Fusion of Scores in a Detection Context Based on Alpha Integration
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Abstract

We present a new method for fusing scores corresponding to different detectors
(two hypotheses case). It is based on alpha integration, which we have adapted to
the detection context. Three optimization methods are presented: least mean-
square error, maximization of the area under the ROC curve and minimization of

the probability of error. Gradient algorithms are proposed for the three methods.



Different experiments with simulated and real data are included in the paper.
Simulated data consider the two-detector case to illustrate the different factors
influencing alpha integration and to demonstrate the improvements obtained by
score fusion, with respect to the individual detector performance. Two real data
cases have been considered. In the first one, multimodal biometric data have been
processed. This case is representative of scenarios in which probability of
detection is to be maximized for a given probability of false alarm. The second
case is the automatic analysis of electroencephalogram and electrocardiogram
records with the aim of reproducing the medical expert detections of arousals
during sleeping. This case is representative of scenarios in which probability of
error is to be minimized. The general superior performance of alpha integration

verifies the interest of optimizing the fusing parameters.

1 Introduction

There are many scenarios where multiple detectors are to be fused to improve
their individual performance (Khaleghi, Khamis, Karray & Razavi, 2013; Atrey,
Hossain, El Saddik & Kankanhalli 2010; Yuksel, Wilson & Gader, 2012; Kittler,
Hatef, Duin & Matas 1998). In general, the input to one single detector is a vector
of measures (observation or feature vector) which are processed to obtain a scalar
statistic to be compared with a threshold, thus obtaining a binary decision. Then,
fusion of detectors can be made at three different levels: measures, statistics or

decisions. Finding optimum fusion functions becomes simpler as we go from



measures to decisions level, but a price is paid in loss of information. Therefore,
fusion at the statistics (intermediate) level becomes a reasonable compromise. On
one hand, the number of variables to be fused is reduced to the number of
available detectors, on the other hand it avoids the loss of information after
thresholding. Usually the statistic is called “score”. Depending on the application,
the score is normalized in a given range or not. Different normalization techniques
exist (Jain, Nandakumar & Ross, 2005), which are especially interesting in the
case that heterogeneous detectors are to be fused. Normalized scores between 0
and 1 may be though as estimates of the a posteriori probability assigned by the
detector to one of the two hypothesis, if they are properly calibrated (Zadrozny &

Elkan, 2002).

In this paper we concentrate on the fusion of scores for detection purposes.
Moreover, we will make use of a-integration. This later was proposed to integrate
stochastic models in (Amari, 2007). The particular case of integrating Gaussian
Mixtures was considered in (Wu, 2009). Noteworthy, a-integration can be used to

fuse or combine any finite set of d numbers m; i = 1...d, (m; = 0) in the form

d 1-a
— f-1 . ) —_m 2 ,a+1
e = Ja <; " fa(ml)) falim) {log(x) a=1
w; =0, YL w;=1 . (1)



It has been demonstrated in (Amari, 2007), that if m; and m, are respectively
associated to probability density functions m,(x) and m;(x) of some random

variable x, then m,(x) is the probability density minimi7zing the cost function
d
I(ma() = ) wi- Dimy(Olma (), @
i=1

where D(m;(x)|m,(x)) is the a-divergence (Amari, 2007; Wu, 2009) between
the two probability densities. Particular simple cases of fusion rules are obtained
for particular selections of the parameter . Thus, assuming that w; = 1/d, we see
that @« = —1, 1, 3 respectively renders the arithmetic mean, the geometric mean
and the harmonic mean. Similarly, a = o0 /—o0  is equivalent to compute the
minimum/maximum. Notice that (2) can be applied to the approximation of every

positive function m, (x) from a set of d positive functions m;(x) i =1...d.

In (Choi, Choi, Katake & Choe, 2010) (Choi, Choi & Choe, 2013) the authors
present gradient descent algorithms to estimate both the a parameter and the
coefficients w = [w; ...w4]7 minimizing the mean square error (MSE) of the

approximation achieved by co-integration in some target values t; j = 1...N

Z| =

E(a,w) =

Z (tj - ma(xj))z . (3)

Expressions for the gradients are obtained and convergence is experimentally

tested in some simulated data.



The a-integration can be readily adapted to the fusion of scores in a detection
context. Several detectors will produce several scores which can be fused using o-
integration to obtain a unique (fused) score. In this paper we propose three
methods for estimating the fusing parameters (¢ and w; ...w,;) given a set of
labelled training data. The first one is appropriate in case of working with
normalized scores and is a direct adaptation of the least mean-square error
(LMSE) criterion in equation (3), to the detection problem. The possible
unbalanced number of labeled data between both hypotheses, and the different
cost incurred by every type of erroneous decision (detection miss or false alarm)
are accounted by some simple modification of the cost function. A second method
is proposed based on the maximization of the area under the ROC curve
(AUCmax). This is a cost function well suited for the detection framework, and
allows both normalized and non-normalized scores. These two methods are
appropriate in applications where the probability of detection is to be maximized
for a given probability of false alarm. However there are scenarios where
minimizing the probability of error is more convenient. Hence we propose a third
method (MPE) where the o-integration parameters are estimated so that the
probability of taken wrong decisions is minimized. This method requires that the

scores are normalized. Gradients algorithms are devised for the three methods.

The next section is devoted to the LMSE approach. Then, AUCmax is considered
in Section 3. Some experiments with LMSE and AUCmax criteria based on

simulations are presented in Section 4 with the aim of illustrating the concept and



the interest of the new methods of a-integration. Section 5 presents the
application of LMSE and AUCmax to a-integration in biometric data. Finally, it
is considered the MPE method in Section 6, which is applied in a medical
diagnosis problem: automatic detection of arousals during sleeping. Minimizing
the wrong detections (relative to a medical expert) is the essential objective in this

applications. Conclusions ends the paper.

