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1: Centro Atómico Bariloche and Instituto Balseiro, San Carlos de Bariloche, Argentina. 2: Institute for
Theoretical Biology, Humboldt Universität zu Berlin and Bernstein Center for Computational

Neuroscience, Berlin, Germany

Abstract:

The reliability of a spiking neuron depends on the frequencycontent of the driving input

signal. Previous studies have shown that well above threshold, regularly firing neurons generate

reliable responses when the input signal resonates with thefiring frequency of the cell. Instead,

well below threshold, reliable responses are obtained whenthe input frequency resonates with

the subthreshold oscillations of the neuron. Previous theories, however, provide no clear pre-

diction for the input frequency giving rise to maximally reliable spiking at threshold, which is

probably the most relevant firing regime in mammalian cortexunder physiological conditions.

In particular, when the firing onset is governed by a subcritical Hopf bifurcation, the frequency

of subthreshold oscillations often differs from the firing rate at threshold. The predictions of

previous studies, hence, cannot be smoothly merged at threshold. Here we explore the behavior

of reliability in bistable neurons near threshold using three types of driving stimuli: constant,

periodic and stochastic. We find that the two natural frequencies of the system, associated to

the two coexisting attractors, provide a rich variety of possible locking modes with the exter-

nal signal. Reliability is determined by the sensitivity tonoise of each locking mode, and also

by the transition probabilities between modes. Noise increases the amount of spike-time jitter,

and minimal jitter is obtained for input frequencies coinciding with the suprathreshold firing

rate of the cell. In addition, noise may either enhance or inhibit transitions between the two

attractors, depending on the input frequency. The dual roleplayed by noise in bistable systems

implies that reliability is determined by a delicate balance between spike-time jitter and the rate

of transitions between attractors.
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1 Introduction

In many brain regions, single neurons convey large amounts of information in the precise tim-

ing of individual spikes (Mainen and Sejnowsky, 1995). Spike timing is determined by two

factors: the intrinsic properties of the spiking neuron andthe temporal characteristics of the

input currents. In cortical cells, the total input is a combination of localized synaptic inputs and

large-scale fluctuating fields. The latter determine the local field potentials surrounding the cell,

and their spectral characteristics strongly depend on the behavioral state of the subject (Buszáki,

2006). Since the frequency content of the driving signal hasa profound impact on the reliability

of neural activity (Tiesinga et al, 2008), it is important tounderstand which input frequency

bands produce most reliable responses. This, of course, means to understand the interplay of

intrinsic neuronal oscillatory properties and the extrinsic driving signal.

Previous studies have identified the input frequencies thatinduce reliable spiking in neurons

driven by suprathreshold (Hunter et al., 1998; Schreiber etal., 2004) and subthreshold stimuli

(Fellous et al., 2001; Schreiber et al., 2009). When the meaninput current is above threshold,

spiking is maximally reliable when the input frequency coincides with the firing rate frequency

ffir. Below threshold, instead, the optimal input frequency is the subthreshold resonancefres,

at least, for neurons whose resting state is governed by a spiral fixed point, characterized by a

well-defined frequency (Izhikevich, 2007). When non-resonant neurons are driven with sinu-

soidal stimuli, the slower the stimulus, the more reliable the obtained response. These studies

allow us to predict the reliability of neurons well above or well below threshold. From the

physiological point of view, however, these extreme regimes are only marginally relevant. In

realistic situations neurons are typically maintained close to threshold, in order to maximize

their selectivity by firing intermittently. It is thereforeimportant to extend previous studies in

order to also encompass situations where cells fluctuate around threshold.

In non-resonant type 1 neurons the firing onset is governed bya saddle-node bifurcation on

the invariant circle, and the optimal subthreshold frequency fres = 0 merges continuously with

the optimal suprathreshold firing frequencyffir, since the latter vanishes at threshold. Neurons

that pass to the firing state through a supercritical Hopf bifurcation also mergefres into ffir

continuously, in both cases with frequencies larger than zero, and coinciding with the imagi-

nary part of the eigenvalue losing stability. The situationis different, however, for models that

undergo a subcritical Hopf bifurcation, since at thresholdfres is typically different fromffir,

as exemplified in Fig. 1. Such models are often used to represent the firing threshold of sev-

eral types of neurons, as stellate cells of entorhinal cortex, various interneurons (fast spiking,

2



Figure 1: Optimal input frequencyf predicted by previous theories, displayed as a function of
the mean input currentI0, in a type II Morris Lecar model neuron. Firing onset is governed by a
subcritical Hopf bifurcation. Well below threshold, the optimal f coincides with the subthresh-
old resonance of the cellfres. Well above threshold, the optimalf coincides with the firing rate
ffir. The object of this paper is to reveal the optimal input frequency around the firing theshold.

late spiking and stuttering cells), reticular thalamic neurons and mesencephalic V neurons of

brainstem (Izhikevich, 2007). Unfortunately, in these cases, previous theories do not give an

unambiguous prediction of the value of the optimal input frequency.

Our goal is to analyze the frequency dependence of response reliability of neurons operating

around their firing threshold. We work with a type II Morris Lecar neuron model containing a

bistable zone at the firing onset. We observe that the degree of reliability depends in a complex

way of the input frequency, the amplitude of the oscillatorycomponent in the input signal, the

amount of noise, the initial conditions, and the total recording time (Sect. 2). The complexity of

the problem is explained through an analysis of the dynamical properties of the bistable system

when driven with time-dependent stimuli, here developed inSects. 3-6. These tools allow us

to bridge the gap between the former supra- and subthresholdexplorations, and extend them

across the firing threshold.

2 Reliability in the bistable zone of Morris-Lecar neurons

For simplicity, we choose a 2-dimensional neuronal system.Similar results are obtained for

higher-dimensional models with the same bifurcation structure at threshold (e.i., Hodgkin-
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Huxley). The equations of the Morris-Lecar model are

C
dV

dt
= −Iion(V, w) + I(t),

dw

dt
= −

w − w∞(V )

τw(V )
, (1)

whereIion(V, w) = gL(V − VL) + gCa(V − VCa) + gKw(V − VK), and other parameters as in

Schreiber et al. (2009). In order to study the frequency dependence of reliability, we model the

input currentI(t) as

I(t) = I0 + I1 sin(2πft) + Inoise(t), (2)

whereInoise is Gaussian white noise with

〈Inoise(t) Inoise(t
′)〉 = σ2 δ(t− t′). (3)

All simulations were performed with a stochastic second order Runge-Kutta integration routine

(Honeycutt, 1992), and integration stepdt = 0.1 ms, which is approximately 20 times smaller

than the passive characteristic time of the membraneC/gL.

To measure the degree of reliability, we run the system of Eqs. 1 a large number of trials

(500 or 1000) always with the same initial conditions and oscillatory input, but independent

realizations of the noisy termInoise. We evaluate reliability by estimating the degree of synchro-

nization between trials (Golomb and Rinzel, 1993, 1994)

χ2 =
Var[psth(t)]

〈Var[ri(t)]〉i
, (4)

whereri(t) is a binary string representing triali, containing a 1 in every time bin where a

spike was generated, and a 0 otherwise. In this paper, we parse the spike train in time bins of

duration 1 ms. In Eq. 4,Var represents the temporal variance, andpsth(t) = 〈ri(t)〉i is the

trial average of binary strings. The value ofχ2 is an estimate of the fraction of synchronized

trials, and when it drops below the inverse of the total number of trials, spike generation is

completely unreliable. The results presented here remain essentially unchanged when other

reliability measures are employed (e.g., Schreiber et al.,2003).

