For the remainder of this paper,

we consider TSM as the feature space.

4.2 Multi-class Adaptive Classification

In this subsection, we analyse the problem of inter-day classifier adaptation in the multi-

class setting, using the BCI-IV-2a and BSI-RIKEN datasets and considering TSM as the

feature extractor. We analyse the behaviour of the proposed method, MPMLDA, and

we consider EBLDA and DSA for comparison (a brief description of the two methods

is provided in Appendices B and C, respectively). For reference on the improvement

achieved, we also present values computed for the performance of the initial (static)

MLDA classifier
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Figure 2: Comparison between MPMLDA and other multi-class methods. All adaptive

methods use individual optimal learning rates. Each row represents a different data

set, and each column compares it with a different model (MLDA, DSA and EBLDA).

The values displayed in the upper left and lower right corners are the mean Kappa value

averaged over all the subjects of the dataset. Wilcoxon statistical tests indicate the

significance of the observed differences. Single and double asterisks indicate p-values

smaller than 0.05 and 0.01, respectively.
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In all cases, we first train a initial static MLDA (or BLDA 5) classifier using data

from a day of recordings, after which we selected a different (future) day/session of

the same subject as testing data, in order to evaluate both static and adaptive classifiers.

In this subsection, we optimise the learning rates for each combination of subject and

adaptation method separetely. In the next sub-section we analyse the influence of the

learning rate in more detail.

Figure 2 shows the comparison of MPMLDA in terms of Kappa values for the dif-

ferent methods (in columns) based on each of the datasets (in rows). Points above the

discontinuous lines represent cases in which MPMLDA performance is superior. The

values at the upper left and lower right corners indicate the mean Kappa values of the

corresponding method averaged over all subjects.

First of all we note that on average any adaptation improves the mean performance

of the static classifier, which has Kappa 0.51. Remarkably, MPMLDA significantly

outperforms all of the other methods. Note that for the BSI-RIKEN dataset, EBLDA

yields very poor performance in some isolated cases.

In contrast, although DSA provides excellent stable performance, its performance

is still significantly worse than that achieved by MPMLDA. We conclude that for the

datasets under consideration MPMLDA performs significantly better than DSA and

EBLDA.

4.3 Influence of the Learning Rate

In Figure 3, we present results of our analysis of the influence of the learning rate. We

plot the mean Kappa values averaged over all subjects, as a function of the learning

rate for the BCI-IV-2a dataset (left panel) and the BSI-RIKEN dataset (right panel).

Horizontal lines indicate the performance of the static MLDA method, and the adaptive

EBLDA and DSA (the latter two adaptive methods use individually optimised learning

rates).

Interestingly, the improvement of MPMLDA is notable with respect to the static

MLDA for a wide range of learning rate values. The performance of this method is also

superior or comparable to the other adaptive methods for both datasets.

Observe that the optimal learning rate differs between datasets. These differences

can be explained by the dependence of the learning rate on the number of classes in-

duced by equation (11).

We now set the MPMLDA learning rate to the corresponding optimal values shown

above and compare the performance of MPMLDA against the other adaptive methods,

for which the learning rates have been fully optimised. The results are displayed in

Figure 4.

With this subject-independent but dataset-dependent learning rate, MPMLDA still

generally outperforms the static classifier and also EBLDA. Although it does not yield

any significant difference with respect to the optimal DSA (second column).

We conclude that effective subject independent learning rates can be learned for

a fixed paradigm and a fixed EEG montage. Although they deviate from subject de-

pendent optimal learning rates, this approach is able to significantly outperform static

5For EBLDA, a Bayesian LDA was used for training.
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Figure 3: The continuous line represents the average Kappa value across subjects as a

function of the MPMLDA learning rate using the datasets BCI-IV-2a and BSI-RIKEN

datasets. Discontinuous and marked lines represent the average Kappa values obtained

by MLDA, EBLDA, and DSA. Individual optimal learning rates are used EBLDA and

DSA.

classification and optimal EBLDA.

4.4 Analysis of the feature space dynamics.

In order to understand why MPMLDA outperforms the other methods we project the

class-wise training and testing feature distributions onto the first two Principal Compo-

nents derived from the training data (Jolliffe, 2002). The results for subjects 4 and 8

(BCI-IV-2a) are displayed in Figure 5 left side.

Note the clear shift observed between the training and testing distributions occurring

for Subject 8. In the right column of Figure 5, we represent the shift in the mean for each

class. Observe that the shifts are class dependent in the case of Subject 4 and largely

class-independent for subject 8. Adapting for class independent shifts it is obviously a

much simpler task that can be achieved using DSA or a naive multi class Pmean update

(i.e. assuming γi,j(x) = 1∀i, j in equation 11). However, class dependent changes can

definetly not be tracked by any of this methods. Further, note that the changes in the

covariances are not too strong for any of both subjects. Such behaviour (i.e. strong

mean shifts and small covariance changes) was observed in general in the BCI-IV-2a

dataset. By construction MPMLDA can be able to adapt for class dependent shifts; this

fact explains the superior performance of MPMLDA in the BCI-IV-2a dataset.

