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Abstract

We introduce single-set spectral sparsification as a deterministic sampling based feature

selection technique for regularized least squares classification, which is the classifica-

tion analogue to ridge regression. The method is unsupervised and gives worst-case

guarantees of the generalization power of the classification function after feature selec-

tion with respect to the classification function obtained using all features. We also intro-
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duce leverage-score sampling as an unsupervised randomized feature selection method

for ridge regression. We provide risk bounds for both single-set spectral sparsification

and leverage-score sampling on ridge regression in the fixeddesign setting and show

that the risk in the sampled space is comparable to the risk inthe full-feature space. We

perform experiments on synthetic and real-world datasets,namely a subset of TechTC-

300 datasets, to support our theory. Experimental results indicate that the proposed

methods perform better than the existing feature selectionmethods.

1 Introduction

Ridge regression is a popular technique in machine learningand statistics. It is a com-

monly used penalized regression method. Regularized LeastSquares Classifier (RLSC)

is a simple classifier based on least squares and has a long history in machine learn-

ing (Zhang and Peng, 2004; Poggio and Smale, 2003; Rifkin et al., 2003; Fung and

Mangasarian, 2001; Suykens and Vandewalle, 1999; Zhang andOles, 2001; Agarwal,

2002). RLSC is also the classification analogue to ridge regression. RLSC has been

known to perform comparably to the popular Support Vector Machines (SVM) (Rifkin

et al., 2003; Fung and Mangasarian, 2001; Suykens and Vandewalle, 1999; Zhang and

Oles, 2001). RLSC can be solved by simple vector space operations and do not require

quadratic optimization techniques like SVM.

We propose a deterministic feature selection technique forRLSC with provable guaran-

tees. There exist numerous feature selection techniques, which work well empirically.

There also exist randomized feature selection methods likeleverage-score sampling,

2



(Dasgupta et al., 2007) with provable guarantees which workwell empirically. But the

randomized methods have a failure probability and have to bere-run multiple times to

get accurate results. Also, a randomized algorithm may not select the same features in

different runs. A deterministic algorithm will select the same features irrespective of

how many times it is run. This becomes important in many applications. Unsupervised

feature selection involves selecting features oblivious to the class or labels.

In this work, we present a new provably accurate unsupervised feature selection tech-

nique for RLSC. We study a deterministic sampling based feature selection strategy for

RLSC with provable non-trivial worst-case performance bounds.

We also use single-set spectral sparsification and leverage-score sampling as unsuper-

vised feature selection algorithms for ridge regression inthe fixed design setting. Since

the methods are unsupervised, it will ensure that the methods work well in the fixed

design setting, where the target variables have an additivehomoskedastic noise. The

algorithms sample a subset of the features from the originaldata matrix and then per-

form regression task on the reduced dimension matrix. We provide risk bounds for the

feature selection algorithms on ridge regression in the fixed design setting.

The number of features selected by both algorithms is proportional to the rank of the

training set. The deterministic sampling-based feature selection algorithm performs

better in practice when compared to existing methods of feature selection.

2 Our Contributions

We introduce single-set spectral sparsification as a provably accurate deterministic fea-

ture selection technique for RLSC in an unsupervised setting. The number of features
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selected by the algorithm is independent of the number of features, but depends on the

number of data-points. The algorithm selects a small numberof features and solves

the classification problem using those features. Dasgupta et al. (2007) used a leverage-

score based randomized feature selection technique for RLSC and provided worst case

guarantees of the approximate classifier function to that using all features. We use

a deterministic algorithm to provide worst-case generalization error guarantees. The

deterministic algorithm does not come with a failure probability and the number of

features required by the deterministic algorithm is lesserthan that required by the ran-

domized algorithm. The leverage-score based algorithm hasa sampling complexity of

O
(

n
ǫ2
log

(

n

ǫ2
√
δ

))

, whereas single-set spectral sparsification requiresO (n/ǫ2) to be

picked, wheren is the number of training points,δ ∈ (0, 1) is a failure probability

and ǫ ∈ (0, 1/2] is an accuracy parameter. Like in Dasgupta et al. (2007), we also

provide additive-error approximation guarantees for any test-point and relative-error

approximation guarantees for test-points that satisfy some conditions with respect to

the training set.

We introduce single-set spectral sparsification and leverage-score sampling as unsuper-

vised feature selection algorithms for ridge regression and provide risk bounds for the

subsampled problems in the fixed design setting. The risk in the sampled space is com-

parable to the risk in the full-feature space. We give relative-error guarantees of the risk

for both feature selection methods in the fixed design setting.

From anempirical perspective, we evaluate single-set spectral sparsification on syn-

thetic data and 48 document-term matrices, which are a subset of the TechTC-300

(Davidov et al., 2004) dataset. We compare the single-set spectral sparsification al-
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gorithm with leverage-score sampling, information gain, rank-revealing QR factoriza-

tion (RRQR) and random feature selection. We do not report running times because

feature selection is an offline task. The experimental results indicate that single-set

spectral sparsification out-performs all the methods in terms of out-of-sample error for

all 48 TechTC-300 datasets. We observe that a much smaller number of features is re-

quired by the deterministic algorithm to achieve good performance when compared to

leverage-score sampling.

3 Background and Related Work

3.1 Notation

A,B, . . . denote matrices andα,b, . . . denote column vectors;ei (for all i = 1 . . . n)

is the standard basis, whose dimensionality will be clear from context; andIn is the

n×n identity matrix. The Singular Value Decomposition (SVD) ofa matrixA ∈ R
n×d

is equal toA = UΣVT , whereU ∈ R
n×d is an orthogonal matrix containing the

left singular vectors,Σ ∈ R
d×d is a diagonal matrix containing the singular values

σ1 ≥ σ2 ≥ . . . σd > 0, andV ∈ R
d×d is a matrix containing the right singular vectors.

The spectral norm ofA is ‖A‖2 = σ1. σmax andσmin are the largest and smallest

singular values ofA. κA = σmax/σmin is the condition number ofA. U⊥ denotes any

n × (n− d) orthogonal matrix whose columns span the subspace orthogonal toU. A

vectorq ∈ R
n can be expressed as:q = Aα + U⊥β, for some vectorsα ∈ R

d and

β ∈ R
n−d, i.e.q has one component alongA and another component orthogonal toA.
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3.2 Matrix Sampling Formalism

We now present the tools of feature selection. LetA ∈ R
d×n be the data matrix consist-

ing of n points andd dimensions,S ∈ R
r×d be a matrix such thatSA ∈ R

r×n contains

r rows ofA. Matrix S is a binary(0/1) indicator matrix, which has exactly one non-

zero element in each row. The non-zero element ofS indicates which row ofA will be

selected. LetD ∈ R
r×r be the diagonal matrix such thatDSA ∈ R

r×n rescales the

rows ofA that are inSA. The matricesS andD are called the sampling and re-scaling

matrices respectively. We will replace the sampling and re-scaling matrices by a single

matrixR ∈ R
r×d, whereR = DS denotes the matrix specifying which of ther rows

of A are to be sampled and how they are to be rescaled.