2 Estimating the a-integration parameters by LMSE criterion

In a detection scenario we must decide between two hypotheses
H, and H;. Let us assume that we have d different detectors working on the same
hypotheses and that everyone contributes with a score s;, in a manner that higher
values of the score play in favor of selecting H; and viceversa. Let us also
assume that the scores are normalized so that 0 < s; < 1. Apart from this, there
are no other constraints. Thus, the specific way in which every detector computes
its score is of no concern here. Similarly the detectors may share the same input of
observations or have totally different inputs, they may be statistically independent

or not, and so on.

What we want is a unique score s,. Considering (1), the a-integration solution is

given by



Il
N

(4)

Sa(s = [s1 . 5a]")

Let us assume that sequences of labelled scores are available, i.e., we have a set of

P . ' i I
couples { s/,y/}  j=1..N where s/ =[s]..s]..s)] is the vector of
scores provided by the detectors, and y/ is the corresponding known binary
decision (y/ = 1 if H; is true and y/ = 0 if H, is true). We may use this set to

learn the parameters by minimizing a cost function as indicated in (3), which now

becomes

N
1
£(a,w) = NZ Yl —se(s)) (5)

We see that by minimizing the cost function (5) we are trying to approximate the
fused score to 1 when the true hypothesis is H; and to 0 when the true hypothesis

is Hy .

In many detection scenarios there is a significant unbalance between the sizes of
the subsets of the training set { s/, y/ } Jj =1..N corresponding to H; and
H, .This is the case in novelty detection (Pimentel, Clifton, Clifton & Tarassenko

2014) or detection of signals in a noise background (Soriano, Vergara, Moragues,



& Miralles 2014). . In those cases minimization of (5) will be “blind” to H; . To
account for this problem we propose a modification of the cost function (5). Let us
call N; and N, the sizes of the subsets corresponding, respectively, to H; and H, ,
hence N = N; + N,. Instead of minimizing the overall mean square error, we
compute separately the mean square errors corresponding to H; and H, . Then
the mean of both values is to be minimized. Taking advantage of the binary value

of yJ, the new cost function can be expressed in the form

1

E(a,w) = F

(77 =sals)) 5 Z vl =sa(s))” (1=57)

Mz

N| =

1

J

%ZV: (v - sa(s")) <N1 (1N0y )) ©)

In this manner the contributions to the error are normalized with respect to the

size of the training subsets.

Similarly, we can consider the possibility of weighting the contributions of the
different types of errors. These can be of two types: decide H, when the true
hypothesis is H; (detection miss) or decide H; when the true hypothesis is
H, (false alarm). A simple modification of (6) can consider this option

£ s =320~ 5(5) (s ra-nt2) os

0

<1. (@



Notice that the modification of the new LMSE cost function of equation (7)
implies a different weighting for every training sample contribution to the MSE as
computed in (5). Also notice that Ny and N; are the number of available training
samples of each class, and £ is a value fitted by the user depending on the
importance given to every type of error. However, « and w can be estimated to
minimize (7). In the following we present gradient algorithms to estimate the

optimum value of a and w.

We have to compute the derivatives of the error cost function in (7) with respect

toa andw; i = 1..d. Let us define

Jj —yJ
¢)= (%_1 B+ —(1N0y J1- ,8)) . (8)
Then
J
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Moreover
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. ( swtals]) > -y

asg—fj’) = e \gomerlsl) (10b)
sq¢(s7) - log(s]) ,a=1
Hence the corresponding gradient algorithms will be:
al+1) = a(l) = e = (1) .an
w(l +1) = w(l) =1, 5= (1) . (12)

Where g—i(l) and :—‘i(l) are obtained by respectively using (9) and (10),

substituting a by a(l) and w; by w;(I) where necessary. The values n, and n,,
are the learning rates constants which control the speed of convergence. In all the
experiments included in this paper, these values have been fitted using similar
values to those one recommended in (Choi, Choi, Katake & Choe, 2010) (Choi,
Choi & Choe, 2013). Small variations around those values of 7, and

nw influenced the converging speed, but the final estimates remained the same.

3. Estimating the a-integration parameters by AUCmax

LMSE criterion minimizes the MSE, where the error is defined as the (weighted)
difference between the final (integrated score) and the target value (1 for H,, 0 for
Hy). This seems a priori a reasonable criterion to obtain a good detector, but by no
means implies that the probability of detection is maximized for a given
probability of false alarm. Ultimately, the detector performance depends on the

statistical distribution of the integrated scores under every hypothesis. This

10



suggests the convenience of a new criterion which could directly incorporate the

detector performance.

Different figures of merit have been proposed to evaluate the detector
performance (Parker, 2013). Among them the AUC is the most popular.

Moreover, AUC has two advantages in comparison with MSE:

-we can optimize the fusion in specific intervals of the probability of false

alarm depending on the application requirements.

-scores of the labeled training set are not required to be normalized

between 0 and 1.

A ROC curve represents the probability of detection P; as a function of the
probability of false alarm Py , let us represents this curve by the function Py (Pf).
We can compute the area associated to that function in a given interval (y;,¥,)
of the independent variable P , by integrating Py (Pf) , the result of the integral

will be the AUC corresponding to that interval. Let us define a normalized AUC

in a given interval:

v 1 1%
nAuC,)? = — fy: Py(Pr)dPs (13)

Where 0 <y; <1 and y; <y, <1 limit the interval of interest where the

normalized AUC is to be computed.

11



We must find the parameter set v* = {a, w = [w;

vt = argmax(nAUC;'f)

v={a,w}
Under the constraints

d —
OSWl'<1, i=1W; =

...wy]7} such that

(14)

(15)

In the following we propose a new method to solve this optimization problem.

The cost function (nAU C ;’ 12) will be obtained by means of the empirical non-

parametric method recently proposed in (Narasimhan & Agarwal, 2013) for

measuring the partial AUC, which was presented as an improvement of the one in

(Dodd & Pepe 2003).

