
A Semiparametric Bayesian Model for Detecting Synchrony 
Among Multiple Neurons

Babak Shahbaba1, Bo Zhou1, Shiwei Lan1, Hernando Ombao1, David Moorman2, and Sam 
Behseta3

1Department of Statistics, UC Irvine, CA

2Department of Psychology, University of Massachusetts Amherst, MA

3Department of Mathematics, California State University, Fullerton, CA

Abstract

We propose a scalable semiparametric Bayesian model to capture dependencies among multiple 

neurons by detecting their co-firing (possibly with some lag time) patterns over time. After 

discretizing time so there is at most one spike at each interval, the resulting sequence of 1’s (spike) 

and 0’s (silence) for each neuron is modeled using the logistic function of a continuous latent 

variable with a Gaussian process prior. For multiple neurons, the corresponding marginal 

distributions are coupled to their joint probability distribution using a parametric copula model. 

The advantages of our approach are as follows: the nonparametric component (i.e., the Gaussian 

process model) provides a flexible framework for modeling the underlying firing rates; the 

parametric component (i.e., the copula model) allows us to make inference regarding both 

contemporaneous and lagged relationships among neurons; using the copula model, we construct 

multivariate probabilistic models by separating the modeling of univariate marginal distributions 

from the modeling of dependence structure among variables; our method is easy to implement 

using a computationally efficient sampling algorithm that can be easily extended to high 

dimensional problems. Using simulated data, we show that our approach could correctly capture 

temporal dependencies in firing rates and identify synchronous neurons. We also apply our model 

to spike train data obtained from prefrontal cortical areas.
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1 Introduction

Neurophysiological studies commonly involve modeling a sequence of spikes (action 

potentials) over time, known as a spike train, for each neuron. However, complex behaviors 

are driven by networks of neurons instead of a single neuron. In this paper, we propose a 

flexible, yet robust semiparametric Bayesian method for capturing temporal cross-

dependencies among multiple neurons by simultaneous modeling of their spike trains. In 

contrast to most existing methods, our approach provides a flexible, yet powerful and 

scalable framework that can be easily extended to high dimensional problems.
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For many years preceding ensemble recording, neurons were recorded successively and then 

combined into synthetic populations based on shared timing. Although this technique 

continues to produce valuable information to this day (Meyer and Olson, 2011), 

investigators are gravitating more and more towards simultaneous recording of multiple 

single neurons (Miller and Wilson, 2008). A major reason that multiple-electrode recording 

techniques have been embraced is because of the ability to identify the activity and 

dynamics of populations of neurons simultaneously. It is widely appreciated that groups of 

neurons encode variables and drive behaviors (Buzsáki, 2010).

Early analysis of simultaneously recorded neurons focused on correlation of activity across 

pairs of neurons using cross correlation analyses (Narayanan and Laubach, 2009) and 

analyses of changes in correlation over time, i.e., by using a joint peristimulus time 

histogram (JPSTH) (Gerstein and Perkel, 1969) or rate correlations (Narayanan and 

Laubach, 2009). Similar analyses can be performed in the frequency domain by using 

coherence analysis of neuron pairs using Fourier-transformed neural activity (Brown et al., 

2004). These methods attempt to distinguish exact synchrony or lagged synchrony between a 

pair of neurons. Subsequently, a class of associated methods were developed for addressing 

the question of whether exact or lagged synchrony in a pair of neurons is merely due to 

chance. Later, to test the statistical significance of synchrony, a variety of methods, such as 

bootstrap confidence intervals, were introduced (Harrison et al., 2013).

To detect the presence of conspicuous spike coincidences in multiple neurons, Grün et al. 

(2002) proposed a novel method, where such conspicuous coincidences, called unitary 

events, are defined as joint spike constellations that recur more often than what can be 

explained by chance alone. In their approach, simultaneous spiking events from N neurons 

are modeled as a joint process composed of N parallel point processes. To test the 

significance of unitary events, they developed a new method, called joint-surpise, which 

measures the cumulative probability of finding the same or even larger number of observed 

coincidences by chance.

Pillow et al. (2008) investigate how correlated spiking activity in complete neural 

populations depends on the pattern of visual simulation. They propose to use a generalized 

linear model to capture the encoding of stimuli in the spike trains of a neural population. In 

their approach, a cell’s input is presented by a set of linear filters and the summed filter 

responses are exponantiated to obtain an instantaneous spike rate. The set of filters include a 

stimulus filter, a post-spike filter (to capture dependencies on history), and a set of coupling 

filter (to capture dependencies on the recent spiking of other cells).

Recent developments in detecting synchrony among neurons include models that account for 

trial to trial variability and the evolving intensity of firing rates between multiple trials. For 

more discussion on analysis of spike trains, refer to Harrison et al. (2013); Brillinger (1988); 

Brown et al. (2004); Kass et al. (2005); West (2007); Rigat et al. (2006); Patnaik et al. 

(2008); Diekman et al. (2009); Sastry and Unnikrishnan (2010); Kottas et al. (2012).

In a recent work, Kelly and Kass (2012) proposed a new method to quantify synchrony. 

