
ar
X

iv
:1

50
9.

01
77

0v
1 

 [
cs

.L
G

] 
 6

 S
ep

 2
01

5

Theoretical and Experimental Analyses of

Tensor-Based Regression and Classification

Kishan Wimalawarne
Department of Computer Science
Tokyo Institute of Technology

2-12-1 Ookayama, Meguro-ku,
Tokyo 152-8552, Japan.

kishanwn@gmail.com

Ryota Tomioka
The Toyota Technological Institute at Chicago,

6045 S. Kenwood Av.,
Chicago, IL 60637, USA.

tomioka@ttic.edu

Masashi Sugiyama

Department of Complexity Science and Engineering
University of Tokyo

7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-0033, Japan.

sugi@k.u-tokyo.ac.jp

Abstract

We theoretically and experimentally investigate tensor-based regression and clas-
sification. Our focus is regularization with various tensor norms, including the
overlapped trace norm, the latent trace norm, and the scaled latent trace norm.
We first give dual optimization methods using the alternating direction method of

multipliers, which is computationally efficient when the number of training samples
is moderate. We then theoretically derive an excess risk bound for each tensor
norm and clarify their behavior. Finally, we perform extensive experiments using
simulated and real data and demonstrate the superiority of tensor-based learning
methods over vector- and matrix-based learning methods.

1 Introduction

A wide range of real-world data takes the format of matrices and tensors, e.g., rec-
ommendation (Karatzoglou et al., 2010), video sequences (Kim et al., 2007), climates
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(Bahadori et al., 2014), genomes (Sankaranarayanan et al., 2015), and neuro-imaging
(Zhou et al., 2013). A naive way to learn from such matrix and tensor data is to vectorize
them and apply ordinary regression or classification methods designed for vectorial data.
However, such a vectorization approach would lead to loss in structural information of
matrices and tensors such as low-rankness.

The objective of this paper is to investigate regression and classification methods that
directly handle tensor data without vectorization. Low-rank structure of data has been
successfully utilized in various applications such as missing data imputation (Cai et al.,
2010), robust principal component analysis (Candès et al., 2011), and subspace cluster-
ing (Liu et al., 2010). In this paper, instead of low-rankness of data itself, we consider
its dual—learning coefficients of a regressor and a classifier. Low-rankness in learning
coefficients means that only a subspace of feature space is used for regression and classi-
fication.

For matrices, regression and classification has been studied in Tomioka and Aihara
(2007) and Zhou and Li (2014) in the context of EEG data analysis. It was experi-
mentally demonstrated that directly learning matrix data by low-rank regularization can
significantly improve the performance compared to learning after vectorization. Another
advantage of using low-rank regularization in the context of EEG data analysis is that an-
alyzing singular value spectra of learning coefficients is useful in understanding activities
of brain regions.

More recently, an inductive learning method for tensors has been explored
(Signoretto et al., 2013). Compared to the matrix case, learning with tensors is inherently
more complex. For example, the multilinear ranks of tensors make it more complicated
to find a proper low-rankness of a tensor compared to matrices which has only one rank.
So far, several tensor norms such as the overlapped trace norm or the tensor nuclear norm
(Liu et al., 2009), the latent trace norm (Tomioka and Suzuki, 2013), and the scaled la-
tent trace norm (Wimalawarne et al., 2014) have been proposed and demonstrated to
perform well for various tensor structures. However, theoretical analysis of tensor learn-
ing in inductive learning settings has not been much investigated yet. Another challenge
in inductive tensor learning is efficient optimization strategies, since tensor data often
has much higher dimensionalities than matrix and vector data.

In this paper, we theoretically and experimentally investigate tensor-based regression
and classification with regularization by the overlapped trace norm, the latent trace norm,
and the scaled latent trace norm. We first provide their dual formulations and propose
optimization procedures using the alternating direction method of multipliers (Bertsekas,
1996), which is computationally efficient when the number of data samples is moderate.
We then derive an excess risk bound for each tensor regularization, which allows us to
theoretically understand the behavior of tensor norm regularization. More specifically,
we elucidate that the excess risk of the overlapped trace norm is bounded with the
average multilinear ranks of each mode, that of the latent trace norm is bounded with
the minimum multilinear rank among all modes, and that of the scaled latent trace norm
is bounded with the minimum ratio between multilinear ranks and mode dimensions.
Finally, for simulated and real tensor data, we experimentally investigate the behavior
of tensor-based regression and classification methods. The experimental results are in
concordance with our theoretical findings, and tensor-based learning methods compare
favorably with vector- and matrix-based methods.
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The remainder of the paper is organized as follows. In Section 2, we formulate the
problem of tensor-based supervised learning and review the overlapped trace norm, the
latent trace norm, and the scaled latent trace norm. In Section 3, we derive dual optimiza-
tion algorithms based on the alternating direction method of multipliers. In Section 4,
we theoretically give an excess risk bound for each tensor norm. In Section 5, we give
experimental results on both artificial and real-world data and illustrate the advantage
of tensor-based learning methods. Finally, in Section 6, we conclude this paper.

Notation

Throughout the paper, we use standard tensor notation following Kolda and Bader
(2009). We represent a K-way tensor as W ∈ R

n1×···×nK that consists of N =
∏K

k=1 nk

elements. A mode-k fiber of W is an nk-dimensional vector which can be obtained by
fixing all except the kth index. The mode-k unfolding of tensor W is represented as
W(k) ∈ R

nk×N/nk which is obtained by concatenating all the N/nk mode-k fibers along its
columns. The spectral norm of a matrix X is denoted by ‖X‖op which is the maximum
singular value of X . The operator 〈W,X〉 is the sum of element-wise multiplications of
W and X , i.e., 〈W,X〉 = vec(W)⊤vec(X ). The Frobenius norm of a tensor X is defined
as ‖X‖F =

√

〈X ,X〉.

2 Learning with Tensor Regularization

In this section, we put forward inductive tensor learning models with tensor regularization
and review different tensor norms used for low-rank regularization.