When the value ofI0 is chosen so that the neuron is at threshold, and inside the bistable

regime, reliability depends strongly on the input frequency f , the amplitudeI1 of the sinusoidal

stimulus, the amount of noiseσ, the initial conditions (suprathreshold or subthreshold)and the

amount of stimulation time, as illustrated in Fig. 2. Several questions arise from this figure.

What does the complex vertical structure represent? Why do some regions of the plane(f, I1)

become more reliable, and others less reliable, when the stimulation time is increased? When
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Figure 2: Reliabilityχ2 in a Morris Lecar model neuron driven with sinusoidal input current
(Eq. 2) of amplitudeI1 (in µA/cm2) and frequencyf . Mean stimulusI0 = 25.4µA/cm2 and
amount of noiseσ = 0.3µAms1/2/cm2). Different gray levels indicate different reliability val-
ues, from perfectly reliable (black) to completely unreliable (white). The areas where no spikes
are generated appear in white.A: Total stimulation time: 100 ms.Top panel: subthreshold
initial conditions:V (t = 0) = −21.35 mV, w(t = 0) = 0.2. Bottom panel: suprathreshold
initial conditions:V (t = 0) = 4.65 mV, w(t = 0) = 0.43.B: Total stimulation time: 1000 ms.
Initial conditions: same as in A. Right: greyscale ofχ2.

and why do initial conditions matter? In the bottom panel of Fig. 2A, why do we see confined

regions where reliability goes to zero? In order to answer these questions, we explore the

dynamical properties of the Morris Lecar neuron in simpler contexts. In Sect. 3 we describe

the autonomous case (I1 = 0 andσ = 0). In Sect. 4, we incorporate a noisy term to the input

current (I1 = 0, σ > 0); in Sect. 5 we return to the noiseless situation, but we add an oscillatory

component to the input (I1 > 0, σ = 0); and finally, in Sect. 6 we consider the fully complex

case of Fig. 2 (I1 > 0, σ > 0).
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3 Bistability in the autonomous type II Morris-Lecar neuron
model

In this section, the external input currentI(t) is taken to be constant, and equal toI0. In Fig. 3A

Figure 3: Invariant trajectories of the autonomous Morris-Lecar neuron model (σ = 0, panels A
- C), and their noisy version (panel D, withσ > 0). A: Maximal and minimal voltage amplitudes
of invariant trajectories, as a function ofI0. White: resting subthreshold fixed point. Grey:
unstable limit cycle. Black: stable firing limit cycle.B: Frequency of the invariant trajectories,
as a function ofI0. Line conventions: same as in A.C: Phase-space invariant trajectories for
σ = 0 in the three different firing regimes: subthreshold (I0 = Ia = 24.8µA/cm2), bistable
(I0 = Ib = 24.87µA/cm2 and I0 = Ic = 25.6µA/cm2), and suprathreshold (I0 = Id =
26.3µA/cm2). D: Same as C, but withσ = 0.05µA ms1/2/cm2.

- 3C, the noiseless system is described. In Fig. 3A, the maximal and minimal voltage amplitudes

of the invariant trajectories are displayed as a function ofI0. The frequency of oscillation along

these trajectories is shown in Fig. 3B. The number of invariant trajectories and their stability
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depends on the value ofI0. Trajectories in phase space are shown in Fig. 3C.

For I0 < 24.82µA/cm2 (caseIa), only a single invariant trajectory exists: a spiral fixed

point, corresponding to the resting subthreshold state. The voltage component of this point is

given by the white line in Fig. 3A. For all initial conditions, the system circles counter-clockwise

down to the fixed point, giving rise to damped voltage oscillations. Asymptotically, the voltage

fluctuations have zero amplitude, so the maximal and minimalamplitudes shown in white in

Fig. 3A coincide. The frequency associated to the angular movement around the fixed point is

around 68 Hz, and depends only mildly onI0 (Fig. 3B). This frequency defines the subthreshold

resonancefres of the cell. It can be obtained analytically by linearizing the system of Eqs. (1)

around the fixed point, and taking the imaginary part of the associated eigenvalue.

WhenI0 is increased beyond24.82µA/cm2 (caseIb), two limit cycles (in Fig. 3C, the stable

one displayed in black, and the unstable one, in gray) appearin a distant region of phase space.

The stable cycle constitutes the firing attractor, and the frequency of oscillation around this

cycle is the firing rateffir. Since the unstable limit cycle is virtually never observed(trajectories

depart away from it), we constructed the unstable trajectories of Fig. 3C by running the system

backward in time. AsI0 is increased further (caseIc), the unstable limit cycle shrinks down

towards the stable fixed point, colliding with it atI0 ≈ 26.23µA/cm2, and inverting the stability

of the remaining fixed point. Hence, within the rangeI0 ∈ [24.82, 26.23]µA/cm2, the system

has three invariant trajectories: the stable fixed point (white), the unstable limit cycle (grey), and

the firing limit cycle (black). The amplitude of the unstablelimit cycle diminishes continuously

(Fig. 3A) connecting the two stable attractors, and so does the frequency (Fig. 3B).

The unstable invariant trajectory constitutes a boundary (also calledseparatrix) between

the basins of attraction of the resting state and the firing cycle: All initial conditions that lie

inside the separatrix evolve towards the resting state, whereas those that start outside approach

the firing limit cycle. Later on, when when we add a noisy termInoise to the input signal,

transitions between the two attractors will become possible. The only portion of the limit cycle

that comes close to the fixed point is at the bottom of the orbit, whenw reaches its minimum

value. Transitions will typically take place in this particular region of phase space (Rowat and

Greenwood, 2011).

ForI0 > 26.23µA/cm2 (caseId), the resting state is no longer stable, and the only attractor

of the system is the firing limit cycle. In this case, all initial conditions tend rapidly towards the

black trajectory.
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4 Dynamics of the noise-driven system

In Fig. 3D, the input current contains a noisy component (σ > 0). For the small value of

σ depicted here, trajectories in phase-space retain many of the properties discussed for the au-

tonomous case. Still, the time-dependent system describedby Eqs. (1) is no longer autonomous,

so now trajectories often intersect each other. In the purely subthreshold regime, the resting state

is no longer a fixed point (see the enlarged inset forIa), although trajectories still tend to remain

confined to a small region whose diameter is proportional to the amount of noiseσ. Around

the fixed point, noisy trajectories have a roughly elliptic shape, and the power spectrum ofV (t)

has a sharp peak at frequencyfres. Therefore, when small amounts of noise are injected into

the system, the fixed point of the autonomous case is transformed into a stochastic subthreshold

trajectory with main revolution frequencyfres.

