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Abstract:

The reliability of a spiking neuron depends on the frequermytent of the driving input
signal. Previous studies have shown that well above thtestegularly firing neurons generate
reliable responses when the input signal resonates withirihg frequency of the cell. Instead,
well below threshold, reliable responses are obtained wnemput frequency resonates with
the subthreshold oscillations of the neuron. Previousrteephowever, provide no clear pre-
diction for the input frequency giving rise to maximallyis#dle spiking at threshold, which is
probably the most relevant firing regime in mammalian coteder physiological conditions.
In particular, when the firing onset is governed by a sulwaitHopf bifurcation, the frequency
of subthreshold oscillations often differs from the firirege at threshold. The predictions of
previous studies, hence, cannot be smoothly merged ahthicedHere we explore the behavior
of reliability in bistable neurons near threshold usingethtypes of driving stimuli: constant,
periodic and stochastic. We find that the two natural fregie=nof the system, associated to
the two coexisting attractors, provide a rich variety of gbke locking modes with the exter-
nal signal. Reliability is determined by the sensitivityrioise of each locking mode, and also
by the transition probabilities between modes. Noise emee the amount of spike-time jitter,
and minimal jitter is obtained for input frequencies codiog with the suprathreshold firing
rate of the cell. In addition, noise may either enhance oibihkransitions between the two
attractors, depending on the input frequency. The dualpialged by noise in bistable systems
implies that reliability is determined by a delicate balkabetween spike-time jitter and the rate
of transitions between attractors.



1 Introduction

In many brain regions, single neurons convey large amountgamation in the precise tim-
ing of individual spikes (Mainen and Sejnowsky, 1995). $piining is determined by two
factors: the intrinsic properties of the spiking neuron #imel temporal characteristics of the
input currents. In cortical cells, the total input is a condtion of localized synaptic inputs and
large-scale fluctuating fields. The latter determine thallbeld potentials surrounding the cell,
and their spectral characteristics strongly depend onghaworal state of the subject (Buszaki,
2006). Since the frequency content of the driving signaldhafound impact on the reliability
of neural activity (Tiesinga et al, 2008), it is importantunderstand which input frequency
bands produce most reliable responses. This, of courseysnteainderstand the interplay of
intrinsic neuronal oscillatory properties and the exigrgiving signal.

Previous studies have identified the input frequenciedidatce reliable spiking in neurons
driven by suprathreshold (Hunter et al., 1998; Schreibat.e2004) and subthreshold stimuli
(Fellous et al., 2001; Schreiber et al., 2009). When the ngaut current is above threshold,
spiking is maximally reliable when the input frequency @iites with the firing rate frequency
fs:- Below threshold, instead, the optimal input frequencyhis subthreshold resonangg,
at least, for neurons whose resting state is governed byra $iged point, characterized by a
well-defined frequency (Izhikevich, 2007). When non-restmeurons are driven with sinu-
soidal stimuli, the slower the stimulus, the more reliable dbtained response. These studies
allow us to predict the reliability of neurons well above oelirbelow threshold. From the
physiological point of view, however, these extreme regrage only marginally relevant. In
realistic situations neurons are typically maintainedselto threshold, in order to maximize
their selectivity by firing intermittently. It is therefolienportant to extend previous studies in
order to also encompass situations where cells fluctuatmdnhreshold.

In non-resonant type 1 neurons the firing onset is governeddagdle-node bifurcation on
the invariant circle, and the optimal subthreshold freqyefa.. = 0 merges continuously with
the optimal suprathreshold firing frequengy, since the latter vanishes at threshold. Neurons
that pass to the firing state through a supercritical Hopidirbétion also merg¢,., into fs,
continuously, in both cases with frequencies larger than,znd coinciding with the imagi-
nary part of the eigenvalue losing stability. The situai®different, however, for models that
undergo a subcritical Hopf bifurcation, since at threshpld is typically different from f5,,
as exemplified in Fig. 1. Such models are often used to repréise firing threshold of sev-
eral types of neurons, as stellate cells of entorhinal gpsarious interneurons (fast spiking,
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Figure 1: Optimal input frequency predicted by previous theories, displayed as a function of
the mean input currert, in a type Il Morris Lecar model neuron. Firing onset is goest by a
subcritical Hopf bifurcation. Well below threshold, thetimpal / coincides with the subthresh-
old resonance of the cefl.;. Well above threshold, the optimglcoincides with the firing rate
far- The object of this paper is to reveal the optimal input fiesaey around the firing theshold.

late spiking and stuttering cells), reticular thalamic s and mesencephalic V neurons of
brainstem (Izhikevich, 2007). Unfortunately, in theseesagrevious theories do not give an
unambiguous prediction of the value of the optimal inpugérency.

Our goal is to analyze the frequency dependence of respelisiility of neurons operating
around their firing threshold. We work with a type 1l Morrisdag neuron model containing a
bistable zone at the firing onset. We observe that the ded@rediability depends in a complex
way of the input frequency, the amplitude of the oscillatooynponent in the input signal, the
amount of noise, the initial conditions, and the total relaag time (Sect. 2). The complexity of
the problem is explained through an analysis of the dyndrprcgerties of the bistable system
when driven with time-dependent stimuli, here develope8ewts. 3-6. These tools allow us
to bridge the gap between the former supra- and subthreshpldrations, and extend them
across the firing threshold.

2 Reliability in the bistable zone of Morris-Lecar neurons

For simplicity, we choose a 2-dimensional neuronal syst&milar results are obtained for
higher-dimensional models with the same bifurcation stnecat threshold (e.i., Hodgkin-
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Huxley). The equations of the Morris-Lecar model are

dVv
CE = —Iion(‘/,U))+I(t),
dw — w—wx(V)
T e @)

wherelio, (V,w) = go(V — V1) + gca(V — Via) + gxw(V — Vi), and other parameters as in
Schreiber et al. (2009). In order to study the frequency deégece of reliability, we model the
input current/ (t) as

I(t) = Io + I, sin(27ft) + Lnoise(t), (2)

wherel, ;. IS Gaussian white noise with
<Inoisc(t> Inoiso(t/» = 02 5(t - t/) (3)

All simulations were performed with a stochastic secon@pRlNnge-Kutta integration routine
(Honeycutt, 1992), and integration stép= 0.1 ms, which is approximately 20 times smaller
than the passive characteristic time of the membrang..

To measure the degree of reliability, we run the system of Egslarge number of trials
(500 or 1000) always with the same initial conditions andiltzdory input, but independent
realizations of the noisy terth;... We evaluate reliability by estimating the degree of synehr
nization between trials (Golomb and Rinzel, 1993, 1994)

2 Var[psth(t)]
X = Narm ()], )

wherer;(t) is a binary string representing trigl containing a 1 in every time bin where a
spike was generated, and a 0 otherwise. In this paper, we fragsspike train in time bins of
duration 1 ms. In Eq. 4Var represents the temporal variance, asth(t) = (r;(¢)); is the
trial average of binary strings. The value p¢f is an estimate of the fraction of synchronized
trials, and when it drops below the inverse of the total nundjdrials, spike generation is
completely unreliable. The results presented here renssantially unchanged when other
reliability measures are employed (e.g., Schreiber e2@03).