2.1 Problem Formulation

Our focus in this paper is regression and classification of tensor data. Let us consider
a data set (Xi, yi), i = 1, . . . , m, where Xi ∈ R

n1×···×nK is a covariate tensor and yi is
a target. yi ∈ R for regression, while yi ∈ {−1, 1} for classification. We consider the
following learning model for a tensor norm ‖ · ‖⋆:

min
W ,b

m
∑

i=1

l(Xi, yi,W, b) + λ‖W‖⋆, (1)

where l(Xi, yi,W, b) is the loss function: the squared loss,

l(Xi, yi,W, b) = (yi − (〈W,Xi〉+ b))2, (2)

is used for regression, and the logistic loss,

l(Xi, yi,W, b) = log(1 + exp(−yi(〈W,Xi〉+ b)), (3)

is used for classification. b ∈ R is the bias term and λ ≥ 0 is the regularization parameter.
If ‖ · ‖⋆ = ‖ · ‖2 or ‖ · ‖1, then the above problem is equivalent to ordinary vector-based
l2- or l1-regularization.
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To understand the effect of tensor-based regularization, it is important to investigate
the low-rankness of tensors. When considering a matrix W ∈ R

n1×n2 , its trace norm is
defined as

‖W‖tr =
J

∑

j=1

σj , (4)

where σj is the jth singular value and J is the number of non-zero singular values (J ≤
min(n1, n2)). A matrix is called law rank if J < min(n1, n2). The matrix trace norm
(4) is a convex envelop to the matrix rank and it is commonly used in matrix low-rank
approximation (Recht et al., 2010).

As in matrices, the rank property is also available for tensors, but it is more
complicated due to its multidimensional structure. The mode-k rank rk of a tensor
W ∈ R

n1×···×nK is defined as the rank of mode-k unfolding W(k) and the multilinear rank
of W is given as (r1, . . . , rK). The mode-i of a tensor W is called low rank if ri < ni.

2.2 Overlapped Trace Norm

One of the earliest definitions of a tensor norm is the tensor nuclear norm (Liu et al.,
2009) or the overlapped trace norm (Tomioka and Suzuki, 2013), which can be represented
for a tensor W ∈ R

n1×···×nK as

‖W‖overlap =

K
∑

k=1

‖W(k)‖tr. (5)

The overlapped trace norm can be viewed as a direct extension of the matrix trace norm
since it unfolds a tensor on each of its mode and computes the sum of trace norms of the
unfolded matrices. Regularization with the overlapped trace norm can also be seen as
an overlapped group regularization due to the fact that the same tensor is unfolded over
different modes and regularized with the trace norm.

One of the popular applications of the overlapped trace norm is tensor completion
(Gandy et al., 2011; Liu et al., 2009), where missing entries of a tensor are imputed. An-
other application is multilinear multitask learning (Romera-Paredes et al., 2013), where
multiple vector-based linear learning tasks with a common feature space are arranged as
a tensor feature structure and the multiple tasks are solved together with constraints to
minimize the multilinear ranks of the tensor feature.

Theoretical analyses on the overlapped norm have been carried out for both
tensor completion (Tomioka and Suzuki, 2013) and multilinear multitask learning
(Wimalawarne et al., 2014); they have shown that the prediction error of overlapped
trace norm regularization is bounded by the average mode-k ranks which can be large if
some modes are close to full rank even if there are low-rank modes. Thus, these studies
imply that the overlapped trace norm performs well when the multilinear ranks have
small variations, and it may result in a poor performance when the multilinear ranks
have high variations.

To overcome the weakness of the overlapped trace norm, recent research in tensor
norms has led to new norms such as the latent trace norm (Tomioka and Suzuki, 2013)
and the scaled latent trace norm (Wimalawarne et al., 2014).
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2.3 Latent Trace Norm

Tomioka and Suzuki (2013) proposed the latent trace norm as

‖W‖latent = inf
W(1)+W(2)+...+W(K)=W

K
∑

k=1

‖W (k)
(k) ‖tr.

The latent trace norm takes a mixture of K latent tensors which is equal to the number
of modes, and regularizes each of them separately. In contrast to the overlapped trace
norm, the latent tensor trace norm regularizes different latent tensors for each unfolded
mode and this gives the tendency that the latent tensor trace norm picks the latent tensor
with the lowest rank.

In general, the latent trace norm results in a mixture of latent tensors and the content
of each latent tensor would depend on the rank of its unfolding. In an extreme case, for a
tensor with all its modes full except one mode, regularization with the latent tensor trace
norm would result in making the latent tensor with the lowest mode become prominent
while others become zero.

2.4 Scaled Latent Trace Norm

Recently, Wimalawarne et al. (2014) proposed the scaled latent trace norm as an exten-
sion of the latent trace norm:

‖W‖scaled = inf
W(1)+W(2)+...+W(K)=W

K
∑

k=1

1√
nk

‖W (k)
(k) ‖tr.

Compared to the latent trace norm, the scaled latent trace norm takes the rank relative
to the mode dimension. A major drawback of the latent trace norm is its inability to
identify the rank of a mode relative to its dimension. If a tensor has a mode where
its dimension is smaller than other modes yet its relative rank with respect to its mode
dimension is high compared to other modes, the latent trace norm could incorrectly pick
the smallest mode.

The scaled latent norm has the ability to overcome this problem by its scaling with the
mode dimensions such that it is able to work with the relative ranks of the tensor. In the
context of multilinear multitask learning, it has been shown that the scaled latent trace
norm works well for tensors with high variations in multilinear ranks and mode dimensions
compared to the overlapped trace norm and the latent trace norm (Wimalawarne et al.,
2014).

The inductive learning setting mentioned in (1) with the overlapped trace norm has
been studied previously in Signoretto et al. (2013). However, theoretical analysis and
performance comparison with other tensor norms have not been conducted yet. Similarly
to tensor decomposition (Tomioka and Suzuki, 2013) and multilinear multitask learning
(Wimalawarne et al., 2014), tensor-based regression and classification may also be im-
proved by regularization methods that can work with high variations in multilinear ranks
and mode dimensions.

In the following sections, to make tensor-based learning more practical and to im-
prove the performance, we consider formulation (1) with the overlapped trace norm, the

5



latent trace norm, and the scaled latent trace norm, and give computationally efficient
optimization algorithms and excess risk bounds.

3 Optimization

In this section, we consider the dual formulation for (1) and propose computationally
efficient optimization algorithms. Since optimization of (1) with regularization using
the overlapped trace norm has already been studied in Signoretto et al. (2013), we do
not discuss it again here. Our main focus in this section is optimization of (1) with
regularization using the latent trace norm and the scaled latent trace norm.