They argue that separating stimulus effects from history effects would allow for a more 
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precise estimation of the instantaneous conditional firing rate. Specifically, given the firing 

history Ht, define , and  to be the conditional firing 

intensities of neuron A, neuron B, and their synchronous spikes respectively. Independence 

between the two point processes can be examined by testing the null hypothesis H0 : ζ(t) = 

1, where . The quantity [ζ(t)−1] can be interpreted as the 

deviation of co-firing from what is predicted by independence. Note that we still need to 

model the marginal probability of firing for each neuron. To do this, one could assume that a 

spike train follows a Poisson process, which is the simplest form of point processes. The 

main limitation of this approach is that it assumes that the number of spikes within a 

particular time frame follows a Poisson distribution. It is, however, very unlikely that actual 

spike trains follow this assumption (Barbieri et al., 2001; Kass and Ventura, 2001; Reich et 

al., 1998; Kass et al., 2005; Jacobs et al., 2009). One possible remedy is to use 

inhomogeneous Poisson process, which assumes time-varying firing rates. See Brillinger 

(1988); Brown et al. (2004); Kass et al. (2005); West (2007); Rigat et al. (2006); 

Cunningham et al. (2007); Berkes et al. (2009); Kottas and Behseta (2010); Sacerdote et al. 

(2012); Kottas et al. (2012) for more alternative methods of modeling spike trains.

In this paper, we propose a new semiparametric method for neural decoding. We first 

discretize time so that there is at most one spike within each time interval and let the 

response variable be a binary process comprised of 1s and 0s. We then use a continuous 

latent variable with Gaussian process prior to model the time-varying and history-dependent 

firing rate for each neuron. The covariance function for the Gaussian process is specified in 

a way that it creates prior positive autocorrelation for the latent variable so the firing rate 

could depend on spiking history. For each neuron, the marginal probability of firing within 

an interval is modeled by the logistic function of its corresponding latent variable. The main 

advantage of our model is that it connects the joint distribution of spikes for multiple 

neurons to their marginals by a parametric copula model in order to capture their cross-

dependencies. Another advantage is that our model allows for co-firing of neurons after 

some lag time.

Cunningham et al. (2007) also assume that the underlying non-negative firing rate is a draw 

from a Gaussian process. However, unlike the method proposed in this paper, they assume 

that the observed spike train is a conditionally inhomogeneous gamma-interval process 

given the underlying firing rate.

Berkes et al. (2009) also propose a copula model for capturing neural dependencies. They 

explore a variety of copula models for joint neural response distributions and develop an 

efficient maximum likelihood procedure for inference. Unlike their method, our proposed 

copula model in this paper is specified within a semiparametric Bayesian framework that 

uses Gaussian process model to obtain smooth estimates of firing rates.

Throughout this paper, we study the performance of our proposed method using simulated 

data and apply it to data from an experiment investigating the role of prefrontal cortical area 

in rats with respect to reward-seeking behavior and inhibition of reward-seeking in the 

absence of a rewarded outcome. In this experiment, the activity of 5–25 neurons from 
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prefrontal cortical area was recorded. During recording, rats chose to either press or 

withhold presses to presented levers. Pressing lever 1 allowed the rat to acquire a sucrose 

reward while pressing lever 2 had no effect. (All protocols and procedures followed 

National Institute of Health guidelines for the care and use of laboratory animals.)

In what follows, Section 2, we first describe our Gaussian process model for the firing rate 

of a single neuron. In Section 3, we present our method for detecting cofiring (possibly after 

some lag time) patterns for two neurons. The extension of this method for multiple neurons 

is presented in Section 4. In Section 5, we provide the details of our sampling algorithms. 

Finally, in Section 6, we discuss future directions.

2 Gaussian process model of firing rates

To model the underlying firing rate, we use a Gaussian process model. First we discretize 

time so that there is at most one spike within each time interval. Denote the response 

variable, yt, to be a binary time series comprised of 1s (spike) and 0s (silence). The firing 

rate for each neuron is assumed to depend on an underlying latent variable, u(t), which has a 

Gaussian process prior. In statistics and machine learning, Gaussian processes are widely 

used as priors over functions. Similar to the Gaussian distribution, a Gaussian process is 

defined by its mean (usually set to 0 in prior) and its covariance function C: f ~ (0, C). 

Here, the function of interest is the underlying latent variable u(t), which is a stochastic 

process indexed by time t. Hence, the covariance function is defined in terms of t. We use 

the following covariance form, which includes a wide range of smooth nonlinear functions 

(Rasmussen and Williams, 2006; Neal, 1998):

In this setting, ρ2 and η2 control smoothness and the height of oscillations respectively. λ, η, 

ρ and σ are hyperparameters with their own hyperpriors. Throughout this paper, we put N(0, 

32) prior on the log of these hyperparameters.

We specify the spike probability, pt, within time interval t in terms of u(t) through the 

following transofmation:

As u(t) increases, so does pt.