3.3 RLSC Basics

Consider a training data ofn points ind dimensions with respective labelsyi ∈ {−1,+1}

for i = 1, .., n. The solution of binary classification problems via Tikhonovregulariza-

tion in a Reproducing Kernel Hilbert Space (RKHS) using the squared loss function re-

sults in Regularized Least Squares Classification (RLSC) problem (Rifkin et al., 2003),

which can be stated as:

min
x∈Rn

‖Kx− y‖22 + λxTKx (1)

whereK is then×n kernel matrix defined over the training dataset,λ is a regularization

parameter andy is then dimensional{±1} class label vector. In matrix notation, the

training data-setX is ad×n matrix, consisting ofn data-points andd features(d ≫ n).

Throughout this study, we assume thatX is a full-rank matrix. We shall consider the

linear kernel, which can be written asK = XTX. Using the SVD ofX, the optimal
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solution of Eqn. 1 in the full-dimensional space is

xopt = V
(

Σ2 + λI
)−1

VTy. (2)

The vectorxopt can be used as a classification function that generalizes to test data. If

q ∈ R
d is the new test point, then the binary classification function is:

f(q) = xT
optX

Tq. (3)

Then,sign(f(q)) gives the predicted label (−1 or +1) to be assigned to the new test

pointq.

Our goal is to study how RLSC performs when the deterministicsampling based

feature selection algorithm is used to select features in anunsupervised setting. Let

R ∈ R
r×d be the matrix that samples and re-scalesr rows of X thus reducing the

dimensionality of the training set fromd to r ≪ d andr is proportional to the rank of

the input matrix. The transformed dataset intor dimensions is given bỹX = RX and

the RLSC problem becomes

min
x∈Rn

∥

∥

∥
K̃x− y

∥

∥

∥

2

2
+ λxT K̃x, (4)

thus giving an optimal vector̃xopt. The new test pointq is first dimensionally reduced

to q̃ = Rq, whereq̃ ∈ R
r and then classified by the function,

f̃ = f(q̃) = x̃T
optX̃

T
q̃. (5)

In subsequent sections, we will assume that the test-pointq is of the formq = Xα +

U⊥β. The first part of the expression shows the portion of the test-point that is similar

to the training-set and the second part shows how much the test-point is novel compared

to the training set, i.e.‖β‖2 measures how much ofq lies outside the subspace spanned

by the training set.
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3.4 Ridge Regression Basics

Consider a data-setX of n points ind dimensions withd ≫ n. HereX containsn

i.i.d samples from thed dimensional independent variable.y ∈ R
n is the real-valued

response vector. Ridge Regression(RR) or Tikhonov regularization penalizes theℓ2

norm of a parameter vectorβ and shrinks the estimated coefficients towards zero. In

the fixed design setting, we havey = XTβ + ω whereω ∈ R
n is the homoskedastic

noise vector with mean 0 and varianceσ2. Letβλ be the solution to the ridge regression

problem. The RR problem is stated as:

β̂λ = arg min
β∈Rd

1

n

∥

∥y−XTβ
∥

∥

2

2
+ λ ‖β‖22 . (6)

The solution to Eqn.6 iŝβλ =
(

XXT + nλId
)−1

Xy. One can also solve the same

problem in the dual space. Using change of variables,β = Xα, whereα ∈ R
n and let

K = XTX be then×n linear kernel defined over the training dataset. The optimization

problem becomes:

α̂λ = arg min
α∈Rn

1

n
‖y−Kα‖22 + λαTKα. (7)

Throughout this study, we assume thatX is a full-rank matrix. Using the SVD ofX,

the optimal solution in the dual space (Eqn. 7) for the full-dimensional data is given by

α̂λ = (K+ nλIn)
−1

y. The primal solution iŝβλ = Xα̂λ.

In the sampled space, we haveK̃ = X̃
T
X̃. The dual problem in the sampled space

can be posed as:

α̃λ = arg min
α∈Rn

1

n

∥

∥

∥
y− K̃α

∥

∥

∥

2

2
+ λαTK̃α. (8)

The optimal dual solution in the sampled space isα̃λ =
(

K̃+ nλIn

)−1

y. The primal

solution isβ̃λ = X̃α̃λ.
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3.5 Related Work

The work most closely related to ours is that of Dasgupta et al. (2007) who used a

leverage-score based randomized feature selection technique for RLSC and provided

worst case bounds of the approximate classifier with that of the classifier for all fea-

tures. The proof of their main quality-of-approximation results provided an intuition

of the circumstances when their feature selection method will work well. The running

time of leverage-score based sampling is dominated by the time to compute SVD of the

training set i.e.O (n2d), whereas, for single-set spectral sparsification, it isO (rdn2).

Single-set spectral sparsification is a slower and more accurate method than leverage-

score sampling. Another work on dimensionality reduction of RLSC is that of Avron

et al. (2013) who used efficient randomized-algorithms for solving RLSC, in settings

where the design matrix has a Vandermonde structure. However, this technique is dif-

ferent from ours, since their work is focused on dimensionality reduction using linear

combinations of features, but not on actual feature selection.

Lu et al. (2013) used Randomized Walsh-Hadamard transform to lower the dimension

of data matrix and subsequently solve the ridge regression problem in the lower dimen-

sional space. They provided risk-bounds of their algorithmin the fixed design setting.

However, this is different from our work, since they use linear combinations of features,

while we select actual features from the data.
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4 Our main tools

4.1 Single-set Spectral Sparsification

We describe the Single-Set Spectral Sparsification algorithm (BSS1 for short) of Bat-

son et al. (2009) as Algorithm 1. Algorithm 1 is a greedy technique that selects

columns one at a time. Consider the input matrix as a set ofd column vectorsUT =

[u1,u2, ....,ud], with ui ∈ R
ℓ (i = 1, .., d) . Given ℓ andr > ℓ, we iterate overτ =

0, 1, 2, ..r − 1. Define the parametersLτ = τ −
√
rℓ, δL = 1, Uτ = δU

(

τ +
√
ℓr
)

and

δU =
(

1 +
√

ℓ/r
)

/
(

1−
√

ℓ/r
)

. ForU, L ∈ R andA ∈ R
ℓ×ℓ a symmetric positive

definite matrix with eigenvaluesλ1, λ2, ..., λℓ, define

Φ (L,A) =
ℓ

∑

i=1

1

λi − L
; Φ̂ (U,A) =

ℓ
∑

i=1

1

U − λi

as the lower and upper potentials respectively. These potential functions measure how

far the eigenvalues ofA are from the upper and lower barriersU andL respectively.