When the value of, is chosen so that the neuron is at threshold, and inside gtabie
regime, reliability depends strongly on the input frequeficthe amplitudd; of the sinusoidal
stimulus, the amount of noige the initial conditions (suprathreshold or subthreshalj the
amount of stimulation time, as illustrated in Fig. 2. SelVepaestions arise from this figure.
What does the complex vertical structure represent? Whydwsegions of the plangf, )
become more reliable, and others less reliable, when theuktiion time is increased? When
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Figure 2: Reliabilityy? in a Morris Lecar model neuron driven with sinusoidal inputrent
(Eq. 2) of amplitudel; (in zA/cm?) and frequencyf. Mean stimulusl, = 25.4pA/cm? and
amount of noiser = 0.3uAms'/?/cm?). Different gray levels indicate different reliability ka
ues, from perfectly reliable (black) to completely unrblea(white). The areas where no spikes
are generated appear in whitd: Total stimulation time: 100 ms.Top panel subthreshold
initial conditions: V' (t = 0) = —21.35 mV, w(t = 0) = 0.2. Bottom panel suprathreshold
initial conditions: V' (¢t = 0) = 4.65 mV, w(t = 0) = 0.43.B: Total stimulation time: 1000 ms.
Initial conditions: same as in A. Right: greyscale\df

and why do initial conditions matter? In the bottom panel iof RA, why do we see confined
regions where reliability goes to zero? In order to answes¢hquestions, we explore the
dynamical properties of the Morris Lecar neuron in simplentexts. In Sect. 3 we describe
the autonomous casé; (= 0 ando = 0). In Sect. 4, we incorporate a noisy term to the input
current (; = 0, o > 0); in Sect. 5 we return to the noiseless situation, but we adakaillatory
component to the input’{ > 0, o = 0); and finally, in Sect. 6 we consider the fully complex
case of Fig. 24; > 0,0 > 0).



3 Bistability in the autonomous type Il Morris-Lecar neuron
model

In this section, the external input currdit) is taken to be constant, and equalolin Fig. 3A
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Figure 3: Invariant trajectories of the autonomous Moksar neuron modeb(= 0, panels A

- C), and their noisy version (panel D, with> 0). A: Maximal and minimal voltage amplitudes
of invariant trajectories, as a function &f. White: resting subthreshold fixed point. Grey:
unstable limit cycle. Black: stable firing limit cycld: Frequency of the invariant trajectories,
as a function off,. Line conventions: same as in &: Phase-space invariant trajectories for
o = 0 in the three different firing regimes: subthreshalgl & I, = 24.8pAlcm?), bistable
(In = I, = 24.87uAlcm? and [, = I, = 25.6pA/lcm?), and suprathreshold{ = I; =
26.3pAlcm?). D: Same as C, but with = 0.054A ms'/?/cm?.

- 3C, the noiseless system is described. In Fig. 3A, the mabamd minimal voltage amplitudes
of the invariant trajectories are displayed as a functiofy o he frequency of oscillation along
these trajectories is shown in Fig. 3B. The number of inverieajectories and their stability

6



depends on the value &f. Trajectories in phase space are shown in Fig. 3C.

For I, < 24.82uA/cm2 (casel,), only a single invariant trajectory exists: a spiral fixed
point, corresponding to the resting subthreshold state viitage component of this point is
given by the white line in Fig. 3A. For all initial conditionthe system circles counter-clockwise
down to the fixed point, giving rise to damped voltage ostidizs. Asymptotically, the voltage
fluctuations have zero amplitude, so the maximal and minangblitudes shown in white in
Fig. 3A coincide. The frequency associated to the angularement around the fixed point is
around 68 Hz, and depends only mildly gn(Fig. 3B). This frequency defines the subthreshold
resonance,. of the cell. It can be obtained analytically by linearizitg tsystem of Egs. (1)
around the fixed point, and taking the imaginary part of tlemeisited eigenvalue.

Whenl, is increased beyorfm.82uA/cm2 (casel}), two limit cycles (in Fig. 3C, the stable
one displayed in black, and the unstable one, in gray) appeadistant region of phase space.
The stable cycle constitutes the firing attractor, and tbkguency of oscillation around this
cycle is the firing ratej,. Since the unstable limit cycle is virtually never obser{tegjectories
depart away from it), we constructed the unstable trajeet@f Fig. 3C by running the system
backward in time. Ad, is increased further (case), the unstable limit cycle shrinks down
towards the stable fixed point, colliding with it A&t~ 26.23:A /cm?, and inverting the stability
of the remaining fixed point. Hence, within the ranfgec [24.82, 26.23],uA/cm2, the system
has three invariant trajectories: the stable fixed poinit@yhthe unstable limit cycle (grey), and
the firing limit cycle (black). The amplitude of the unstabiait cycle diminishes continuously
(Fig. 3A) connecting the two stable attractors, and so doe$requency (Fig. 3B).

The unstable invariant trajectory constitutes a boundalso(calledseparatrix between
the basins of attraction of the resting state and the firirgecyAll initial conditions that lie
inside the separatrix evolve towards the resting stateredlsethose that start outside approach
the firing limit cycle. Later on, when when we add a noisy tefm,. to the input signal,
transitions between the two attractors will become possibhe only portion of the limit cycle
that comes close to the fixed point is at the bottom of the ondienw reaches its minimum
value. Transitions will typically take place in this pattiar region of phase space (Rowat and
Greenwood, 2011).

For iy > 26.23uA/cm2 (casely), the resting state is no longer stable, and the only atiract
of the system is the firing limit cycle. In this case, all ialtconditions tend rapidly towards the
black trajectory.



4 Dynamics of the noise-driven system

In Fig. 3D, the input current contains a noisy component{ 0). For the small value of

o depicted here, trajectories in phase-space retain mamegdrbperties discussed for the au-
tonomous case. Still, the time-dependent system desdmipEds. (1) is no longer autonomous,
SO now trajectories often intersect each other. In the petddthreshold regime, the resting state
is no longer a fixed point (see the enlarged insef fpralthough trajectories still tend to remain
confined to a small region whose diameter is proportionahéoamount of noise. Around

the fixed point, noisy trajectories have a roughly elliptiage, and the power spectrumioft)

has a sharp peak at frequengy,. Therefore, when small amounts of noise are injected into
the system, the fixed point of the autonomous case is transfibmto a stochastic subthreshold
trajectory with main revolution frequency..

Wheno > 0, the critical values of, defining the borders of the bistable region may differ
from the ones of the unperturbed case. Still, for smalior somel, in the neighborhood of
24.82uA/cm2, the transition to bistability takes place. Due to the ntatisnarity of Egs. (1),
now both the firing limit cycle and the unstable cycle occupgaa regions of phase space,
crossing their own paths, as well as other trajectoriesnincase, as long asremains small,
the main features of the autonomous system remain: Thehledimit cycle shrinks down
towards the subthreshold trajectory, and eventuallyy #itecollision of the two, the only stable
attractor of the system is the firing limit cycle.