The prior autocorrelation imposed by this model allows the firing rate to change smoothly 

over time. Note that this does not mean that we believe the firing patterns over a single trial 

are smooth. However, over many trials, our method finds a smooth estimate of the firing 

rate. The dependence on prior firing patterns is through the term (ti − tj) in the covariance 

function. As this term decreases, the correlation between u(ti) and u(tj) increases. This is 

different from other methods (Kass and Ventura, 2001; Kelly and Kass, 2012) that are based 

on including an explicit term in the model to capture firing history. For our analysis of 
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experimental data, we discretize the time into 5 ms intervals so there is at most one spike 

within each interval. Therefore, the temporal correlations in our method are on a slow time 

scale (Harrison et al., 2013).

When there are R trials (i.e., R spike trains) for each neuron, we model the corresponding 

spike trains as conditionally independent given the latent variable u(t). Note that we can 

allow for trial-to-trial variation by including a trial-specific mean parameter such that 

[u(t)](r) ~ (μr, C), where r = 1, …, R, (R = total number of trials or spike trains).

Figure 1 illustrates this method using 40 simulated spike trains for a single neuron. The 

dashed line shows the true firing rate, pt = 5(4+3 sin(3πt)), for t = 0, 0.01, …, 1, the solid 

line shows the posterior expectation of the firing rate, and the gray area shows the 

corresponding 95% probability interval. The plus signs on the horizontal axis represents 

spikes over 100 time intervals for one of the 40 trials.

Figure 2 shows the posterior expectation of firing rate (blue curve) overlaid on the PSTH 

plot of a single neuron with 5 ms bin intervals from the experimental data (discussed above) 

recorded over 10 seconds.

3 Modeling dependencies between two neurons

Let yt and zt be binary data indicating presence or absence of spikes within time interval t for 

two neurons. Denote pt to be the spike probability at interval t for the first neuron, and qt to 

denote the spike probability at the same interval for the second neuron. Given the 

corresponding latent variables u(t) and υ(t) with Gaussian process priors (0, Cu) and 

(0, Cυ) respectively, we model these probabilities as pt = 1/{1 + exp[−u(t)]} and qt = 1/{1 + 

exp[−υ(t)]}.

If the the two neurons are independent, the probability of firing at the same time is P(yt = 1, 

zt = 1) = ptqt. In general, however, we can write the probability of firing simultaneously as 

the product of their individual probabilities multiplied by a factor, ptqtζ, where ζ represents 

the excess firing rate (ζ > 1) or the suppression firing rate (ζ < 1) due to dependence between 

two neurons (Ventura et al., 2005; Kelly and Kass, 2012). That is, ζ accounts for the excess 

joint spiking beyond what is explained by independence. For independent neurons, ζ = 1. 

Sometimes, the extra firing can occur after some lag time L. That is, in general, P(yt = 1, zt+L 

= 1) = ptqt+Lζ for some L. Therefore, the marginal and joint probabilities are
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where

In this setting, the observed data include two neurons with R trials of spike trains (indexed 

by r = 1, 2, …, R) per neuron. Each trial runs for S seconds. We discretize time into T 

intervals (indexed by t = 1, 2, …, T) of length S/T such that there are at most 1 spike in 

within each interval. We assume that the lag L can take a finite set of values from [−K,K] for 

some biologically meaningful K, and write the likelihood function as follows:

We put uniform priors on ζ and L over the assumed range. As mentioned above, the 

hyperparameters in the covariance function have weakly informative (i.e., broad) priors: we 

assume the log of these parameters has a N(0, 32) prior. We use Markov Chain Monte Carlo 

algorithms to simulate samples from the posterior distribution of model parameters given the 

observed spike trains. See section 5 for more details.

3.1 Illustrative examples

In this section, we use simulated data to illustrate our method. We consider three scenarios: 

1) two independent neurons, 2) two dependent neurons with exact synchrony (L = 0), and 3) 

Two dependent neurons with lagged co-firing. In each scenario, we assume a time-varying 
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firing rate for each neuron and simulate 40 spike trains given the underlying firing rate. For 

independent neurons, we set ζ = 1, whereas ζ > 1 for dependent neurons.

Two independent neurons—In the first scenario, we consider two independent neurons 

(ζ = 1). We simulate the spike trains according to our model. The firing probability at time t 

is set to 0.25 − 0.1 cos(2πt) for the first neuron and to 0.15 + 0.2t for the second neuron. For 

each neuron, we generated 40 trials of spike trains and divided each trial into 100 time 

intervals. The left panel of Figure 3 shows the corresponding Joint Peristimulus Time 

Histogram (JPSTH). Each cell represents the joint frequency of spikes (darker cells 

represent higher frequencies) for the two neurons at given times. The marginal distributions 

of spikes, i.e., Peristimulus Time Histogram (PSTH), for the first neuron is shown along the 

horizontal axis. The second neuron’s PSTH is shown along the vertical axis. The right panel 

of Figure 3 shows the posterior distributions of ζ and L. For this example, the posterior 

distribution of ζ is concentrated around 1 with median and 95% posterior probability interval 

equal to 1.01 and [0.85,1.12] respectively. This would strongly suggest that the two neurons 

are independent as expected. Further, the posterior probabilities of all lag values from −10 to 

10 are quite small.