We defineL (u, δL,A, L) andU (u, δU ,A, U) as follows:

L (u, δL,A, L) =
uT (A− (L+ δL) Iℓ)

−2
u

Φ (L+ δL,A)− Φ (L,A)
− uT (A− (L+ δL) Iℓ)

−1
u

U (u, δU ,A, U) =
uT ((U + δU) Iℓ −A)−2

u

Φ̂ (U,A)− Φ̂ (U + δU ,A)
+ uT ((U + δU) Iℓ −A)−1

u.

At every iteration, there exists an indexiτ and a weighttτ > 0 such that,tτ−1 ≤

L (uiτ , δL,A, L) andtτ−1 ≥ U (uiτ , δU ,A, U) . Thus, there will be at mostr columns

selected afterτ iterations. The running time of the algorithm is dominated by the search

for an indexiτ satisfying

U (uiτ , δU ,Aτ , Uτ ) ≤ L (uiτ , δL,Aτ , Lτ )

1The name BSS comes from the authors Batson, Spielman and Srivastava.
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and computing the weighttτ . One needs to compute the upper and lower potentials

Φ̂ (U,A) andΦ (L,A) and hence the eigenvalues ofA. Cost per iteration isO (ℓ3) and

the total cost isO (rℓ3) . Fori = 1, .., d, we need to computeL andU for everyui which

can be done inO (dℓ2) for every iteration, for a total ofO (rdℓ2) . Thus total running

time of the algorithm isO (rdℓ2) . We present the following lemma for the single-set

spectral sparsification algorithm.

Input: VT = [v1,v2, ...vd] ∈ R
ℓ×d with vi ∈ R

ℓ andr > ℓ.

Output: MatricesS ∈ R
d×r,D ∈ R

r×r.

1. InitializeA0 = 0ℓ×ℓ, S = 0d×r,D = 0r×r.

2. Set constantsδL = 1 andδU =
(

1 +
√

ℓ/r
)

/
(

1−
√

ℓ/r
)

.

3. for τ = 0 to r − 1 do

• Let Lτ = τ −
√
rℓ;Uτ = δU

(

τ +
√
ℓr
)

.

• Pick indexi ∈ {1, 2, ..d} and numbertτ > 0, such that

U (vi, δU ,Aτ , Uτ ) ≤ L (vi, δL,Aτ , Lτ ) .

• Let t−1
τ = 1

2
(U (vi, δU ,Aτ , Uτ ) + L (vi, δL,Aτ , Lτ ))

• UpdateAτ+1 = Aτ + tτviv
T
i ; setSiτ ,τ+1 = 1 andDτ+1,τ+1 = 1/

√
tτ .

4. end for

5. Multiply all the weights inD by

√

r−1
(

1−
√

(ℓ/r)
)

.

6. ReturnS andD.

Algorithm 1: Single-set Spectral Sparsification
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Lemma 1. BSS (Batson et al., 2009): GivenU ∈ R
d×ℓ satisfyingUTU = Iℓ and

r > ℓ, we can deterministically construct sampling and rescaling matricesS ∈ R
r×d

andD ∈ R
r×r withR = DS, such that, for ally ∈ R

ℓ :

(

1−
√

ℓ/r
)2

‖Uy‖22 ≤ ‖RUy‖22 ≤
(

1 +
√

ℓ/r
)2

‖Uy‖22 .

We now present a slightly modified version of Lemma 1 for our theorems.

Lemma 2. GivenU ∈ R
d×ℓ satisfyingUTU = Iℓ andr > ℓ, we can deterministically

construct sampling and rescaling matricesS ∈ R
r×d and D ∈ R

r×r such that for

R = DS,

∥

∥UTU−UTRTRU
∥

∥

2
≤ 3

√

ℓ/r.

Proof. From Lemma 1, it follows,

σℓ

(

UTRTRU
)

≥
(

1−
√

ℓ/r
)2

andσ1

(

UTRTRU
)

≤
(

1 +
√

ℓ/r
)2

.

Thus,

λmax

(

UTU−UTRTRU
)

≤
(

1−
(

1−
√

ℓ/r
)2
)

≤ 2
√

ℓ/r.

Similarly,

λmin

(

UTU−UTRTRU
)

≥
(

1−
(

1 +
√

ℓ/r
)2
)

≥ 3
√

ℓ/r.

Combining these, we have
∥

∥UTU−UTRTRU
∥

∥

2
≤ 3

√

ℓ/r.

Note: Letǫ = 3
√

ℓ/r. It is possible to set an upper bound onǫ by setting the value of

r. We will assumeǫ ∈ (0, 1/2].
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4.2 Leverage Score Sampling

Our randomized feature selection method is based on importance sampling or the so-

called leverage-score sampling of Rudelson and Vershynin (2007). LetU be the top-ρ

left singular vectors of the training setX. A carefully chosen probability distribution of

the form

pi =
‖Ui‖22
n

, for i = 1, 2, ..., d, (9)

i.e. proportional to the squared Euclidean norms of the rowsof the left-singular vec-

tors and selectr rows ofU in i.i.d trials and re-scale the rows with1/
√
pi. The time

complexity is dominated by the time to compute the SVD ofX.

Lemma 3. (Rudelson and Vershynin, 2007) Letǫ ∈ (0, 1/2] be an accuracy parameter

and δ ∈ (0, 1) be the failure probability. GivenU ∈ R
d×ℓ satisfyingUTU = Iℓ.

Let p̃ = min{1, rpi}, let pi be as Eqn. 9 and letr = O
(

n
ǫ2
log

(

n

ǫ2
√
δ

))

. Con-

struct the sampling and rescaling matrixR. Then with probability at least(1 − δ),

∥

∥UTU−UTRTRU
∥

∥

2
≤ ǫ.

5 Theory

In this section we describe the theoretical guarantees of RLSC using BSS and also

the risk bounds of ridge regression using BSS and Leverage-score sampling. Before

we begin, we state the following lemmas from numerical linear algebra which will be

required for our proofs.