4.1 Transient and stationary firing rate

The coexistence of two stable attractors in the noiselessltas important consequences for the
behavior of the noisy system. In the absence of noise, betfixed point and the stable limit
cycle have basins of attraction. If the system is initiatlyphe of the basins, it inevitably evolves
towards the corresponding attractor. Strictly speakihg,doncept of basins of attraction no
longer holds when noise is incorporated. Although the systeay initially be in the basin of
one of the attractors (for example, the fixed point), noisg mduce transitions to the other
basin (the limit cycle). The probability of transitions aéspuls on the amount of noisge the
geometry and location of the attractors (determined{)y and on the direction of the jump
(from suprathreshold to subthreshold, or vice versa).

Example raster plots are displayed in Fig. 4A, for suprathoéd (top) and subthreshold
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Figure 4: Variation of mean firing rates with initial conditis and total recording timeA:
Raster plot for different noise samples, for 10 supra-tiwksinitial conditions (top) and 10
sub-threshold initial conditions (bottom}), = 25.5Alcm?, o = 0.4pAms!'/2/cm?. Total time:
2000 ms. The rectangles indicate the time windows used tsumediring rates in paneB and

C (100 ms) and (500 ms).B: Single-trial firing rates measured in a 100 ms time windaw, a
a function ofI, for o = 0.4 A ms'/2 / cn¥ (top), and as a function of for I, = 25.4uA/cm?
(bottom). The two curves in each panel correspond to subsapichthreshold initial conditions.
C. Same a$, but each point is obtained by averaging 200 cells with iedelent noise samples.
D: Same a<C, but now using a 500 ms time window to compute the rafeSame as-D, but
now using a 25,000 ms time window.

(bottom) initial conditions. When the system is in the basirattraction of the limit cycle,
spiking takes place at a fairly regular rate. Transitionthobasin of the fixed point appear as
blank periods in raster plots. No intermediate rates arervks. When suprathreshold initial
conditions are used, the trial starts in the firing state,redi® subthreshold conditions begin in
the quiescent state.

In Fig. 4B we see the firing rate obtained for a single trial ib0® ms time window. The
top panel is constructed by slowly increasiiijgand recording the number of produced spikes,
and then slowly decreasinfy to the starting value. The two obtained curves form a hystere
sis cycle describing the behavior obtained for subthreshot suprathreshold conditions. In
the particular run of Fig. 4B, subthreshold initial conalits produce quiescent behavior, and
suprathreshold conditions produce regular firing. Thedigstate may contain either 5 or 6



spikes in the 100 ms recording window, depending on the rsssgple. Hence, in the upper
panel of Fig. 4B, the firing state contains fluctuations betwB0 and 60 Hz. In the lower
panel, the firing rate is depicted as a functionvoffor sub and suprathreshold initial condi-
tions. Aso grows, transitions between the (former) fixed point and thst Icycle become
increasingly frequent, and the system immediately losemong of its initial state. Hence, for
o > 0.5uAms'/?/cn?, the two curves coalesce.

However, a single run does not suffice to characterize theegpties of the system, because
the critical values of, ando where transitions take place depend on the particular saisgle
at hand. Other noise samples may shift these values. TheyaéfioFig. 4C we show the same
curves as in Fig. 4B, but averaged among 500 noisy cells. ©palption average eliminates
the jagged behavior, giving rise to continuous curves. Owellsl remember, however, that no
intermediate firing rates are observed in single cells. {n BD, the analysis is repeated, but
now rates are computed in a time window that is 5 times as 1680 (ns). In the lower panel
of Fig. 4C and, more notably, Fig. 4D, the suprathresholdexhibits an inverse stochastic
resonance a function of (Tuckwell and Jost, 2010; Tuckwell et al, 2009). Severahpeaters
determine the shape of these curves, as the size of theiéiménisistable zone (upper panel),
and the depth of the minimum defining the inverse resonaonee(lpanel). These parameters,
however, vary with the length of the recording window. Foolag time window, we obtain the
results in Fig. 4E. In this example, in the upper panel (meabwitho = 0.4 Ams'/?/cn?), the
curves corresponding to sub- and suprathreshold initiaditimns coalesce, so the window can
be considered long enough to estimate stationary firing rat®wever, for smalles values,
even the 25-second window employed here is not enough th stationarity, as can be seen
in the lower panel. For alb > 0, one can find a recording window that is sufficiently long
such that there be no difference between the curves obtaiitecdupra or subthreshold initial
conditions, and hysteresis be lost. After the first traositbetween attractors, the system can
no longer remember its initial state. If the system has timewitch between attractors a
large number of times, the average fraction of time spenaahédasin is independent of initial
conditions. One would therefore expect that in the limit mfinrite time, the suprathreshold
curve in the lower panel of Fig. 4E would coincide with the tsubeshold curve, except for a
discontinuity atc = 0, where the firing rate of the suprathreshold system showdya be
equal to frequency of the noiseless limit cycle. Hence, elimit, both bistability and inverse
stochastic resonance disappear. For low noise, howeesstdkionary situation is only reached
after unrealistically long waiting times. We must therefaharacterize not only the stationary
situation, but also the transient ones.
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4.2 Transition rates between attractors

In the previous section, we saw that mean firing rates styotgbend on the duration of the
recording window. In order to obtain a stationary value,whiedow has to be long compared
to the rate of transitions between the two coexisting dibrac In this section, we study such
transition rates, showing that sometimes they oscillateogeally in time. We also analyze
their dependence on the amount of naise

In Fig. 5A we show the inter-spike interval (ISI) distribomi P(7) estimated from the his-
togram obtained in a 50000-spike run. We see a sharp peakatitjin, and a long, exponential
tail (Rowat and Greenwood, 2011), indicating that somens#és can last for even more than 6
seconds - an extremely long period in the subthreshold.stdte inset displays the details of
the distribution near the origin. Several peaks can be SBanfirst and most prominent one is
located atr = 19.5 ms, coinciding with the inverse of the frequency of the firimgit cycle at
the selected,. Subsequent peaks are separated by 16 ms, only slightlgddngn the inverse
of the frequency of the subthreshold oscillation frequedye regular sequence of peaks im-
plies that firing either occurs after a single turn arounditireg limit cycle (first peak), or after
one turn around the firing limit cycle that before completi®mterrupted by a transition to the
subthreshold state, where an arbitrary number of turnsnarthe subthreshold fixed point fol-
low. Eventually, another transition to the suprathreststéde takes place, the interrupted turn
is completed, and a spike is generated. The regular seqoémpeaks in the inset of Fig. 5A
implies that transitions only occur at integer multiplesiod period of the subthreshold state

L, at least, during the first few turns, when the influence of@ds still not enough to corrupt
the coherence of the quasi-periodic motion around the liyite. These observations are in
agreement with previous analyses of trajectories in phaasees(Rowat and Greenwood, 2011),
demonstrating that transitions occur at a precise locatigghase space, where the periodic
orbit approaches the fixed point.