The PCA projections on different days for Subject C (BSI-RIKEN) are displayed in

Figure 6. In the first row, we show the change between the first and the second day. Once

more, strong means shifts represent properly the non stationary changes. However,

the non-stationary character becomes stronger when comparing the projections of the

first and the seventh day for the same subject (second row). Note that the shifts in

the mean, is insufficient to represent the non-stationarity in this case; a strong class

dependent covariance change is also present. Even though this is a difficult scenario for

any adaptive model, it is clear that correcting for the bias is a necesary condition for any

adaptation strategy to be succesfull.

Instead of using the principal components from the first day, we concentrate now on
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Figure 4: Comparison between MPMLDA and other multi-class methods. The learn-

ing rates values of all the adaptive methods have been optimised for each sub-

ject independently, with the exception of MPMLDA, which corresponds to the

optimised mean across subjects, (see Figure 3). The learning rate values used by

MPMLDA are 0.03 and 0.01 for the BCI-IV-2a and BSI-RIKEN datasets respectively.

Each row represents a different data set and each column compares it to a different

model (MLDA, EBLDA and DSA). The values displayed in the upper left and lower

right corners indicate the mean Kappa value averaged over all subjects in the dataset.

Wilcoxon statistical tests indicate the significance of the observed differences. Single

and double asterisks indicate p-values smaller than 0.05 and 0.01, respectively.

the projections after training and testing on the sixth and the seventh days, respectively,

as shown in Figure 6 (bottom row). Remarkably, they are more concentrated than they

were in the previous cases. One possible explanation for this reduced variance could

that the subject learned to execute the task better (Curran, 2003; Barbero Jimenez, A.

and Grosse-Wentrup, M. , 2010). However, also in this case class dependent changes

are dominant (both mean shifts and covariance changes).

To conclude we note that in some cases, the translation vectors are grouped (right

columns), suggesting that class-dependent bias updates add little improvement to a

naive Pmean that would account for a class-independent shift, (i.e. assuming γi,j(x) =
1∀i, j in equation 11). Using this approach, however, results in mean Kappa values

of 0.541 (**) and 0.60 (**) for the BCI-IV-2a and BSI-RIKEN datasets respectively,

which improve the static MLDA but are significantly worse than the performance ob-

tained by MPMLDA. This result confirms that the use of class-dependent bias updates
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Figure 5: Left: Distribution of training (continuous ellipses) and testing (discontinuous

ellipses) features of four different tasks (colour), projected onto the first two principal

components for Subjects 4 and 8. Right: the shift in the mean for each class between

day 1 and day 2.

is useful for tracking such multi-class class-dependent distribution shifts.

5 Discussion

In this work we propose a novel method for adaptive multi-class classification for BCI:

MPMLDA. This method is a multi-class extension of the binary pooled mean LDA

(Pmean) introduced in (Vidaurre et al., 2010). We demonstrate that the performance of

MPMLDA is superior to that of state-of-the-art adaptive methods as EBLDA and DSA.

As feature space we use TSM as recently introduced in Barachant et al. (2012).

Our results confirm previous findings; TSM based features yields better classification

performance than MCSP features.

The most important feature of MPMLDA is that its parameter updates are class-

dependent, thereby resulting in larger updates for discriminant functions between pairs

of classes that are more suitable for explaining the current EEG pattern. Our results

on different datasets suggest that such class-dependent updates are a key ingredient in

explaining the improved performance of MPMLDA over the other methods.

One interesting observation is that MPMLDA can achieve higher classification than

is possible with DSA. This is a remarkable result. By construction DSA has the po-

tential to adapt for stronger non-stationarities than does MPMLDA. This is because, in

principle, DSA can remove not only shifts but also rotations in feature space (if they
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Figure 6: Left: Distribution of training (continuous ellipses) and testing (discontinuous

ellipses) features of four different tasks (colour), projected onto the first two principal

components for Subject C. Training and testing was performed for days (1,2), (1,7) and

(6,7) respectively as indicated by the corresponding legend. Right: the shift in the mean

for each class between day 1 and day 2..

are common to all classes). However, the presented results clearly show the presence

of class dependent non stationarity components that can not be learned using DSA.

As indicated by the empirical results, the MPMLDA is able to outperform also DSA

and as such the bias adaptation has been proved to be a very powerful tool also in the

multi-class setting.