Lemma 4. (Stewart and Sun, 1990) For any matrixE, such thatI + E is invertible,

(I+ E)−1 = I+
∞
∑

i=1

(−E)i.

13



Lemma 5. (Stewart and Sun, 1990) LetA andÃ = A+E be invertible matrices. Then

Ã
−1 −A−1 = −A−1EÃ

−1
.

Lemma 6. (Demmel and Veselic, 1992) LetD andX be matrices such that the product

DXD is a symmetric positive definite matrix with matrixXii = 1. Let the product

DED be a perturbation such that,‖E‖2 = η < λmin(X). Hereλmin corresponds to

the smallest eigenvalue ofX. Let λi be the i-th eigenvalue ofDXD and letλ̃i be the

i-th eigenvalue ofD (X+ E)D. Then,
∣

∣

∣

λi−λ̃i

λi

∣

∣

∣
≤ η

λmin(X)
.

Lemma 7. Let ǫ ∈ (0, 1/2]. Then
∥

∥qTU⊥U⊥TRTRU
∥

∥

2
≤ ǫ

∥

∥U⊥U⊥Tq
∥

∥

2
.

The proof of this lemma is similar to Lemma 4.3 of Drineas et al. (2006).

5.1 Our Main Theroems on RLSC

The following theorem shows the additive error guarantees of the generalization bounds

of the approximate classifer with that of the classifier withno feature selection. The

classification error bound of BSS on RLSC depends on the condition number of the

training set and on how much of the test-set lies in the subspace of the training set.

Theorem 1. Let ǫ ∈ (0, 1/2] be an accuracy parameter,r = O (n/ǫ2) be the number

of features selected by BSS. LetR ∈ R
r×d be the matrix, as defined in Lemma 2. Let

X ∈ R
d×n with d >> n, be the training set,̃X = RX is the reduced dimensional

matrix andq ∈ R
d be the test point of the formq = Xα +U⊥β. Then, the following

hold:
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• If λ = 0, then
∣

∣

∣
q̃T X̃x̃opt − qTXxopt

∣

∣

∣
≤ ǫκX

σmax
‖β‖2 ‖y‖2 .

• If λ > 0, then
∣

∣

∣
q̃T X̃x̃opt − qTXxopt

∣

∣

∣
≤ 2ǫκX ‖α‖2 ‖y‖2 + 2ǫκX

σmax
‖β‖2 ‖y‖2 .

Proof. We assume thatX is a full-rank matrix. LetE = UTU − UTRTRU and

‖E‖2 =
∥

∥I−UTRTRU
∥

∥

2
= ǫ ≤ 1/2. Using the SVD ofX, we define

∆ = ΣUTRTRUΣ = Σ (I+ E)Σ. (10)

The optimal solution in the sampled space is given by,

x̃opt = V (∆+ λI)−1
VTy. (11)

It can be proven easily that∆ and∆+λI are invertible matrices. We focus on the term

qTXxopt. Using the SVD ofX, we get

qTXxopt = αTXTXxopt + βU⊥T
(

UΣVT
)

xopt

= αTVΣ2
(

Σ2 + λI
)−1

VTy (12)

= αTV
(

I+ λΣ−2
)−1

VTy. (13)

Eqn(12) follows because of the factU⊥TU = 0 and by substitutingxopt from Eqn.(2).

Eqn.(13) follows from the fact that the matricesΣ2 andΣ2 + λI are invertible. Now,

∣

∣

∣
qTXxopt − q̃T X̃x̃opt

∣

∣

∣
=

∣

∣qTXxopt − qTRTRXx̃opt

∣

∣

≤
∣

∣qTXxopt −αTXTRTRXx̃opt

∣

∣ (14)

+
∣

∣βTU⊥TRTRXx̃opt

∣

∣ . (15)
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We bound (14) and (15) separately. Substituting the values of x̃opt and∆,

αTXTRTRXx̃opt = αTV∆VT x̃opt

= αTV∆ (∆+ λI)−1
VTy

= αTV
(

I+ λ∆−1
)−1

VTy

= αTV
(

I+ λΣ−1 (I+ E)−1
Σ−1

)−1
VTy

= αTV
(

I+ λΣ−2 + λΣ−1ΦΣ−1
)−1

VTy. (16)

The last line follows from Lemma 4 in Appendix, which states that(I+ E)−1 = I+Φ,

whereΦ =
∞
∑

i=1

(−E)i. The spectral norm ofΦ is bounded by,

‖Φ‖2 =
∥

∥

∥

∥

∥

∞
∑

i=1

(−E)i

∥

∥

∥

∥

∥

2

≤
∞
∑

i=1

‖E‖i2 ≤
∞
∑

i=1

ǫi = ǫ/(1− ǫ). (17)

We now bound (14). Substituting (13) and (16) in (14),

∣

∣qTXxopt −αTXTRTRXx̃opt

∣

∣

=
∣

∣

∣
αTV{

(

I+ λΣ−2 + λΣ−1ΦΣ−1
)−1 −

(

I+ λΣ−2
)−1}VTy

∣

∣

∣

≤
∥

∥αTV
(

I+ λΣ−2
)∥

∥

2

∥

∥VTy
∥

∥

2
‖Ψ‖2 .

The last line follows because of Lemma 5 and the fact that all matrices involved are

invertible. Here,

Ψ = λΣ−1ΦΣ−1
(

I+ λΣ−2 + λΣ−1ΦΣ−1
)−1

= λΣ−1ΦΣ−1
(

Σ−1
(

Σ2 + λI+ λΦ
)

Σ−1
)−1

= λΣ−1Φ
(

Σ2 + λI+ λΦ
)−1

Σ.

Since the spectral norms ofΣ,Σ−1 andΦ are bounded, we only need to bound the

spectral norm of
(

Σ2 + λI+ λΦ
)−1

to bound the spectral norm ofΨ. The spectral
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norm of the matrix
(

Σ2 + λI+ λΦ
)−1

is the inverse of the smallest singular value of

(

Σ2 + λI+ λΦ
)

. From perturbation theory of matrices Stewart and Sun (1990)and

(17), we get

∣

∣σi

(

Σ2 + λI+ λΦ
)

− σi

(

Σ2 + λI
)∣

∣ ≤ ‖λΦ‖2 ≤ ǫλ.

Here,σi(Q) represents theith singular value of the matrixQ.

Also,σi
2
(

Σ2 + λI
)

= σi
2 + λ, whereσi are the singular values ofX.

σi
2 + (1− ǫ)λ ≤ σi

(

Σ2 + λI+ λΦ
)

≤ σi
2 + (1 + ǫ)λ.