The distinction between firing and silent periods implieattheurons generate bursts of
spikes. In the absence of noise, Morris Lecar neurons do umst.b Therefore, the bursting
observed here is due to the transitions between attragtdigcéd by noise. The minimum
separating the first two peaks of the ISl distribution defambmiting ISI n;,,,, which can be used
to determine whether a given ISl of duratiomvas generated in the subthreshold regime (if
Tim), OF IN the suprathreshold regime (if< n;,,). The average sub- and suprathreshold ISIs
are depicted in Fig. 5B. We see that suprathreshold ISIsiremarkedly invariant throughout
a wide range of values. Instead, subthreshold ISIs vary by several orderegnitude. Each
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Figure 5: Statistics of the transitions between the twolstaliractors.A: I1SI histogram ob-
tained in a run of 50000 spikeg, = 25.4uAlcm?, o = 0.5uA ms'/?/cm?. Other panels:
simulations with 5000 spikesB: Mean ISI in ms; supra-thresholdr{,,..)), sub-threshold
({Tsub) ), @and total(7).C: RatioSgsupra aNdgs,, Of the number of supra or subthreshold ISIs and
the total number of ISIsD: Probabilitiespgy,, andps,y, Of finding the system in a supra or sub-
threshold state, at any given time (Eq. &. Transitions probabilities per unit time, ., sub
andvgb—supra (EQs. 6 and 7)F. Dependence of., defined as the noise level at which the two
transition rates are equal, with the mean currgntBlack symbols: suprathreshold state, or
transitions from the supra to the subthreshold state. Véyitabols: subthreshold state, or tran-
sitions from the sub to the suprathreshold state. The giacy between the results obtained
with different initial conditions was smaller than the sife¢he symbols.

subthreshold ISI contains a variable number of turns artluetixed point. The average number
of turns decreases asincreases, because noise favors transitions, and thdoebgtalls long
silent intervals.

We now define the quantities that allow us to measure transitites between attractors. If
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(1) is the average ISI, and,,,;. andps,;, are the probabilities that at any given time the system
be found in the supra or subthreshold regimes, then

1 Tlim
Psupra = <T>A P(T)TdT,

1 e

Dsub = (T>/T P(r) T dr. (5)

We call goupra @Nd gsyp, the ratio between the number of supra- and subthresholdé&lsve
to the total number of ISIs, respectively. In order to detive transition rat€sg,pa—sun and
Vsub—ssupra, W€ discretize time in small intervals of duratioh We define the rateg,pra—sub

as the ratio between the number of bins immediately pregeglinansition to the subthreshold
state and the total number of bins in the suprathreshold.sfdte total number of bins in the
suprathreshold state is equal to the total amount of timetspéhe suprathreshold state divided
by the bin size, that i%i,,: N (1) /6t, whereN is the total number of I1SIs. Out of this number,
Ngsu bins terminate the suprathreshold state, inducing a tiango the subthreshold state.
Therefore,

lim

Gsub 1 (6)
Psupra (T)

In order to derive the rate of transitions from the subthoétktate to the suprathreshold state,
we follow an analogous argument, replaciig}.. by psu,. Note that,, should not be replaced
by ¢supra, DECaAUSE the total number of transitions is alwaysV, irrespective of the direction

of the transition. Hence,

Vgupra—sub —

Psub <T>
Combining Egs. 6 and 7, we arrive at the balanced stateaglati

su 1
Gsub (7)

Vsub—ssupra =

Psupra Vsupra—sub = Psub Vsub—supra; (8)

implying that if transitions in one direction occur at a héglnate than in the opposite direction,
then the system must spend proportionally longer periodisnef in the favored state.

Subthreshold ISls last for a long time, but are few in num@déris is shown in Fig. 5C,
where the probabilitiegs,,.. and g, are displayed. If one chooses an ISI at random, the
probability of selecting a suprathreshold ISI are subsiyniarger than that of a subthreshold
one - more so, itr is small. This does not imply, however, that the system spenadre time
in the suprathreshold state, since subthreshold ISIs caredydong. The probabilitiepg,p,a
and p,, that at any given time the system be found in the supra or seditbld states are
displayed in Fig. 5D. For sma#t, most of the time is spent in the subthreshold state. At about
o = 0.4uAms'/2/cm? the two transition rates become equal, so for even largeserievels, the
suprathreshold state dominates.
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When the system is in a suprathreshold state, the probap#it unit time to switch to
the subthreshold state ig,,..sub- ThiS transition rate, together with the complementary
Vsub—ssupra, 1S displayed in Fig. 5E. Both rates increase substantédly grows. Initially, the
transition rate from supra to sub is larger, and at approtémar = 0.4pAms'/?/cm?, the
situation reverses.

As mentioned earlier, an inspection of trajectories in phsisace reveals that transitions
typically occur near the point where the limit cycle apptoexthe fixed point. That is, at two
specific phases along the suprathreshold and subthreshdtbries. The fact that the rate
Vsub—ssupra D€ larger thamy,,:.—su», does not necessarily mean that, at the specific point in phase
space where transitions take place, noise is more effextiveducing the upward transition
than the downward one. There is another factor at play, narttedt oscillations around the
fixed point are faster than those around the limit cycle, fwedefore, there are more occasions
per unit time to go from subthreshold to suprathreshold tharother way round. To address
this point, in addition to the transition probabilitiper unit time we can calculate the transition
probabilitiesper unit switching occasiofisupra—sub aNd fisubsupra-  1HESE pProbabilities repre-
sent the likelihood to make a transition each time the syst@sses through those phases where
switches are possible. They are related to the transities tay

Hsupra—ssub = Vsupra—ssub X tsupra

,usub—>supra = Vsub—)supra X tsubu (9)

wheret,,,r. andt,, are the inverse of the natural frequencies of the firing legdle and the
spiral fixed point, respectively, for the chosgn(14.8 ms and 19.4 ms in the case of Fig. 5).
These probabilities bear the same dependence with the dmiwises as the transitions rates
v, although they are always scaled between O and 1.

The valuer, = 0.4 A ms'/?/cn? constitutes a border in the scale of noise levels. Below the
border, the subthreshold state dominates, and above, phatisteshold one. The critical noise
level o, required to equate the transition rates depends on thencmnis stimulus component
Iy, which was fixed to 25.4A/cm? in Fig. 5A-E. In Fig. 5F we show that, is approximately
linear with I, with a slope of~ -5 ms/2. As I, varies inside the bistable region, the critical
amount of noise required to equate the amount of time spehneisub and suprathreshold states
diminishes.

The aim of this section was to develop a criterion to deteemhether a given recording
window was short or long. When the window is shorter than tiverise of the transition rate
Vsupra—sub, all evolutions initiated in the suprathreshold state gedy to remain suprathreshold
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during the entire trial. The same conclusion holds for tHatfseshold case. Initial conditions,
hence, are expected to become irrelevant only when theiduarat the recording window is
substantially longer than both transition rates, so thab@dgsampling of transitions in both
directions are guaranteed to be included. If the recording ts shorter, then different scenar-
ios are possible. For example, if the recording time is lathenv, ., .., but shorter than
Vaub—suprar thE System is effectively in the subthreshold regime, bseit has time to switch to
the subthreshold state, but not enough to return to the gsupsold one. In these conditions,
the curve of firing frequency as a function &f(as in Fig. 4) appears shifted to the right, such

that the region where the two attractors coexist appeatarger/, values.