The training set S = {S;,S,}, consisting of N instances of score vectors s =

[s1 ...54]T and the corresponding fused score s,, can be divided into two subsets

corresponding to each hypothesis, H; or Hy:

Sy={{si>sa"}yeH, i=1,..

Sy = {{sj > sab e Hy j=1,..

Let us name S; the S, subset sorted in descending order of fused scores saf" :

Sg={suo> s €Hyj=1,.

Qjt1

12

N,

(16)
Mo |
No } (17)



We can evaluate the normalized area nAUC ;’ 12 by numerical integration. This can

be made by uniformly sampling the ROC curve, adding all the sample values and
normalizing by the total number of samples. To define the sampling points, we

take into account that the test is implemented by comparing score s, with a

threshold z. Therefore, every threshold establishes one point P} (Pft ) of the ROC

. *H, . . .
curve. We select consecutive values saj" of the set S; in a given interval as

0

thresholds. For every threshold t; = S;: we count the number of values in Sy

which are above the threshold, this number divided by N;is an empirical estimate

Pdtj (Pftj ) for that threshold. Summing all values Pdtj so obtained and dividing by

the total number of summed values we obtain an empirical estimate of the
normalized AUC in a given interval. The selected interval of thresholds in S must

be in concordance with the Py interval (y1,¥,). But notice that as the elements in

So are sorted in descending order, the thresholds t; = s;?o correspond to

.. tj j . . * *
empirical values P’ = L Then the selected interval in Sp must be (s fo  gxHo )
f No a]yl a]yz

where  j,, = [Noy,] is defined as the next higher whole number of value Nyy,
and j,, = |NyY2| as the next lesser whole number of value Nyy,. This leads to the
empirical normalized AUC estimator of equations (18a) and (18b) below. We
consider separately in (18a) the case in which the limits of the interval for

integration are so close that, after truncations, the order of the limits is inverted,

. . . tj * . .
ie., jy, > Jy, - It that case only one sample Pd’ for t; = soﬁ0 is obtained for

Jy1

estimating the normalized AUC. The other cases, when j, < j,, , are all included

13



in equation (18b). Notice that the truncation effects in j,, and j,, are compensated

by the term a;.

° Ifj],1 >jy2:

—— 1 *
nAUC)? = N—l-zﬁvgln(saf’l > s (182)

%jyy

° Ifj],1 < Jp,:

Ny
nAUCY? = ! -Z(m + a,)
n NiNo - (Y2 — 1) pr

a; = (jyl - No)’1) -1 (Safl > 5;;?1) + (Noyz_jyz) a! (Safl > SZ?I;’ZH) (18b)

Jya
H *H
a, = z H(Sai 1> Sa,jo)

I(:) is a logic function which returns ‘1’ when the relation evaluated is true and
‘N . . . H * H .
0’ otherwise. Defining the new variable ;; = s;,' — Saj ° € [0,1] a unit step

function U(-) can be used instead of the logic function I(:):

1,x=0

H(safl > S*HO) = ‘U(EU = safl - s;?"), Ux) = {O <0 (19)

aj

14



In order to transform the empirical normalized AUC into a differentiable function,
a continuous approximation of the unit step function must be carried out. A

natural choice is the sigmoid function (Herschtal & Raskutti 2004):

1

Uu (Sij = Safll — S;?Io) = HS(Eij) = m (20)

As it can be observed in figure 1, the sigmoid function 65(-) may approximate the
unit step function, with arbitrarily small approximation error, by selecting a large

enough & value.

08-

—Sigmoid5
06- .
—S|gmmdm

il — Sigmmd20
— Sigmmd5U
m Sigmoid m

+-- Unit step function

02~

Figure 1. Approximating a unit step function using a sigmoid function.

Using the sigmoid function in (18) a constrained nonlinear minimization problem

is stated:

v* = argmin(g(a,w) =1 - nAUC]],/f),
v={a,w}

21)

d
OSWiS1, Zwlzl
i=1

15



To solve this optimization problem an interior point algorithm can be used (Byrd,

Hribar & Nocedal, 1999; Waltz, Morales, Nocedal, & Orban 2006).

The gradient of the objective function Ag(a, w) = <% g(a,w), % 9(a, w)) can

be obtained to improve the interior point algorithm due to the using of the
differentiable sigmoid function in expressions (18a) and (18b). Differentiating the

nAUC ;’ 12 estimator with respect to a generic parameter v:

) Iij1 > Jy,-

1
Y2\ — E — g*Ho 22
(nA Uty ) NiNy - (v, — V1) o2 =71)- (Sa i Saj,, ) (222)

o IfIfj, <j,:

_(nAUCYZ)_NlNo (Vz Y1) Z<aa1 aaz)

da ) a6 X .
20— (0w S s
(22b)

a0 .
+ (NOYZ _jyz) 5 (Safl - Sazsz.,_l))

Tas Y (e

16



Continuing with the differentiation chain, the partial derivative of the sigmoid

function must be obtained:

69(811) 5 8_6.8” Oei]-

av N (1 + e—a-sij)z av (23)
The partial derivative of the variable &;; = safl - S:JL,IO depends on the partial
derivative of the fused score aai:, which is known (equations (9b) and (10b)).
9ey asa( _aj 51 (24)
v

Substituting the generic parameter v by the parameters a and w;in the
differentiation chain of equations (22), (23), (24), (9b), (10b), the gradient of the

objective function can be obtained straightforwardly.

4. Experiments with simulated data

We have performed a number of simulations with the aim of illustrating the
different factors influencing a-integration for the fusion of detectors, as well as
the specific interest of the proposed modifications. We have considered the fusion
of two detectors (d=2). Every detector provides one score s; i = 1,2 which is
modelled as a random variable uniformly distributed in a given interval which
depends on the true hypothesis H, k = 0, 1. Let us respectively call I}, and % to
the lower and upper limits of the intervals corresponding to the uniform

distribution of the scores provided by detector i under hypothesis Hj, .