Whenσ > 0, the critical values ofI0 defining the borders of the bistable region may differ

from the ones of the unperturbed case. Still, for smallσ, for someI0 in the neighborhood of

24.82µA/cm2, the transition to bistability takes place. Due to the non-stationarity of Eqs. (1),

now both the firing limit cycle and the unstable cycle occupy broad regions of phase space,

crossing their own paths, as well as other trajectories. In any case, as long asσ remains small,

the main features of the autonomous system remain: The unstable limit cycle shrinks down

towards the subthreshold trajectory, and eventually, after the collision of the two, the only stable

attractor of the system is the firing limit cycle.

4.1 Transient and stationary firing rate

The coexistence of two stable attractors in the noiseless case has important consequences for the

behavior of the noisy system. In the absence of noise, both the fixed point and the stable limit

cycle have basins of attraction. If the system is initially in one of the basins, it inevitably evolves

towards the corresponding attractor. Strictly speaking, the concept of basins of attraction no

longer holds when noise is incorporated. Although the system may initially be in the basin of

one of the attractors (for example, the fixed point), noise may induce transitions to the other

basin (the limit cycle). The probability of transitions depends on the amount of noiseσ, the

geometry and location of the attractors (determined byI0), and on the direction of the jump

(from suprathreshold to subthreshold, or vice versa).

Example raster plots are displayed in Fig. 4A, for suprathreshold (top) and subthreshold
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Figure 4: Variation of mean firing rates with initial conditions and total recording time.A:
Raster plot for different noise samples, for 10 supra-threshold initial conditions (top) and 10
sub-threshold initial conditions (bottom).I0 = 25.5µA/cm2, σ = 0.4µAms1/2/cm2. Total time:
2000 ms. The rectangles indicate the time windows used to measure firing rates in panelsB and
C (100 ms) andD (500 ms).B: Single-trial firing rates measured in a 100 ms time window, as
a function ofI0 for σ = 0.4µ A ms1/2 / cm2 (top), and as a function ofσ for I0 = 25.4µA/cm2

(bottom). The two curves in each panel correspond to sub- andsuprathreshold initial conditions.
C: Same asB, but each point is obtained by averaging 200 cells with independent noise samples.
D: Same asC, but now using a 500 ms time window to compute the rates.E: Same asB-D, but
now using a 25,000 ms time window.

(bottom) initial conditions. When the system is in the basinof attraction of the limit cycle,

spiking takes place at a fairly regular rate. Transitions tothe basin of the fixed point appear as

blank periods in raster plots. No intermediate rates are observed. When suprathreshold initial

conditions are used, the trial starts in the firing state, whereas subthreshold conditions begin in

the quiescent state.

In Fig. 4B we see the firing rate obtained for a single trial in a100 ms time window. The

top panel is constructed by slowly increasingI0, and recording the number of produced spikes,

and then slowly decreasingI0 to the starting value. The two obtained curves form a hystere-

sis cycle describing the behavior obtained for subthreshold and suprathreshold conditions. In

the particular run of Fig. 4B, subthreshold initial conditions produce quiescent behavior, and

suprathreshold conditions produce regular firing. The firing state may contain either 5 or 6
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spikes in the 100 ms recording window, depending on the noisesample. Hence, in the upper

panel of Fig. 4B, the firing state contains fluctuations between 50 and 60 Hz. In the lower

panel, the firing rate is depicted as a function ofσ, for sub and suprathreshold initial condi-

tions. Asσ grows, transitions between the (former) fixed point and the limit cycle become

increasingly frequent, and the system immediately loses memory of its initial state. Hence, for

σ > 0.5µAms1/2/cm2, the two curves coalesce.

However, a single run does not suffice to characterize the properties of the system, because

the critical values ofI0 andσ where transitions take place depend on the particular noisesample

at hand. Other noise samples may shift these values. Therefore, in Fig. 4C we show the same

curves as in Fig. 4B, but averaged among 500 noisy cells. The population average eliminates

the jagged behavior, giving rise to continuous curves. One should remember, however, that no

intermediate firing rates are observed in single cells. In Fig. 4D, the analysis is repeated, but

now rates are computed in a time window that is 5 times as long (500 ms). In the lower panel

of Fig. 4C and, more notably, Fig. 4D, the suprathreshold curve exhibits an inverse stochastic

resonance a function ofσ (Tuckwell and Jost, 2010; Tuckwell et al, 2009). Several parameters

determine the shape of these curves, as the size of the (transient) bistable zone (upper panel),

and the depth of the minimum defining the inverse resonance (lower panel). These parameters,

however, vary with the length of the recording window. For a long time window, we obtain the

results in Fig. 4E. In this example, in the upper panel (measured withσ = 0.4µAms1/2/cm2), the

curves corresponding to sub- and suprathreshold initial conditions coalesce, so the window can

be considered long enough to estimate stationary firing rates. However, for smallerσ values,

even the 25-second window employed here is not enough to reach stationarity, as can be seen

in the lower panel. For allσ > 0, one can find a recording window that is sufficiently long

such that there be no difference between the curves obtainedwith supra or subthreshold initial

conditions, and hysteresis be lost. After the first transition between attractors, the system can

no longer remember its initial state. If the system has time to switch between attractors a

large number of times, the average fraction of time spent in each basin is independent of initial

conditions. One would therefore expect that in the limit of infinite time, the suprathreshold

curve in the lower panel of Fig. 4E would coincide with the subthreshold curve, except for a

discontinuity atσ = 0, where the firing rate of the suprathreshold system should always be

equal to frequency of the noiseless limit cycle. Hence, in the limit, both bistability and inverse

stochastic resonance disappear. For low noise, however, the stationary situation is only reached

after unrealistically long waiting times. We must therefore characterize not only the stationary

situation, but also the transient ones.
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4.2 Transition rates between attractors

In the previous section, we saw that mean firing rates strongly depend on the duration of the

recording window. In order to obtain a stationary value, thewindow has to be long compared

to the rate of transitions between the two coexisting attractors. In this section, we study such

transition rates, showing that sometimes they oscillate periodically in time. We also analyze

their dependence on the amount of noiseσ.

In Fig. 5A we show the inter-spike interval (ISI) distributionP (τ) estimated from the his-

togram obtained in a 50000-spike run. We see a sharp peak at the origin, and a long, exponential

tail (Rowat and Greenwood, 2011), indicating that some silences can last for even more than 6

seconds - an extremely long period in the subthreshold state. The inset displays the details of

the distribution near the origin. Several peaks can be seen.The first and most prominent one is

located atτ = 19.5 ms, coinciding with the inverse of the frequency of the firinglimit cycle at

the selectedI0. Subsequent peaks are separated by 16 ms, only slightly longer than the inverse

of the frequency of the subthreshold oscillation frequency. The regular sequence of peaks im-

plies that firing either occurs after a single turn around thefiring limit cycle (first peak), or after

one turn around the firing limit cycle that before completionis interrupted by a transition to the

subthreshold state, where an arbitrary number of turns around the subthreshold fixed point fol-

low. Eventually, another transition to the suprathresholdstate takes place, the interrupted turn

is completed, and a spike is generated. The regular sequenceof peaks in the inset of Fig. 5A

implies that transitions only occur at integer multiples ofthe period of the subthreshold state

f−1
res , at least, during the first few turns, when the influence of noise is still not enough to corrupt

the coherence of the quasi-periodic motion around the limitcycle. These observations are in

agreement with previous analyses of trajectories in phase space (Rowat and Greenwood, 2011),

demonstrating that transitions occur at a precise locationin phase space, where the periodic

orbit approaches the fixed point.