5 Dynamics of the noiseless, sinusoidally-driven system

In order to assess the frequency dependence of relialitypeed to drive the system with time-
dependent stimuli. Hence, we now stimulate the Morris-Lewuron with a deterministic,
time-dependent current of well-defined frequerfgymomentarily eliminating the noisy term
Lise- The non-stationary nature éft¢) again allows for crossing trajectories in phase space,
as seen in Fig. 6A. In the subthreshold regime, the restatg & no longer a fixed point, it is
now a small elliptic trajectory traversed at the frequentyhe external signaf. The size of
the ellipse depends gf In the neighborhood of the (former) fixed point, the systdiags. 1
can be linearized and solved completely for an oscillatoput current as in Eq. 2. The size
and shape of the stationary elliptic trajectory (reacheeraf brief transient evolution) can be
obtained analytically. In Fig. 6B we display the length of thajor and minor axes as a function
of the input frequency. Maximal amplitude is obtained for: 68 Hz, that is, when the external
frequency coincides with the resonance frequency, therldéfined as the imaginary part of the
eigenvalue of the fixed point of the autonomous system (sge3B). The ellipse in the inset
of the lower and leftmost panel of Fig. 6A is therefore lartiem the ellipse obtained with any
other frequency.

When [, crosses the critical current of the global bifurcation, &bk limit cycle appears
(black curve in Fig. 6A). For small;, the firing limit cycle is traversed at approximately 50
Hz. If f ~ 50 Hz, the limit cycle is even more stable and has larger attrgatapacity than
in the autonomous case. Asdeparts from 50 Hz (and its harmonics), the disruptive éféc
the external signal grows. In the trajectories of Fig. 64 thsruptive effect is evidenced in a
certain instability in the location of the lower right pafttbe limit cycle, whenl, = I,. There,
the trajectory wobbles, due to the impossibility to lock theernal signal at 68 Hz with the
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Figure 6: Properties of selected trajectories in the Mdrasar neuron model driven with sinu-
soidal input (Eq. 2), with; = 0.1 Alcm?. A: Phase-space invariant trajectories in the three dif-
ferent firing regimes: subthresholf}, (= 1, = 24.8uAl/cm?), bistable (, = I, = 25.1uAlcm?
andl, = I. = 25.6puAlcm?), and suprathreshold{( = I, = 26.3uA/cm?). Line conventions:
same as in Fig. 3First row f = 50 Hz. Second row f = 68 Hz. B: Analytical calculation of
the frequency dependence of the size of the major and mirs @xhe subthreshold ellipse.

circulation frequency at 50 Hz. The same happens with theablestrajectory (gray). Finally,
whenj is larger than the critical current for the bifurcation oétlixed point, the resting cycle
is no longer attractive, and all trajectories approach tigfiimit cycle.

The notion of purely subthreshold or suprathreshold ttajezs only holds for input stimuli
where the oscillating component is small, as illustrateBigqm 7. In the left column (Fig. 7A),
we see that ag, increases (i.e., as we move down in the graph), the widtheobistable zone
shrinks, and for; > 0.4 A/lcm?, it disappears completely. The voltage traces are shown in
Fig. 7B, as a function of time. A$ grows, the amplitude of the trajectory corresponding to
subthreshold initial conditions (white) increases. Irsthrajectories, the voltage oscillates with
the frequency of the external input (43.5 Hz), which in thiamaple is slower than the spiking
frequency (50 Hz) of the trajectory with suprathresholtiahconditions (black). Fof; > 0.4u
Alcm? the distinction between subthreshold or suprathreshalgdtories is lost, since both
initial conditions give rise to trajectories that switchckand forth between a 43.5 Hz, small-
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Figure 7: Effect of the amplitudé, of the sinusoidal stimulus component. Input frequency:
f = 43.5 Hz. I, values indicated i A / cm?. A: Firing rate as a function of the continuous
stimulus componenfy. The firing rate corresponding to the autonomous dase 0 is shown

in gray also in the lower paneldB: \Voltage traces as a function of time, with suprathreshold
(black) and subthreshold (white) initial conditions. $caf ticks in the vertical axes: 20 m@:
Phase-space trajectories obtained with suprathreshialdkjband subthreshold (white) initial
conditions. D: Basins of attraction of the subthreshold state (white) suqgrathreshold firing
cycle (black). In the last panel, the initial conditionsesponding to trajectories that switch
back and forth between the two attractors are displayedan gr

amplitude oscillation around the (former) fixed point, ang0aHz, large-amplitude oscillation
around the firing trajectory. The same effect is evidentéythase-space trajectories of Fig. 7C.
In D, we show the basins of attraction of the subthreshole $tehite) and suprathreshold firing
cycle (black). Asl; grows, the basin of attraction of the subthreshold staterbes increasingly
enlarged and distorted, approaching the limit cycle. Atréade /;, the two basins coalesce, so
trajectories that have started in the subthreshold arealdego reach the limit cycle, and vice
versa. Depending on the input frequency, trajectories nthgrebecome purely suprathreshold,
or switch back and forth between the two attractors, as indkerow of Fig. 7D. The few
isolated initial conditions that remain subthreshold, dosly for a specific choice of the initial
phase of the oscillating component of the sinusoidal stiswilherefore, for largé,, almost
no trajectories can be classified into purely subthreshiosdiprathreshold.
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The effects displayed in Fig. 7 remain qualitatively undech when we vary the input
frequencyf. There are, however, quantitative differences. When tpatifrequency is near
fres = 68 Hz, the size of the subthreshold basin of attraction isqaarly large. Therefore,
even a relatively small sinusoidal amplitufiesuffices to enlarge the subthreshold basin so that
it coalesces with the suprathreshold basin, allowing¢tajées to reach the limit cycle. Instead,
when the input frequency is near fg. ~ 50 Hz, the firing cycle is particularly robust, and the
basin of the subthreshold state is comparatively smallcEemlargd; is required for the latter
to be able to touch the former. These effects are systerfigtisalored in Fig. 8. In panel A, we
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Figure 8: Size and location of regions of bistability depemndstimulus frequency and ampli-
tude. A-C: Firing rate as a function of the continuous component ofitipait /,, for several
stimulation frequencies and sinusoidal amplitudés.,f = 50 Hz. B: f = 68 Hz. C. f = 80
Hz. D: Classification of trajectories into three categories:ehusuprathreshold (black, all ini-
tial conditions give rise to spiking), purely subthresh@idhite, all intitial conditions give rise
to quiescent behavior), and bistable (gray, some initiabaons result in spiking, and others
in quiescent behavior), = 25.6A/cm?.

see that wherf = f5,, the bistable region has a square shape, implying that thg frequency

is fixed at 50 Hz, roughly independently éf. The width of the bistable zone, moreover,
increases with the amplitudg, so that when/; grows, the global bifurcation generating the
stable and unstable limit cycles appears for smajlgalues. The oscillatory component, hence,
does not challenge the stability of the limit cycle. On thatcary, it enhances it. The subcritical

Hopf bifurcation that annihilates the fixed point, insteiadelatively unsensitive té,.
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For other input frequencies, the width of the bistable zdnays decreases with. When
f = frws (Fig. 8B), the bistable zone shrinks particularly rapidysmaller effect is observed
when f is far away fromfg, and f,.s (Fig. 8C). Hence, bistability is particularly robust when
the input frequency coincides with the firing rate freque(felg. 8A), and particularly fragile
when it coincides with the resonance frequency of the sebtiuld state (Fig. 8B), other cases
showing an intermediate behavior.