Let us consider the formulation (1) for a data set (Xi, yi) ∈ R
n1×···×nK×R, i = 1, . . . , m

with latent and scaled latent trace norm regularization as follows:

P (W, b) = min
W(1)+...+W(K)=W ,b

m
∑

i=1

l(Xi, yi,W, b) +
K
∑

k=1

λk‖W (k)
(k) ‖tr, (6)

where, for k = 1, . . . , K and for any given regularization parameter λ, λk = λ in the
case of the latent trace norm and λk = λ√

nk

in the case of the scaled latent trace norm,

respectively. W
(k)
(k) is the unfolding of W(k) on its kth mode. It is worth noticing that the

application of the latent and scaled latent trace norms requires optimizing over K latent
tensors which contain KN variables in total. For large K and N , solving the primal
problem (6) can be computationally expensive especially in non-linear problems such as
logistic regression, since they require computationally expensive optimization methods
such as gradient descent or the Newton method. If the number of training samples m is
m ≪ KN , solving the dual problem of (6) could be computationally more efficient. For
this reason, we focus on optimization in the dual below.

The dual formulation of (6) can be written as follows (its detailed derivation is given
in Appendix A):

min
α,V(1),··· ,V(K)

D(−α) +
K
∑

k=1

δλk
(V

(k)
(k) )

ssutject to V(k) =
m
∑

i=1

αiXi (k = 1, . . . , K, )

m
∑

i=1

αi = 0, (7)

where α = (α1, . . . , αm)
⊤ ∈ R

m are dual variables corresponding to the training data set
(Xi, yi), i = 1, . . . , m, D(−α) is the conjugate loss function defined as

D(−α) =
m
∑

i=1

1

2
α2
i − αiyi

in the case of regression with the squared loss (Tomioka et al., 2011c), and

D(−α) =
m
∑

i=1

yiαi log(yiαi) + (1− yiαi) log(1− yiαi)
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with constraint 0 ≤ yiαi ≤ 1 in the case of classification with the logistic loss
(Tomioka et al., 2011c). δλk

is the indicator function defined as δλk
(V ) = 0 if ‖V ‖op ≤ λk

and δλk
(V ) = ∞ otherwise. The constraint

∑m
i=1 αi = 0 is due to the bias term b. Here,

the auxiliary variables V(1), . . . ,V(N) are introduced to remove the coupling between the
indicator functions in the objective function (see Appendix A for details).

The alternating direction method of multipliers (ADMM) (Gabay and Mercier, 1976;
Boyd et al., 2011) has been previously used to solve primal problems of tensor decomposi-
tion (Tomioka et al., 2011b) and multilinear multi-task learning (Romera-Paredes et al.,
2013) with the overlapped trace norm regularization . Optimization in the dual for tensor
decomposition problems with the latent and scaled latent trace norm regularization has
been solved using ADMM in Tomioka et al. (2011b). Here, we also adopt ADMM to
solve (7), and describe the formulation and the optimization steps in detail.

With introduction of dual variables W(k) ∈ R
n1×···×nK , k = 1, . . . , K (corresponding

to the primal variables of (6)), b ∈ R, and parameter β > 0, the augmented Lagrangian
function for (7) is defined as follows:

L(α, {V(k)}Kk=1, {W(k)}Kk=1, b)

= D(−α) +
K
∑

k=1

(

δλk
(V

(k)
(k) ) +

〈

W
(k)
(k) ,

m
∑

i=1

αiXi(k) − V
(k)
(k)

〉

+
β

2

∥

∥

∥

∥

m
∑

i=1

αiXi(k) − V
(k)
(k)

∥

∥

∥

∥

2

F

)

+ b

m
∑

i=1

αi +
β

2

∥

∥

∥

∥

m
∑

i=1

αi

∥

∥

∥

∥

2

F

.

This ADMM formulation is solved for variables α, V(1), . . . ,V(k), W(1), . . . ,W(k), and b by
considering sub-problems for each variable. Below, we give the solution for each variable
at iterative step t + 1.

The first sub-problem to solve is for α at step t+ 1:

α
t+1 = argmax

α

L(α, {V(k)t}Kk=1, {W(k)t}Kk=1, b
t),

where {V(k)t}Kk=1, {W(k)t}Kk=1, and bt are the solutions obtained at step t.
Depending on the conjugate loss D(−α), the solution for α differs. In the case of

regression with the squared loss (2), the augmented Lagrangian can be minimized with
respect to α by solving the following linear equation:

(KβX̄X̄⊤ + I + β1m1
⊤
m)α

t+1 = (y − X̄vec(W̄ t) + βX̄vec(V̄ t)− 1mb
t),

where X̄ = [vec(X1)
⊤; · · · ; vec(Xm)

⊤] ∈ R
m×N , V̄ t =

∑K
k=1 V(k)t , W̄ t =

∑K
k=1W(k)t,

y = (y1, . . . , ym)
⊤, and 1m is the m-dimensional vector of all ones. Note that, in the

above system of equations, coefficient matrix multiplied with α does not change during
optimization. Thus, it can be efficiently solved at each iteration by precomputing the
Cholesky factorization of the matrix.

For classification with the logistic loss (3), the Newton method is used to
find the solution for α

t+1, which requires the gradient and the Hessian of
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L(α, {V(k)}Kk=1, {W(k)}Kk=1, b):

∂L(α, {V(k)}Kk=1, {W(k)}Kk=1, b)

∂αi

= yi log

(

yiαi

1− yiαi

)

+
K
∑

k=1

〈W(k)t,Xi〉

+β

K
∑

k=1

〈

Xi,

m
∑

i=1

Xiα
t+1
i − V(k)t

〉

+ b+ β

m
∑

i=1

αi,

∂2L(α, {V(k)}Kk=1, {W(k)}Kk=1, b)

∂αi∂αj

=











1

yiαi(1− yiαi)
+Kβ〈Xi,Xi〉+ β (i = j),

Kβ〈Xi,Xj〉+ β (i 6= j).

Next, we update V(k) at step t + 1 by solving the following sub-problem:

V(k)t+1

= argmax
V(k)

L(αt+1,V(k), {V(j)t}Kj 6=k, {W(k)t}Kk=1, b
t)

= projλk

(

W
(k)t
(k)

β
+

m
∑

i=1

αt+1
i Xi(k)

)

, (8)

where projλ(W ) = Umin(S, λ)V T and W = USV ⊤.
Finally, we update the dual variables W(k) and b at step t+ 1 as

W
(k)t+1
(k) = W

(k)t
(k) + β

( m
∑

i=1

αt+1
i Xi(k) − V

(k)t+1
(k)

)

, (9)

bt+1 = bt + β
m
∑

i=1

αt+1
i . (10)

Note that step (8) and step (9) can be combined as

W
(k)t+1
(k) = proxβλk

(

W
(k)t
(k) + β

m
∑

i=1

αt+1
i Xi(k)

)

,

where proxλ(W ) = Umax(S−λ, 0)V T and W = USV ⊤. This allows us to avoid comput-
ing singular values and the associated singular vectors that are smaller than the threshold
λk in (8).