Two exact synchronous neurons—For our next example, we simulate data for two 

dependent neurons with synchrony (i.e., L = 0) and we set ζ = 1.6. That is, the probability of 

co-firing at the same time is 60% higher than that of independent neurons. As before, for 

each neuron we generate 40 trials of spike trains each discretized into 100 time bins. In this 

case, the firing probabilities at time t for the two neurons are 0.25−0.1 cos(2πt). Figure 4 

shows their corresponding JPSTH along with the posterior distributions of ζ and L. The 

posterior median for ζ is 1.598 and the 95% posterior probability interval is [1.548,1.666]. 

Therefore, ζ identifies the two neurons in exact synchrony with excess co-firing rate than 

what is expected by independence. Further, the posterior distribution of L shows that the two 

neurons are in exact synchrony.

Two dependent neurons with lagged co-firing—Similar to the previous example, we 

set the probability of co-firing to 60% higher than what we obtain by the independence 

assumption. Similar to the previous two simulations, we generate 40 trials of spike trains 

each discretized into 100 time bins. The firing probabilities of the first neurons at time t is 

set to 0.25 + 0.1 sin(2πt). The second neuron has the same firing probability but at time t + 

L. For different trials, we randomly set L to 3, 4, or 5 with probabilities 0.2, 0.5, and 0.3 

respectively. Figure 5 shows JPSTH along with the posterior distributions of ζ and L. As 

before, the posterior distribution of ζ can be used to detect the relationship between the two 

neurons. For this example, the posterior median and 95% posterior interval for ζ are 1.39 

and [1.33,1.44] respectively. Also, our method could identify the three lag values correctly.

3.2 Power analysis

Next, we evaluate the performance of our proposed approach. More specifically, we 

compare our approach to the method of Kass et al. (2011), in terms of statistical power for 

detecting synchronous neurons. To be precise, given the true value of ζ, we compare the 

ratio of correctly identifying synchrony between two neurons over a large number of 
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simulated pairs of spike trains. In their approach, Kass et al. (2011) find the marginal firing 

rate of each neuron using natural cubic splines and then evaluate the amount of excess joint 

spiking using the bootstrap method. Therefore, for our first simulation study, we generate 

datasets that conform with the underlying assumptions of both methods. More specifically, 

we first set the marginal firing rates to pt = qt = 0.2−0.1 cos(12πt), and then generate the 

spike trains for the two neurons given ζ (i.e., excess joint firing rate). The left panel of 

Figure 6 compares the two methods in terms of statistical power for different values of ζ and 

different number of trials (20, 30, and 40) each with 20 time intervals. For each simulation 

setting, we generate 240 datasets. In our method, we call the relationship between two 

neurons significant if the corresponding 95% posterior probability does not include 1. For 

the method proposed by Kass et al. (2011), we use the 95% bootstrap confidence intervals 

instead. As we can see, our method (solid curve) has substantially higher power compared to 

the method of Kass et al. (2011) (dashed curve). Additionally, our method correctly achieves 

0.05 level (dotted line) when ζ = 1 (i.e., the two neurons are independent).

For our second simulation, we generate datasets that do not conform with the underlying 

assumptions of the two methods. Let Y = (y1, …, yT) and Z = (z1, …, zT) denote the spike 

trains for two neurons. We first simulate yt, i.e., absence or presence of spikes for the first 

neuron at time t, from Bernoulli(pt), where pt = 0.25−0.1 cos(12πt) for t ∈ [0, 0.2]. Then, we 

simulate zt for the second neuron from Bernoulli(b0 + b1yt) for given values of b0 and b1. 

We set b0 (i.e., the baseline probability of firing for the second neuron) to 0.2. When b1 = 0, 

the two neurons are independent. Positive values of b1 leads to higher rates of co-firing 

between the two neurons. When b1 is negative, the first neuron has an inhibitory effect on 

the second neuron. For given values of b1 and number of trials (20, 30, and 40), we generate 

240 datasets where each trial has 20 time intervals. The right panel of Figure 6 compares the 

two methods in terms of statistical power under different settings. As before, our method 

(solid curves) has higher statistical power compared to the method of Kass et al. (2011) 

(dashed curves).

3.3 Sensitivity analysis for trial-to-trial variability

As mentioned above, our method can be easily extended to allow for trial-to-trial variability. 

To examine how such variability can affect our current model, we conduct a sensitivity 

analysis. Similar to the procedure discussed in the previous section, we start by setting the 

underlying firing probabilities to pt = 0.4 + 0.1 cos(12t) and ζ = 1.2. For each simulated 

dataset, we set the number of trials to 20, 30, 40, and 50. We found that shifting the firing 

rate of each trial by a uniformly sampled constant around the true firing rate does not 

substantially affect our method’s power since the Gaussian process model is still capable of 

estimating the underlying firing rate by averaging over trials. However, adding independent 

random noise to each trial (i.e., flipping a fraction of time bins from zero to one or from one 

to zero) could affect performance, especially if the noise rate (i.e., proportion of flips) is 

high and the number of trials is low. Figure 7 shows the power for different number of trials 

and varying noise rate from 0 to 10%. As we can see, the power of our method drops slowly 

as the percentage of noise increases. The drop is more substantial when the number of trials 

is small (i.e., 20). However, for a reasonable number of trials (e.g., 40 or 50) and a 

reasonable noise rate (e.g., about 5%) the drop in power is quite small.
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3.4 Results for experimental data

We now use our method for analyzing a pair of neurons selected from the experiment 

discussed in the introduction. (We will apply our method to multiple neurons in the next 

section.) Although we applied our method to several pairs with different patterns, for brevity 

we present the results for two pair of neurons; for one pair, the relationship changes under 

different scenarios; for the other pair, the relationship remains the same under the two 

scenarios. Our data include 51 spike trains for each neuron under different scenario 

(rewarded vs. non-rewarded). Each trail runs for 10 seconds. We discretize the time into 5 

ms intervals.

