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Abstract

We derive a family of risk-sensitive reinforcement leagninethods for agents,
who face sequential decision-making tasks in uncertaiire@mments. By apply-
ing a utility function to the temporal difference (TD) erroonlinear transforma-
tions are effectively applied not only to the received ralgabout also to the true
transition probabilities of the underlying Markov decisiprocess. When appro-
priate utility functions are chosen, the agents’ behavegress key features of
human behavior as predicted by prospect theory (Kahnentmeersky, 1979),
for example different risk-preferences for gains and Issa® well as the shape
of subjective probability curves. We derive a risk-semsiQ-learning algorithm,
which is necessary for modeling human behavior when triansitrobabilities are
unknown, and prove its convergence. As a proof of principlettie applicabil-
ity of the new framework we apply it to quantify human behavioa sequential
investment task. We find, that the risk-sensitive variaatvigles a significantly
better fit to the behavioral data and that it leads to an iné¢agion of the subject’s
responses which is indeed consistent with prospect th&banalysis of simulta-
neously measured fMRI signals show a significant corretatifcthe risk-sensitive
TD error with BOLD signal change in the ventral striatum. bidaion we find
a significant correlation of the risk-sensitive Q-valueshwieural activity in the
striatum, cingulate cortex and insula, which is not preffestatndard Q-values are
used.

arxXiv:1311.2097v3 [cs.LG] 23 Jan 2014

1 Introduction

Risk arises from the uncertainties associated with futueats, and is inevitable since
the consequences of actions are uncertain at the time whecigiah is made. Hence,
risk has to be taken into account by the decision-maker,aously or unconsciously.
An economically rational decision-making rule, whictrisk-neutral is to select the

alternative with the highest expected reward. In the cdritesequential or multistage
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decision-making problemseinforcement learningRL, [Sutton and Barta, 1998) fol-
lows this line of thought. It describes how an agent oughake &actions that maximize
expected cumulative rewards in an environment typicallscdeed by avlarkov de-
cision procesgMDP, 4). RL is a well-developed model not daty
human decision-making, but also for models of free choicedn-humans, because
similar computational structures, such as dopamineigiozdiated reward prediction
errors, have been identified across species (Schultz @08l Schuliz, 2002).
Besides risk-neutral policiesisk-aversepolicies, which accept a choice with a
more certain but possibly lower expected reward, are alasidered economically ra-
tional ,). For example, a risk-averse investight choose to put money
into a bank account with a low but guaranteed interest ratber than into a stock
with possibly high expected returns but also a chance of loghes. Conversely,
risk-seekingpolicies, which prefer a choice with less certain but pdgsitigh re-
ward, are considered economically irrational. Human agarg, however, not always
economically rationa9). Behavioral studikew that human can be risk-
seeking in one situation while risk-averse in another i ky,
@). RL algorithms developed so far cannot effectivelydeidhese complicated
risk-preferences.
Risk-sensitive decision-making problems, in the contéMDPs, have been inves-
ted in various fields, e.g., in machine learnin ng (Het@94) Mihatsch and Neuneier,
ﬁ) optimal control (Hernandez-Hernandez and Mat986), operations research
h, 1972; Borkar, 2002), finahce (Rusmkiy2010), as well as
neuroscience (Nagengast et al., 2010; Braunlet al., 203etNil., 2012). Note that

the core of MDPs consists of two setsalfjectivequantities describing the environ-
ment: immediateewardsobtained at states by executing actions, tadsition prob-
abilities for switching states when performing actions. Facing theesanvironment,
however, different agents might have different policie$icl indicates that risk is
taken into account differently by different agents. Hertoeincorporate risk, which
is derived from both quantities, all existing literaturgph@s a nonlinear transforma-
tion to either the experienced reward values or to the ttiansprobabilities, or to
both. The former is the canonical approach in classical ecics, as in expected
utility theory m,m), while the latter originatdrom behavioral economics,
as insubjective probabilit(Savagde, 1972), but is also derived from a rather recent
development in mathematical finanamnvex/coherent risk measu

11999;| Follmer and Schied, 2002). For modeling human bemsyprospect theory
(Kahneman and TverskKy, 1979) suggests that we should cerbbth approaches, i.e.,
human beings have different perceptions not only for th% amount of re-
wards but also the same value of the true probability. Rég (2012) com-
bined both approaches by applying piecewise linear funst{@an approximation of a
nonlinear transformation) to reward prediction errorg ttantain the information of
rewards directly and the information of transition proliéibis indirectly. Importantly,
the reward prediction errors that incorporated experigmisk were strongly coupled
to activity in the nucleus accumbens of the ventral strigtproviding a biologically
based plausibility to this combined approach. In this woekshow (in Section 2.1)
that the risk-sensitive algorithm proposed by Niv and @aiiges is a special case of
our general risk-sensitive RL framework.




Most of the literature in economics or engineering fieldaug®s on economically
rational risk-averse/-neutral strategies, which are vaaygs adopted by humans. The
models proposed in behavioral economics, despite alloa@ogomic irrationality, re-
quire knowledge of the true probability, which usually id agailable at the outset of
a learning task. In neuroscience, on the one hand, severkd;\(mg.IQ;
IPreuschoff et all, 2008) follow the same line as in behaViectanomics and require
knowledge of the true probability. On the other hand, thodifierent modified RL al-
gorithms (e.g., Glimcher et &l., 2008; Symmonds et al., Patd applied to model hu-
man behaviors in learning tasks, the algorithms often éajléneralize across different
tasks. In our previous Wor 013), we descrébgeneral framework for
incorporating risk into MDPs by introducing nonlinear tsformations to both rewards
and transition probabilities. A risk-sensitive objectivas derived and optimized by
value iteration or dynamic programming. This solution,¢erdoes not work in learn-
ing tasks where the true transition probabilities are umknto learning agents. For
this purpose, a model-free framework for RL algorithms isécderived in this paper,
where, similar to Q-learning, the knowledge of the transitand reward model is not
needed.

This paper is organized as follows. Sectidn 2 starts with themaatical introduc-
tion into valuation functiondor measuring risk. We then specify a sufficiently rich
class of valuation functions in Sectibn 2.1 and provide titaifion behind our ap-
proach by applying this class to a simple example in Se€fi@n @/e aslo show that
key features of prospect theory can be captured by this ofagduation functions. Re-
stricted to the same class, we derive a general frameworistosensitive Q-learning
algorithms and prove its convergence in Secfibn 3. Finally$ection[#, we apply
this framework to quantify human behavior. We show that fkk-sensitive variant
provides a significantly better fit to the behavioral data sigdificant correlations are
found between sequences generated by the proposed frakn@mebchanges of fMRI
BOLD signals.

2 Valuation Functions and Risk Sensitivities

Suppose that we are facing choices. Eelebicemight yield different outcomes when
events are generated by a random process. Hence, to keaplggnee model the
outcome of each choice by a real-valued random vari@&léi), uu(i) };cr, wherel
denotes amvent spacvith a finite cardinalityl /| and X (i) € R is the outcome ofth
event with probability.(7). We say two vectorX <Y if X (i) <Y (i) foralli € I.
Let 1 (resp.0) denote the vector with all elements equal 1 (resp. 0).#eadenote the
space of all possible distributiops

Choices are made according to their outcomes. Hence, wenasthat there ex-
ists a mapping : Rl x &2 — R such that one prefer§X, 1) to (Y, ) when-
everp(X,pn) > p(Y,v). We assume further that satisfies the following axioms
inspired by therisk measure theorgpplied in mathematical financm al.,
11999; Follmer and Schied, 2002). A mappingR!!! x 2 — Ris called avaluation
function, if it satisfies for eachu € 22,

I (monotonicity)p(X, 1) < p(Y, 1), wheneverX <Y € R



Il (translation invariancep(X + y1, u) = p(X, p) + y, for anyy € R.