17



We show in figures 2 to 10 the results of 9 experiments. In experiments 1 to 6, the
LMSE gradient algorithm was used to estimate the optimum value of « and/or w;,

w,. However, in experiments 7 to 9, the AUCmax was considered.

Every figure is formed by 6 subfigures showing (from left to right and from top to

bottom):

-The 2-D distribution of the training set of scores.

-The curves of convergence of the parameter o and/or the coefficients
wy and w, corresponding to the gradient algorithm of equations (11a)
and (11b).

-The ROC curves of the three detectors (two individual detectors and
the fused one) representing the probability of detection P, in terms of
the probability of false alarm Py

-The 2-D contour curves defining the decision regions of the a-
integrated detector.

-The uniform distributions of the scores s, and s, corresponding to
every individual detector.

-The final distributions of the score s, obtained after a-integration

In all the experiments, the training (estimation of the optimum value of « and/or
w;, W,) was made by using N=5000 labelled scores. The evaluation performance
(ROC curves and fused score distributions) was obtained from a set of 10000
scores. Other experiments were made by using different training and evaluation

sizes, but the general conclusions remained the same.

18



Figure 2 corresponds to the experiment 1. As we see the parameter « is learned by
means of the gradient algorithm (11) and converges to a final value (0.6) after
only some 15 iterations. The sizes of the training sets are the same for both
hypotheses Ny, = N; = 0.5N. The weigthing coefficients are not estimated but
fitted to the same value ( w; = w, = 0.5 ). The parameter § = 0.5, i.e., no
preference 1is given a priori to any hypothesis. The limits of the uniform
distributions of the individual scores are i, =15, =0, I%, =1% =08, I}, =
l§1 =02, =13, =08 (Gs

x = {l: lower,u: upper},d = {1: detector 1, 2: detector 2} and h =

{0: Hy,1: H;}). This implies a large overlap between both hypotheses when
working separately with the individual detectors. However the distributions of the
integrated score s, are no longer uniform, showing the better separation between
hypotheses achieved after a-integration. This can also be observed by looking to

the ROC curves.

04 g - Detector I:s|

4 Detector 2: s
0.2F .
Fusion: S.ipha

@

20 40 0 0.5 1
Iteratic P,

lH1

WWW“° 1 il =

Deleclor 1 l
1

e ,.ﬂ

- m

0.5 I
Detector | Delecior 2 Fus«:n

Figure 2. Experiment 1: NO =N, =05N ,w; =w, =05, =051, =
Bo=001=01=081, =0, =021=1%=1
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The experiment 2 (figure 3) illustrates the interest of the modification included in
(6) to account for the possible different sizes of the training sets under every
hypothesis. Thus in figure 2 the sizes of the training set under every hypothesis
are very different (N, = 0.2ZN N; = 0.8N). The rest of the parameters are the
same than those of the first experiment. We can see that the parameter «
converges to the same value of experiment 1, hence the performance of the
detector after fusion should be the same. This is verified by observing that the
ROC curves, the 2D contours and the distribution of the integrated score s, are

practically the same in both experiments.

. 0
0.5 1 0 0 20 30 40 0
Iterations

2 2.5

-
— 1 g 1
Il |0l 2 T
ol L LLLELELEREN YT LRI
0 0.5 1 15
Detector 1
2 "
S EH1
* | (1]
LULCEE T || | |
0.5 1 00 05 1 00 05 1
Detector | Detector 2 Fusion

Figure 3. Experiment 2: Ny = 0.2N N; = 0.8N, w; =w, =0.5, f =0.5
Bo=Uo=01=1%=081l,=015=021 =14 =1
The next two experiments illustrate how parameter £ may be used to bias the o-
integrated detector towards one of the two hypotheses. Thus is figure 4 we show
the same case than in figure 1, except that now [ = 0.9, so that the contribution
to the global error due to deciding H, when the true hypothesis is H; is much

more significant than vice versa. We see in figure 4 that o converges to —oo, i.e.

20



the a-integrated detector tends towards computing the maximum of the two
individual scores, which clearly bias the decisions in favor of H; . This bias can
also be observed in the form adopted by the 2D contour curves defining the
decision regions, and in the resulting distributions of s, . Finally we see in the
ROC curves that for a probability of false alarm greater than ~0.6 the individual

detectors have grater probability of detection than the o-integrated detector

Y - Detector I: 5,

.2 + Detector 2: 5
o 0.2f 2
Fusion:
ipha
0o [
0

05 I 0 10 20 30 40
Detector | Iterations P

2 1 2.5

- -1 IlH1
1 ‘ ‘ IFH‘V-HVO‘ 2 ]
ol L LN DEN I T T e R
o 0.5 1 15
Detector 1 1
2 14
g R H
A1 |
LU LR ‘ || | I
0.5 ! 00 0.5 1 00 05 1
Detector | Detector 2 Fusion

Figure 4. Experiment 3: Ny = N; = 05N , w; =w, =0.5, § =09, I}, =
léo = O, l“ito = l‘lzio = 0.8, l]l_l = lél = 0.2, l“itl == l‘lzil == 1

Experiment 4 is similar to experiment 3, but now £ = 0.1, so that the fusion of
detectors is biased in favor of H,. We see in figure 5 that « converges to oo, i.e.
the fusion tends towards computing the minimum of the two individual scores .
The 2D contour curves, and the resulting distributions of s, are modified

accordingly. Finally we see in the ROC curves that for a probability of false alarm

21



less than ~0.1 the individual detectors have greater probability of detection than

the fused detector.

= o4 f"f - Detector |15
Detector 2: s
0.2 2
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3 Detector 1
% 0. ° Supa ) 1 .
J s,y >0 [ T I
3 weos NI [T
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Detector | Detector 2 Fusion

Figure 5. Experiment 4: Ny = N; = 0.5N , w; =w, = 0.5, § =0.1, I}, =
Lo=01%=01=081,=01, =021 =1} =1

The next experiment illustrate that an optimum linear combiner (weighted
arithmetic mean) of the individual scores is a particular constrained case of o-

integration. Notice in (4) that if @ = —1 then s, = X%, w; - s;.