Thus,

∥

∥

∥

(

Σ2 + λI+ λΦ
)−1

∥

∥

∥

2
= 1/σmin

(

Σ2 + λI+ λΦ
)

≤ 1/
(

σ2
min + (1− ǫ)λ)

)

.

Here,σmax andσmin denote the largest and smallest singular value ofX. Since‖Σ‖2
∥

∥Σ−1
∥

∥

2
=

σmax/σmin ≤ κX, (condition number ofX) we bound (14):

∣

∣qTXxopt −αTXTRTRXx̃opt

∣

∣ ≤ ǫλκX

σ2
min + (1− ǫ)λ

∥

∥

∥
αTV

(

I+ λΣ−2
)−1

∥

∥

∥

2

∥

∥VTy
∥

∥

2
.

(18)

Forλ > 0, the termσ2
min + (1 − ǫ)λ in Eqn.(18) is always larger than(1− ǫ) λ, so it

can be upper bounded by2ǫκX (assumingǫ ≤ 1/2). Also,

∥

∥

∥
αTV

(

I+ λΣ−2
)−1

∥

∥

∥

2
≤

∥

∥αTV
∥

∥

2

∥

∥

∥

(

I+ λΣ−2
)−1

∥

∥

∥

2
≤ ‖α‖2 .

This follows from the fact, that
∥

∥αTV
∥

∥

2
= ‖α‖2 and ‖Vy‖2 = ‖y‖2 asV is a full-

rank orthonormal matrix and the singular values ofI + λΣ−2 are equal to1 + λ/σi
2;

making the spectral norm of its inverse at most one. Thus we get,

∣

∣qTXxopt −αTXTRTRXx̃opt

∣

∣ ≤ 2ǫκX ‖α‖2 ‖y‖2 . (19)
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We now bound (15). Expanding (15) using SVD andx̃opt,

∣

∣βTU⊥TRTRXx̃opt

∣

∣ =
∣

∣βTU⊥TRTRUΣ (∆+ λI)VTy
∣

∣

≤
∥

∥qTU⊥U⊥TRTRU
∥

∥

2

∥

∥Σ (∆+ λI)−1
∥

∥

2

∥

∥VTy
∥

∥

2

≤ ǫ
∥

∥U⊥U⊥Tq
∥

∥

2

∥

∥VTy
∥

∥

2

∥

∥Σ (∆+ λI)−1
∥

∥

2

≤ ǫ ‖β‖2 ‖y‖2
∥

∥Σ (∆+ λI)−1
∥

∥

2
.

The first inequality follows fromβ = U⊥Tq; and the second inequality follows from

Lemma 7. To conclude the proof, we bound the spectral norm ofΣ (∆+ λI)−1. Note

that from Eqn.(10),Σ−1∆Σ−1 = I+ E andΣΣ−1 = I,

Σ (∆+ λI)−1 =
(

Σ−1∆Σ−1 + λΣ−2
)−1

Σ−1 =
(

I+ λΣ−2 + E
)−1

Σ−1.

One can get a lower bound for the smallest singular value of
(

I+ λΣ−2 + E
)−1

using

matrix perturbation theory and by comparing the singular values of this matrix to the

singular values ofI+ λΣ−2. We get,

(1− ǫ) +
λ

σi
2
≤ σi

(

I+ E+ λΣ−2
)

≤ (1 + ǫ) +
λ

σi
2
.

∥

∥

∥

(

I+ λΣ−2 + E
)−1

Σ−1
∥

∥

∥

2
≤ σ2

max

((1− ǫ) σ2
max + λ) σmin

=
κXσmax

(1− ǫ) σ2
max + λ

≤ 2κX

σmax

. (20)

We assumed thatǫ ≤ 1/2, which implies(1− ǫ) + λ/σ2
max ≥ 1/2. Combining these,

we get,

∣

∣βTU⊥TRTRXx̃opt

∣

∣ ≤ 2ǫκX

σmax

‖β‖2 ‖y‖2 . (21)

Combining Eqns (19) and (21) we complete the proof for the case λ > 0. Forλ = 0,

Eqn.(18) becomes zero and the result follows.
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Our next theorem provides relative-error guarantees to thebound on the classification

error when the test-point has no-new components, i.e.β = 0.

Theorem 2. Let ǫ ∈ (0, 1/2] be an accuracy parameter,r = O (n/ǫ2) be the number of

features selected by BSS andλ > 0. Letq ∈ R
d be the test point of the formq = Xα,

i.e. it lies entirely in the subspace spanned by the trainingset, and the two vectorsVTy

and
(

I+ λΣ−2
)−1

VTα satisfy the property,

∥

∥

∥

(

I+ λΣ−2
)−1

VTα

∥

∥

∥

2

∥

∥VTy
∥

∥

2
≤ ω

∥

∥

∥

∥

(

(

I+ λΣ−2
)−1

VTα
)T

VTy

∥

∥

∥

∥

2

= ω
∣

∣qTXxopt

∣

∣

for some constantω. If we run RLSC after BSS, then

∣

∣

∣
q̃T X̃x̃opt − qTXxopt

∣

∣

∣
≤ 2ǫωκX

∣

∣qTXxopt

∣

∣ .

The proof follows directly from the proof of Theorem 1 if we considerβ = 0.

5.2 Our Main Theorems on Ridge Regression

We compare the risk of subsampled ridge regression with the risk of true dual ridge

regreesion in the fixed design setting. Recall that the response vectory = XTβ + ω

whereω ∈ R
n is the homoskedastic noise vector with mean 0 and varianceσ2. Also,

we assume that the data matrix is of full rank.

Lemma 8. Letρ be the rank ofX. FormK̃ using BSS. Then,

(1−∆)K � K̃ � (1 + ∆)K,

where∆ = C
√

ρ/r. For p.s.d matricesA � B meansB−A is p.s.d.
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Proof. Using the SVD ofX, K̃ = VΣ
(

UTRTRU
)

ΣVT . Lemma 2 implies

Iρ (1−∆) �
(

UTRTRU
)

� Iρ (1 + ∆) .

Multiplying left and right hand side of the inequality byVΣ andΣVT respectively, to

the above inequality completes the proof.

Lemma 9. Let ρ be the rank ofX. FormK̃ using leverage-score sampling. Then, with

probability at least(1− δ), whereδ ∈ (0, 1),

(1−∆)K � K̃ � (1 + ∆)K,

where∆ = C ρ

ǫ2
log

(

ρ

ǫ2
√
δ

)

.

5.1 Risk Function for Ridge Regression

Let z = Eω[y] = XTβ. The risk for a prediction function̂y ∈ R
n is 1

n
Eω ‖ŷ− z‖2

2
.