Within the economic contexfy andY” are outcomes of two choices. Monotonicity
reflects the intuition that given the same event distribujio if the outcome of one
choice isalways(for all events) higher than the outcome of another choiteyal-
uation of the choice must be also higher. Under the axiom of traiaslahvariance,
the sure outcomgl (equal outcome for every event) after executing decisisren-
sidered as a sure outcome before making decision. Thisefleats the intuition that
there is no risk if there is no uncertainty.

In our setting, valuation functions are not necessarilytredized, i.e.p(0, 1) is
not necessarily 0, sincg(0, 1) in fact sets a reference point, which can differ for
different agents. However, we can centralize any valudtimetion by p(X, 1) :=
p(X, 1) — p(0, ). From the two axioms, it follows that (for the proof see Lenima
in Appendix)

min X; ::Kgﬁ(X,u)§Y::maIXXZ—,Vu€9,X€Rm. Q)
1€

X is the possibly largest outcome, which represents the npishistic prediction of
the future, whileX is the possibly smallest outcome and the most pessimidiinas
tion. The centralized valuation functigit X, n) satisfyings(0, ) = 0 can be in fact
viewed as a subjective mean of the random variablewhich varies from the best
scenariaX to the worst scenari&’, covering the objective mean as a special case.
To judge the risk-preference induced by a certain type afatdn functions, we
follow the rule thadiversificationshould be preferred if the agentrisk-averse More
specifically, suppose an agent has two possible choicesfaviach leads to the future
reward(X, n) while the other one leads to the future rew&¥dr). For simplicity we
assumey = v. If the agentdiversifies i.e., if one spends only a fractiom of the
resources on the first and the remaining amount on the sedwmmndadive, the future
reward is given byv X + (1 — «)Y'. If the applied valuation function is concave, i.e.,

plaX + (1 —a)Y, p) > ap(X, p) + (1 — a)p(Y, p),

foralla € [0,1] andX,Y € RI!l, then the diversification should increase the (subjec-
tive) valuation. Thus, we call the agent’'s behawvigk-averse Conversely, if the ap-
plied valuation function igonvexthe induced risk-preference shouldrsk-seeking

2.1 Utility-based Shortfall

We now introduce a class of valuation functions, the utiised shortfall, which gen-
eralizes many important special valuation functions ieréiture. Lets : R — R be a
utility function, which is continuous and strictly increasing. The sholrifg| induced
by u and anacceptance levet is then defined as

oty (X, ) = sup {m eR| Y u(X (i) — mu(i) = x} , 2)

el



It can be shown (cf. Follmer and Schied, 2004) fiatis a valid valuation function sat-
isfying the axioms. The utility-based shortfall was firsraduced in the mathematical
finance literature (Follmer and Schied, 2004). The classilify functions considered
here will, however, be more general than the class of ufilibctions typically used in
finance.

Comparing with the expected utility theory, the utility fttion in Eq. [2) is applied
to the relative valueX (i) — m rather than to the absolute outcotkié:). This reflects
the intuition that human beings judge utilities usually byparing those outcome with
a reference value which may not be zero. The property loging convex or concave
determines the risk sensitivity of! : given a concave function, p is also concave
and hence risk-averse (see Theorem 4.61, Follmer and&@084). Vice versa is
convex (hence risk-seeking) for convex

Utility-based shortfalls cover a large family of valuatimmctions, which have been
proposed in literature of various fields.

(a) Foru(z) = x andzy = 0, one obtains the standard expected rewdiX, ;) =
22 X (@)

(b) Foru(z) = e’ andz, = 1, one obtaing (X, p) = 1 log [>°, pu(i)e** ] (the
so calledentropic map see e.g. Cavazos-Cadena, 2010 and references therein).
Expansion w.r.tA leads to

p(X, p) = E*[X] + AVar“[X] + O(A\?)

where Vaf'[X] denotes the variance df under the distribution.. Hence, the
entropic map is risk-averse X < 0 and risk-seeking if\ > 0. In neuroscience,

Nagengast et all (2010) and Braun et al. (2011) applied yhis of valuation

function to test risk-sensitivity in human sensorimotoniol.

(c) IMihatsch and Neuneler (2002) proposed the followingregt
u(:v):{ (I1—r)z ifx>0

14+ k) fz<0’

wherex € (—1,1) controls the degree of risk sensitivity. Its sign deterraine
the property of the utility function: being convex vs. concave and, therefore,
the risk-preference gf. In a recent stud12) applied this type of
valuation function to quantify risk-sensitive behaviorlafman subjects and to
interpret the measured neural signals.

When quantifying human behavior, combined convex/conaélity functions, e.g.,

kot x>0
up(x) = { _J;f_(_x)l, 2 ; 0’ (3)
are of special interest, since people tend to treat gainsoasds differently and, there-
fore, have different risk preferences on gain and loss sidiedact, the polynomial
function in Eq. [B) was used in the prospect theory (KahneamahTversky, 1979) to
model human risk preferences and the results showith& usually below 1, i.e.,

up(z) is concave and thus risk-averse on gains, whilés also below 1 and,(z) is
therefore convex and risk-seeking on losses.




2.2 Utility-based Shortfall and Prospect Theory

To illustrate the risk-preferences induced by differeiiittytfunctions, we consider a
simple example with two events. The first event has outcomeith probability p,
while the other event has smaller outcome< x; with 1 — p. Note thatp = %,
whereEX = pz; + (1 — p)zo denotes the risk-neutral mean.

ReplacingEX with the subjective meap(X,p) = p(X,p) — p(0,p) defined in
Eq. (), we can define subjective probabilitycf. Tversky and Kahnemah (1992)) as

w(p) = M’ (4)

T1 — T2

which measures agents’ subjective perception of the trolegtnility p.

In risk-neutral cases;(X,p) is simply the mean and:(p) = p. In risk-averse
cases, the balance moves towards the worst scenario. Htecprobability of the
first event (with larger outcome,) is always underestimated. On the contrary, in risk-
seeking cases, the probability of the first event is alwaysrestimated. Behavioral
studies show that human subjects usually overestimate tobgbilities and underes-
timate high probabilities (Tversky and Kahneman, 1992)isan be quantified by
applying mixed valuation functions. If we apply utility-based shortfalls, it can be
quantified by using mixed utility function.

Figure 1: Shortfalls with different utility functions andduced subjective probabili-
ties. (Left) utility functions defined as follows: linz; RS : e* — 1;RA : 1 — e 7;
mix1: u,(z) as defined in Eq[{3) witk. = 0.5, 14 = 2, k- = 1 andl_ = 2; mix2:
same as mix1 but with, = 1,1, = 0.5, k— = 1.5 and{_ = 0.5. (Right) subjective
probability functions calculated according to Hd. (4).