Case 1: Two neurons with synchrony under both scenarios—We first present our 

model’s results for a pair of neurons that appear to be in exact synchrony under both 

scenarios. Figure 8 shows the posterior distributions of ζ and L under different scenarios. As 

we can see, the posterior distributions of ζ in both cases are away from 1, and L = 0 has the 

highest posterior probability. These results are further confirmed by empirical results, 

namely, the number of co-firings, correlation coefficients, and the sample estimates of 

conditional probabilities presented in Figure 8.

Using the method of Kass et al. (2011), the p-values under the two scenarios are 3.2E−11 

and 1.4E−13 respectively. While both methods provide similar conclusions, their method is 

limited to detecting exact synchrony only.

Case 2: Two neurons with synchrony under the rewarded scenario only—Next, 

we present our model’s results for a pair of neurons appear to be in a moderate synchrony 

under the rewarded scenario only. Figure 9 shows the posterior distributions of ζ and L 

under different scenarios. In this case, the posterior distributions of ζ is slightly away from 1 

in the first scenario; however, under the second scenario, the tail probability of 1 is not 

negligible. These results are further confirmed by empirical results presented in Figure 9: 

only in the first scenario we observe a moderate difference between the conditional 

probabilities.

Using the method of Kass et al. (2011), the p-values under the two scenarios are 2E − 4 and 

0.144 respectively. As discussed above, although for these data the two methods provide 

similar results in terms of synchrony, our method can be used to make inference regarding 

possible lag values. Moreover, as we will show in the next section, our method provides a 

hierarchical Bayesian framework that can be easily extended to multiple neurons.

4 Modeling dependencies among multiple neurons

Temporal relationships among neurons, particularly those that change across different 

contexts, can provide additional information beyond basic firing rates. Because it is possible 

to record spike trains from multiple neurons simultaneously, and because network encoding 

likely spans more than pairs of neurons, we now turn our attention to calculating temporally-

related activities among multiple (> 2) simultaneously-recorded neurons.
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At lag zero (i.e., L = 0), we can rewrite our model for the joint distribution of two neurons in 

terms of their individual cumulative distributions as follows (we have dropped the index t 

for simplicity):

where F1 = F1(y) = P(Y ≤ y), F2 = F2(z) = P(Z ≤ z), and . Note that in this 

case, β = 0 indicates that the two neurons are independent. In general, models that couple the 

joint distribution of two (or more) variables to their individual marginal distributions are 

called copula models. See Nelsen (1998) for detailed discussion of copula models. Let H be 

n-dimensional distribution functions with marginals F1, …, Fn. Then, an n-dimensional 

copula is a function of the following form:

Here,  defines the dependence structure between the marginals. Our model for two neurons 

is in fact a special case of the Farlie-Gumbel-Morgenstern (FGM) copula family (Farlie, 

1960; Gumbel, 1960; Morgenstern, 1956; Nelsen, 1998). For n random variables Y1, Y2, …, 

Yn, the FGM copula, , has the following form:

(2)

where Fi = Fi(yi). Restricting our model to second-order interactions, we can generalize our 

approach for two neurons to a copula-based model for multiple neurons using the FGM 

copula family,

where Fi = P(Yi ≤ yi). Here, we use y1, …, yn to denote the firing status of n neurons at time 

t; βj1j2 captures the relationship between the  and  neurons. To ensure that probability 

distribution functions remain within [0, 1], the following constraints on all  parameters 

βj1j2 are imposed:
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Considering all possible combinations of εj1 and εj2 in the above condition, there are n(n − 

1) linear inequalities, which can be combined into the following inequality:

4.1 Illustrative example

To illustrate this method, we follow a similar procedure as Section 3.4 and simulate spike 

trains for three neurons such that neurons 1 and 2 are in exact synchrony, but they are 

independent from neuron 3. Table 4 shows the estimated β’s along with their corresponding 

95% posterior probability intervals using posterior samples from Spherical Hamiltonian 

Monte Carlo (Spherical HMC). Our method correctly detects the relationship among the 

neurons: for synchronous neurons, the corresponding β’s are significantly larger than 0 (i.e., 

95% posterior probability intervals do not include 0), whereas the remaining β’s are close to 

0 (i.e., 95% posterior probability intervals include 0).

4.2 Results for experimental data

We now use our copula-based method for analyzing the experimental data discussed earlier. 

As mentioned, during task performance the activity of multiple neurons was recorded under 

two conditions: rewarded stimulus (lever 1) and non-rewarded stimulus (lever 2). Here, we 

focus on 5 simultaneously recorded neurons. There are 51 trials per neuron under each 

scenario. We set the time intervals to 5 ms.