For anyn× n positive symmetric matrixK, we define the following risk function:

R (K) =
σ2

n
Tr

(

K2 (K+ nλIn)
−2)+ nλ2zT (K+ nλIn)

−2
z.

Theorem 3. Under the fixed design setting, the risk for the ridge regression solution

in the full-feature space isR(K) and the risk for the ridge regression in the reduced

dimensional space isR(K̃).

Proof. The risk of the ridge regression estimator in the reduced dimensional space is

1

n
Eω

∥

∥

∥
K̃α̃λ − z

∥

∥

∥

2

2
=

1

n
Eω

∥

∥

∥

∥

K̃
(

K̃+ nλIn

)−1

y − z

∥

∥

∥

∥

2

2

. (22)
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TakingK̃
(

K̃+ nλIn

)−1

asQ we can write Eqn.(22) as,

1

n
Eω ‖Qy − Eω [Qy]‖22 +

1

n
‖Eω [Qy]− z‖22

=
1

n
Eω

[

∥

∥

∥

∥

K̃
(

K̃+ nλIn

)−1

ω

∥

∥

∥

∥

2

2

]

+
1

n

∥

∥

∥

∥

K̃
(

K̃+ nλIn

)−1

z− z

∥

∥

∥

∥

2

2

=
1

n
Tr

(

K̃
2
(

K̃+ nλIn

)−2

ωωT

)

+
1

n
zT

(

In − K̃
(

K̃+ nλIn

)−1
)2

z

=
σ2

n
Tr

(

K̃
2
(

K̃+ nλIn

)−2
)

+ nλ2zT
(

K̃+ nλIn

)−2

z.

The expectation is only over the random noiseω and is conditional on the feature se-

lection method used.

Our next theorem bounds the risk inflation of ridge regression in the reduced dimen-

sional space compared with the ridge regression solution inthe full-feature space.

Theorem 4. Letρ be the rank of the matrixX. When using leverage-score sampling as

a feature selection technique, with probability at least1− δ, whereδ ∈ (0, 1),

R(K̃) ≤ (1−∆)−2R(K),

where∆ = C ρ

ǫ2
log

(

ρ

ǫ2
√
δ

)

.

Proof. For any positive semi-definite matrix,K ∈ R
n×n, we define the biasB(K) and

varianceV (K) of the risk function as follows:

B(K) = nλ2zT (K+ nλIn)
−2

z,

V (K) =
σ2

n
Tr

(

K̃
2
(

K̃+ nλIn

)−2
)

.

Therefore,R(K) = B(K) + V (K). Now due to Bach (2013) we knowB(K) is non-
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increasing inK andV (K) is non-decreasing inK. When Lemma 9 holds,

R(K̃) = V (K̃) +B(K̃)

≤ V ((1 + ∆)K) +B ((1−∆)K)

≤ (1 + ∆)2 V (K) + (1−∆)−2B(K)

≤ (1−∆)−2 (V (K) +B(K))

= (1−∆)−2R(K).

We can prove a similar theorem for BSS.

Theorem 5. Let ρ be the rank of the matrixX. When using BSS as a feature selection

technique, with∆ = Cρ/ǫ2,

R(K̃) ≤ (1−∆)−2R(K).

6 Experiments

All experiments were performed in MATLAB R2013b on an Intel i-7 processor with

16GB RAM.

6.1 BSS Implementation Issues

The authors of Batson et al. (2009) do not provide any implementation details of the

BSSalgorithm. Here we discuss several issues arising during the implementation.

Choice of column selection:At every iteration, there are multiple columns which sat-

isfy the conditionU (ui, δU ,Aτ , Uτ ) ≤ L (ui, δL,Aτ , Lτ ) . The authors of Batson et al.
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(2009) suggest picking any column which satisfies this constraint. Instead of breaking

ties arbitrarily, we choose the columnui which has not been selected in previous itera-

tions and whose Euclidean-norm is highest among the candidate set. Columns with zero

Euclidean norm never get selected by the algorithm. In the inner loop of Algorithm 1,

U andL has to be computed for all thed columns in order to pick a good column. This

step can be done efficiently using a single line of Matlab code, by making use of matrix

and vector operations.

6.2 Other Feature Selection Methods

In this section, we describe other feature-selection methods with which we compare

BSS.

6.1 Rank-Revealing QR Factorization (RRQR)

Within the numerical linear algebra community, subset selection algorithms use the so-

called Rank Revealing QR (RRQR) factorization. Here we slightly abuse notation and

stateA as a short and fat matrix as opposed to the tall and thin matrix. LetA be an×d

matrix with (n < d) and an integerk (k < d) and assume partial QR factorizations of

the form

AP = Q









R11 R12

0 R22









,

whereQ ∈ R
n×n is an orthogonal matrix,P ∈ R

d×d is a permutation matrix,R11 ∈

R
k×k,R12 ∈ R

k×(d−k),R22 ∈ R
(d−k)×(d−k) The above factorization is called a RRQR

factorization ifσmin (R11) ≥ σk (A) /p(k, d), σmax (R22) ≤ σmin(A)p(k, d), where

p(k, d) is a function bounded by a low-degree polynomial ink andd. The important
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columns are given byA1 = Q









R11

0









andσi (A1) = σi (R11) with 1 ≤ i ≤ k.

We perform feature selection using RRQR by picking the important columns which

preserve the rank of the matrix.

6.2 Random Feature Selection

We select features uniformly at random without replacementwhich serves as a baseline

method. To get around the randomness, we repeat the samplingprocess five times.

6.3 Leverage-Score Sampling

For leverage-score sampling, we repeat the experiments fivetimes to get around the

randomness. We pick the top-ρ left singular vectors ofX, whereρ is the rank of the

matrixX.

6.4 Information Gain (IG)

The Information Gain feature selection method (Yang and Pedersen, 1997) measures the

amount of information obtained for binary class predictionby knowing the presence or

absence of a feature in a dataset. The method is a supervised strategy, whereas the other

methods used here are unsupervised.