The distinction between firing and silent periods implies that neurons generate bursts of

spikes. In the absence of noise, Morris Lecar neurons do not burst. Therefore, the bursting

observed here is due to the transitions between attractors induced by noise. The minimum

separating the first two peaks of the ISI distribution definesa limiting ISI τlim, which can be used

to determine whether a given ISI of durationτ was generated in the subthreshold regime (ifτ >

τlim), or in the suprathreshold regime (ifτ < τlim). The average sub- and suprathreshold ISIs

are depicted in Fig. 5B. We see that suprathreshold ISIs remain markedly invariant throughout

a wide range ofσ values. Instead, subthreshold ISIs vary by several orders of magnitude. Each
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Figure 5: Statistics of the transitions between the two stable attractors.A: ISI histogram ob-
tained in a run of 50000 spikes,I0 = 25.4µA/cm2, σ = 0.5µA ms1/2/cm2. Other panels:
simulations with 5000 spikes.B: Mean ISI in ms; supra-threshold (〈τsupra〉), sub-threshold
(〈τsub〉), and total〈τ〉.C: Ratiosqsupra andqsub of the number of supra or subthreshold ISIs and
the total number of ISIs.D: Probabilitiespsupra andpsub of finding the system in a supra or sub-
threshold state, at any given time (Eq. 5).E: Transitions probabilities per unit timeνsupra→sub

andνsub→supra (Eqs. 6 and 7).F: Dependence ofσc, defined as the noise level at which the two
transition rates are equal, with the mean currentI0. Black symbols: suprathreshold state, or
transitions from the supra to the subthreshold state. Whitesymbols: subthreshold state, or tran-
sitions from the sub to the suprathreshold state. The discrepancy between the results obtained
with different initial conditions was smaller than the sizeof the symbols.

subthreshold ISI contains a variable number of turns aroundthe fixed point. The average number

of turns decreases asσ increases, because noise favors transitions, and thereby,forestalls long

silent intervals.

We now define the quantities that allow us to measure transition rates between attractors. If
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〈τ〉 is the average ISI, andpsupra andpsub are the probabilities that at any given time the system

be found in the supra or subthreshold regimes, then

psupra =
1

〈τ〉

∫ τlim

0
P (τ) τ dτ,

psub =
1

〈τ〉

∫ +∞

τlim

P (τ) τ dτ. (5)

We call qsupra andqsub the ratio between the number of supra- and subthreshold ISIsrelative

to the total number of ISIs, respectively. In order to derivethe transition ratesνsupra→sub and

νsub→supra, we discretize time in small intervals of durationδt. We define the rateνsupra→sub

as the ratio between the number of bins immediately preceding a transition to the subthreshold

state and the total number of bins in the suprathreshold state. The total number of bins in the

suprathreshold state is equal to the total amount of time spent in the suprathreshold state divided

by the bin size, that is,psupraN〈τ〉/δt, whereN is the total number of ISIs. Out of this number,

Nqsub bins terminate the suprathreshold state, inducing a transition to the subthreshold state.

Therefore,

νsupra→sub =
qsub
psupra

1

〈τ〉
. (6)

In order to derive the rate of transitions from the subthreshold state to the suprathreshold state,

we follow an analogous argument, replacingpsupra bypsub. Note thatqsub should not be replaced

by qsupra, because the total number of transitions is alwaysqsubN , irrespective of the direction

of the transition. Hence,

νsub→supra =
qsub
psub

1

〈τ〉
. (7)

Combining Eqs. 6 and 7, we arrive at the balanced state relation

psupra νsupra→sub = psub νsub→supra, (8)

implying that if transitions in one direction occur at a higher rate than in the opposite direction,

then the system must spend proportionally longer periods oftime in the favored state.

Subthreshold ISIs last for a long time, but are few in number.This is shown in Fig. 5C,

where the probabilitiesqsupra and qsub are displayed. If one chooses an ISI at random, the

probability of selecting a suprathreshold ISI are substantially larger than that of a subthreshold

one - more so, ifσ is small. This does not imply, however, that the system spends more time

in the suprathreshold state, since subthreshold ISIs can bevery long. The probabilitiespsupra
and psub that at any given time the system be found in the supra or subthreshold states are

displayed in Fig. 5D. For smallσ, most of the time is spent in the subthreshold state. At about

σ = 0.4µAms1/2/cm2 the two transition rates become equal, so for even larger noise levels, the

suprathreshold state dominates.
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When the system is in a suprathreshold state, the probability per unit time to switch to

the subthreshold state isνsupra→sub. This transition rate, together with the complementary

νsub→supra, is displayed in Fig. 5E. Both rates increase substantiallyasσ grows. Initially, the

transition rate from supra to sub is larger, and at approximately σ = 0.4µAms1/2/cm2, the

situation reverses.

As mentioned earlier, an inspection of trajectories in phase space reveals that transitions

typically occur near the point where the limit cycle approaches the fixed point. That is, at two

specific phases along the suprathreshold and subthreshold trajectories. The fact that the rate

νsub→supra be larger thanνsupra→sub does not necessarily mean that, at the specific point in phase

space where transitions take place, noise is more effectivein inducing the upward transition

than the downward one. There is another factor at play, namely, that oscillations around the

fixed point are faster than those around the limit cycle, and therefore, there are more occasions

per unit time to go from subthreshold to suprathreshold thanthe other way round. To address

this point, in addition to the transition probabilitiesper unit time, we can calculate the transition

probabilitiesper unit switching occasionµsupra→sub andµsub→supra. These probabilities repre-

sent the likelihood to make a transition each time the systempasses through those phases where

switches are possible. They are related to the transition rates by

µsupra→sub = νsupra→sub × tsupra

µsub→supra = νsub→supra × tsub, (9)

wheretsupra andtsub are the inverse of the natural frequencies of the firing limitcycle and the

spiral fixed point, respectively, for the chosenI0 (14.8 ms and 19.4 ms in the case of Fig. 5).

These probabilities bear the same dependence with the amount of noiseσ as the transitions rates

ν, although they are always scaled between 0 and 1.

The valueσc = 0.4µ A ms1/2/cm2 constitutes a border in the scale of noise levels. Below the

border, the subthreshold state dominates, and above, the suprathreshold one. The critical noise

level σc required to equate the transition rates depends on the continuous stimulus component

I0, which was fixed to 25.4µA/cm2 in Fig. 5A-E. In Fig. 5F we show thatσc is approximately

linear with I0 with a slope of≈ -5 ms1/2. As I0 varies inside the bistable region, the critical

amount of noise required to equate the amount of time spent inthe sub and suprathreshold states

diminishes.