Optimality Condition

As a stopping condition, we use the relative duality gap (Tomioka et al., 2011a), which
can be expressed as

P (W t, bt)−D(−α̂
t)

P (W t, bt)
≤ ǫ,

where P (W t, bt) is the primal solution at step t of (6) and ǫ is a predefined tolerance
value. D(−α̂

t) is the dual solution at step t of (7) with α̂ obtained by multiplying

α with min

(

1,
‖V (α)(k)‖op

λ1
, . . . ,

‖V (α)(k)‖op
λK

)

, where V(α) =
∑m

i=1Xiαi and ‖V ‖op is the

largest singular value of V .
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4 Theoretical Risk Analysis

In this section, we theoretically analyze the excess risk for regularization with the over-
lapped trace norm, the latent trace norm, and the scaled latent trace norm.

We consider a loss function l which is Lipshitz continuous with constant Λ. Note that
this condition is true for both the squared loss and logistic loss functions. Let the training
data set be given as (Xi, yi) ∈ R

n1×···×nK × Y, i = 1, . . . , m, where Y ∈ R for regression
and Y ∈ {−1, 1} for classification. In our theoretical analysis, we assume that elements
of Xi independently follow the standard Gaussian distribution.

As the standard formulation (Maurer and Pontil, 2013), the empirical risk without
the bias term is defined as

R̂(W) =
1

m

m
∑

i=1

l(〈W,Xi〉 , yi),

and the expected risk is defined as

R(W) = E(X ,y)∼µl(〈W,X〉 , y),

where µ is the probability distribution from which (Xi, yi) are sampled.
The optimal W0 that minimizes the expected risk is given as

W0 = argmin
W

R(W) subject to ‖W‖⋆ ≤ B0, (11)

where ‖·‖⋆ is either the overlapped trace norm, the latent trace norm, or the scaled latent
trace norm. The optimal Ŵ that minimizes the empirical risk is denoted as

Ŵ = argmin
W

R̂(W) subject to ‖W‖⋆ ≤ B0. (12)

The next lemma provides an upper bound of the excess risk for tensor-based learning
problems (see Appendix B for its proof), where ‖W‖⋆∗ is the dual norm of ‖W‖⋆ for
⋆ = {overlap, latent, scaled}:

Lemma 1. For a given Λ-Lipchitz continuous loss function l and for any W ∈ R
n1×···×nK

such that ‖W‖⋆ ≤ B0 for problems (11)–(12) , the excess risk for a given training data
set (Xi, yi) ∈ R

n1×···×nK × R, i = 1, . . . , m is bounded with probability at least 1− δ as

R(Ŵ)−R(W0) ≤ 2

m
ΛB0E‖M‖⋆∗ +

√

log(2
δ
)

2m
, (13)

where M =
∑m

i=1 σiXi and σi ∈ {−1, 1} are Rademacher random variables.

The next theorem gives an excess risk bound for overlapped trace norm regularization
(its proof is also included in Appendix B), which is based on the inequality ‖W‖overlap ≤
∑K

k=1

√
rk‖W‖F given in Tomioka and Suzuki (2013):
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Theorem 1. With probability at least 1−δ, the excess risk of learning using the overlapped
trace norm regularization for any W0 with ‖W0‖F ≤ B, multilinear ranks (r1, . . . , rK),
and estimator Ŵ with B0 ≤ B

∑K
k=1

√
rk is bounded as

R(Ŵ )− R(W 0) ≤ c1Λ
B√
m

( K
∑

k=1

√
rk

)

min
k

(
√
nk +

√
n\k) + c2

√

log(2
δ
)

2m
, (14)

where n\k =
∏K

j 6=k nj and c1 and c2 are constants.

In the next theorem, we give an excess risk bound for the latent trace norm (its proof
is also included in Appendix B), which uses the inequality ‖W‖latent ≤

√
mink rk‖W‖F

given in Tomioka and Suzuki (2013):

Theorem 2. With probability at least 1 − δ, the excess risk of learning using the latent
norm regularization for any W0 with ‖W0‖F ≤ B, multilinear ranks (r1, . . . , rK), and
estimator Ŵ with B0 ≤ B

√
mink rk is bounded as

R(Ŵ )−R(W 0) ≤ c1ΛB

√

mink rk
m

(

max
k

(
√
nk+

√
n\k)+C

√

2 log(K)

)

+ c2

√

log(2
δ
)

2m
,

(15)

where n\k =
∏K

j 6=k nj and c1, c2, and C are constants.

The above theorem shows that the excess risk for the latent trace norm (15) is bounded
by the minimum multilinear rank. If n1 = · · · = nK , the latent trace norm is always better
then the overlapped trace norm in terms of the excess risk bounds because

√
mink rk <

∑K
k=1

√
rk. If the dimensions n1, . . . , nK are not the same, the overlapped trace norm

could be better.
Finally, we bound the excess risk for the scaled latent trace norm based on the in-

equality ‖W‖scaled ≤
√

mink

(

rk
nk

)

‖W‖F given in Wimalawarne et al. (2014):

Theorem 3. With probability at least 1 − δ, the excess risk of learning using the
scaled latent trace norm regularization for any W0 with ‖W0‖F ≤ B, multilinear ranks

(r1, . . . , rK), and estimator Ŵ with B0 ≤ B
√

mink

(

rk
nk

)

is bounded as

R(Ŵ )−R(W 0) ≤ c1ΛB

√

1

m
min
k

(

rk
nk

)(

max
k

(nk+
√
N)+C

√

2 log(K)

)

+c2

√

log(2
δ
)

2m
,

(16)

where c1, c2, and C are constants.

Note that when n1 = · · · = nK = n and the multilinear ranks r1, . . . , rK are different,
the bounds in Theorem 2 and Theorem 3 are the same.