We show in figure 6 the results of the experiment 5, which is the same case of
experiment 1, except that @ = —1 and the weighting coefficients are learned by
the gradient algorithm (11b). As both individual detectors produce the same score
distribution (both detectors perform the same), the gradient algorithm converges
to  w; =w, = 0.5. Notice that the contour curves are now straight lines in
concordance with (12). This implies some suboptimality with respect to the
experiment 1, where the optimum a was learned by the gradient algorithm, and

was different from -1. Suboptimality can be appreciated too by comparing the
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ROC curve of the a-integrated detector in figure 6 with the corresponding of

figure 2.
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Figure 6. Experiment 5: Ny = N; = 05N ,a =—1, =05, 1}, =15, =0,
Bo=1%=081Ul =L =021 =0 =1

The experiment 6 illustrates the case of combining two detectors having different
performances. We have modified the experiment 5, so that the uniform
distribution of the scores of the detector 1 under H; is narrowed (between 0.4 and
1). This implies that the detector 1 performs better than the detector 2 under H, .
Then we see in figure 7 that the gradient algorithm converges to weights such that
w; > w,, so that the detector 1 has more influence in the final a-integrated
detector. This produced a rotation of the 2D contours to accommodate a bias

towards the decisions of the detector 1.
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In the next three experiments we are going to use the parameter estimation method
based on AUCmax. Using this method we can select the interval of probabilities
of false alarm in which we want to obtain the best results. These experiments are
like experiment 1, where two equal detectors are fused by means of a integration,
but now the new training method based on the AUCmax is used. Firstly
(experiment 7) we have estimated all the parameters to maximize nAUC{. The
results are represented in figure 8. In this case we can see how the weighting
parameters obtained are the same for each detector w; = w, = 0.5 and the
estimated a parameter converges to a value so that the whole AUC of the ROC
curve obtained after fusion, is maximized. Notice that the ROC curves are quite

similar to the ones in Figure 1.
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In the two final experiments we have changed the Pf interval of the ROC curves

in which we want to maximize the AUC. Thus, in experiment 8 (figure 9)

nAUC? is maximized, and in experiment 9 (figure 10) nAUCZ 4 is maximized.

Figure 9. Experiment 8: Ny = N; = 0.5N , w; =w, = 0.5, § =0.5, I}, =
Lo=0 1% =1¥% =08 I}, =15 =0.2, [}, =1} = 1. Parameters are
optimized by AUCmax (nAUC{).
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In these two cases, due to the same behavior of both detectors the estimated
weighting parameters are equal, but a, which controls the shape of the separation

frontiers, converges to a value which allows a better probability of detection after

fusion, in the specified false alarm intervals of the ROC curves.

5. Application of a-integration in biometrics score fusion

Biometrics refers to the automatic identification of an individual based on his/her
physiological traits (Jain, Ross & Prabhakar, 2004). The performance of a
biometric system can be measured by reporting its false accept rate (FAR),
equivalent to the concept of probability of false alarm P, considered so far, and
false reject rate (FRR), equivalent to the concept of 1- P; . These systems are

subject to low FAR (usually less than 0.1%).
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Biometric systems based on a single source of information (unimodal systems)
suffer from limitations like the lack of uniqueness, non-universality and noisy data
(Jain & Ross, 2004) and hence, may not be able to achieve the desired
performance requirements of real-world applications. In contrast, multimodal
biometric systems combine information from its component modalities to arrive at
a decision (Ross & Jain, 2003). Multimodal biometric authentication requires
fusing information of different modalities like fingerprint, face, iris, retina, voice,
... Several studies (Toh, Jiang, & Yau, 2004; Wang, Tan, & Jain 2003) have
demonstrated that by consolidating information from multiple sources, better

performance can be achieved compared to the individual unimodal systems.

In a multimodal biometric system, integration can be done at (i) feature level, (ii)
matching score level, or (iii) decision level. Matching score level fusion is
commonly preferred because matching scores are easily available and contain
sufficient information to distinguish between a genuine and an impostor case.
Given a number of biometric systems, one can generate matching scores for a pre-
specified number of users even with-out knowing the underlying feature
extraction and matching algorithms of each biometric system. Thus, combining
information contained in the matching scores seems both feasible and practical

(Dass, Nandakumar & Jain, 2004).

In this paper we have tested the use of a-integration to fuse the matching scores in
a multimodal biometric system. In particular we have used the public database
Biometric Scores Set - Release 1 (BSSR1) (N. US Department, 2013). BSSR1 is a

set of raw output similarity scores from two face recognition systems and one
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fingerprint system, operating on frontal faces, and left and right index live-scan
fingerprints, respectively. The data are intended to permit interested parties to
investigate a range of outstanding statistical problems related to biometrics.

BSSRI1 contains three partitions, which content is described in Table I.

PARTITION | Number of | Number of detectors | Scores available by

individuals detector

1 3x10° 4 Total:  9x10°
2 measures of 2 face | Genuine: 3x10°
matchers

2 6x10’ 2 Total:  36x10°
1 measure of right Genuine: 6x10°
and 1 measure of left
index fingerprint of 1
fingerprint matcher

3 517 4 Total: 517

1 measure of 2 face | Genuine: 517
matchers, 1 measure
of right and 1
measure of left index
fingerprint  of 1
fingerprint matcher

Table 1. Description of the BSSR Ipartition content.