Letz; = 1, zo = —1 and the acceptance leve) = 0. Fig.[d (left) shows
five different utility functions, one linear function “lin”one convex function “RS”,
one concave function “RA’, and two mixed functions “mix1”cafimix2” (for de-
tails see caption). The corresponding subjective proltiaisilare shown in Fig]1
(right). Since the function “RA" is concave, the correspmgdvaluation function
is risk-averse and therefore the probability of high-revaevent is always underesti-
mated. For the case of the convex function “RS”, the proligtaf high-reward event



is always overestimated. However, since the “mix1” funei® convex or{0, co) but
concave or{—oo, 0], high probabilities are underestimated while low prokitieg are
overestimated, which replicates very well the probabiligighting function applied in
prospect theory for gains (cf. Fig. [1, Tversky and Kahnema82). Conversely, the
“mix2” function, which is concave ofD, co) and convex or{—oo, 0], corresponds to
the overestimation of high probabilities and the undeneation of low probabilities.

This corresponds to the weighting function used for lossgsdspect theory (cf. Fig.
2,|Tversky and KahnemiQZ).

We will see in the following section that the advantage ohgghe utility-based
shortfall is that we can derive iterating learning algarithfor the estimation of the
subjective valuations, whereas it is difficult to derivelsatgorithms in the framework
of prospect theory.

3 Risk-sensitive Reinforcement L earning

A Markov decision process (see M1994)
M = {S’ (A7 A(S)7 ERS S),P, (’f', P’r)}a

consists of a state spaSe admissible action spaces(s) C A ats € S, a transition
kernelP(s'|s,a), which denotes the transition probability moving from oregess to
another state’ by executing actiom, and a reward function with its distributionP,..
In order to model random rewards, we assume that the rewaatidn has the forfh

r(s,a,6): Sx AxXxE — R.

E denotes the noise space with distributi®nz|s, a), i.e., given(s,a), r(s,a,¢) is a
random variable with values drawn froR} (|s, a). Let R(s, a) be therandomreward
gained at(s, a), which follows the distributiorP,.(-|s, a). The random state (resp. ac-
tion) at timet is denoted bys; (resp.A;). Finally, we assume that all sé8s A, E are
finite.

A Markov policyr = [mg, 71, ...] consists of a sequence of single-step Markov
policies at timeg = 0,1, ..., wherem;(4; = a|S; = s) denotes the probability of
choosing actiom at states. LetII be the set of all Markov policies. The optimal policy
within a time horizonI" is obtained by maximizing the expectation of the discounted
cumulative rewards,

T

Jr(m, s) = maxE ;vtR(st,Amso:s,w : 5)

wheres € S denotes the initial state ande [0, 1) the discount factor. Expanding the
sum leads to

Jr(m,s) =E%_, [R(So, Ao) +vEF [R(S1, A1) + ... ++EE [R(ST, A7)]..]] .
(6)

1in standard MDPs, it is sufficienf (Puterrhdn. 1994) to coersithe deterministicreward function
7(s,a) == Y cgT(s,a,e)Pr(els,a), i.e., the mean reward at each, a)-pair. In risk-sensitive cases,
random rewards cause also risk and uncertainties. Hendegepethe generality by using random rewards.




We now generalize the conditional expectatitinto represent the valuation functions
considered in Sectidd 2. L& := {(s,a)|s € S,a € A(s)} be the set of all admissible
state-action pairs. Let

I=SxE and us.(s',e)="P(s|s,a)P:(c|s,a). (7)

A mapping/ (X, p|s,a) : Rl x 22 x K — Ris called avaluation map, if for each
(s,a) € K, U(|s,a) is a valuation function oI/l x 2. LetU, ,(X, ;) be a short
notation oft/ (X, uls, a) and let

UIN(X,pn) = Z m(a|s)U(X, pls,a)
acA(s)

be the valuation map averaged over all actions. Sinee yu; , for each(s,a) € K,
we will omit x in ¢/ in the following. Replacing the conditional expectatiBf with
UT in Eq. (8), the risk-sensitive objective becomes

Jr(m,s) == UZ_ [R(So, Ao) + UG [R(S1, A1) + ... + UGT [R(St, Ar)] .. ]].
(8)

The optimal policy is then given byax e jT(w, s). For infinite-horizon problem,
we obtain
max J(m,s) = Th_r)réo Jr(m,s), 9)

using the same line of argument. .
The optimization problem for finite-stage objective functi/T can be solved by

a generalizedlynamic programmingBertsekas and Tsitsiklis, 1996), while the one

defined in Eq.[(R) requires the solution to tiek-sensitive Bellman equation

V*(s) = max Usq(R(s,a) +~yV7). (10)
acA(s)

The latter is a consequence of the following theorem.

Theorem 3.1 (Theorem 5.5, Shen etlal., 2013y *(s) = max, .J(m, s) holds for all
s € S, whenevel/* satisfies the equatioffd). Furthermore, a deterministic policy
7™ is optimal, if7* (s) = argmaxgea (s) Us,a (R + V7).

DefineQ* (s, a) := Us o (R + yV*). Then Eq.[(ID) becomes

Q*(s,a) =Us, (R(s,a) + énjf(x/) Q*(s/,a)> ,V(s,a) € K. (12)
To carry out value iteration algorithms, the MDY must be knowra priori. In
many real-life situations, however, the transition prdliids are unknown as well as
the outcome of an action before its execution. Thereforggant has to explore the
environment while gradually improving its policy. We nowrde RL-type algorithms
for estimating Q-values of general valuation maps basetheutility-based shortfall,

which do not require knowledge of the reward and transitiaaleh.



Proposition 3.1 (cf. Proposition 4.104, Follmer and Schied, 2004t oY be a short-
fall defined in Eq(2), whereu is continuous and strictly increasing. Then the following
statements are equivalent: @} (X) =m* and (i) E* [u(X — m*)] = .

For proof see Appendix A.
Consider the valuation map induced by the utility-basedté&l
Us,o(X) =sup{m € R|E'** [u(X —m)] > zo},

whereys , is defined in Eq[{7). 184, ,(X) = m*(s, a) exists, Proposition 3l 1 assures
thatm* (s, a) is the unique solution to equation

Etso [u(X —m*(s,a))] = xo.

Let X = R+~V*. Thenm*(s, a) correspondsto the optimal Q-val@¥ (s, a) defined
in Eq. (11), which is equivalent to

Z P(s'|s,a)P,(g|s, a)u (r(s,a,a) +~ max Q*(s',d) - Q*(s,a))

s'€S,c€E @ EA(s)
= 1z9,V(s,a) € K. (12)
Let {s¢, as, 5141, 7} be the sequence of states, chosen actions, successiveastdte

received rewards. Analogous to the standard Q-learningritthgn, we consider the
following iterative procedure

Quv1(se, ar) = Qu(st, ar) + (s, ar) [U (Tt +ymax Q(se+1,a) = Qu(st, at)) - 500} :
(13)

wherea; > 0 denotes learning rate function that satisfieés, a) > 0 only if (s,a) is

updated attime, i.e.,(s,a) = (s¢, a¢). In other words, for al(s, a) that are not visited

attimet, ax(s,a) = 0 and their Q-values are not updated. Consider utility fuort
with the following properties.

Assumption 3.1. (i) The utility functionu is strictly increasing and there exists some
yo € R such thatu(yg) = zo. (ii) There exist positive constards such tha) < e <
%Z(y) < L,forallz #y cR.