Theorem 3 shows that the excess risk for regularization with the scaled latent trace
norm is bounded with the minimum of multilinear ranks relative to their mode dimen-
sions. Similarly to the latent trace norm, the scaled latent trace norm would also perform

10



better than the overlapped norm when the multilinear ranks have large variations. If we
consider a “flat” tensor, the modes with small dimensions may have ranks comparable to
their dimensions. Although these modes have the lowest mode-k rank, they do not im-
pose a low-rank structure. In such cases, our theory predicts that the scaled latent trace
norm performs better because it is sensitive to the mode-k rank relative to its dimension.

As a variation, we can also consider a mode-wise “scaled” version of the overlapped
trace norm defined as ‖W‖soverlap :=

∑K
k=1

1√
nk

‖W(k)‖tr. It can be easily seen that

‖W‖soverlap ≤ ∑K
k=1

√

rk
nk

‖W‖F holds and with the same conditions as in Theorem 1,

we can upper-bound the excess risk for the scaled overlapped trace norm regularization
as

R(Ŵ )− R(W 0) ≤ c1Λ
B√
m

( K
∑

k=1

√

rk
nk

)

min
k

(nk +
√
N) + c2

√

log(2
δ
)

2m
. (17)

Note that when all modes have the same dimensions, (17) coincides with (14). Compared
with bound (16), the scaled latent norm would perform better than the scaled overlapped

norm regularization since mink

√

rk
nk

<
∑K

k=1

√

rk
nk

.

5 Experiments

We conducted several experiments using simulated and real-world data to evaluate the
performance of tensor-based regression and classification methods with regularizations
using different tensor norms. We discuss simulations for tensor-based regression in Section
5.1, experiments with real-world data for tensor classification in Section 5.2. For all
experiments, we use a MATLABr environment on a 2.10 GHz (2×8 cores) Intel Xeon
E5-2450 server machine with 128 GB memory.

5.1 Tensor Regression with Artificial Data

We report the results of artificial data experiments on tensor-based regression.
We generated three different 3-mode tensors as weight tensors W with different multi-

linear ranks and mode dimensions. We created two homogenous tensors with equal mode
dimensions of n1 = n2 = n3 = 10 with different multilinear ranks (r1, r2, r3) = (3, 3, 3)
and (r1, r2, r3) = (3, 5, 8). The third weight tensor is an inhomogenous case with mode
dimensions of n1 = 4, n2 = n3 = 10 and multilinear ranks (r1, r2, r3) = (3, 4, 8). To gen-
erate these weight tensors, we use the Tucker decomposition (Kolda and Bader, 2009) of
a tensor as W = C×3

k=1U
(k), where C ∈ R

r1×r2×r3 is the core tensor and U (k) ∈ R
rk×nk are

component matrices. We sample elements of the core tensor C from a standard Gaussian
distribution, choose component matrices U (k) ∈ R

rk×nk to be orthogonal matrices, and
generate W by mode-wise multiplication of the core tensor and component matrices.

To create training samples {Xi, yi}ni=1, we first create the random tensors Xi gener-
ated with each element independently sampled from the standard Gaussian distribution
and obtain yi = 〈W,Xi〉 + νi, where νi is noise drawn from the Gaussian distribution
with mean zero and variance 0.1. In our experiments we use cross validation to select
the regularization parameter from range 0.01–100 at intervals of 0.1. For the purpose of
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comparison, we have also simulated matrix regularized regressions for each mode unfold-
ing. Also, we experimented with cross validation among matrix regularization on each
unfolded matrix to understand whether it can find the correct mode for regularization.
As the baseline vector-based learning method, we use ridge regression (i.e., l2-regularized
least-squares).

Figure 1 shows the performance of homogenous tensors with equal mode dimensions
n1 = n2 = n3 = 10 and equal multilinear ranks (r1, r2, r3) = (3, 3, 3). We see that the
overlapped norm performs the best, while both latent norms perform equally (since mode
dimensions are equal) but inferior to the overlapped norm. Also, the regression results
from all matrix regularizations with individual modes perform better than the latent and
the scaled latent norm regularized regression models. Due to the equal multilinear ranks
and equal mode dimensions, it results in equal performance with cross validation among
each mode-wise unfolded matrix regularization.

Figure 2 shows the performances of homogenous tensors with equal mode dimensions
n1 = n2 = n3 = 10 and unequal multilinear ranks (r1, r2, r3) = (3, 5, 8). In this case,
both the latent and the scaled latent norms also perform equally since tensor dimensions
are the same. The mode-1 regularized regression models give the best performance since
it has the lowest rank and regularization with the latent and scaled latent norms gives
the next best performance. The mode-wise cross validation correctly coincides with the
mode-1 regularization. The overlapped norm performs poorly compared to the latent and
the scaled latent trace norms.

Figure 3 shows the performance of inhomogenous tensors with mode dimensions n1 =
4, n2 = n3 = 10 and multilinear ranks (r1, r2, r3) = (3, 4, 8). In this case, we can see
that the scaled latent trace norm outperforms all other tensor norms. The latent trace
norm performs poorly since it fails to find the mode with the lowest rank. This well
agrees with our theoretical analysis: as shown in (15), the excess risk of the latent trace
norm is bounded with the minimum of multilinear ranks, which is on the first mode in
the current setup and it is high ranked. The scaled latent trace norm is able to find
the mode with the lowest rank since it takes the relative rank with respect to the mode
dimension as in (16). If we look at the individual mode regularizations, we see that the
best performance is given with the second mode, which has the lowest rank with respect
to the mode dimension, and the worst performance is given with the first mode, which is
high ranked compared to other modes. Here, the mode-wise cross validation is again as
good as mode-2 regularization.

It is also worth noticing in all above experiments that ridge regression performed
worse than all the tensor regularized learning models. This highlights the necessity of
employing low-rank inducing norms for learning with tensor data without vectorization
to get the best performance.