Tables 4.2 and 4.2 show the estimates of βi,j, which capture the association between the ith 

and jth neurons, under the two scenarios. Figure 10 shows the schematic representation of 

these results under the two experimental conditions. The solid line indicates significant 

association.

Our results show that neurons recorded simultaneously in the same brain area are correlated 

in some conditions and not others. This strongly supports the hypothesis that population 

coding among neurons (here though correlated activity) is a meaningful way of signaling 

differences in the environment (rewarded or non-rewarded stimulus) or behavior (going to 

press the rewarded lever or not pressing) (Buzsáki, 2010). It also shows that neurons in the 

same brain region are differentially involved in different tasks, an intuitive perspective but 

one that is neglected by much of behavioral neuroscience. Finally, our results indicate that 

network correlation is dynamic and that functional pairs– again, even within the same brain 

area– can appear and disappear depending on the environment or behavior. This suggests 

(but does not confirm) that correlated activity across separate populations within a single 

brain region can encode multiple aspects of the task. For example, the pairs that are 

correlated in reward and not in non-reward could be related to reward-seeking whereas pairs 

that are correlated in non-reward could be related to response inhibition. Characterizing 

neural populations within a single brain region based on task-dependent differences in 

correlated firing is a less-frequently studied phenomenon compared to the frequently 

pursued goal of identifying the overall function of the brain region based on individual 

neural firing (Stokes et al., 2013). While our data only begin to address this important 
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question, the developed model will be critical in application to larger neural populations 

across multiple tasks in our future research.

5 Computation

We use Markov Chain Monte Carlo (MCMC) algorithms to sample from posterior 

distribution. The typical number of MCMC iterations is 3000 after discarding pre-

convergence samples. Algorithm 1 in Appendix shows the overall sampling procedure. We 

use the slice sampler (Neal, 2003) for the hyperparameters controlling the covariance 

function of the Gaussian process model. More specifically, we use the “stepping out” 

procedure to find an interval around the current state, and then the “shrinkage” procedure to 

sample from this interval. For latent variables with Gaussian process priors, we use the 

elliptical slice sampling algorithm proposed by Murray et al. (2010). The details are 

provided in Algorithm 2 in the appendix.

Sampling from the posterior distribution of β’s in the copula model is quite challenging. As 

the number of neurons increases, simulating samples from the posterior distribution these 

parameters becomes difficult because of the imposed constraints (Neal and Roberts, 2008; 

Sherlock and Roberts, 2009; Neal et al., 2012; Brubaker et al., 2012; Pakman and Paninski, 

2012). We have recently developed a new Markov Chain Monte Carlo algorithm for 

constrained target distributions (Lan et al., 2014) based on Hamiltonian Monte Carlo (HMC) 

(Duane et al., 1987; Neal, 2011).

In many cases, bounded connected constrained D-dimensional parameter spaces can be 

bijectively mapped on to the D-dimensional unit ball 

, where θ are parameters. Therefore, our method 

first maps the D-dimensional constrained domain of parameters to the unit ball. We then 

augment the original D-dimensional parameter θ with an extra auxiliary variable θD+1 to 

form an extended (D + 1)-dimensional parameter θ̃ = (θ, θD+1) such that ‖θ̃‖2 = 1 so 

. This way, the domain of the target distribution is changed from the 

unit ball  to the D-dimensional sphere, SD ≔ {θ̃ ∈ ℝD+1 : ‖θ̃‖2 = 1}, through the 

following transformation:

Note that although θD+1 can be either positive or negative, its sign does not affect our Monte 

Carlo estimates since after applying the above transformation, we need to adjust our 

estimates according to the change of variable theorem as follows:
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where . Here, dθB and dθ̃
S are under Euclidean measure and spherical measure 

respectively.

Using the above transformation, we define the dynamics on the sphere. This way, the 

resulting HMC sampler can move freely on SD while implicitly handling the constraints 

imposed on the original parameters. As illustrated in Figure 11, the boundary of the 

constraint, i.e., ‖θ‖2 = 1, corresponds to the equator on the sphere SD. Therefore, as the 

sampler moves on the sphere, passing across the equator from one hemisphere to the other 

translates to “bouncing back” off the the boundary in the original parameter space.

We have shown that by defining HMC on the sphere, besides handling the constraints 

implicitly, the computational efficiency of the sampling algorithm could be improved since 

the resulting dynamics has a partial analytical solution (geodesic flow on the sphere). We 

use this approach, called Spherical HMC, for sampling from the posterior distribution of β’s 

in the copula model. See Algorithm 3 in Appendix for more details.

Using parallelization (i.e., assigning each neuron to a server), our computational method can 

handle relatively a large number of neurons. The MATLAB implementation of our method 

runs on a HPC (High Performance Computing) Beowulf cluster with a total of 64 CPUs 

(CentOS) and equipped with a GPU. For 10 neurons, 20 trials, and 50 time bins, each 

iteration of MCMC takes 8.4 seconds with acceptance probability of 0.72. For 50 neurons, 

the time per iteration increases to 24.5 with similar acceptance probability.