In Fig. 8D we explore the types of trajectories that can beentered with different com-
bination of input frequency and sinusoidal amplitudg. When all initial conditions give rise
to quiescent behavior, the correspondiifg/;) point is displayed in white. When all initial
conditions give rise to spiking (that may be either regulairegular, depending on whether
occasional tours around the fixed point are interleaved) pthint is shown in black. When
suprathreshold initial conditions give rise to firing andtweshold ones produce quiescent
behavior, the point is in gray. To construct the figure, fartepair(f, I;), we adiabatically in-
creased, from a clearly subthreshold value (22/cm?) up to the target value (25/4A/cm?).
The adiabatic increase ensured that, if the fixed point wadestt the targefy, we would al-
ways remain near the fixed point, and therefore, we would betalstart the simulation with
subthreshold initial conditions. At the targht, we evaluated whether the system spiked or
remain quiescent, and thereby, determined whether the figed still existed. Next, we adi-
abatially decreasef}, from a clearly suprathreshold value (28/cm?) up to the target value
(25.4 uAlcm?), and evaluated whether spikes were generated or not. \Webtheetermined
whether the stable limit cycle still existed.

A prominent black tongue is seen at around 65 Hz, that is, teafrequency of the sub-
threshold resonance. Therefore, at these frequencieparatively small sinusoidal amplitudes
I, suffice to push the (large) subthreshold trajectory intaréiggon occupied by the firing limit
cycle, giving rise to spiking even for subthreshold initahditions.

Black areas in Fig. 8D represent cases where all initial itmmd give rise to firing, but
provides no information about the firing rate. Whenever tysesn switches back and forth
between the two attractors, the average firing rate fallsvib&®0 Hz. In order to identify the
switching cases, in Fig. 9A and B we display the mean firing ddtthe cell in each point of
the (f, I;) plane, for sub and suprathreshold initial conditions.idhitonditions were searched
with the same adiabatic procedure of Fig. 8D.

The central black tongue of Fig. 8D at 65 Hz appears as themaghere spikes are gener-
ated with subthreshold initial conditions in Fig. 9A. Witithe tongue, however, a large variety
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Figure 9: Structure and complexity of the firing states ofgimeisoidally driven, noiseless sys-
tem. I, = 25.4puAlcm? (bistable regime, in the autonomous systeAr)Mean firing frequency
for subthreshold initial conditionsB: Mean firing frequency for suprathreshold initial condi-
tions. Dark areas correspond to 50 Hz firing. Lighter are@sradte circulation around the limit
cycle and the subthreshold attractor. White regions comtaispikesC: Locking modes: : m,
wheren stimulus cycles occur in the same intervahaspikes. Each area represents the region
in the (f, I;) space where the firing rate differs fromy /m in less than 10% of the amount
that would be required to be confounded with neighboringesed+ 1 : m orn : m + 1.
D-G: Example trajectories and applied stimulus displayed asation of time. In all cases,
I, = 0.8uAlcm?. D: f = 50 Hz, locking (1:1). E: f = 65 Hz, locking (4:2),F. f = 70 Hz,
locking (3:1),G: f = 100 Hz, locking (2:1). Insets: Trajectories in phase space. X:ax Y
axis: w.

of firing rates appear in stripes, building a complex strreein the(f, I;) plane. Dark areas
represent regular 50 Hz firing, as exemplified in Fig. 9D. teglregions represent alternating
trajectories, where the system skips periodically or ajpkcally between the two attractors (see
examples in panels E-F). The firing rate of trajectoriestistgmwith suprathreshold conditions
(Fig 9B) coincides with the one obtained with subthreshaoladitions inside the central tongue
(Fig. 9A). The complexity of these maps embodies all the rHodking states that the system
can have, as found also in previous studies (Coombes andl8ifek999; Coombes and Owen
2001; Laing and Longtin 2003; Tiesinga 2002; Borkowski 202@11). In Fig. 9C, we see the
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regions where the firing frequency is maintained at a fixeghqrtbon (indicated by the num-
bers) of the input frequency. Notice that one same proportiay correspond to more than a
single locking pattern. For example,at= 0.8pAlcm? two different locking modes (shown in
red) are obtained fof = 65 Hz andf = 100 Hz (see panels E and F), and in both cases, the
stimulus frequency is twice the firing rate. Many of the stdpstructures in the locking map
coincide with the structures in the firing rate maps. Henoepmex locking patterns induce
complex firing-rate patterns.

When the external frequency is similar g, the circulation speed around the limit cycle is
adapted so that the firing rate is locked to the external #rqu Circulation along the lowest
portion of the cycle (whem reaches its minimum value) occurs when the stimulus reathes
maximum value. Hence, the region where transitions occtraiersed with maximal speed.
This effect will become important later on, when we add ntagbe system. A similar situation
is found whenf is an integer multiple of,.

As f departs fromys,, locking can no longer take place by adapting the circutegjpeed in-
side the cycle. Iff =~ f.., transitions between attractors become likely, so markimgcmodes
based on periodically switching trajectories are possiblese interlacing locking modes give
rise to the complicated structures in the central frequérand of Fig. 9A-C.

At low amplitudes {; < 0.2uA/cm?), the system is essentially bistable, and the presence
of the sinusoidal component has little impact in the firinteraAbove this amplitude, if is
far away from bothfg, and f..., locking becomes difficult. For largg, whenf < fg,, the
input signal oscillates slower than the firing rate. Themefairculation around the limit cycle
is unstable, since the whole cycle wobbles back and forthhase space along the horizontal
direction, with frequency. If the amplitude of the wobbling movement is sufficientlyge, the
firing trajectories cross the subthreshold basin, and thesycannot escape from the quiescent
state. At this point, the system becomes entirely subtlotdgsee white areas in Figs. 9A and
B). Only with higherI, values can firing be recovered.