The aim of this section was to develop a criterion to determine whether a given recording

window was short or long. When the window is shorter than the inverse of the transition rate

νsupra→sub, all evolutions initiated in the suprathreshold state are likely to remain suprathreshold

14



during the entire trial. The same conclusion holds for the subthreshold case. Initial conditions,

hence, are expected to become irrelevant only when the duration of the recording window is

substantially longer than both transition rates, so that a good sampling of transitions in both

directions are guaranteed to be included. If the recording time is shorter, then different scenar-

ios are possible. For example, if the recording time is larger thanν−1
supra→sub but shorter than

ν−1
sub→supra, the system is effectively in the subthreshold regime, because it has time to switch to

the subthreshold state, but not enough to return to the suprathreshold one. In these conditions,

the curve of firing frequency as a function ofI0 (as in Fig. 4) appears shifted to the right, such

that the region where the two attractors coexist appears forlargerI0 values.

5 Dynamics of the noiseless, sinusoidally-driven system

In order to assess the frequency dependence of reliability,we need to drive the system with time-

dependent stimuli. Hence, we now stimulate the Morris-Lecar neuron with a deterministic,

time-dependent current of well-defined frequencyf , momentarily eliminating the noisy term

Inoise. The non-stationary nature ofI(t) again allows for crossing trajectories in phase space,

as seen in Fig. 6A. In the subthreshold regime, the resting state is no longer a fixed point, it is

now a small elliptic trajectory traversed at the frequency of the external signalf . The size of

the ellipse depends onf . In the neighborhood of the (former) fixed point, the system of Eqs. 1

can be linearized and solved completely for an oscillatory input current as in Eq. 2. The size

and shape of the stationary elliptic trajectory (reached after a brief transient evolution) can be

obtained analytically. In Fig. 6B we display the length of the major and minor axes as a function

of the input frequency. Maximal amplitude is obtained forf ≈ 68 Hz, that is, when the external

frequency coincides with the resonance frequency, the latter defined as the imaginary part of the

eigenvalue of the fixed point of the autonomous system (see Fig. 3B). The ellipse in the inset

of the lower and leftmost panel of Fig. 6A is therefore largerthan the ellipse obtained with any

other frequency.

WhenI0 crosses the critical current of the global bifurcation, a stable limit cycle appears

(black curve in Fig. 6A). For smallI1, the firing limit cycle is traversed at approximately 50

Hz. If f ≈ 50 Hz, the limit cycle is even more stable and has larger attracting capacity than

in the autonomous case. Asf departs from 50 Hz (and its harmonics), the disruptive effect of

the external signal grows. In the trajectories of Fig. 6A, the disruptive effect is evidenced in a

certain instability in the location of the lower right part of the limit cycle, whenI0 = Ib. There,

the trajectory wobbles, due to the impossibility to lock theexternal signal at 68 Hz with the
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Figure 6: Properties of selected trajectories in the Morris-Lecar neuron model driven with sinu-
soidal input (Eq. 2), withI1 = 0.1µA/cm2. A: Phase-space invariant trajectories in the three dif-
ferent firing regimes: subthreshold (I0 = Ia = 24.8µA/cm2), bistable (I0 = Ib = 25.1µA/cm2

andI0 = Ic = 25.6µA/cm2), and suprathreshold (I0 = Id = 26.3µA/cm2). Line conventions:
same as in Fig. 3.First row: f = 50 Hz. Second row: f = 68 Hz. B: Analytical calculation of
the frequency dependence of the size of the major and minor axes of the subthreshold ellipse.

circulation frequency at 50 Hz. The same happens with the unstable trajectory (gray). Finally,

whenI0 is larger than the critical current for the bifurcation of the fixed point, the resting cycle

is no longer attractive, and all trajectories approach the firing limit cycle.

The notion of purely subthreshold or suprathreshold trajectories only holds for input stimuli

where the oscillating component is small, as illustrated inFig. 7. In the left column (Fig. 7A),

we see that asI1 increases (i.e., as we move down in the graph), the width of the bistable zone

shrinks, and forI1 ≥ 0.4µ A/cm2, it disappears completely. The voltage traces are shown in

Fig. 7B, as a function of time. AsI1 grows, the amplitude of the trajectory corresponding to

subthreshold initial conditions (white) increases. In these trajectories, the voltage oscillates with

the frequency of the external input (43.5 Hz), which in this example is slower than the spiking

frequency (50 Hz) of the trajectory with suprathreshold initial conditions (black). ForI1 ≥ 0.4µ

A/cm2 the distinction between subthreshold or suprathreshold trajectories is lost, since both

initial conditions give rise to trajectories that switch back and forth between a 43.5 Hz, small-
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Figure 7: Effect of the amplitudeI1 of the sinusoidal stimulus component. Input frequency:
f = 43.5 Hz. I1 values indicated inµ A / cm2. A: Firing rate as a function of the continuous
stimulus componentI0. The firing rate corresponding to the autonomous caseI1 = 0 is shown
in gray also in the lower panels.B: Voltage traces as a function of time, with suprathreshold
(black) and subthreshold (white) initial conditions. Scale of ticks in the vertical axes: 20 mV.C:
Phase-space trajectories obtained with suprathreshold (black) and subthreshold (white) initial
conditions.D: Basins of attraction of the subthreshold state (white) andsuprathreshold firing
cycle (black). In the last panel, the initial conditions corresponding to trajectories that switch
back and forth between the two attractors are displayed in gray.

amplitude oscillation around the (former) fixed point, and a50 Hz, large-amplitude oscillation

around the firing trajectory. The same effect is evident in the phase-space trajectories of Fig. 7C.

In D, we show the basins of attraction of the subthreshold state (white) and suprathreshold firing

cycle (black). AsI1 grows, the basin of attraction of the subthreshold state becomes increasingly

enlarged and distorted, approaching the limit cycle. At a certain I1, the two basins coalesce, so

trajectories that have started in the subthreshold area areable to reach the limit cycle, and vice

versa. Depending on the input frequency, trajectories may either become purely suprathreshold,

or switch back and forth between the two attractors, as in thelast row of Fig. 7D. The few

isolated initial conditions that remain subthreshold, do so only for a specific choice of the initial

phase of the oscillating component of the sinusoidal stimulus. Therefore, for largeI1, almost

no trajectories can be classified into purely subthreshold or suprathreshold.
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The effects displayed in Fig. 7 remain qualitatively unchanged when we vary the input

frequencyf . There are, however, quantitative differences. When the input frequency is near

fres ≈ 68 Hz, the size of the subthreshold basin of attraction is particularly large. Therefore,

even a relatively small sinusoidal amplitudeI1 suffices to enlarge the subthreshold basin so that

it coalesces with the suprathreshold basin, allowing trajectories to reach the limit cycle. Instead,

when the input frequency is near toffir ≈ 50 Hz, the firing cycle is particularly robust, and the

basin of the subthreshold state is comparatively small. Hence, a largeI1 is required for the latter

to be able to touch the former. These effects are systematically explored in Fig. 8. In panel A, we
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Figure 8: Size and location of regions of bistability dependon stimulus frequency and ampli-
tude. A-C: Firing rate as a function of the continuous component of theinput I0, for several
stimulation frequencies and sinusoidal amplitudes.A: f = 50 Hz. B: f = 68 Hz. C: f = 80
Hz. D: Classification of trajectories into three categories: purely suprathreshold (black, all ini-
tial conditions give rise to spiking), purely subthreshold(white, all intitial conditions give rise
to quiescent behavior), and bistable (gray, some initial conditions result in spiking, and others
in quiescent behavior).I0 = 25.6µA/cm2.