Then the following theorem holds (for proof see Apperndix)A.1

Theorem 3.2. Suppose Assumptién B.1 holds. Consider the generalizesi@ihg
algorithm stated in Eq(@3). If the nonnegative learning rates (s, a) satisfy

Zat(s,a) =oco and Zaf(s,a} < oo, VY(s,a) €K, (14)
t=0 t=0

thenQ@. (s, a) converges t@)*(s, a) for all (s, a) € K with probability 1.

2In principle, we can apply different utility functionsand acceptance levels at different(s, a)-pairs.
However, for simplicity, we drop their dependence(ena).



The assumption in Eq._(14) requires in fact that all possibdée-action pairs must
be visited infinitely often. Otherwise, the first sum in E¢l{vould be bounded by the
setting of the learning rate functien (s, a). It means that, similar to the standard Q-
learning, the agent has to explore the whole state-actiacesfor gathering sufficient
information about the environment. Hence, it can not takeoagreedy policy in the
learning procedure before the state-action space is wplbeed. We call a policy
proper if under such policy every state is visited infinitely ofteA. typical policy,
which is widely applied in RL literature as well as in modefdhaman reward-based
learning, is given by

eBQ(st,at)
ap ~ plag|s;) = W? (15)
where € [0, 00) controls how greedy the policy should be. In ApperdixlA.4, we
prove that under some technical assumptions upon thetitankernel of the underly-
ing MDP, this policy is always proper. A widely used settirgisfying both conditions
in Eq. (13) is to let (s, a) := m whereN,(s, a) counts the number of times of
visiting the state-action paik, a) up to timet and is updated trial-by-trial. This leads
to the learning procedure shown in Algorithin 1 (see also[Bjig.

Algorithm 1 Risk-sensitive Q-learning

initialize Q(s,a) = 0 andN(s,a) = 0 for all s, a.

fort =1toT do
at states, choose actiom, randomly using a proper policy (e.g. EQ.{15));
observe datés;, a;, ¢, St+1);
N(st,at) < N(st,a) + 1 and set learning ratei; := 1/N (s¢, az);
update as in Eq.[(IB);

end for

The expression
TD; :=r; + 7 max Qi(st41,a) — Qi(s,a)

inside the utility function of Eq.[(13) corresponds to thamstard temporal difference
(TD) error. Comparing Eq[{13) with the standard Q-learrafgprithm, we find that
the nonlinear utility function is applied to the TD error (&ig.[d). This induces
nonlinear transformation not only of the true rewards bsbaif the true transition
probabilities, as has been shown in Secfion 2.1. By appl8ishape utility function,
which is partially convex and partially concave, we can éfiere replicate key effects
of prospect theory without the explicit introduction of apability-weighting function.

Assumptior 311 (ii) seems to exclude several importantsygfeutility functions.
The exponential functiom(z) = ¢* and the polynomial functiom(z) = 2?, p >
0, for example, do not satisfy the global Lipschitz conditi@guired in Assumption
[B7 (ii). This problem can be solved by a truncation wheis very large and by an
approximation when: is very close to 0. For more details see Appendices$ A.2 and
A3
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Figure 2: lllustration of risk-sensitive Q-learning (cflgdrithm[d). The value function
Q(s, a) quantifies the current subjective evaluation of each stetion pair(s, a). The
next action is then randomly chosen according to a propéryp(.g. Eq.[(I5)) which
is based on the current values@f After interacting with the environment, the agent
obtains the reward and moves to the successdr The value functiorf) (s, a) is then
updated by the rule given in Eq.{13). This procedure comsnuntil some stopping
criterion is satisfied.

4 Modeling Human Risk-sensitive Decision M aking

4.1 Experiment

Subjects were told that they are influential stock broketmse task is to invest into a
fictive stock market (cmm). At every trief.(Fig.[3a) subjects had to
decide how muchd = 0, 1, 2, or 3 EUR) to invest into a particular stock. After the
investment, subjects first saw the change of the stock pnidéreen were informed how
much money they earned or lost. The received reward was gropal to the invest-
ment. The different trials, however, were not independamhfeach other (cf. Figl] 3b).
The sequential investment game consisted of 7 states, eaatoming with a different
set of contingencies, and subjects were transferred franstate to the next dependent
of the amount of money they invested. For high investmerdssttions followed the
path labeled “risk seeking” (RS in Figl 3b). For low investitg transitions followed
the path labeled “risk averse” (RA in Fig. 3b). After 3 deoiss subjects were always
transferred back to the initial state, and the reward, wh¥els accumulated during
this round, was shown. State information was available ¢écstibjects throughout ev-
ery trial (cf. Fig.[3a). Altogether, 30 subjects (young hiealadults) experienced 80
rounds of the 3-decision sequence.

Formally, the sequential investment game can be considesexh MDP with 7
states and 4 actions (see Hifj. 3b). Depending on the strafelg subjects, there are
4 possible paths, each of which is composed of 3 states. Thleetgected return for
each path, averaged over all policies consistent with &,s&own in the right panels
of Fig.[3b (“EV”). Path 1 provides the largest expected netper round (EV = 90),
while Path 4 leads to an average loss of -9.75. Hence, torfidie on-average highest
rewarded path 1, subjects have to take “risky” actions @tiag 2 or 3 EUR at each
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state). Always taking conservative actions (investing @ &UR) results in Path 4 and
a high on-average loss. On the other hand, since the staddaation of the return
R of each state equals $fdl) = a x C, wherea denotes the action (investment) the
subject takes and’ denotes the price change, the higher the investment, theehig
the risk. Path 1 has, therefore, the highest standard dmvigtd = 14.9) of the total
average reward, whereas the standard deviation of Pathrdaitest (std = 6.9). Path
3 provides a trade-off option: it has slightly lower expectalue (EV = 52.25) than
Path 1 but comes with a lower risk (std = 12.3). Hence, thedignais suitable for
observing and quantifying the risk-sensitive behavioruifjscts.

4.2 Risk-sensitive M odel of Human Behavior

Fig.[4 summarizes the strategies which were chosen by thell§écts. 17 subjects
mainly chose Path 1, which provided them high rewards. 6esttbjchose Path 4,
which gave very low rewards. The remaining 7 subjects shosgignficant preference
among all 4 paths and the rewards they received are on aveedgeen the rewards
received by the other 2 groups. The optimal policy for maxing expected reward is
the policy that follows Path 1. The results shown in Eig. 4vkeer, indicate that the
standard model fails to explain the behavior of more than 40%e subjects.

We now quantify subjects’ behavior by applying three classeQ-learning algo-
rithm: (1) standard Q-learning, (2) the risk-sensitiveg@rhing (RSQL) method de-
scribed by AlgorithnfIL, and (3) an expected utility (EU) aigiom with the following
update rule

Q(st,at) <= Q(st,a:) + (U(Tt) — o+ le?XQ(StH, a) — Q(st, (It)) , (16)

where the nonlinear transformation is applied to the rewardirectly. The latter
one is a straightforward extension of expected utility tiyeRisk-sensitivity is imple-
mented via the nonlinear transformation of the true reward~or both risk-sensitive
Q-learning methods (RSQL and EU), we set the we set the referdevelz, = 0 and
consider the family of polynomial mixed utility functions

Ly
u(@) —{ ]i-’/_;i(—x)l* "Z0 (17)

The parametersy. > 0 andl/y > 0 quantify the risk-preferences separately for wins
and losses (see Talilé 1). Hence, there are 4 parametersafbich have to be de-
termined from the data. For all three classes, actions arerge=d according to the
“softmax” policy Eq. [I5), which is a proper policy for the naaigm (for proof see
AppendiXA.4), and the learning rateis set constant across trials.