6 Bistability in the presence of both noise and sinusoidal in
put

In Fig. 10 we display the spike trains obtained when the igpuatent contains both the oscilla-
tory and the noisy componentg (> 0 ando > 0 in Eq. 2). Two very different behaviors can

21



f=51Hz =0

Sub-
threshold

0.1

Probability

o 1E-3
, ©
G
s¢
@ £
1E-5
0 100 200
ISI (ms
f=68 Hz (ms)
10
k]
o
LB
= >
@ < £ 01
Qo
©
el
[
a
) 1E-3
o2
5%
@ £
1E-5
0 100 200
ISI (ms)

Figure 10: Spike trains obtained when both an oscillatindy@noisy term are included in the
input current. Simulation time: 500 ms. Tog: = 51 Hz. Bottom: f = 68 Hz. Different
columns correspond to differeatvalues expressed imAms'/?/cn?. Right: IS distributions
for o = 0.5 pAms'/?/c?. In all panels,], = 25.5 A/ cm?, andl, = 0.5 A/ cm?.

be seen, depending on whetlfas near tof,.; or to fg,.. If f ~ 50 Hz, markedly different spike
trains are obtained when we start with sub or with suprabfmigsinitial conditions. A com-
paratively large amount of noise is needed to induce transibetween the two attractors, and
silent periods tend to be long, as evidenced by the longrtdaiie I1SI distribution. Noticeably,
during the firing periods, spike trains are remarkably ragalen when noise is comparatively
large, with almost no visible evidence of spike-time jittsoise, hence, seems to be necessary
to induce transitions, but has almost no effect in shiftimgjvidual spikes.

Contrasting with the case &f = 0 (see Fig. 5A), now the multiple peaks in the ISI distribu-
tion are all separated by 20 ms, with no distinction between the first peak and the sulesqu
ones. Whery = 50 Hz, both the subthreshold elliptic trajectory and the firiimgjt cycle are
circulated at 50 Hz. Hence, if each ISI represents one fatl &xound the limit cycle and an
arbitrary number of turns around the fixed point, ISIs areessarily integer multiples of 20 ms.

When f ~ 68 Hz, instead, even the noiseless system=( 0) fluctuates between the two
attractors (Fig. 9C), giving rise to both spikes and silesriguls. Comparatively small amounts
of noise introduce numerous stochastic transitions betweetwo attractors and also give rise
to spike-time jitter. The ISI distribution contains a firsgk at 19 ms, approximately corre-
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sponding to the 50 Hz firing observed in the stretches whesytsiem generates several spikes
in the suprathreshold state. Subsequent peaks, howevyagparated by 15 ms, corresponding
to an oscillation of approximately 68 Hz. Wh¢n= 68 Hz, the subthreshold ellipse is traversed
at 68 Hz. However, the limit cycle is still traversed at 50 Hence, if each ISI represents one
full turn around the limit cycle and an arbitrary number afnsiaround the fixed point, peaks

are necessarily separated by 15 ms intervals.

The resting state is more susceptible to the external freyuthan the firing state: The
subthreshold ellipse is circulated at the frequency of tkteraal current, whereas the limit
cycle remains afy,, unless the oscillatory amplitudg is increased substantially. Therefore,
for any input current different fronfs,, the separatrix divides phase space into two regions
of conflicting frequencies. The conflict is particularly im@able if f = f.., Since for this
frequency, the ellipse is large. The subthreshold trajgahence pushed very near of the
limit cycle, and small amounts of noise suffice to inducesraons.

The high transition rates obtained with~ f..; and the low ones fof ~ f; are also
evident in the slope of the the exponential envelope of thetahe ISI distribution. The flat
tail observed forf = 50 Hz, and the steep one fgr ~ f.., imply that the transition rate
Vsub—ssupra 1S larger (Rowat and Greenwood, 2011).

In Fig. 11, we show the dependence of the transition ratehi@mitmount of noise and
the input frequencyf. In the first row of A we see that when the oscillatory compdrisn
small (/; = 0.3uA/cm?) two general observations can be made: (a) For large amofintise
Vsub—ssupra 1S @lways larger thamg,,.—,sun, and (b), the two transition rates increase monoton-
ically with the amount of noise. From these two points we magatude that noise tends to
increase transitions in both directions and for all freques, but the transitiopub — supra
is more enhanced thasmpra — sub. In essence, noise favors the suprathreshold state. In
addition, for small amounts of NOiSEy,b—supra t€NAS t0 zero, and does so more rapidly than
Vsupra—ssub- 1 NiS implies that the system spends most of the time in théhseshold state. The
exception is given by an input frequeng¢y~ f.., for which even in the noiseless case both
transition rates are different from zero. This is becaudh this frequency, the system switches
between attractors even in the absence of noise.

It is easy to build an intuitive picture where noise favoesitions. Less intuitive, however,
is the behavior obtained when the oscillatory componerdnger (; = 0.7uA/cm?). In the
second row of panels of Fig. 11A, we see that noise may eitloeease, decrease, or leave the
transition rates unaffected, depending on the input frequeTo understand this behavior, we
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Figure 11: Dependence of the transition ratgs,,su» (black) andvguy,supra (White) on stim-
ulus parameters. For all data poinfs,= 25.4u A / cm?, and the stimulus was applied until
5000 spikes were obtained\: Transition rates as a function of input noise, for four eliént
input frequencies. Topl; = 0.3puA/cm?. Bottom: I; = 0.7A/lcm?. B: Transition rates as a
function of input frequency, for four different amplitudés The amount of noise is fixed at
0.51A ms'/?/cn?.

recall the results of Fig. 9. For those frequencies wheresyiséeem already switched between
attractors even fo# = 0, transitions may actually be suppressed by noise. Sucle isabe for

f = 68 Hz, in the third panel of the second row of Fig. 11A. Transiieupra — sub become
less likely when noise increases, and the inverse transit@main essentially unaffected. The
asymmetry between the two directions is due to the fact thiserhas a larger impact in per-
turbing trajectories along the limit cycle, that are aligadmewhat unstable, than around the
fixed point, that is stabilized by the resonating input signa

The transition rate,p,.sup also decrease with when f = 35 Hz. In this case, the
noiseless system is entirely in the subthreshold state taltiee large-amplitude, horizontal
wobbling movement of the limit cycle. In the noiseless systdownward transitions occur
almost immediately, whereas upward transitions neverrdogreasing the amount of noise,
hence, can only suppress transitiengra — sub, and enhance thoseb — supra.

If f ~ fa the suprathreshold state dominates at all noise levelsisitians to the firing
state are frequent, whereas transitions to the subthiestaik are rare. The difference between
the transition rates in both direction is due to the fact thlaén f ~ f5,, circulation around
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the limit cycle is synchronized to the external signal. Henevery time the system passes
through the transition phase (below the fixed point), theemwtl signal is positive and has
maximum strength, pulling the trajectory maximally to thght. This force, supplied at this
particular phase, is optimal to jump from the fixed point te imit cycle, but not the other way
round. This argument only holds fgr ~ f5,. (or its harmonics). Any other input frequency
is not synchronized with the circulation around the limitkey so the external force may be
either positive or negative as the system passes throughatigtion phase. Consequently, the
rectification effect is lost.