While our proposed method takes advantage of several advanced computational techniques, 

the current implementation of our method is only useful for tens of neurons. This can be 

improved in future by reducing the computational complexity of our sampling algorithms. 

For the GP model, the computational complexity is (T3), where T is the number of time 

bins. This increases linearly with the number of neurons. Note that we can reduce the 

computational complexity of the GP model to (T) by using a Brownian motion instead. To 

calculate the joint pdf within each time bin of a trial (i.e., using the copula model), the 

computational complexity increases exponentially by the number of coffering neurons. The 

overall complexity increases linearly by the number of trials and the number of time bins.

The space complexity depends on the number of neurons, number of time bins, and number 

of trials. For a simulation study with 25 neurons, 25 trials, and 50 time bins, the RAM usage 

is around 4.3GB. Increasing the number of neurons to 50 results in a substantially higher 

RAM usage close to 7.2GB. If we further increase the number of trials to 50, the RAM 

usage increases to 10.5GB. If we also increase the number of time bins to 100, the RAM 

usage increases to 12.2GB.

All computer programs and simulated datasets discussed in this paper are available online at 

http://www.ics.uci.edu/~babaks/Site/Codes.html.

Shahbaba et al. Page 13

Neural Comput. Author manuscript; available in PMC 2015 March 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ics.uci.edu/~babaks/Site/Codes.html


6 Discussion

The method we proposed in this paper benefits from multiple aspects, including flexibility, 

computational efficiency, interpretability, and generalizability. The latter is especially 

important because the model offered in this work can be adopted for other computationally 

intensive biological problems.

We believe that a forte of our proposed method is that it offers a modeling approach to the 

problems of identification and calibration of co-firings at various lag times. Consequently, 

from the statistical inferential perspective, our hybrid modeling approach would fair better 

when compared with methods such as cross-correlation analysis, mainly because not only it 

sheds light on how signals in the network are communicating, but also it informs the 

scientist of the sharpness of those cross relationships through posterior confidence intervals. 

Also, note that although it is possible to run other methods, e.g., the method of Kass et al. 

(2011), for different lags and perform multiple hypothesis testing, our method offers a 

modeling paradigm for measuring lagged and exact synchrony at the same time. This is 

important because it avoids complex and multistage testing procedures for pairs of neurons.

The sampling algorithm proposed for detecting synchrony among multiple neurons is 

advantageous over commonly used MCMC techniques such as Metropolis-Hastings. This 

fact becomes even more salient especially considering that the current technology provides 

high-dimensional data by allowing the simultaneous recording of many neurons. Developing 

efficient sampling algorithms for such problems has been discussed by Ahmadian et al. 

(2011).

The analysis presented offers a number of ways in which examining the temporal 

relationship of activity in multiple neurons can reveal information about population 

dynamics of neuronal circuits. These kinds of data are critical in going beyond treating 

populations as averages of single neurons, as is commonly done in physiological studies. 

They also allow us to ask the question of whether neuronal firing heterogeneity contributes 

towards a unified whole (Stokes et al., 2013), or whether separates populations in a brain 

area are differentially involved in different aspects of behavior (Buschman et al., 2012).

In our current model, β are fixed. However, dependencies among neurons could in fact 

change over time. To address this issue, we could allow β’s to be piecewise constant over 

time to capture non-stationary neural connections. Change-point detection would of course 

remain a challenge.
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Appendix

Algorithm 1

Sampling latent variables, copula parameters, and hyperparameters

Initialize the matrix of latent variables, U|(n,D), where the ith column corresponds to the latent variables of the ith neuron, 
n is the number of time bins, and D is the number of neurons.

Initialize the hyperparameters, θ, which specify the Gaussian process priors for the latent variables.

Initialize the copula model parameters, β, as a D(D − 1)/2 vector.

for i = 1, …, B do

  Sample U (i+1) from posterior distribution conditional on U(i), θ (i) and β(i), P(U(i +1)|Y, U (i), θ(i), β(i)), using the elliptical 
slice sampler (Algorithm 2).

  for j = 1, …, D do

    Sample   from the posterior distribution of the hyperparameters of the jth latent variable conditional on the 

latent variables, , using the slice sampler (Neal, 2003).

  end for

  Sample β (i+1) from the posterior distribution conditional on the latent variables, P (β(i+1)|Y, U(i+1), β (i)), using Spherical 
HMC presented (Algorithm 3).

end for

Algorithm 2

Elliptical slice sampler for latent variables

Let U be the current state of the latent variables.

Sample U* ~ N(0, Σ), where Σ is the covariance matrix of the Gaussian process.

Calculate the log-likelihood threshold for the elliptical slice sampler,

υ ~ Uniform[0, 1]

log y ← log (L(U)) + log(υ)

Let α be the angle for the slice.

Draw a proposal and define the corresponding bracket,

α ~ Uniform[0, 2π]

(αmin, αmax) ← (α − 2π, α)

Set U′ ← U cos(α) + U* sin (α)

while log(L (U′)) < log y do

  if α < 0 then

    αmin ← α

  else

    αmax ← α

  end if

  α ~ Uniform [αmin, αmax]

  U′ ← U cos(α) + U* sin (α)

end while

Return U′ as the new state.
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Algorithm 3

Spherical HMC for copula parameters

Initialize the copula parameters, β(1), along with their appropriate transformation, β̃(1), at the current state.