6.3 Experiments on RLSC

The goal of this section is to compare BSS with existing feature selection methods for

RLSC and show that BSS is better than the other methods.
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Table 1:Most frequently selected features using the synthetic dataset.

r = 80 k = 90 k = 100

BSS 89, 88, 87, 86, 85 100, 99, 98, 97, 95

RRQR 90, 80, 79, 78, 77 100, 80, 79, 78, 77

Lvg-Score 73, 85, 84, 81, 87 93, 87, 95, 97, 96

IG 80, 79, 78, 77, 76 80, 79, 78, 77, 76

r = 90 k = 90 k = 100

BSS 90, 88, 87, 86, 85 100, 99, 98, 97, 96

RRQR 90, 89, 88, 87, 86 100, 90, 89, 88, 87

Lvg-Score 67, 88, 83, 87, 85 100, 97, 92, 48, 58

IG 90, 89, 88, 87, 86 90, 89, 88, 87, 86

Table 2:Running time of various feature selection methods in seconds. For synthetic data, the

running time corresponds to the experiment whenr = 80 andk = 90 and is averaged over

ten ten-fold cross-validation experiments. For TechTC-300, the running time corresponds to the

experiment whenr = 400 and is averaged over ten ten-fold cross-validation experiments and

over 48 TehTC-300 datasets.

BSS IG LVG RRQR

Synthetic Data 0.1025 0.0003 0.0031 0.0016

TechTC-300 75.7624 0.0242 0.4054 0.2631

6.1 Synthetic Data

We run our experiments on synthetic data where we control thenumber of relevant fea-

tures in the dataset and demonstrate the working of Algorithm 1 on RLSC. We generate
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synthetic data in the same manner as given in Bhattacharyya (2004). The dataset hasn

data-points andd features. The class labelyi of each data-point was randomly chosen

to be 1 or -1 with equal probability. The firstk features of each data-pointxi are drawn

from yiN (−j, 1) distribution, whereN (µ, σ2) is a random normal distribution with

meanµ and varianceσ2 andj varies from 1 to k. The remainingd − k features are

chosen from aN (0, 1) distribution. Thus the dataset hask relevant features and(d−k)

noisy features. By construction, among the firstk features, thekth feature has the most

discriminatory power, followed by(k − 1)th feature and so on. We setn to 30 andd to

1000. We setk to 90 and 100 and ran two sets of experiments.

We set the value ofr, i.e. the number of features selected by BSS to 80 and 90 for

all experiments. We performed ten-fold cross-validation and repeated it ten times. The

value ofλ was set to 0, 0.1, 0.3, 0.5, 0.7, and 0.9. We compared BSS with RRQR,

IG and leverage-score sampling. The mean out-of-sample error was 0 for all methods

for bothk = 90 andk = 100. Table 1 shows the set of five most frequently selected

features by the different methods for one such synthetic dataset across 100 training sets.

The top features picked up by the different methods are the relevant features by con-

struction and also have good discriminatory power. This shows that BSS is as good

as any other method in terms of feature selection and often picks more discriminatory

features than the other methods. We repeated our experiments on ten different synthetic

datasets and each time, the five most frequently selected features were from the set of

relevant features. Thus, by selecting only 8%-9% of all features, we show that we are

able to obtain the most discriminatory features along with good out-of-sample error

using BSS.
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Table 3: Out-of-sample error of TechTC-300 datasets averaged over ten ten-fold cross-

validation and over 48 datasets for three values ofr. The first and second entry of each cell

represents the mean and standard deviation. Items in bold indicate the best results.

r = 300 λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.7

BSS 31.76± 0.68 31.46± 0.67 31.24± 0.65 31.03± 0.66

Lvg-Score 38.22± 1.26 37.63± 1.25 37.23± 1.24 36.94± 1.24

RRQR 37.84± 1.20 37.07± 1.19 36.57± 1.18 36.10± 1.18

Randomfs 50.01± 1.2 49.43± 1.2 49.18± 1.19 49.04± 1.19

IG 38.35± 1.21 36.64± 1.18 35.81± 1.18 35.15± 1.17

r = 400 λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.7

BSS 30.59± 0.66 30.33± 0.65 30.11± 0.65 29.96± 0.65

Lvg-Score 35.06± 1.21 34.63± 1.20 34.32± 1.2 34.11± 1.19

RRQR 36.61± 1.19 36.04± 1.19 35.46± 1.18 35.05± 1.17

Randomfs 47.82± 1.2 47.02± 1.21 46.59± 1.21 46.27± 1.2

IG 37.37± 1.21 35.73± 1.19 34.88± 1.18 34.19± 1.18

r = 500 λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.7

BSS 29.80± 0.77 29.53± 0.77 29.34± 0.76 29.18± 0.75

Lvg-Score 33.33± 1.19 32.98± 1.18 32.73± 1.18 32.52± 1.17

RRQR 35.77± 1.18 35.18± 1.16 34.67± 1.16 34.25± 1.14

Randomfs 46.26± 1.21 45.39± 1.19 44.96± 1.19 44.65± 1.18

IG 36.24± 1.20 34.80± 1.19 33.94± 1.18 33.39± 1.17
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Figure 1: Out-of-sample error of 48 TechTC-300 documents averaged over ten ten-

fold cross validation experiments for different values of regularization parameterλ and

number of featuresr = 300. Vertical bars represent standard deviation.

Though running time is not the main subject of this study, we would like to point out

that we computed the running time of the different feature selection methods averaged

over ten ten-fold cross validation experiments. The time toperform feature selection

for each of the methods averaged over ten ten-fold cross-validation experiments was

less than a second (See Table 2), which shows that the methodscan be implemented in

practice.

6.2 TechTC-300

We use the TechTC-300 data Davidov et al. (2004), consistingof a family of 295

document-term data matrices. The TechTC-300 dataset comesfrom the Open Direc-
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r = 500

Figure 2: Out-of-sample error of 48 TechTC-300 documents averaged over ten ten-

fold cross validation experiments for different values of regularization parameterλ and

number of featuresr = 400 andr = 500. Vertical bars represent standard deviation.
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tory Project (ODP), which is a large, comprehensive directory of the web, maintained

by volunteer editors. Each matrix in the TechTC-300 datasetcontains a pair of cat-

egories from the ODP. Each category corresponds to a label, and thus the resulting

classification task is binary. The documents that are collected from the union of all

the subcategories within each category are represented in the bag-of-words model, with

the words constituting the features of the data Davidov et al. (2004). Each data ma-

trix consists of 150-280 documents, and each document is described with respect to

10,000-50,000 words. Thus, TechTC-300 provides a diverse collection of data sets for

a systematic study of the performance of the RLSC using BSS. We removed all words

of length at most four from the datasets. Next we grouped the datasets based on the

categories and selected those datasets whose categories appeared at least thrice. There

were 147 datasets, and we performed ten-fold cross validation and repeated it ten times

on 48 such datasets. We set the values of the regularization parameter of RLSC to

0.1, 0.3, 0.5 and0.7.

We setr to 300, 400 and 500. We report the out-of-sample error for all48 datasets.