For f = 100 Hz, the noiseless system is bistable. Hence, the additiowiske produces
gualitatively the same effect observed with smaller aragkt

Figure 11B displays the dependence of the transition ratéstiae input frequency, when
the amount of noise is fixed. We see that for small amplitutt@sisition rates are roughly
independent off, with only a mild suppression of the transitisnpra — sub for f ~ fj,.
As I, grows, however, the dependence on the input frequencyasese For large amplitudes,
the dynamics af = fi, (and its harmonics) is entirely suprathreshold (the blacke goes to
zero). Forf = f,. the two transition rates remain approximately equal, dutéoswitching
trajectories. For slow input frequencies (frequenciesvibich the system becomes purely
subthreshold in the noiseless case), noise allows ocadi@msitions to the suprathreshold
state, though such events become less and less likélygasws.

7 Frequency-dependence of reliability in bistable neurons

The dynamical tools explored in the previous sections canb®used to understand the ques-
tion posed in Fig. 1, and the unresolved issues raised inZrigccording to previous studies
(Hunter et al., 1998; Fellous et al., 2001; Schreiber e28l04; Schreiber et al., 2009), in the
purely subthreshold regime (smaj) maximal reliability is obtained when the input frequency
coincides withf,.s. In the purely suprathreshold case (lafgg instead, the optimal frequency
is fsr. The object of the present study is to explore the religbditneural responses whep

is in the bistable regime. The result of such exploratiorssiemarized in Fig. 12.

Reliability in the bistable zone is not a straightforwartenmpolation between the sub- and

supratheshold results. In Fig. 12 we see that reliable zhsglayed in dark) mainly appear
at fs, and its first harmonic. However, a complex structure of s8ifs also visible, most
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Figure 12: Reliabilityy? as a function of the input frequengyand the mean stimulug, for
the same neuron as in Fig. 1. Whénis near the subthreshold range ¢3pA/cm?), the cell
only fires whenf ~ 68 Hz. In the bistable range, a complicated structure of blegcippears.
Well above threshold, firing is maximally reliable At= f;.. Number of trials: 5007, = 0.5

pAlem?; o = 0.5 pAlem? ms/?; recording time: 500 ms. Suprathreshold initial condigion
obtained by adiabatially approaching the measugddom above.

notoriously, two intermediate frequencies (horizontaés), and a number of preferrégvalues
(vertical lines). In these zones, the system has a strorknigenode, stabilized by the input
signal. Unreliable zones (lighter areas) appear throughdifferent mechanisms. First, noise
can introduce temporal jitter, anticipating or delaying ttming of a given spike. Second, noise
can induce transitions between attractors, introduciofppged silences. The relevance of each
of these factors depends on the stimulus frequency.

Reliability when f =~ fg,

Whenf =~ fg,, input noise has little effect in introducing spike-timtgr, for the same reasons
that previous studies identified in the fully suprathredh@gime. The locking between the
circulation around the limit cycle and the sinusoidal inpamponent makes firing particularly
robust. Previous studies have shown that when the firinghlotd is traversed with a steeper
voltage slope, spike-time jitter diminishes (Bryant andy@8elo, 1976; Cecchi et al., 2000).
Hence, reliability is high because f¢rx f;,, jitter is minimal.

In addition, for moderate or strong amplitudgs transitionssub — supra occur at a high
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rate, whereas the inverse transitiomgra — sub virtually never occur. The point in phase
space where transitions are likely to occur is locked to makisinusoidal stimulation. There-
fore, the time interval where noise is capable of induciagsitions is reduced, and the system
remains almost always in the suprathreshold state. Heac¢, & f;, reliability is high also
due to the fact that there are almost no missing spikes, amdasing noise levels have only a
marginal effect.

Reliability when f = fi

There are situations, however, where: f;, may not be the optimal input frequency, since the
system may not be able to reach the limit cycle. If the amgétly is small, the amount of noise

o is small, and the system is initially in the subthresholdestaeaching the limit cycle involves

a transitionsub — supra. This transition is much more likely wheh~ f,., than withf ~ f..
Recall from Fig. 11 that whea — 0, the transition rat@s,,supra — 0 for f ~ fg,, implying
that infinite long times are required to jump to the limit @y/clThis transition rate, however,
remains approximately at 10 Hz fgr ~ f..s, SO 100 ms should suffice. As a consequence,
in Fig. 2, for subthreshold initial conditions ai < 0.2xA/cm?, reliability vanishes for all
input frequencies except~ f.., wherex? remains at a small, nonzero value. In this regime,
firing is structured as an alternation of circulations abthre limit cycle at frequencys,, and
around the fixed point at frequendgy.;. The alternation between attractors introduces a rich
variety of locking modes, that allow the system to accomnmttze trajectory to the external
frequency. This situation allows noise to be highly effeein introducing spike-time jitter and
transitions to the subthreshold state, since minor peatiohs often suffice to shift the phase of
these complex trajectories. As unreliable as these respanay be, they are still more reliable
than no spiking at all, or than spiking every several seconds

Dependence of reliability on the initial state, and on the lagth of the recording window

Even when starting with suprathreshold initial conditicesiching a locked state typically takes
several turns around the limit cycle. For short recordingdeiws, in many trials the system
may not have enough time to accommodate its circulationgtwmeeach entrainment with the
external signal. During the initial transient cycles thsteyn may or may not be highly sensitive
to noise, depending on the relative phase between the ingndlsand the initial position of

the system on the limit cycle. Noise sensitivity involvegtbepike-time jitter and transition

probability. The resulting reliability map is strongly depdent on the details of the initial state.
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Indeed, the presence and location of white areas as the ortbg isuprathreshold panel of
Fig. 2A is contingent on the detailed initial conditionsdaaiso on the phase of the sinusoidal
input. If the oscillatory input is implemented with a cosifumction (instead of a sine), the

location of such areas is displaced.

The inverse of the transition rates determines which reogrohtervals can be considered
short, and which are long enough to reach the stationargt®tu If the recording time is
shorter than the inverse of both transition rates, religbi$ likely to be low, since the evo-
lution of a given trial depends critically on the particutealization of the noise, and on the
phase of the oscillation in which the simulation is startéthe recording time is substantially
longer than the inverse of one of the transition rates, butheother, then the system behaves
as entirely subthreshold, or entirely suprathreshold.y@tien the recording time is substan-
tially longer than the inverse of both transition rates, sketionary situation emerges. Initial
conditions, hence, matter inasmuch as the stationaryistatd yet reached.

8 Conclusion

Previous studies have proposed simple rules by which the frgquency producing maximally
reliable spiking can be predicted. The rules depended omh&héhe neuron was clearly below
or clearly above threshold. The present study exploredehavaor of reliability at threshold, in
bistable neurons. We showed that there is no simple rulesthadthly merges the optimal input
frequency fromf,., into fg.. Instead, at threshold both frequencies coexist, induaitayge
variety of locking modes. These modes can explain the cotitplebserved in reliability maps.
Similarly complex behaviors are expected to appear alsthierdistable system endowed with
two natural frequencies. As seen in Fig. 12, complexity $qoi@gressively as transitions into
one of the attractors become much more likely than into therst as happens when we shift
from the center of the bistable zone, moving away from thokesh
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