Sample a new momentum value υ ̃(1) ~ (0, ID+1)

Define the potential energy, U, as minus log density of β̃ and the kinetic energy, K, as minus log density of υ̃.

Set υ(̃1) ← υ̃(1) − β̃(1)(β(̃1))T υ̃(1)

Calculate the Hamiltonian function: H(β̃(1), υ̃(1)) = U (β̃(1)) + K (υ̃(1))

for ℓ = 1 to L do

  

  

  

  

end for

Calculate H(β̃ (L+1), υ̃ (L+1)) = U (β̃(L+1)) + K(υ̃(L+1))

Calculate the acceptance probability

  α = min (1, exp {−H(β̃ (L+1), υ(̃L+1)) + H(β(̃1), υ̃(1))})

Accept or reject the proposal according to α
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Figure 1. 
An illustrative example for using a Gaussian process model for a neuron with 40 trials. The 

dashed line shows the true firing rate, the solid line shows the posterior expectation of the 

firing rate, and the gray area shows the corresponding 95% probability interval. The plus 

signs on the horizontal axis represents spikes over 100 time intervals for one of the 40 trials.
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Figure 2. 
Using our Gaussian process model to capture the underlying firing rate of a single neuron 

from prefrontal cortical areas in rat’s brain. There are 51 spike trains recorded over 10 

seconds. The PSTH plot is generated by creating 5 ms intervals. The curve shows the 

estimated firing rate (posterior expectation).
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Figure 3. Two independent neurons
The left panel shows the corresponding Joint Peri-Stimulus Time Histogram (JPSTH). The 

right panel shows the posterior distributions of ζ and L. Darker cells represent higher 

frequencies.
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Figure 4. Two dependent neurons in exact synchrony
The left panel show the frequency of spikes over time. The right panel shows the posterior 

distribution of ζ and L. Darker cells represent higher frequencies.

Shahbaba et al. Page 22

Neural Comput. Author manuscript; available in PMC 2015 March 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Two dependent neurons in lagged synchrony
The lag values are set to 3, 4, or 5 with probabilities 0.2, 0.5, and 0.3 respectively. The left 

panel show the frequency of spikes over time. The right panel shows the posterior 

distribution of ζ and L. Darker cells represent higher frequencies.
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Figure 6. Power analysis
Comparing our proposed method (solid curves) to the method of Kass et al. (2011) (dashed 

curves) based on statistical power using two simulation studies. Here the dotted lines 

indicate the 0.05 level.
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Figure 7. Sensitive analysis for trial-to-trial variability
Comparing power for varying number of trials and noise rate (i.e., fraction of time bins in a 

trial flipped from zero to one or from one to zero).
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Figure 8. Case 1
a) Posterior distribution of ζ, b) posterior distribution of lag, c) co-firing frequencies, d) 

correlation coefficients, and e) estimated conditional probabilities of firing for the second 

neuron given the firing status (0: solid line, 1: dashed line) of the first neuron over different 

lag values for the rewarded scenario; (f)–(j) are the corresponding plots for the non-

rewarded scenario.
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Figure 9. Case 2
a) Posterior distribution of ζ, b) posterior distribution of lag, c) co-firing frequencies, d) 

correlation coefficients, and e) estimated conditional probabilities of firing for the second 

neuron given the firing status (0: solid line, 1: dashed line) of the first neuron over different 

lag values for the rewarded scenario; (f)–(j) are the corresponding plots for the non-

rewarded scenario.
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Figure 10. 
A schematic representation of connections between five neurons under two experimental 

conditions. The solid line indicates significant association.
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Figure 11. 

Transforming unit ball  to sphere SD.
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Table 1

Estimates of β’s along with their 95% posterior probability intervals for simulated data based on our copula-

based model. Here, row i and column j shows the estimate of βij, which captures the relationship between the 

ith and jth neurons.

β 2 3

1 0.66 (0.30,0.94) 0.02 (−0.26,0.27)

2 −0.05 (−0.33,0.19)
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Table 2

Estimates of β’s along with their 95% probability intervals for the first scenario (Rewarded) based on our 

copula model.

β 2 3 4 5

1 0.22(0.07,0.39) 0.00(−0.07,0.04) 0.03(−0.02,0.15) 0.01(−0.04,0.08)

2 0.03(−0.02,0.18) 0.06(−0.02,0.22) 0.07(0.00,0.25)

3 0.08(−0.01,0.26) 0.21(0.04,0.38)

4 0.23(0.09,0.40)
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Table 3

Estimates of β’s along with their 95% probability intervals for the second scenario (Non-rewarded) based on 

our copula model.

β 2 3 4 5

1 0.05(−0.02,0.25) −0.01(−0.09,0.04) 0.15(−0.01,0.37) 0.05(−0.03,0.22)

2 0.21(0.03,0.41) 0.18(0.00,0.37) 0.03(−0.02,0.19)

3 0.17(0.00,0.34) 0.03(−0.02,0.19)

4 0.07(−0.01,0.24)

Neural Comput. Author manuscript; available in PMC 2015 March 29.