Appendix

A - Binary linear discriminant analysis with pooled mean adaptation

(Pmean)

Pmean (Vidaurre et al., 2010) is a binary unsupervised adaptive LDA algorithm which

identifies the global mean of the data (µ) with
µ

1
+µ

2

2
, where µ1 and µ2 represent the

class wise means, under the assumption of balanced classes. Consequently µ can be

updated sequentially following

µ
′ = (1− β)µ+ βx, (12)

where µ
′ is the updated µ, x is the new observed feature vector and β ∈ [0, 1] is

the learning rate controlling the adaptation. Because the bias of the LDA discriminant
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function is given by

b = −w′
µ, (13)

with w representing its weights, the update of µ (through equation 12) allows the un-

supervised update of the bias.

Even though Pmean provides state-of-the-art binary unsupervised classification per-

formance, it is important to note that no multi-class extension of Pmean has previously

been considered in the literature.

B - Enhanced Bayesian linear discriminant analysis (EBLDA)

Bayesian Linear Discriminant Analysis (BLDA) is a Bayesian version of regularized

LDA, in which regularization parameters are estimated with Bayesian regression (see

(Xu et al., 2011) for more detailed information).

In order to improve the performance of the classifier EBLDA proposes training

a new classifier by supplementing training sets with additional high probability test

samples. In the binary case, the probability from the BLDA classifier for a test sample

is computed. if this probability exceeds a threshold (e.g. 0.9), this test sample and its

estimated label are added to the training set for classifier retraining. In this work we

refer to the parameter value indicating this threshold as the learning rate.

In the multi-class setting, EBLDA uses combinations of binary BLDA classifiers as

MLDA.

C - Unsupervised EEG Data Space Adaptation (DSA)

The DSA adaptation procedure (Arvaneh et al., 2013) performs an adaptive linear trans-

formation of the testing data instead of adapting the classifier parameters. It provides

a direct approximation of the discrepancy between the band-pass filtered training and

testing data distributions by comparing the average distributions of the EEG data ob-

tained regardless of the class labels (under Gaussian assumption). Let N1 = N (0, Ĉ)
be the average distribution of the training data, where Ĉ is obtained by averaging the co-

variance matrices over all available EEG training trials. Denote the average distribution

of the testing data after a linear transformation as N2 = N (0,W tCW ), with W as a

linear transformation matrix and C as the average covariance matrix of the testing data.

The DSA method optimises the matrix W by minimizing the KL divergence between

N2 and N1. Interestingly, W can be written in closed form as

W = (Ĉ−1C)
−1

2 = C
−1

2 Ĉ
1

2 .

In DSA, the linear transformation W is recomputed sequentially after a certain num-

ber of trials, and the new testing pattern is projected onto W before applying the pre-

trained feature extraction and classification algorithms. The number of trials used for

re-computing C and W determines the length scale of the adaptation. We therefore

refer to this parameter as the learning rate for the DSA method.

The original unsupervised DSA method considering common spatial patterns (CSP)

as feature extractor is very similar to the unsupervised adaptation of CSP as proposed

15



in (Tomioka et al., 2006). The latter updates the CSP filters using W (i.e. CSP →
WCSP ) while DSA filters the testing data (X) using W (i.e. X → W ′X). Conse-

quently in both cases the features are extracted from the linear transformation X →
CSP ′W ′X .

In this work, we consider a multi-class variant of DSA with TSM as feature space.

In both senses, this unsupervised strategy differs from the proposals in (Tomioka et al.,

2006; Arvaneh et al., 2013).
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Schlögl, A., Kronegg, J., Huggins, J. E., Mason, S. G.(2007). Evaluation Criteria for

BCI Research. Toward Brain-computer Interfacing, 19, 327–342, MIT Press.

Tang, Y. and Tang, J. and Gong, A. (2008). Multi-Class EEG Classification for Brain

Computer Interface based on CSP. Proceedings of the International Conference

on BioMedical Engineering and Informatics, 2, 463–472. IEEE Computer Society,

Washington, DC, USA.

Tax D. M. J., Duin, R. P. W. (2002). Using two-class classifiers for multi-class classifica-

tion. Proceedingof the 16th IEEE International Conference on Pattern Recognition,

2, 124–127.

Tomioka, R., Hill, J.N., Blankertz, B. & Aihara, K. (2006). Adapting Spatial Filter

Methods for Nonstationary BCIs. Proceedings of 2006 Workshop on Information-

Based Induction Sciences (IBIS 2006), 65–70.

Tuzel O., Porikli F., Meer P. (2007). Human detection via classification on riemannian

manifolds. Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 1–8.

Vidal, J. J. (1973). Toward Direct Brain-Computer Communication. Annual Review of

Biophysics and Bioengineering, 2, 157–180.
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