For RSQL, the learning rate is absorbed by the coefficientsHence, there are
6 parameter$ g, v, k+,l+} =: 6 which have to be determined. Standard Q-learning
corresponds to the choide = 1 andk+ = «. The risk-sensitive model applied
bym M) is also a special case of the RSQL-framkvemd corresponds
I3 = 1. For the EU algorithm, there are 7 parametérs, 3, v, k+,l+} =: 6, which
have to be fitted to the datd.. = 1 andky = 1 again corresponds to the standard
Q-learning method.

12
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std=12.3
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/r

outcome [i5
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L . 317
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+20/-20 (Path 4
\—,@f 41.6 [EV:—Q.?S}
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(a) Phase transition. (b) Structure of the underlying Markov decision process.

Figure 3: The sequential investment paradigm. The paradigam implementation
of a Markov decision process with 7 states and 4 possiblerai{idecisions to take)
at every state. (a) Every decision (trial) consists of a @hghase (3s), during which
an action (invest 0, 1, 2, or 3 EUR) must be taken by adjustiegstale bar on the
screen, an anticipation phase (.5s), an outcome phase,(24%sre the development
of the stock price and the reward (wins and loses) are redeale evaluation phase
(2-5s), where it reveals the maximal possible reward thalcclave been obtained for
the (in hindsight) best possible action, and a transitioasph(2.7s), where subjects
are informed about the possible successor states and ttifisransition, which will
occur. The intervals of the outcome and evaluation phaséitemed for improved
fMRI analysis. State information is provided by the colopatterns, the black field
provides stock price information during anticipation phand the white field provides
the reward and the maximal possible reward of this trialeAéach round (3 trials), the
total reward of this round is shown to subjects. (b) Struetfrthe underlying Markov
decision process. The 7 states are indicated by numbemdds;iarrows denote the
possible transitions. Lables “RS” and “RA’ indicate thensdions caused by the two
“risk-seeking” (investment of 2 or 3 EUR) and the two “riskease” (investment of
0 or 1 EUR) actions. Bi-Gaussian distributions with a staddzeviation of 5 are
used to generate the random price changes of the stocks.IsRex to the states
provide information about the means (top row) and the priitiab (center row) of
ever component. M (bottom row) denotes the mean price chargereward received
equals the price change multiplied by the amount of moneystiigect invests. The
rightmost panels provide the total expected rewards (Ed)tha standard deviations
(std) for all possible state sequences (Path 1 to Path 4) timelassumption that every
sequence of actions consistent with a particular sequérstates is chosen with equal
probability.
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Figure 4: Distribution of “strategies” chosen by the subgdn the sequential invest-
ment game and the corresponding cumulative rewards. Salgjexgrouped according
to the sequence of states (Path 1 to Path 4, cf[Fig. 3b) tlemeaturing the last 60 trials
of the game. If a pathis chosen in more than 60% of the trials, the subject is asdign
the group “Path”. Otherwise, subjects are assigned the group labeled tnafidThe
vertical axis denotes the cumulative reward obtained dthe last 60 trials.

branchxz > 0 shape | risk preference| | branchz < 0 shape | risk preference

0<ly <1 | concave| risk-averse 0<lil-<1 convex risk-seeking
I+ =1 linear risk-neutral -=1 linear risk-neutral
ly>1 convex risk-seeking l->1 concave| risk-averse

Table 1: Parameters for the two branches 0 (left) andz < 0 (right) of the polyno-
mial utility functionu(z) (Eq. (7)), its shape and the induced risk preference.

Parameters were determined subject-wise by maximizingpthikelihood of the
subjects’ action sequences,

ePBQ(st,a¢|0)
maxL Z log p(a¢|s, 6) Z o8 =35m0 eﬁQ 5¢,a]0) (18)

whereQ(s, a|f) indicates the dependence of the Q-values on the model pteestie
Since RSQL/EU and the standard Q-learning are nested mtzsles, we apply the
Bayesian information criterion (BIC, see €.9. Ghosh e281Q6)

B := —2L + klog(n)

for model selectionL denotes the log-likelihood, Eq.(118).andn are the number of
parameters and trials respectively.

To compare results, we report relative BIC scote® := B — B, whereB is the
BIC score of the candidate model aiy, is the BIC score of the standard Q-learning
model. We obtain

AB =-500.14 for RSQL, and
AB=-23.10 forEU.
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The more negative the relative BIC score is, the better théalfits data. Hence, the
RSQL algorithm provides a significantly better explanafanthe behavioral data than
the EU algorithm and standard Q-learning. In the following,only discuss the results
obtained with the RSQL model.

3 3 —
|
2 |
1
- RS RA
Of——---~- mm s Of— ===~ 7-"==-1
~ RA -~ RS
= 1 | < 1
c c
- -2 - -2
-3 -3
-4 -4
-5 - -5 L
positive TD error negative TD error

Figure 5: Distribution of values for the shape parameiterdeft) and/_ (right) for the
RSQL model.

Fig.[3 shows the distribution of best-fitting values for thetparameters. which
quantify the risk-preferences of the individual subjec/e conclude (cf. Tablg]1)
that most of the subjects are risk-averse for positive asidseeking for negative TD
errors. The result is consistent with previous studies filoereconomics literature (see
Tversky and Kahnem&n, 1992, and references therein).

After determining the parametef.., [, } for the utility functions, we perform an
analysis similar to the analysis discussed in Sedfioh 2.&@erGan observed reward
sequencdr; }Y ,, the empirical subjective mean,,; is obtained by solving the fol-
lowing equation

| X
N Zu(rl — Msup) = 0.
i=1

If subjects are risk-neutral, ther{z) = =, andmy, = Memp = % Zf;l r; IS simply
the empirical mean. Following the idea of prospect theony,define a normalized
subjective probabilityAp,

Msub — mini T Memp — mini T Msub — Memp

Ap = — = (29)

max; r; —min; r;  max; r; — min; r; max; r; — min; r;

If Ap is positive, the probability of rewards is overestimated #re induced policy is,
therefore, risk-seeking. Wp is negative, the probability of rewards is underestimated
and the policy is risk-averse. Figl 6 summarizes the digfion of normalized sub-
jective probabilities for subjects from the “Path 1", “Pahand “random” groups of
Fig.[4. For subjects within group “Path 12\p| is small and their behaviors are similar
to those of risk-neutral agents. This is consistent witlirthelicy, because both risk-
seeking and risk-neutral agents should prefer Path 1. Fjests within groups “Path
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4" and “random”, the normalized subjective probabilitiee an average 10 % lower
than those of risk-neutral agents. This explains why siibjadhese groups adopt the
conservative policies and only infrequently choose Path 1.

0.04r b
0.02r b

-0.02+ |
-0.04+ — — 1
-0.06 | ; ! 1
-0.08 —— !

L1
ool
b O
NS
:
L

JR

normalized subjective probabilty

-0.16=

Path 1 Path 4 random

Figure 6: Distribution of normalized subjective probatels, Ap, Eq. [19), for the
different subject groups defined in Fig. 4.

4.3 fMRI Results

Functional magnetic resonance imaging (fMRI) data wereukameously recorded
while subjects played the sequential investment game. makysis of fMRI data was
conducted in SPM8 (Wellcome Department of Cognitive Neagy| London, UK; de-
tails of the magnetic resonance protocol and data progeastnpresented in Appendix
[B). The sequence of Q-values for the action chosen at eaehvetae used as paramet-
ric modulators during the choice phase, and temporal diffee (TD) errors were used
at the outcome phase (see fib. 3a).