Many possible experiments may be devised from these three partitions. We have
selected four experiments whose results are respectively shown in Tables II to V.
In all the experiments we have obtained the GARs corresponding to three
different FARs, for different methods of score fusion. The shown GAR values are
the average of 30 iterations. In every iteration the available score set of the
corresponding BSSR1 partition have been randomly divided into two halves. The

first half has been used for training and the second for evaluation.
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Thus in Table II, a-integration based on LMSE and on AUCmax criteria, are
compared with simpler rules. The partition 1 was considered, and the scores were
normalized between 0 and 1, as this is a requirement for a-integration based on
LMSE. Normalization was made by computing the a posteriori probability of

every hypotheses given the score, i.e.

B _ £ (s|H)P(Hy)
Snorm = P(H11S) = c ooy P () (25)

Where s,,rm and s are, respectively, the scores after and before the
normalization, f(s|Hy) is the probability density of s conditioned to hypothesis
H; and P(H,) is the a priori probability of hypothesis H). These probabilities
were estimated from the percentages of instances of Hj, inside the training set of
scores. Moreover, f(s|H) has been estimated using nonparametric Gaussian
kernel methods. Other methods of normalization are possible (Jain, Nandakumar

& Ross, 2005), but its influence on the results is out of the scope of this work.

FAR FAR FAR
0,001% 0,01% 0,1%
Arithmetic mean 97.859 98.823 99.510
Geometric mean 96.229 98.691 96.609
Min 72.305 79.816 85.724
Max 97.424 98.622 99.426
a-integration (LMSE) 83.767 97.019 98.693
a-integration

10~4 98.851 99.135 99.601

(AUCmax, nAUCy" )

Table II. Experiment 1. GAR (%) corresponding to different methods applied to
partition 1 of BSSR1. Scores were normalized by using (25).
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As we can see in Table II, the best results are obtained with a-integration
(AUCmax). Tuning the maximization of AUC in an interval of the ROC curve
Pr € [0,107%] , is important in this experiment if we compare with the results
obtained by a-integration (LMSE). In fact, notice that in some cases of Table II,
a-integration (LMSE) performs even worse than other simple rules. This is
because no direct maximization of the GAR is made by a-integration (LMSE) and

reinforces the interest of the new proposed criterion AUCmax.

In experiments 2, 3 and 4, we have considered the original scores without
normalization, hence the a~integration (LMSE), was not applied. Each experiment
corresponds to a different partition. Thus we show in Tables III, IV and V the
results obtained with partitions 1, 2 and 3, respectively. We can see in all cases the
superior performance of fusion based on a-integration (AUCmax), thus showing

the interest of optimizing the fusing parameters

FAR FAR FAR
0,001% 0,01% 0,1%
Arithmetic mean 92.990 93.901 96.172
Geometric mean 90.799 92.864 95.404
Min 57.969 73.896 84.135
Max 87.161 90.223 93.436
a-integration
10-4 98.093 99.417 99.611
(AUCmax, nAUCy" )

Table I1I. Experiment 2. GAR (%) corresponding to different methods applied to
partition 1 of BSSR1. Scores are not normalized.
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FAR FAR FAR
0,001% 0,01% 0,1%
Arithmetic mean 88.393 91.170 93.895
Geometric mean 85.410 89.007 92.304
Min 75.546 79.740 84.425
Max 86.570 90.298 93.311
a-integration
10-4 88.542 91.409 94.011
(AUCmax, nAUC;" )

Table IV. Experiment 3. GAR (%) corresponding to different methods applied to
partition 2 of BSSR1. Scores are not normalized.

FAR FAR FAR
0,001% 0,01% 0,1%
Arithmetic mean 50.752 65.018 77.320
Geometric mean 65.135 74.904 83.998
Min 59.807 71.365 81.538
Max 49.176 63.914 76.416
a-integration
104 66.799 75.971 84.995
(AUCmax, nAUCy" )

Table V. Experiment 4. GAR (%) corresponding to different methods applied to
partition 3 of BSSRI1. Scores are not normalized.

6. Estimating the o-integration parameters by MPE: an application in

medical diagnosis

So far we have considered that the ROC curve of the integrated detector is the
essential element to be optimized by a-integration. This is implicitly done with
the LMSE criterion by trying to obtain integrated scores as close as possible to 1
when the true hypothesis is H; or to 0 when H,, is in force. On the other hand

ROC curves are explicitly optimized by AUCmax. This approach is appropriate in
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those detection problems where having control of the probability of false alarm Pf
is a crucial aspect. However, there are applications where it is better to minimize
the probability of error P,, i.e., the probability of selecting a wrong hypothesis.
This is a typical criterion in digital transmission, where an error happens
whenever a symbol “1” is decided in reception but the emitted symbol was “0” or
viceversa. Thus P, becomes the essential figure of merit of a digital
communication system performance. There are other areas where minimizing the
P, of a detector is the appropriate optimization goal. One of them is automatic
medical diagnosis. Very often long biosignal records, e.g., Electrocardiogram
(ECG) and Electroencefalogram (EEG) recordings, must be visually analyzed by
the medical expert to detect the possible presence of some predefined events in the
signals. The amount and sequencing of these events may help in the diagnosis of
pathologies. This task can be eased and dramatically accelerated by replacing the
expert by an automatic detector. In this type of problem the goal is to reproduce
the detections of the expert, which are considered as correct detections, as much
as possible. Hence minimizing P, is the best option. In this section we are going to
show the results obtained by a-integration in the implementation of an automatic
detector which integrates two scores corresponding to different modalities (EEG
and ECG). Before that, let us propose in the following a new method for
estimating the o-integration parameters, which is more appropriate for this kind of

scenarios. We will call it Minimum Probability of Error (MPE) criterion.
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As in section 2, let us assume that we have a training set of couples { s/, yJ }

J

T
; ...scji] is the vector of scores provided by

j=1..N, where s/ = [sf .S
the detectors, and y/ is the corresponding known binary decision (y/ = 1 if H; is

true and y/ = 0 if H, is true). Minimization of the P, corresponding to the

foregoing set is equivalent to maximization of the probability of taking correct
decisions across the whole set of couples { s/, yJ } j=1..N. Let us call ch to
the probability of taking a correct decision y’from the fused score s, (sj ); it can

be expressed in the form

1—yj

P/ =P(y = 1/s.(s")) " P(y) = 0/54(s")) (24)