Figure 4 shows the computation time for the toy regression experiment with inho-
mogenous tensors with mode dimensions n1 = 4, n2 = n3 = 10 and multilinear ranks
(r1, r2, r3) = (3, 4, 8) (computation time for other setups showed similar tendency and
thus we omit the results). For each data set, we measured the computation time of
training regression models, cross validation for model selection, and predicting output
values for test data. We can see that methods based on tensor norms and matrix norms
are computationally much more expensive compared to ridge regression. However, as we
saw above, they achieves higher accuracy than ridge regression. It is worth noticing that
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Figure 1: Simulation results of tensor regression based on homogenous weight tensor of
equal mode dimensions n1 = n2 = n3 = 10 and equal multilinear ranks (r1, r2, r3) =
(3, 3, 3)
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Figure 2: Simulation results of tensor regression based on homogenous weight tensor of
equal modes sizes n1 = n2 = n3 = 10 and unequal multilinear rank (r1, r2, r3) = (3, 5, 8)
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Figure 3: Simulation results of tensor regression based on inhomogenous weight tensor of
equal modes sizes n1 = 4, n2 = n3 = 10 and multilinear rank (r1, r2, r3) = (3, 4, 8)
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Figure 4: Computation times in seconds for toy experiment with inhomogenous tensors
with mode dimensions n1 = 4, n2 = n3 = 10 and multilinear rank (r1, r2, r3) = (3, 4, 8)
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Figure 5: Samples of hand motion sequences of left/flat and left/spread

mode-wise cross validation is computationally more expensive compared to the scaled
latent trace norm and other tensor norms. This computational advantage and compa-
rable performance with respect to the best mode-wise regularization makes the scaled
latent trace norm a useful regularization method for tensor-based regression especially
for tensors with high variations in its multilinear ranks.

5.2 Tensor Classification for Hand Gesture Recognition

Next, we report the results of experiments on tensor classification with the Cambridge
hand gesture data set (Kim et al., 2007).

The Cambridge hand gesture data set contains image sequences from 9 gesture classes.
These gesture classes include 3 primitive hand shapes of flats, spread, and V-shape, and
3 different hand motions of rightward, leftward, and contrast. Each class has 100 image
sequences with different illumination conditions and arbitrary motions of two people.
Previously, the tensor canonical correlation (Kim et al., 2007) has been used to classify
these hand gestures.

To apply tensor classification, first we build action sequences as tensor data by sam-
pling S images with equal time intervals from each sequence. This makes each sequence a
tensor of 20×20×S, where the first two modes are down-sampled images as in (Kim et al.,
2007) and S is the number of sampled images. In our experiments, we set S at 5 or 10. We
consider binary classification and we have chosen visually similar sequences of left/flat
and left/spread (Figure 5), which we found to be difficult to classify. We apply stan-
dardization of data by mean removal and variance normalization. We randomly sample
data into a training set of 120 data elements, use a validation set of 40 data elements to
select the optimal regularization parameter, and finally use a test set of 40 elements to
evaluate the learned classifier. In addition to the tensor regularized learning models, we
also trained classifiers with matrix regularization with unfolding on each mode separately.
As a baseline vector-based learning method, we have used the l2-regularized logistic re-
gression. We also trained mode-wise cross validation with individual mode regularization
(Mode-wise CV). We repeated the learning procedure for 10 sample sets for each classifier
and the results are shown in Table 1.

In both experiments for S = 5 and 10, we see that tensor norm regularized classi-
fication performs better than the vectorized learning method. With tensor structure of
(20, 20, 5), we can see that the scaled latent norm gives the best performance and the
latent trace norm, mode-1, mode-3, and mode-wise cross validation gives are compara-
ble. We observed that, with the tensor structure of (20, 20, 5), the resulted weight tensor
after learning its third mode becomes full rank. The scaled latent trace norm performed
the best since it could identify the mode with the minimum rank relative to its mode
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Table 1: Classification error of experiments with the hand gesture data set. The boldfaced
figures indicate comparable accuracies among classifiers after a t-test with significance of
0.05.

Tensor Dimensions
Norm (20,20,5) (20,20,10)

Overlapped Trace Norm 0.1425(0.0512) 0.0722(0.0363)
Latent Trace Norm 0.1175(0.0487) 0.0806(0.0512)

Scaled Latent Trace Norm 0.0975(0.0478) 0.0944(0.0512)
Mode-1 0.1050(0.0422) 0.0950(0.0438)
Mode-2 0.1400(0.0709) 0.0900(0.0459)
Mode-3 0.1200(0.0405) 0.1100(0.0592)

Mode-wise CV 0.1050(0.0542) 0.0950(0.044)
Logistic regression (l2) 0.1975(0.0640) 0.1925(0.0782)

dimension, which was the first mode in the current setup. The overlapped trace norm
performs poorly due to large variations in the multilinear ranks and tensor dimensions.

With the tensor structure (20, 20, 10), the overlapped trace norm gives the best per-
formance. In this case, we found that the multilinear ranks are close to each other, which
made the overlapped norm to give better performance. The scaled latent trace norm,
latent trace norm, mode-1, mode-2, and mode-wise cross validation gave comparable
performance with the overlapped trace norm.

5.3 Tensor Classification for Brain Computer Interface

As our second tensor classification, we experimented with a motor-imagery EEG classi-
fication problem in the context of brain computer interface (BCI). The objective of the
experiments was to classify movements imagined by person using the EEG signals cap-
tured in that instance. For our experiments, we used the data from the BCI competition
IVa (Dornhege et al., 2004) . Previous research by Tomioka and Aihara (2007) has con-
sidered “channel × channel” as a matrix of the EEG signal and classified it using logistic
regression with low-rank matrix regularization. Our objective is to model EEG data as
tensors to incorporate more information and learn to classify using tensor regularization
methods. The BCI competition IVa data set consists of BCI experiments of five people.
Though BCI experiments have used 256 channels, we only use signals from 49 channels
following Tomioka and Aihara (2007) and pre-process each signal from each channel with
Z different band-pass filters (Butterworth filters). Let Si ∈ R

C×T , where C denotes the
number of channels and T denotes the time, be the matrix obtained by processing with
the ith filter. As in Tomioka and Aihara (2007), each Si is further processed to make
centering and scaling as Ŝi =

1√
T−1

Si(IT − 11⊤). Then we obtain Xi = ŜiŜ
⊤
i , which is a

“channel × channel” matrix (in our setting, it is 49×49). We arrange all Xi, i = 1, . . . , Z
to form a tensor of dimensions Z × 49× 49.

For our experiments, we used Z = 5 different band-pass Butterworth filters with cut-
off frequencies of (7, 10), (9 12), (11 14), (13 16) and (15 18) with scaling by 50 which
resulted in a signal converted into a tensor of dimensions 5× 49× 49. We split the data
used in the competition into training and validation sets with proportion of 80 : 20, and
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the rest of the data are used for testing. As in the previous experiment, we used logistic
regression with all the tensor norms, individual mode unfolded matrix regularizations,
and cross validation with unfolded matrix regularization. We also used vector-based lo-
gistic regression with l2-regularization for comparison. To compare tensor-based methods
with the previously proposed matrix approach (Tomioka and Aihara, 2007), we averaged
tensor data over the frequency mode and applied classification with matrix trace norm
regularization. For all experiment, we selected all regularization parameters in 100 splits
in logarithmic scale from 0.01 to 500.