see that whenf = ffir, the bistable region has a square shape, implying that the firing frequency

is fixed at 50 Hz, roughly independently ofI0. The width of the bistable zone, moreover,

increases with the amplitudeI1, so that whenI1 grows, the global bifurcation generating the

stable and unstable limit cycles appears for smallerI0 values. The oscillatory component, hence,

does not challenge the stability of the limit cycle. On the contrary, it enhances it. The subcritical

Hopf bifurcation that annihilates the fixed point, instead,is relatively unsensitive toI1.
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For other input frequencies, the width of the bistable zone always decreases withI1. When

f = fres (Fig. 8B), the bistable zone shrinks particularly rapidly.A smaller effect is observed

whenf is far away fromffir andfres (Fig. 8C). Hence, bistability is particularly robust when

the input frequency coincides with the firing rate frequency(Fig. 8A), and particularly fragile

when it coincides with the resonance frequency of the subthreshold state (Fig. 8B), other cases

showing an intermediate behavior.

In Fig. 8D we explore the types of trajectories that can be encountered with different com-

bination of input frequencyf and sinusoidal amplitudeI1. When all initial conditions give rise

to quiescent behavior, the corresponding(f, I1) point is displayed in white. When all initial

conditions give rise to spiking (that may be either regular or irregular, depending on whether

occasional tours around the fixed point are interleaved), the point is shown in black. When

suprathreshold initial conditions give rise to firing and subthreshold ones produce quiescent

behavior, the point is in gray. To construct the figure, for each pair(f, I1), we adiabatically in-

creasedI0 from a clearly subthreshold value (22µA/cm2) up to the target value (25.4µA/cm2).

The adiabatic increase ensured that, if the fixed point was stable at the targetI0, we would al-

ways remain near the fixed point, and therefore, we would be able to start the simulation with

subthreshold initial conditions. At the targetI0, we evaluated whether the system spiked or

remain quiescent, and thereby, determined whether the fixedpoint still existed. Next, we adi-

abatially decreasedI0 from a clearly suprathreshold value (28µA/cm2) up to the target value

(25.4µA/cm2), and evaluated whether spikes were generated or not. We thereby determined

whether the stable limit cycle still existed.

A prominent black tongue is seen at around 65 Hz, that is, nearthe frequency of the sub-

threshold resonance. Therefore, at these frequencies, comparatively small sinusoidal amplitudes

I1 suffice to push the (large) subthreshold trajectory into theregion occupied by the firing limit

cycle, giving rise to spiking even for subthreshold initialconditions.

Black areas in Fig. 8D represent cases where all initial conditions give rise to firing, but

provides no information about the firing rate. Whenever the system switches back and forth

between the two attractors, the average firing rate falls below 50 Hz. In order to identify the

switching cases, in Fig. 9A and B we display the mean firing rate of the cell in each point of

the(f, I1) plane, for sub and suprathreshold initial conditions. Initial conditions were searched

with the same adiabatic procedure of Fig. 8D.

The central black tongue of Fig. 8D at 65 Hz appears as the region where spikes are gener-

ated with subthreshold initial conditions in Fig. 9A. Within the tongue, however, a large variety
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Figure 9: Structure and complexity of the firing states of thesinusoidally driven, noiseless sys-
tem.I0 = 25.4µA/cm2 (bistable regime, in the autonomous system).A: Mean firing frequency
for subthreshold initial conditions.B: Mean firing frequency for suprathreshold initial condi-
tions. Dark areas correspond to 50 Hz firing. Lighter areas alternate circulation around the limit
cycle and the subthreshold attractor. White regions contain no spikes.C: Locking modesn : m,
wheren stimulus cycles occur in the same interval asm spikes. Each area represents the region
in the (f, I1) space where the firing rate differs fromnf/m in less than 10% of the amount
that would be required to be confounded with neighboring modesn ± 1 : m or n : m ± 1.
D-G: Example trajectories and applied stimulus displayed as a function of time. In all cases,
I1 = 0.8µA/cm2. D: f = 50 Hz, locking (1:1).E: f = 65 Hz, locking (4:2),F: f = 70 Hz,
locking (3:1),G: f = 100 Hz, locking (2:1). Insets: Trajectories in phase space. X axis: V. Y
axis: w.

of firing rates appear in stripes, building a complex structure in the(f, I1) plane. Dark areas

represent regular 50 Hz firing, as exemplified in Fig. 9D. Lighter regions represent alternating

trajectories, where the system skips periodically or aperiodically between the two attractors (see

examples in panels E-F). The firing rate of trajectories starting with suprathreshold conditions

(Fig 9B) coincides with the one obtained with subthreshold conditions inside the central tongue

(Fig. 9A). The complexity of these maps embodies all the mode-locking states that the system

can have, as found also in previous studies (Coombes and Bressloff 1999; Coombes and Owen

2001; Laing and Longtin 2003; Tiesinga 2002; Borkowski 2010, 2011). In Fig. 9C, we see the
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regions where the firing frequency is maintained at a fixed proportion (indicated by the num-

bers) of the input frequency. Notice that one same proportion may correspond to more than a

single locking pattern. For example, atI1 = 0.8µA/cm2 two different locking modes (shown in

red) are obtained forf = 65 Hz andf = 100 Hz (see panels E and F), and in both cases, the

stimulus frequency is twice the firing rate. Many of the striped structures in the locking map

coincide with the structures in the firing rate maps. Hence, complex locking patterns induce

complex firing-rate patterns.

When the external frequency is similar toffir, the circulation speed around the limit cycle is

adapted so that the firing rate is locked to the external frequency. Circulation along the lowest

portion of the cycle (whenw reaches its minimum value) occurs when the stimulus reachesits

maximum value. Hence, the region where transitions occur istraversed with maximal speed.

This effect will become important later on, when we add noiseto the system. A similar situation

is found whenf is an integer multiple offfir.

As f departs fromffir, locking can no longer take place by adapting the circulation speed in-

side the cycle. Iff ≈ fres, transitions between attractors become likely, so many locking modes

based on periodically switching trajectories are possible. These interlacing locking modes give

rise to the complicated structures in the central frequencyband of Fig. 9A-C.

At low amplitudes (I1 < 0.2µA/cm2), the system is essentially bistable, and the presence

of the sinusoidal component has little impact in the firing rate. Above this amplitude, iff is

far away from bothffir andfres, locking becomes difficult. For largeI1, whenf < ffir, the

input signal oscillates slower than the firing rate. Therefore, circulation around the limit cycle

is unstable, since the whole cycle wobbles back and forth in phase space along the horizontal

direction, with frequencyf . If the amplitude of the wobbling movement is sufficiently large, the

firing trajectories cross the subthreshold basin, and the system cannot escape from the quiescent

state. At this point, the system becomes entirely subthreshold (see white areas in Figs. 9A and

B). Only with higherI0 values can firing be recovered.