We assume that the scores to be fused are normalized and calibrated (Jain,

Nandakumar & Ross, 2005), (Zadrozny & Elkan, 2002), so that we can consider

that P(yj =1 /Sij ) = Sij [ = 1..d. Therefore, after a-integration we have that

p (yf =1/s, (Sj )) = S, (sj ) Then, substituting in (24)

P = s,(s1) (1= su(s7)) . (25)

Let us call P, to the probability of taking correct decisions across the whole set of
couples { s/, yJ } j =1..N. If the measurements are independent for different

values of the index j, we can write:

Po=TILP = Mosa(s) (1-s(s)) " . o
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Finally, taking logarithms in (26) and changing the sign, we define the cost

function to be minimized with the MPE criterion

—InP, = =¥, y;in (sa(sj)) +(1—y;)in (1 - sa(sj)) . @D

Minimization can be done also by a gradient algorithm. Let us compute the

required derivatives

d(=tnPy) _ 1-yJ \ 9sq(s’)

da ZJ 1 (sa(sl) B 1—sa(sf)> da ’ (282)
a(— lnPC) 1-yJ 6sa(sj)

w =L 1<sa(sl) = sa(sf)> ow; - (280)

can be

Where 65‘;—((:]) can be computed using equations (9b) and (9c), and as;_@
computed using (10b). Hence a gradient algorithm like the one in equations (11)
and (12) can be implemented using these new derivatives to obtain the MPE

parameters.

With these estimated parameters, given any vector § = [s;..s;..s;4]7 of
individuals scores, we are able to compute the integrated score s,(s). Then we
have to implement the test which takes the final decision in a form which is to be
consistent with the essential objective of minimizing P, . It is well known in
detection theory (Hippenstiel, 2002) that the optimum detector which minimize P,

from (in this case) the observation s, (s) is obtained by the test
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Hy

P(y = 1/54(5)) 2 P(y = 0/54(5)) L)
Ho

But P(y = O/Sa(S)) =1- P(y = 1/5,1(3)) s0 (29) is equivalent to

H
P(y =1/5.(5)) 3 . (30)

Hy
But we have assumed that P(y = 1/s,(s)) = s4(s), so the MPE test will simply
be

H
> 1
Sa,(S) < E . (31)

H,
We have considered the MPE criterion in the estimation of the a-integration
parameters in an application of medical diagnosis. The problem belongs to the
area of computer-assisted sleep staging (Agarwal & Gotman, 2001). In particular
we want to build an automatic detector of arousals during sleeping, as their
frequency of appearance are related with the presence of apnea and epilepsy.
Normally, arousals are detected by a medical expert from a visual inspection of
the so called polysomnograms (PSG), which are a set of EEGs obtained from the
patient while sleeping. This manual task is tedious and susceptible to errors after a
long period of analysis. Then, it is proposed in (Salazar, Vergara & Miralles,
2010) and automatic technique which, extracting four features from the PSG

signals, generates automatic detections of arousals every epoch of 30 seconds. The
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method consists in a Bayesian classifier which assumes a Hidden Markov Model
for the evolution of the sleeping stages and a Non Gaussian Mixture model for the
multivariate probability density in the feature space (please see (Salazar, Vergara

& Miralles, 2010) for more specific details).

Here we want to verify the possible improvement in the detection of arousals by
combined use of EEG and ECG information. From the ECG records and after
some standard signal processing (Kaufmann, T., Siitterlin, S., Schulz, SM., &
Vogele, C., 2011), the heart beats (R-peaks) are extracted. Then the sequence of
RR intervals between consecutive R-peaks is formed. This is termed the Heart
Rate Variability (HRV) signal, which has been extensively used for health
monitoring -see for example (Bouziane, Yagoubi, Vergara, & Salazar, 2015) and
references there in-. Three features are extracted in every 30 seconds epoch. Two
of them are time domain features: the mean and the standard deviation of the RR
intervals. The third feature is the quotient between the low- frequency (LF) (0.04-
0.15Hz) and the high-frequency (HF) (0.15-0.4Hz) powers, obtained from the

Power Spectral Density (PSD) of the RR-sequence.

For the experiment we had four subjects. EEG and ECG signals were
synchronously recorded for every subject during sleeping. Every recording
session lasted some 7,5 hours (some 900 epochs of 30 seconds). A medical expert
generated a binary decision for every epoch (presence or not presence of arousal),
which will be the target decision or ground truth. For every subject, we used the
first half of his recording session for training and the second half for testing the

detectors performance. Using the methods described in (Salazar, Vergara &
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Miralles, 2010), a score is generated from the EEG information for every epoch.
Similarly, a score is obtained from the ECG features described in the foregoing
paragraph, using a Support Vector Machine (SVM) classifier. Finally both scores

are a-integrated.

The goal is to reproduce the manual detections given by the expert as much as
possible, then every discrepancy with the expert will be considered an error and
the probability of error is to be minimized. Hence, the decisions corresponding to
the EEG and ECG modalities are obtained by respectively introducing the EEG
score and the ECG score in the test of equation (31). On the other hand, we have
used the MPE criterion for the estimation of the a-integration parameters, and the

a-integrated score is also considered in the test (31) to generate decisions.

The left side of Table VI shows the results in terms of percentage of decisions
which coincide with the expert decisions for the three possible automatic cases:
isolated scores obtained from the EEG signals, isolated scores obtained from the
EEG signals and scores derived from a-integration of both. The corresponding -
integration parameters estimated with the MPE criterion, are indicated in the right
side of Table VI. We see that improvements after a-integration appear in subjects
1, 2 and 3, meanwhile the percentage corresponding to subject 4 is the same one
obtained with isolated ECG scores. The very large value of « corresponding to
subject 4 confirms that the minimum score is selected which seems to correspond
to the ECG score in this case. Moreover, the weights are clearly unbalanced in

favor of the ECG score, in subject 4. In any case, notice that o-integration yields a
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performance which is as least as good as the best individual performance. Thus,
even in the case of no improvement, a-integration is able to “select” the best

automatic detector between the two available.