The results of the experiment are given in Table 2, which strongly indicate that vector-
based logistic regression is clearly outperformed by the overlapped and scaled latent trace
norms. Also, in most cases, the averaged matrix method performs poorly compared to
the optimal tensor structured regularization methods. Mode-1 regularization performs
poorly since mode-1 was high ranked compared to the other modes. Similarly, the latent
trace norm gives poor performance since it cannot properly regularize since it does not
consider the rank relative to the mode dimension. For all subjects, mode-2 and mode-3
unfolded regularizations result in the same performance due to the symmetry of each
Xi resulting in same rank along mode-2 and mode-3 unfoldings. For subject aa, the
scaled latent norm, mode-1, mode-2, and mode-wise cross validation give the best or
comparable performance. In subject al, all classifiers except the latent norm and mode-1
regularization gives comparable performance. For all other subjects except for aa and al,
the overlapped trace norm gives the best performance.

In contrast to the computation time for regression experiments, in this experiment,
we see that the computation time for tensor trace norm regularizations are more expen-
sive compared to the mode-wise regularization. Also, the mode-wise cross validation is
computationally less expensive than the scaled latent trace norm and other tensor trace
norms. This is a slight drawback with the tensor norms, though they tend to have higher
classification accuracy.

6 Conclusion and Future Work

In this paper, we have studied tensor-based regression and classification with regulariza-
tion using the overlapped trace norm, the latent trace norm, and the scaled latent trace
norm. We have provided dual optimization methods, theoretical analysis and experimen-
tal evaluations to understand tensor-based inductive learning. Our theoretical analysis
on excess risk bounds showed the relationship of excess risks with the multilinear ranks
and dimensions of the weight tensor. Our experimental results on both simulated and
real data sets further confirmed the validity of our theoretical analyses. From the theo-
retical and empirical results, we can conclude that the performance of regularization with
tensor norms depends on the multilinear ranks and mode dimensions, where the latent
and scaled latent norms are more robust in tensors with large variations of multilinear
ranks.

Our research opens up many future research directions. For example, an important
direction is on improvement of optimization methods. Optimization over the latent ten-
sors that results in the use of the latent trace norm and the scaled latent trace norm
increases the computational cost compared to the vectorized methods. Also, computing
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Table 2: Classification error of experiments with the BCI competition IVa data set. The boldfaced figures on the columns aa, al,
av, aw, and ay indicate comparable accuracies among classifiers after a t-test with significance of 0.05.

Norm
Subject

aa

Subject
al

Subject
av

Subject
aw

Subject
ay

Avg. Time
(Second)

Overlapped Trace Norm 0.2205(0.0139) 0.0178(0.0) 0.3244(0.0132) 0.0603(0.0071) 0.1254(0.0190) 17986(1489)

Latent Trace Norm 0.3107(0.0210) 0.0339(0.0056) 0.3735(0.0218) 0.1549(0.0381) 0.4008(0.0) 20021(14024)

Scaled Latent Trace Norm 0.2080(0.0043) 0.0179(0.0) 0.3694(0.0182) 0.0804(0.0) 0.1980(0.0476) 77123(149024)

Mode-1 0.3205(0.0174) 0.0339(0.0056) 0.3739(0.0211) 0.1450(0.0070) 0.4020(0.0038) 5737(3238)

Mode-2 0.2035(0.0124) 0.0285(0.0225) 0.3653(0.0186) 0.0790(0.0042) 0.1794(0.0025) 5195(1446)

Mode-3 0.2035(0.0124) 0.0285(0.0225) 0.3653(0.0186) 0.0790(0.0042) 0.1794(0.0025) 5223(1452)

Mode-wise CV 0.2080(0.0369) 0.0428(0.0305) 0.3545(0.01255) 0.1008(0.0227) 0.1452(0.0224) 14473(4142)

Averaged Matrix 0.2732(0.0286) 0.0178(0.000) 0.4030(0.2487) 0.1366(0.0056) 0.1825(0.0) 1936(472)

Logistic regression(l2) 0.3161(0.0075) 0.0179(0.0) 0.3684(0.0537) 0.2241(0.0432) 0.4040(0.0640) 72(62)
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multiple singular value decompositions and solving Newton optimization sub-problems
(for logistic regression) at each iterative step are computationally expensive. This is evi-
dent from our experimental results on computation time for regression and classification.
It would be an important direction to develop computationally more efficient methods
for learning with tensor data to make it more practical.

Regularization with a mixture of norms is common in both vector-based (e.g., the elas-
tic net (Zou and Hastie, 2003)) and matrix-based regularizations (Savalle et al., 2012). It
would be an interesting research direction to combine sparse regularization (the l1-norm)
to existing tensor norms. There is also a recent research direction to develop new com-
posite norms such the (k, q)-trace norm (Richard et al., 2014). Development of composite
tensor norms can be useful for inductive tensor learning to obtain sparse and low-rank
solutions.
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Appendix A

In this appendix, we derive the dual formulation of the latent trace norms. Let us consider
a training data set (Xi, yi), i = 1, . . . , m, where Xi ∈ R

n1×···×nK . To derive the dual for
the latent trace norms, we rewrite the primal for the regression of (5) as

min
W

m
∑

i

1

2
(yi − zi)

2 + λ
K
∑

k=1

‖W (k)
(k) ‖tr

subject to zi =

〈

K
∑

k=1

W(k),Xi

〉

+ b, i = 1, . . . , m.
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Its Lagrangian can be written by introducing variables αi ∈ R, i = 1, . . . , m as

G(α) = min
W ,z1,··· ,zm

m
∑

i

1

2
(yi − zi)

2 + λ

K
∑

k=1

‖W (k)
(k) ‖tr +

m
∑

i

αi

(

zi −
〈

K
∑

k=1

W(k),Xi

〉

+ b

)

= min
z1,··· ,zm

m
∑

i

(

1

2
(yi − zi)

2 + αizi

)

+min
b

b

m
∑

i

αi

+min
W

λ

K
∑

k=1

(

‖W (k)
(k) ‖tr −

〈

W(k)
(k) ,

m
∑

i

αiXi(k)

〉

)

=

m
∑

i=1

(

− 1

2
α2
i + αiyi

)

+

K
∑

k=1

{

0 ‖∑m
i=1 αiXi(k)‖op ≤ λk

−∞ otherwise

+

{

0
∑m

i=1 αi = 0

−∞ otherwise

=
m
∑

i=1

(

− 1

2
α2
i + αiyi

)

+
K
∑

k=1

δλk

( m
∑

i=1

αiXi(k)

)

+ δ

( m
∑

i=1

αi

)

.