Fig.[da shows that the sequence of TD errors for the RSQL n{adlbl best fitting
parameters) positively modulated the BOLD signal in thecallbsal gyrus extending
into the ventral striatum (-14 8 -16) (marked by the crossign[Ba), the anterior cingu-
late cortex (8 48 6), and the visual cortex (-8 -92 16+ 7.9). The modulation of the
BOLD signal in the ventral striatum is consistent with pas experimental findings
(cf.|Schultz| 2002; O’Doherty, 2004), and supports the priyrassertion of computa-
tional models that reward-based learning occurs when ¢apeas (here, expectations
of “subjective” quantities) are violated (Sutton and Baft898).

Fig.[@b shows the results for the sequence of Q-values foRB@L model (with
best fitting parameters), which correspond to the subjedtisk-sensitive) expected
value of the reward for each discrete choice. Several ldtgars of voxels in cortical
and subcortical structures were significantly modulatethbyQ-values at the moment
of choice. The sign of this modulation was negative. The pddkis negative modu-
lation occurred in the left anterior insula (-36 12 22+ 4.6 ), with strong modulation
also in the bilateral ventral striatum (14 8 -4, marked bydhsss in Fig[b; -16 4 0)
and the cingulate cortex (4 16 28). The reward predictioorgnrocessed by the ventral
striatum (and other regions noted above) would not be coampeiin the absence of
an expectation, and as such, this activation is importargifbstantiating the plausibil-
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(a) TD errors (b) Q-values

Figure 7: Modulation of the fMRI BOLD signal by TD errors (a)é&by Q-values (b)
generated by the RSQL model with best fitting parameters.dele is shown whole-
brain corrected tp < .05 (voxel-wisep < .001 and minimum 125 voxels). The color
bar indicates the-value ranging from 0 to the maximal value. The cross indisat
location of strongest modulation for TD errors (in the legntral striatum (-14 8 -16))
and for Q-values (in the right ventral striatum (14 8 -4)) wéwer, it is remarkable that
for both TD errors and Q-values, modulations in the left dgttrventral striatum are
almost equally strong with a slight difference.

ity for the RSQL model of learning and choice. Sequences galQes obtained with
standard Q-learning (with best fitting parameters), on therchand, failed to predict
any changes in brain activity even at a liberal statistiha¢shold ofp < .01 (uncor-
rected). This lack of neural activity for the standard Q mpitlecombination with the
significant activation for our RSQL, supports the hypothdisat some assessment of
risk is induced and influences valuation. Whereas the areakilated by Q-values
differ from what has been reported in other studies (i.e,whntromedial prefrontal
cortex as in_Glascher etlal., 2009), it does overlap withrépresentation of TD er-
rors. Furthermore, the opposing signs of the correlatedahewtivity suggests that a
neural mismatch of signals in the ventral striatum betweaml@Qe and TD errors may
underlie the mechanism by which values are learned.

4.4 Discussion

We applied the risk-sensitive Q-learning (RSQL) methoduargify human behavior
in a sequential investment game and investigated the atioelof the predicted TD-
and Q-values with the neural signals measured by fMRI.

We first showed that the standard Q-learning algorithm ceexyain the behavior
of a large number of subjects in the task. Applying RSQL gateet a significantly
better fit and also outperformed the expected utility alfponi The risk-sensitivity
revealed by the best fitting parameters is consistent wétsthdies in behavioral eco-
nomics, that is, subjects are risk-averse for positive ewtilk-seeking for negative TD
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errors. Finally, the relative subjective probabilitie®yde a good explanation why
some subjects take conservative policies: they underatgithe true probabilities of
gaining rewards.

The fMRI results showed that TD sequence generated by ouehiiad a signif-
icant correlation with the activity in the subcallosal gyrextending into the ventral
striatum. The sequence of Q-values has a significant ctioelaith the activities in
the left anterior insula. Previous studies (see e.g., @& of Glimcher et all, 2008
and Symmonds et al., 2011) suggest that higher order &tatiftoutcomes, e.g., vari-
ance (the 2nd order) and skewness (the 3rd order), are esthadotheman brains sep-
arately and the individual integration of these risk meatiitduces the corresponding
risk-sensitivity. Our results indicate, however, that tiek-sensitivity can be simply
induced (and therefore encoded) by a nonlinear transfasmaf TD errors and no
additional neural representation of higher order stagss needed.

5 Summary

We applied a family of valuation functions, the utility-leasshortfall, to the general
framework of risk-sensitive Markov decision processed, e derived a risk-sensitive
Q-learning algorithm. We proved that the proposed algoritonverges to the opti-
mal policy corresponding to the risk-sensitive objectiBy. applying S-shape utility
functions, we show that key features predicted by prospeiryy can be replicated
using the proposed algorithm. Hence, the novel Q-learniggréhm provides a good
candidate model for human risk-sensitive sequential detisiaking procedures in
learning tasks, where mixed risk-preferences are showelavioral studies. We ap-
plied the algorithm to model human behaviors in a sequeimi@stment game. The
results showed that the new algorithm fitted data signiflgdogtter than the standard
Q-learning and the expected utility model. The analysisMRf data shows a sig-
nificant correlation of the risk-sensitive TD error with tBOLD signal change in the
ventral striatum, and also a significant correlation of tis&-sensitive Q-values with
neural activity in the striatum, cingulate cortex and imswhich is not present if stan-
dard Q-values are applied.

Some technical extensions are possible within our geniskabensitive reinforce-
ment learning (RL) framework: (a) The Q-learning algorittarived in this paper can
be regarded a special type of RL algorithms, TD(0). It canbereded to other types of
RL algorithms like SARSA and TD\) for A # 0. (b) In our previous Woral.,
@), we also provided a framework for the average casecé{é&L algorithms for
the average case can also be derived similar to the disabuate considered in this
paper. (c) The algorithm in its current form applies to MDH#wiinite state spaces
only. It can be extended for MDPs with continuous state spageapplying function
approximation technique.
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A Mathematical Proofs

The sup-norm is defined &sX ||« := max;er| X (i)|, whereX = [X(i)];c; can be
considered as H|-dimensional vector.

Lemma A.1. Let p be valuation function oiRl’l x 22 and p(X, ) = p(X, p) —
p(0, ). Then the following inequality holds

min X; = X < p(X,p) <X = maIXXi,Vu e 2,X eRlL
1€

Proof. By X < X; < X,Vi € I and monotonicity of valuation functions, we obtain

p(X1, 1) < p(X, 1) < p(X1, ).
Due to the translation invariance, we have then
p(X1, 1) = p(0, 1) + X, andp(X1, 1) = p(0, p) + X.
which immediately imply that
X < p(X,p) = p(0,) <X,V 2, X eRIL
O

Proof of Propositiofi 3]1.(ii) = (i). By definition, m* < pj (X). For anye > 0,
sinceuw is strictly increasing, we have(X (i) — m* —¢) < u(X(w) — m*),Vi € I,
which impliesEu(X —m* — ¢) < Eu(X —m*) = xo. Hencemn* = p (X).