EEG | ECG | a-int
(%) | 8 | (%) @ | Mees | Wece

Subject 1 78.60 | 80.55 | 84.70 10.95 | 0.5053 | 0.4947

Subject 2 77.39 | 74.37 | 77.51 17.02 | 0.5552 | 0.4448

Subject 3 89.13 | 90.48 | 91.72 10.15 | 0.4306 | 0.5786

Subject 4 80.45 | 93.93 | 93.93 96.02 | 0.2009 | 0.7991

Table VI. Left side: Percentage of decisions coincident with the expert decisions
corresponding to EEG scores, ECG scores and a-integrated scores. Right side:
estimated a-integration parameters with the MPE criterion.

7. Conclusions

We have presented a new method for the fusion of scores obtained from different
detectors based on a-integration. It is a generalization of simpler rules which
allows optimum fitting of the parameters and find rationale in the optimum
integration of stochastic models. Three optimality criteria have been considered:
LMSE, AUCmax and MPE. While the first two relates implicitly or explicitly in
optimizing the ROC curves , i.e., maximizing probability of detection for a given
probability of false alarm, the last one focus in minimizing the probability of

€rror.

38



We have proposed new gradient algorithms for the three criteria. In the LMSE
case, we have adapted to the detection context a gradient algorithm previously
proposed in the general framework of a-integration. Some variations have been
included to account for unbalanced distribution of the training data sizes and
relative significance of every type of error in the global MSE. Regarding
AUCmax, a new algorithm has been proposed based on transforming an empirical
nonparametric measure of AUC in a differentiable function. A key advantage of
AUCmax with respect to LMSE is that it allows tuned optimization in selected
intervals of the ROC curves. In MPE a new cost function is defined which is the

negative of the log probability of correct answers.

We have included different experiments with simulated data with the aim of
illustrating the different factors influencing a-integration with both LMSE and
AUCmax. It has been shown that the fusion of two-detector scores, leads to

significant improvements of the ROC curves.

Finally, two real data cases have been considered. The first one corresponds to the
fusion of scores in multimodal biometric data. In this application the goal is to
have the maximum genuine acceptation ratio (equivalent to probability of
detection) for a given (rather small) false alarm ratio, hence both LMSE and
AUCmax have been considered. Different experiments have been done with
different data sets, showing the superior performance of a-integration with respect
to simpler rules, which not allow the optimization of the fusing parameters. It has
been demonstrated also the interest of the tuning capability of AUCmax to a

selected range of probabilities of false alarm.
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The second real data case is in the area of automatic analysis of medical records to
reproduce the manual decisions taken by the medical expert, so the best criterion
is MPE. We have presented the theoretical analysis, including gradient
computations, of a-integration based on MPE. The method has been applied in the
fusion of two scores, respectively obtained from EEG and ECG records. The
problem was the automatic detection of arousals during sleeping, which is
currently done manually by the medical expert. Experiments in four subjects have

illustrated the potential interest of MPE o-integration in these kind of problems.
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Figures Captions
Figure 1. Approximating a unit step function using a sigmoid function.

Figure 2. Experiment 1: Ny =N; =05N , w; =w, =05 B =05 li;=
BLo=001%=01=081,=0, =021 =1% =1

Figure 3. Experiment 2: Ny = 0.2N N; =08N, w;=w, =05 pf=0.J5
l]l_o = léo = O, l“iLO == llzlo == 0.8, l]l_l s lél = 0.2, l“iLl = l%l = 1

Figure 4. Experiment 3: Ny =N; =05N , w; =w, =05 =009, I}, =
Lo=00y=0=081l, =105 =0201 =0 =1

Figure 5. Experiment 4: Ny =N; =05N , w; =w,=0.5 g=0.1, I}, =
Lo=001%=01=081,=0,=021=1% =1

Figure 6. Experiment 5: Ny =N; =05N ,a=-1, =05, li;=1,=0,
By=14=081,=01=02108=1%=1

Figure 7. Experiment 6: Ny = N; = 05N, a = -1, =051, =1 =0,
B=1%=08101, =041 =021 =14 =1

Figure 8. Experiment 7: Ny =N; =0.5N , w; =w, =05 =05, I}, =
Lo=0 [¥%=101=08 1[,=10=02 I =1%=1 Parameters are
optimized by AUCmax (nAUC}).

Figure 9. Experiment 8: Ny=N; =05N , w; =w, =05 =05, I}, =
bo=0 1% =101=08 1I,=101 =02 & =101} =1 Parameters are
optimized by AUCmax (nAUCJ?).

Figure 10. Experiment 9: Ny =N, = 05N , w; =w, =0.5 B =05 I}, =
bo=0 1% =101=08 11,=101 =02 1 =101} =1 Parameters are
optimized by AUCmax (nAUCZy).
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Table captions
Table 1. Description of the BSSR I partition content.

Table Il. Experiment 1. GAR (%) corresponding to different methods applied to
partition 1 of BSSRI1. Scores were normalized by using (25).

Table I1I. Experiment 2. GAR (%) corresponding to different methods applied to
partition 1 of BSSR1. Scores are not normalized.

Table IV. Experiment 3. GAR (%) corresponding to different methods applied to
partition 2 of BSSR1. Scores are not normalized.

Table V. Experiment 4. GAR (%) corresponding to different methods applied to
partition 3 of BSSRI. Scores are not normalized.

Table VI. Left side: Percentage of decisions coincident with the expert decisions
corresponding to EEG scores, ECG scores and a-integrated scores. Right side:
estimated a-integration parameters with the MPE criterion.
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