Let us introduce auxiliary variables V(1), . . . ,V(K) to remove the coupling between the
indicator functions. Then the above dual solutions can be restated as

min
α,V(1),··· ,V(K)

m
∑

i=1

(

− 1

2
α2
i + αiyi

)

+

K
∑

k=1

δλk
(V

(k)
(k) )

subject to V(k) =
m
∑

i=1

αiXi k = 1, . . . , K,

m
∑

i=1

αi = 0. (18)

Similarly, we can derive the dual formulation for logistic regression.

Appendix B

In this appendix, we prove the theoretical results in Section 4.
Proof of Lemma 1 : By using the same approach as the one given in

Wimalawarne et al. (2014); Maurer and Pontil (2013), we rewrite

R(Ŵ) − R(W0) = [R(Ŵ) − R̂(Ŵ)] + [R̂(Ŵ) − R̂(W0)] + [R̂(W0) − R(W0)].

The second term is always negative and based on Hoeffding’s inequality, with probability

1− δ/2, the third term can be bounded as

√

ln( 1
δ
)

2n
:

R(Ŵ)−R(W0) ≤ R(Ŵ)− R̂(Ŵ) +

√

log(2
δ
)

2m
,

≤ sup
‖W‖⋆≤B0

(

R(W)− R̂(W)
)

+

√

log(2
δ
)

2m
.
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Further applying McDiarmid’s inequality, with probability at least 1 − δ, we get the
following following Rademacher complexity:

R =
2

m
E sup

‖W‖⋆≤B0

m
∑

i=1

σil(〈W,Xi〉 , yi),

where σi ∈ {−1, 1} are Rademacher variables which leads to

R(Ŵ)− R(W0) ≤ 2

m
E sup

‖W‖⋆≤B0

m
∑

i=1

σil(〈W,Xi〉 , yi) +

√

log(2
δ
)

2m

≤ 2Λ

m
E sup

‖W‖⋆≤B0

m
∑

i=1

σi 〈W,Xi〉+

√

log(2
δ
)

2m

=
2Λ

m
E sup

‖W‖⋆≤B0

〈

W,
m
∑

i=1

σiXi

〉

+

√

log(2
δ
)

2m

≤ 2Λ

m
E sup

‖W‖⋆≤B0

‖W‖⋆‖M‖⋆∗ +

√

log(2
δ
)

2m
(Hölder’s inequality)

≤ 2ΛB0

m
E‖M‖⋆∗ +

√

log(2
δ
)

2m
.

�

Proof of Theorem 1 : First we bound the data-dependent component of E‖M‖overlap∗ .
For this, we use the following duality relationship borrowed from Tomioka and Suzuki
(2013):

‖M‖overlap∗ = inf
M(1)+···+M(K)=M

max
k

‖M (k)
(k)‖op.

Since we can take any M(k) to equal M, the above norm can be upper bounded as

‖M‖overlap∗ ≤ min
k

‖M(k)‖op.

Furthermore, the expectation of the minimum of k can be upper-bounded by the minimum
of the expectation:

E‖M‖overlap∗ ≤ Emin
k

‖M(k)‖op ≤ min
k

E‖M(k)‖op. (19)

Let σ = {σ1, · · · , σm} be fixed Rademacher variables. Since each Xi contains elements
following the standard Gaussian distribution, it makes each element in M a sample from
N (0, ‖σ‖22). Based on the standard methods used in Tomioka et al. (2011b), we can
express ‖M(k)‖op as

‖M(k)‖op = sup
u∈Snk−1,v∈S

∏
i6=k ni−1

u⊤M(k)v.

Using Gordan’s theorem as in Tomioka et al. (2011b), we have

E‖M(k)‖op ≤ ‖σ‖min
k

(
√
nk +

√
n\k). (20)
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Next taking the expectation over σ, we have

E‖σ‖2 ≤
√

Eσ‖σ‖22 =
√
m. (21)

Combining (20) and (21) with (19) results in

E‖M‖overlap∗ ≤ min
k

√
m(

√
nk +

√
n\k).

Finally, the excess loss can be written as

R(Ŵ )− R(W 0) ≤ c1Λ
B√
m

( K
∑

k=1

√
rk

)

min
k

(
√
nk +

√
n\k) + c2

√

log(2
δ
)

2m
.

�

Proof of Theorem 2 :To bound the data-dependent component, we use the duality
result given in Tomioka and Suzuki (2013):

‖M‖latent∗ = max
k

‖M(k)‖op.

Since M consists of elements following the standard Gaussian distribution, for each mode
k unfolding, we can write a tail bound (Tomioka and Suzuki, 2013) as

P
(

‖M(k)‖op ≥ ‖σ‖(√nk +
√
n\k) + t

)

≤ exp(−t2/(2σ2)).

Using a union bound, we have

P
(

max
k

‖M(k)‖op ≥ ‖σ‖max
k

(
√
nk +

√
n\k) + t

)

≤ K exp(−t2/(2σ2)),

and this results in

Emax
k

‖M(k)‖op ≤ ‖σ‖max
k

(
√
nk +

√
n\k) + σC

√

2 log(K),

where C is a constant. Similarly to (21), taking the expectation over σ, we arrive at

Emax
k

‖M(k)‖op ≤ √
mmax

k
(
√
nk +

√
n\k) +

√
mC

√

2 log(K),

where C is constant. Finally, the excess risk is given as

R(Ŵ )−R(W 0) ≤ c1ΛB

√

mink rk
m

(

max
k

(
√
nk+

√
n\k)+C

√

2 log(K)

)

+ c2

√

log(2
δ
)

2m
.

�

Proof of Theorem 3 : From Tomioka and Suzuki (2013), we have

‖M‖scaled∗ = max
k

√
nk‖M(k)‖op.

Using a similar approach to the latent trace norm with the additional scaling of
√
nk, we

arrive at the following excess bound for the scaled latent trace norm:

R(Ŵ )−R(W 0) ≤ c1ΛB

√

1

m
min
k

(

rk
nk

)(

max
k

(nk+
√
N)+C

√

2 log(K)

)

+c2

√

log(2
δ
)

2m
.
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