(i) = (ii). By definition we haveEu(X —m*) > xy. Assume thaEu(X —m*) >
xo. By the continuity ofu, there exists am > 0 such thafEu(X — m* —€) > xo,
which impliesp; (X) > m* +¢ > m* and hence contradicts (i). Thus, (ii) hold<]
A.1 Proofsfor Risk-sensitive Q-learning

Before proving the risk-sensitive Q-learning, we consalenore general update rule
Qe41(i) = (1 — 0 (i) qe (i) + e (i) [(Hae) (1) + we ()] - (20)

whereg, € RY, H : R? — R? is an operatory, denotes some random noise term and
ay is learning rate with the understanding thati) = 0 if ¢(¢) is not updated at time
t. Denote byF; the history of the algorithm up to time

Fir={q0(@), ..., q:(i),wo(2),...,wi—1(i),a0(@),...,cu(i),i =1,... t}.

We restate the following proposition.
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Proposition A.1 (Proposition 4.4, Bertsekas and Tsitsiklis, 1996t ¢; be the se-

guence generated by the iterati@@0). We assume the following
a The learning rates (i) are nonnegative and satisfy

Zat(i) = 00, Zaf(z) = 00, Vi
t=0

t=0

b The noise termsy, (i) satisfy (i) for everyi and¢, E[w;(i)|F:] = 0; (ii) Given
some nornj|-|| on R?, there exist constantd and B such thatE[w? (i)|F;] <
A+ Bl

¢ The mappind{ is a contraction under sup-norm.

Theng; converges to the unique solutigh of the equatiortf ¢* = ¢* with probability
1.

To apply Proposition Al1, we first reformulate the Q-leagiule [13) in a different
form

a(s,a) at(s,a)

Gr1(s,a) = (1 — )at (s, a) + [au(dy) — w0 + qi(s, a)]

wherea denotes an arbitrary constant such that (0, min(Z~!,1)]. Recall thatL
is defined in Assumptioh 3.1. For simplicity, we defiier) := u(z) — zo, di :=
Tt +ymax, qi(sir1,a) — qi(s, a) and set

(Ha:)(s, a) =aBs,qu(r +ymaxgy(sit1,0) = qi(s, @) +gi(s,0) - (21)
we(s, a) =au(dy) — o ou(ry + 7 max qr(se+1,a) — qi(s,a)) (22)

More explicitly, H ¢ is defined as
(Hq)(s,a) = 04275(3', €ls,a)i (r(s, a,e) +ymaxq(s',a’) — q(s, a)) +q(s,a),

whereP (s’ e|s, a) := P(s'|s, a)P,(|s, a). We assume the size of the spd€és d.

Lemma A.2. Suppose that Assumptibn13.1 holds @net o < min(L~!,1). Then
there exists a real number € [0,1) such that for allg, ¢’ € R?, ||[Hq — Hq'||oo <
allg = q'fl-

Proof. Defineu(s) := max, q(s,a) andv’(s) := max, ¢'(s,a). Thus,

[u(s) —v(s)|< max |q(s,a) —¢'(s,a)|= |lg — ¢[|oo-
(s,a)eK
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By Assumptior{ 3.1 (ii) and the monotonicity of there exists &, ,) € [e, L] such
thati(x) — (y) = £,y (z — y). Analogously, we obtain

(HQ)(Sv a) - (qu)(sa a)
= Z 75(5/5 €|Sv a){ag(s,a,s,s/,q,q') [’YU(S/) - FY’U/(S/) - Q(Sv CL) + ql(sv a)]

s’ e

+ (Q(S’ a) - q/(87 a))}
=ay Z 75(817 €|Sv a)g(s,a,a,s/,q,q') [U(S/) - 'U/(SI)]

s'e

+ (1 -« Z 75(5/’ €|Sv a)g(s,a,s,s’,q,q’))[Q(sv a) - q/(s, a)]

s’,e

< (1 - O‘(l - 7) 275(8/7 €|Sv a)g(s,a,s,s’,q,q’)) Hq - qIHOO
s’,e

<(l—al=7)elg—d
Hencea = 1 — a1 — «y)eis the required constant. O

Proof of Theorerfi 3]120bviously, Condition (a) in Propositidn_A.1 is satisfied and
Condition (c) holds also due to LemmaA.2. It remains to ch@okdition (b).
Elw;(s,a)|F:] = 0 holds by its definition in[(22). Next we prove (ii). In fact,

E[wf (s,a)|F] = o®E [(a(dy))?|Fe] — *(E [a(dy)|F2])? < &”E [(a(de))?|Fe]

Let 12 be the upper bound fog. Then|d;| < R+ 2[/¢||~, which implies thata(d;) —
@(0)| < L(R+ 2||¢t||o0) due to Assumption 31 1(ii). Hencgi(d;)| < |a(0)| + L(R +
2||¢gt]|s0)- On the other hand, since

(12(0)] + LR + 2Lllge]lc)* < 2(1(0)| + LR)? + 8L?[lge 1%
we haven®E [(a(dy))?|F:] < 202(a(0)| + LR)? + 8a*L?||¢¢||%,. Hence, Condition
(b) holds. O

A.2 Truncated Algorithmswith Weaker Assumptions

Some functions likeu(z) = e® andu(xz) = 2P, p > 0, do not satisfy the global
Lipschitz condition required in Assumptién 8.1 (ii). In tegoplications, however, we
can relax the assumption to assume that the Lipschitz gondiblds locally within a
“sufficiently large” subset. Lemnia A.4 states such subs®tiged the upper bound of
absolute value of rewards is known.

Assumption A.1. The reward functiom(s, a, €) is bounded under sup-norm, i.e.,

R:= sup |r(s,a,€)] < 0.
(s,a)eK,ecE
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Define an operatof : RISl — RIS| as

Ts(V) = max Usq.(R(s,a) +~V).
acA(s)

Lemma A.3 (cf. Lemma 5.4, Shen etlal., 2013 is a contracting map under sup-
norm, i.e.,
IT(V) =TV )oo ANV = V'[loo, ¥V, V' € RISL.

Lemma A.4. Under Assumption 3.1 (i) aidA.1, applying the valuation rima2),

the solution* satisfies_lRf_;’” < Q*(s,a) < Ff:?jyo,V(s, a) € K.

Proof. By assumptiony —!(z¢) exists. Since is strictly increasing, we havé; ., (0) =
sup{m € Rlu(—m) > zo} = —u~!(x0). Hence, together with Eq](1), we obtain for
all (s,a) € K,

—u Nwg) = R=Usa(0) — R <Us o(R) <Usu(0) + R = —u"(z0) + R

Note that Lemm&AIl3 implies that* = 7°°(Vp) for any V;, € RISI. Without loss of
generality, we start frofy = 0. Defineu := —u~*(zo) — Randi := —u~!(z¢) + R.
Hence, we have < 7(0) = max, U o(R) < @, which implies
T*(0)
and 'T2(O) = maxUs (R + T (0)) > maxUs q(R) +vu > (1 +7)u

a a

)

maxUs o (R + T (0)) < maxlUs q(R) +~va < (14 ~)u

S|

Repeating above procedure, we obtgint v + ... + 9" Hu < 77(0) < (1 4+ v+
R L 2 Hence i < V* = T7>(0) < T2 By the definition of@*, above
inequalities hold fo* as well. O

Define
2R 2R
r:=yo— —— and T:=yy+-— (23)
1—7v 1—7v
Given Lemm&ZAM, we can truncate the utility functiemutside the intervel, 7] as
u(z) +e(x —x), € (—00,x)

; z € [z, 7] . (24)
u(@) +e(x — ), x€(Z,00)

u'(z) =

<
—~

5
=

Theorem A.1. Suppose that Assumptibn13.1 (i) dnd]A.1 hold. Assume futtiaer
There exist positive constantsL. € R™ such that) < ¢ < w < L, for all
x # y € [z, ], wherez, T are defined in Eq(23). Then the unique solutio®* to
Eq. (I2) with « and the unique solutio®; to Eq.([12) with «’ are identical.
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Proof. Both uniqueness is due to Theorem|3.1 and Propositidn 3.1LeByma A.4,

%‘7‘”0 < Qi(s,a) < P{:i‘) hold for all (s, a) € K andi = 1, 2. Hence, we have for

bothi = 1,2 and for all(s,a), (s',a’) € K,e € E,

2R 2R
Yo — : < T(S,G.E) +’YQ;<(S/,G/) - Qr(sva) <wyo+ :
Sinceu andv’ are identical within the sdt, 7], Qi (s,a) = Q3(s,a) forall (s,a) €
K. O

Now we state the risk-sensitive Q-learing algorithm witimization.