6 Bistability in the presence of both noise and sinusoidal in-
put

In Fig. 10 we display the spike trains obtained when the inputcurrent contains both the oscilla-

tory and the noisy components (I1 > 0 andσ > 0 in Eq. 2). Two very different behaviors can
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Figure 10: Spike trains obtained when both an oscillating and a noisy term are included in the
input current. Simulation time: 500 ms. Top:f = 51 Hz. Bottom: f = 68 Hz. Different
columns correspond to differentσ values expressed inµAms1/2/cm2. Right: ISI distributions
for σ = 0.5 µAms1/2/cm2. In all panels,I0 = 25.5µ A / cm2, andI1 = 0.5µ A / cm2.

be seen, depending on whetherf is near tofres or toffir. If f ≈ 50 Hz, markedly different spike

trains are obtained when we start with sub or with suprathreshold initial conditions. A com-

paratively large amount of noise is needed to induce transitions between the two attractors, and

silent periods tend to be long, as evidenced by the long tail in the ISI distribution. Noticeably,

during the firing periods, spike trains are remarkably regular even when noise is comparatively

large, with almost no visible evidence of spike-time jitter. Noise, hence, seems to be necessary

to induce transitions, but has almost no effect in shifting individual spikes.

Contrasting with the case ofI1 = 0 (see Fig. 5A), now the multiple peaks in the ISI distribu-

tion are all separated by≈ 20 ms, with no distinction between the first peak and the subsequent

ones. Whenf = 50 Hz, both the subthreshold elliptic trajectory and the firinglimit cycle are

circulated at 50 Hz. Hence, if each ISI represents one full turn around the limit cycle and an

arbitrary number of turns around the fixed point, ISIs are necessarily integer multiples of 20 ms.

Whenf ≈ 68 Hz, instead, even the noiseless system (σ = 0) fluctuates between the two

attractors (Fig. 9C), giving rise to both spikes and silent periods. Comparatively small amounts

of noise introduce numerous stochastic transitions between the two attractors and also give rise

to spike-time jitter. The ISI distribution contains a first peak at 19 ms, approximately corre-
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sponding to the 50 Hz firing observed in the stretches when thesystem generates several spikes

in the suprathreshold state. Subsequent peaks, however, are separated by 15 ms, corresponding

to an oscillation of approximately 68 Hz. Whenf = 68 Hz, the subthreshold ellipse is traversed

at 68 Hz. However, the limit cycle is still traversed at 50 Hz.Hence, if each ISI represents one

full turn around the limit cycle and an arbitrary number of turns around the fixed point, peaks

are necessarily separated by 15 ms intervals.

The resting state is more susceptible to the external frequency than the firing state: The

subthreshold ellipse is circulated at the frequency of the external current, whereas the limit

cycle remains atffir, unless the oscillatory amplitudeI1 is increased substantially. Therefore,

for any input current different fromffir, the separatrix divides phase space into two regions

of conflicting frequencies. The conflict is particularly noticeable iff = fres, since for this

frequency, the ellipse is large. The subthreshold trajectory is hence pushed very near of the

limit cycle, and small amounts of noise suffice to induce transitions.

The high transition rates obtained withf ≈ fres and the low ones forf ≈ ffir are also

evident in the slope of the the exponential envelope of the tail of the ISI distribution. The flat

tail observed forf = 50 Hz, and the steep one forf ≈ fres, imply that the transition rate

νsub→supra is larger (Rowat and Greenwood, 2011).

In Fig. 11, we show the dependence of the transition rates on the amount of noiseσ and

the input frequencyf . In the first row of A we see that when the oscillatory component is

small (I1 = 0.3µA/cm2) two general observations can be made: (a) For large amountsof noise

νsub→supra is always larger thanνsupra→sub, and (b), the two transition rates increase monoton-

ically with the amount of noise. From these two points we may conclude that noise tends to

increase transitions in both directions and for all frequencies, but the transitionsub → supra

is more enhanced thansupra → sub. In essence, noise favors the suprathreshold state. In

addition, for small amounts of noise,νsub→supra tends to zero, and does so more rapidly than

νsupra→sub. This implies that the system spends most of the time in the subthreshold state. The

exception is given by an input frequencyf ≈ fres, for which even in the noiseless case both

transition rates are different from zero. This is because with this frequency, the system switches

between attractors even in the absence of noise.

It is easy to build an intuitive picture where noise favors transitions. Less intuitive, however,

is the behavior obtained when the oscillatory component is larger (I1 = 0.7µA/cm2). In the

second row of panels of Fig. 11A, we see that noise may either increase, decrease, or leave the

transition rates unaffected, depending on the input frequency. To understand this behavior, we
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Figure 11: Dependence of the transition ratesνsupra→sub (black) andνsub→supra (white) on stim-
ulus parameters. For all data points,I0 = 25.4µ A / cm2, and the stimulus was applied until
5000 spikes were obtained.A: Transition rates as a function of input noise, for four different
input frequencies. Top:I1 = 0.3µA/cm2. Bottom: I1 = 0.7µA/cm2. B: Transition rates as a
function of input frequency, for four different amplitudesI1. The amount of noiseσ is fixed at
0.5µA ms1/2/cm2.

recall the results of Fig. 9. For those frequencies where thesystem already switched between

attractors even forσ = 0, transitions may actually be suppressed by noise. Such is the case for

f = 68 Hz, in the third panel of the second row of Fig. 11A. Transitionssupra → sub become

less likely when noise increases, and the inverse transitions remain essentially unaffected. The

asymmetry between the two directions is due to the fact that noise has a larger impact in per-

turbing trajectories along the limit cycle, that are already somewhat unstable, than around the

fixed point, that is stabilized by the resonating input signal.

The transition ratesνsupra→sub also decrease withσ whenf = 35 Hz. In this case, the

noiseless system is entirely in the subthreshold state, dueto the large-amplitude, horizontal

wobbling movement of the limit cycle. In the noiseless system, downward transitions occur

almost immediately, whereas upward transitions never occur. Increasing the amount of noise,

hence, can only suppress transitionssupra → sub, and enhance thosesub → supra.

If f ≈ ffir the suprathreshold state dominates at all noise levels. Transitions to the firing

state are frequent, whereas transitions to the subthreshold state are rare. The difference between

the transition rates in both direction is due to the fact thatwhenf ≈ ffir, circulation around
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the limit cycle is synchronized to the external signal. Hence, every time the system passes

through the transition phase (below the fixed point), the external signal is positive and has

maximum strength, pulling the trajectory maximally to the right. This force, supplied at this

particular phase, is optimal to jump from the fixed point to the limit cycle, but not the other way

round. This argument only holds forf ≈ ffir (or its harmonics). Any other input frequency

is not synchronized with the circulation around the limit cycle, so the external force may be

either positive or negative as the system passes through thetransition phase. Consequently, the

rectification effect is lost.

For f = 100 Hz, the noiseless system is bistable. Hence, the addition ofnoise produces

qualitatively the same effect observed with smaller amplitude.