Algorithm 2 Q-learning with truncation

initialize Q(s,a) = 0 andN(s,a) = 0 for all s, a.

fort=1toT do
at states; choose actiom; randomly using a proper policy (e.g. EQ.{15));
observe datés;, a;, ¢, St4+1);
N(s¢,at) < N(s¢,a;) + 1 and set learning ratey, := 1/N (s, a;);
update as in Eq.[(IB);
truncate as in Eq.[[24), where andz are defined in Eq[(23).

end for

A.3 Heuristicsfor Polynomial Utility Functions

So far we have relaxed the assumption for utility functiamktally Lipschitz. How-
ever, some functions of interest are even not locally Lifigclror instance, the func-
tionu(z) = 2P, p € (0,1) is not Lipschitz at the area close to 0. We suggest two types
of approximation to avoid this problem.

1. Approximateu by u?(x) = (z + ¢)? — P with some positivey.

2. Approximatey close to 0 by a linear function, i.e.

u%):{@ =

,#)
In both casesp should be set very close to 0.

The assumption in Theorefm (A.1) and Assumpfiion 3.1 (ii) iepualso the strictly
positive lower bound. This causes problem when applyingr) = 27, p > 1 at the
area close to 0. We can again apply above two approximatfmnses to overcome the
problem by selecting smal. In Sectior#, for botlp > 1 andp € (0, 1), we apply
the second scheme to ensure Assumpfioh 3.1.
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A.4  Softmax Policy

Recall that we call a policy is proper, if under such policgystate is visited infinitely
often. In this subsection, we show that under some techagsalmptions the softmax
policy (cf. Eq. [I%)) is proper. A policyr = [, 71, . . .| is deterministic if for all state
s andt, there exists an actiane A(s) such thatr;(a|s) = 1. Under one policyr, the
n-step transition probability™(S,, = s’'|Sp = s) for somes, s’ € S can be calculated
as follows

P™(Sy=5[So=s5)= Y P™(Si|s)P™(S2]S)... P (s'[Sp 1)

whereP™ (y|z) := ", P(y|z,a)m(a|z) andP is the transition kernel of the underly-
ing MDP.

Proposition A.2. Assume that the state and action space are finite and the asisuns
required by Theorei 3.2 hold. Assume further that for each € S, there exist a
deterministic policyr;, n € N and a positivee > 0 such thatP™(S,, = s'|Sy =
s) > e. Then the softmax policy stated in H#5) is proper.

Proof. Due to the contraction property @@ (see Lemma&Al2){Q;} is uniformly

bounded w.r.tz. Letw, = [m,m1,...] be a softmax policy associated wifld); }.

Then, by the definition of softmax policies (see Eq] (15)¢rénexists a positive, > 0

such thatr,(a|s) > €o holds for each(s,a) € K andt € N. It implies that for each
5,8 €8,

F)‘n_S (Sn = S/|SO = S) Z Egp"rd(sn = S/|SO = S)’

for any deterministic policyr,. Then by the assumption of this proposition, we obtain
that for eachs, s’ € S, P™+(S,, = §'|So = s) > €je > 0. It implies that each state
will be visited infinitely often. O

The MDP applied in the behavioral experiment in Secfibn 4sBas above as-
sumptions, since for eachs’ € S, there exists a deterministic poliay; such that
P7™(S,, = §'|Sp = s) = 1,n < 4, no matter which initial state we start with.

B Magnetic Resonance Protocol and Data Processing

Magnetic resonance (MR) images were acquired with a 3T whotyy MR system
(Magnetom TIM Trio, Siemens Healthcare) using a 32-charetgive-only head coil.
Structural MRI were acquired with a T1 weighted magnetmaiprepared rapid gra-
dient-echo (MPRAGE) sequence with a voxel resolution of 1 x 1 mm?, coronal
orientation, phase-encoding in left-right direction, FeM92 x 256 mm, 240 slices,
1100 ms inversion time, TE = 2.98 ms, TR = 2300 ms, and 90 fligearfgunctional
MRI time series were recorded using a T2* GRAPPA EPI sequariite TR = 2380
ms, TE = 25 ms, anterior-posterior phase encode, 40 slicggirad in descending
(non- interleaved) axial plane withx 2 x 2 mm? voxels 204 x 204 mm FoV; skip
factor = .5), with an acquisition time of approximately 8 mii@s per scanning run.
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Structural and functional magnetic resonance image aealyzre conducted in
SPM8 (Wellcome Department of Cognitive Neurology, LonddK). Anatomical im-
ages were segmented and transformed to Montreal Neuraldggtitute (MNI) stan-
dard space, and a group average T1 custom anatomical tenmpkge was generated
using DARTEL. Functional images were corrected for slicgirig acquisition offsets,
realigned and corrected for the interaction of motion arstbdfion using unwarp tool-
box, co-registered to anatomical images and transformédNbspace using DAR-
TEL, and finally smoothed with an 8 mm FWHM isotropic Gausdiamel.

Functional images were analyzed using the general linealem@&LM) imple-
mented in SPM8. First level analyzes included onset regredsr each stimulus
event excluding the anticipation phase (see Eig. 3a), aret afgparametric modu-
lators corresponding to trial-specific task outcome vaeisland computational model
parameters. Trial-specific task outcome variables (and timeresponding stimulus
event) include the choice value of the investment (choi@sphand the total value of
rewards (gains/losses) over each round (correspondingitii-tmial feedback event).
Model derived parametric modulators included the timeeseof Q values for the se-
lected action (choice phase), TD (outcome phase). Rewdwt veas not modeled
as a parametric modulator because the TD error time sergbsriafby-trial reward
values were strongly correlated (all¥s.7; ps< .001). The configuration of the first-
level GLM regressors for the standard Q-learning model wiestical to that employed
in the risk-sensitive Q-learning model. All regressorsaveonvolved with a canoni-
cal hemodynamic response function. Prior to model estonatioincident parametric
modulators were serially orthogonalized as implemente®RiM (i.e., the Q-value re-
gressor was orthogonalized with respect to the choice va@geessor). In addition,
we included a set of regressors for each participant to ceeBbimages with large,
head movement related spikes in the global mean. Thesediedtbeta values were
averaged across participants and tested against zero witts Monte Carlo simula-
tions determined that a cluster of more than 125 contiguoxsls with a single-voxel
threshold ofp < .001 achieved a correctegvalue of.05.
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