Figure 11B displays the dependence of the transition rates with the input frequency, when

the amount of noise is fixed. We see that for small amplitudes,transition rates are roughly

independent off , with only a mild suppression of the transitionsupra → sub for f ≈ ffir.

As I1 grows, however, the dependence on the input frequency increases. For large amplitudes,

the dynamics atf = ffir (and its harmonics) is entirely suprathreshold (the black curve goes to

zero). Forf ≈ fres the two transition rates remain approximately equal, due tothe switching

trajectories. For slow input frequencies (frequencies forwhich the system becomes purely

subthreshold in the noiseless case), noise allows occasional transitions to the suprathreshold

state, though such events become less and less likely asI1 grows.

7 Frequency-dependence of reliability in bistable neurons

The dynamical tools explored in the previous sections can now be used to understand the ques-

tion posed in Fig. 1, and the unresolved issues raised in Fig.2. According to previous studies

(Hunter et al., 1998; Fellous et al., 2001; Schreiber et al.,2004; Schreiber et al., 2009), in the

purely subthreshold regime (smallI0) maximal reliability is obtained when the input frequency

coincides withfres. In the purely suprathreshold case (largeI0), instead, the optimal frequency

is ffir. The object of the present study is to explore the reliability of neural responses whenI0
is in the bistable regime. The result of such explorations issummarized in Fig. 12.

Reliability in the bistable zone is not a straightforward interpolation between the sub- and

supratheshold results. In Fig. 12 we see that reliable zones(displayed in dark) mainly appear

at ffir and its first harmonic. However, a complex structure of stripes is also visible, most
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Figure 12: Reliabilityχ2 as a function of the input frequencyf and the mean stimulusI0, for
the same neuron as in Fig. 1. WhenI0 is near the subthreshold range (≈ 23µA/cm2), the cell
only fires whenf ≈ 68 Hz. In the bistable range, a complicated structure of blotches appears.
Well above threshold, firing is maximally reliable atf = ffir. Number of trials: 500;I1 = 0.5
µA/cm2; σ = 0.5 µA/cm2 ms1/2; recording time: 500 ms. Suprathreshold initial conditions,
obtained by adiabatially approaching the measuredI0 from above.

notoriously, two intermediate frequencies (horizontal lines), and a number of preferredI0 values

(vertical lines). In these zones, the system has a strong locking mode, stabilized by the input

signal. Unreliable zones (lighter areas) appear through two different mechanisms. First, noise

can introduce temporal jitter, anticipating or delaying the timing of a given spike. Second, noise

can induce transitions between attractors, introducing prolonged silences. The relevance of each

of these factors depends on the stimulus frequency.

Reliability when f ≈ ffir

Whenf ≈ ffir, input noise has little effect in introducing spike-time jitter, for the same reasons

that previous studies identified in the fully suprathreshold regime. The locking between the

circulation around the limit cycle and the sinusoidal inputcomponent makes firing particularly

robust. Previous studies have shown that when the firing threshold is traversed with a steeper

voltage slope, spike-time jitter diminishes (Bryant and Segundo, 1976; Cecchi et al., 2000).

Hence, reliability is high because forf ≈ ffir, jitter is minimal.

In addition, for moderate or strong amplitudesI1, transitionssub → supra occur at a high
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rate, whereas the inverse transitionssupra → sub virtually never occur. The point in phase

space where transitions are likely to occur is locked to maximal sinusoidal stimulation. There-

fore, the time interval where noise is capable of inducing transitions is reduced, and the system

remains almost always in the suprathreshold state. Hence, for f ≈ ffir reliability is high also

due to the fact that there are almost no missing spikes, and increasing noise levels have only a

marginal effect.

Reliability when f ≈ fres

There are situations, however, wheref ≈ ffir may not be the optimal input frequency, since the

system may not be able to reach the limit cycle. If the amplitudeI1 is small, the amount of noise

σ is small, and the system is initially in the subthreshold state, reaching the limit cycle involves

a transitionsub → supra. This transition is much more likely whenf ≈ fres than withf ≈ ffir.

Recall from Fig. 11 that whenσ → 0, the transition rateνsub→supra → 0 for f ≈ ffir, implying

that infinite long times are required to jump to the limit cycle. This transition rate, however,

remains approximately at 10 Hz forf ≈ fres, so 100 ms should suffice. As a consequence,

in Fig. 2, for subthreshold initial conditions anI1 < 0.2µA/cm2, reliability vanishes for all

input frequencies exceptf ≈ fres, whereχ2 remains at a small, nonzero value. In this regime,

firing is structured as an alternation of circulations around the limit cycle at frequencyffir, and

around the fixed point at frequencyfres. The alternation between attractors introduces a rich

variety of locking modes, that allow the system to accommodate the trajectory to the external

frequency. This situation allows noise to be highly effective in introducing spike-time jitter and

transitions to the subthreshold state, since minor perturbations often suffice to shift the phase of

these complex trajectories. As unreliable as these responses may be, they are still more reliable

than no spiking at all, or than spiking every several seconds.

Dependence of reliability on the initial state, and on the length of the recording window

Even when starting with suprathreshold initial conditions, reaching a locked state typically takes

several turns around the limit cycle. For short recording windows, in many trials the system

may not have enough time to accommodate its circulation phase to reach entrainment with the

external signal. During the initial transient cycles the system may or may not be highly sensitive

to noise, depending on the relative phase between the input signal and the initial position of

the system on the limit cycle. Noise sensitivity involves both spike-time jitter and transition

probability. The resulting reliability map is strongly dependent on the details of the initial state.
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Indeed, the presence and location of white areas as the ones in the suprathreshold panel of

Fig. 2A is contingent on the detailed initial conditions, and also on the phase of the sinusoidal

input. If the oscillatory input is implemented with a cosinefunction (instead of a sine), the

location of such areas is displaced.

The inverse of the transition rates determines which recording intervals can be considered

short, and which are long enough to reach the stationary situation. If the recording time is

shorter than the inverse of both transition rates, reliability is likely to be low, since the evo-

lution of a given trial depends critically on the particularrealization of the noise, and on the

phase of the oscillation in which the simulation is started.If the recording time is substantially

longer than the inverse of one of the transition rates, but not the other, then the system behaves

as entirely subthreshold, or entirely suprathreshold. Only when the recording time is substan-

tially longer than the inverse of both transition rates, thestationary situation emerges. Initial

conditions, hence, matter inasmuch as the stationary stateis not yet reached.

8 Conclusion

Previous studies have proposed simple rules by which the input frequency producing maximally

reliable spiking can be predicted. The rules depended on whether the neuron was clearly below

or clearly above threshold. The present study explored the behavior of reliability at threshold, in

bistable neurons. We showed that there is no simple rule thatsmoothly merges the optimal input

frequency fromfres into ffir. Instead, at threshold both frequencies coexist, inducinga large

variety of locking modes. These modes can explain the complexity observed in reliability maps.

Similarly complex behaviors are expected to appear also in other bistable system endowed with

two natural frequencies. As seen in Fig. 12, complexity fades progressively as transitions into

one of the attractors become much more likely than into the others, as happens when we shift

from the center of the bistable zone, moving away from threshold.
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