BSS consistently outperforms Leverage-Score sampling, IG, RRQR and random fea-

ture selection on all 48 datasets for all values of the regularization parameter. Table 3

and Fig 1 shows the results. The out-of-sample error decreases with increase in number

of features for all methods. In terms of out-of-sample error, BSS is the best, followed

by Leverage-score sampling, IG, RRQR and random feature selection. BSS is at least

3%-7% better than the other methods when averaged over 48 document matrices. From

Fig 1 and 2, it is evident that BSS is comparable to the other methods and often better on

all 48 datasets. Leverage-score sampling requires greaternumber of samples to achieve
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Table 4:A subset of the TechTC matrices of our study.

id1 id2 id1 id2

1092 789236 Arts:Music:Styles:Opera US Navy:Decommisioned Submarines

17899278949 US:Michigan:Travel & Tourism Recreation:Sailing Clubs:UK

1789948446 US:Michigan:Travel & Tourism Chemistry:Analytical:Products

14630814096 US:Colorado:Localities:Boulder Europe:Ireland:Dublin:Localities

10539300332 US:Indiana:Localities:S Canada:Ontario:Localities:E

1056711346 US:Indiana:Evansville US:Florida:Metro Areas:Miami

10539194915 US:Indiana:Localities:S US:Texas:Localities:D

Table 5:Frequently occurring terms of the TechTC-300 datasets of Table 4 selected by BSS

id1 id2 words

1092 789236 naval,shipyard,submarine,triton,music,opera,libretto,theatre

17899278949 sailing,cruising,boat,yacht,racing,michigan,leelanau,casino

1789948446 vacation,lodging,michigan,asbestos,chemical,analytical,laboratory

14630814096 ireland,dublin,boulder,colorado,lucan,swords,school,dalkey

10539300332 ontario,fishing,county,elliot,schererville,shelbyville,indiana,bullet

1056711346 florida,miami,beach,indiana,evansville,music,business,south

10539194915 texas,dallas,plano,denton,indiana,schererville,gallery,north
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Table 6: Frequently occurring terms of the TechTC-300 datasets of Table 4 selected by

Leverage-Score Sampling

id1 id2 words

1092 789236 sturgeon, seawolf, skate, triton, frame, opera, finback

17899278949 sailing, yacht, laser, michigan,breakfast, county, clear

1789948446 analysis, michigan, water, breakfast, asbestos, environmental, analytical

14630814096 ireland, dublin, estate, lucan, dalkey, colorado, boulder

10539300332 library, fishing, service, lodge, ontario, elliot, indiana, shelbyville

1056711346 evansville, services, health, church, south, bullet, florida

10539194915 dallas, texas, schererville, indiana, shelbyville, plano

the same out-of-sample error as BSS (See Table 3,r = 500 for Lvg-Score andr = 300

for BSS). Therefore, for the same number of samples, BSS outperforms leverage-score

sampling in terms of out-of-sample error. The out-of-sample error of supervised IG is

worse than that of unsupervised BSS, which could be due to theworse generalization of

the supervised IG metric. We also observe that the out-of-sample error decreases with

increase inλ for the different feature selection methods.

We list the most frequently occurring words selected by BSS and leverage-score sam-

pling for ther = 300 case for seven TechTC-300 datasets over 100 training sets used

in the cross-validation experiments. Table 4 shows the names of the seven TechTC-300

document-term matrices. The words shown in Tables 5 and 6 were selected in all cross-

validation experiments for these seven datasets. The wordsare closely related to the cat-

egories to which the documents belong, which shows that BSS and leverage-score sam-
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pling select important features from the training set. For example, for the document-pair

(1092 789236), where1092 belongs to the category of “Arts:Music:Styles:Opera” and

789236 belongs to the category of “US:Navy: Decommisioned Submarines”, the BSS

algorithm selects submarine, shipyard, triton, opera, libretto, theatre which are closely

related to the two classes. The top words selected by leverage-score sampling for the

same document-pair are seawolf, sturgeon, opera, triton finback, which are closely re-

lated to the class. Another example is the document-pair10539 300332, where10539

belongs to “US:Indiana:Localities:S” and300332 belongs to the category of “Canada:

Ontario: Localities:E”. The top words selected for this document-pair are ontario, elliot,

shelbyville, indiana, schererville which are closely related to the class values. Thus, we

see that using only 2%-4% of all features we are able to selectrelevant features and

obtain good out-of-sample error. The top words selected by leverage-score sampling

are library, fishing, elliot, indiana, shelbyville, ontario which are closely related to the

class.

Though feature selection is an offline task, we give a discussion of the running times

of the different methods to highlight that BSS can be implemented in practice. We

computed the running time of the different feature selection methods averaged over ten

ten-fold cross validation experiments and over 48 datasets(See Table 2). The average

time for feature selection by BSS is approximately over a minute, while the rest of the

methods take less than a second. This shows that BSS can be implemented in practice

and can scale up to reasonably large datasets with 20,000-50,000 features. For BSS and

leverage-score sampling, the running time includes the compute to compute SVD of the

matrix. BSS takes approximately a minute to select features, but is at least 3%-7% bet-
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ter in terms of out-of-sample error than the other methods. IG takes less than a second

to select features, but is 4%-7% worse than BSS in terms of out-of-sample error.

6.4 Experiments on Ridge Regression in the fixed design setting

In this section, we describe experiments on feature selection on ridge regression in the

fixed design setting using synthetic and real data.
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Figure 3: MSE/Risk for synthetic data fork = 90 andk = 100 using different feature

selection methods as a function ofλ. The risk after feature selection is comparable to

the risk of full-data.
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6.1 Synthetic Data

We generate the features of the synthetic dataX in the same manner as described in

Section 6.1. We generateβ ∼ N (0, 1) andy = XTβ+ω, whereω ∈ R
n andβ ∈ R

d.

We setn to 30 andd to 1000. We set the number of relevant features,k to 90 and 100

and ran two sets of experiments. We set the value ofr, i.e. the number of features

selected by BSS and leverage-score sampling tot ∗ n, wheret = 6, 7, 8, 9 for both

experiments. The value ofλ was set to 0.1, 0.3, 0.5 and 0.7. We compared the risk

of ridge regression using BSS and leverage-score sampling with the risk of full-feature

selection and report the MSE/Risk in the fixed design settingas a measure of accuracy.

Fig 3 shows the risk of synthetic data for both BSS and leverage-score sampling as a

function ofλ. The risk of the sampled data is comparable to the risk of the full-data in

most cases, which follows from our theory. We observe that for higher values ofλ, the

risk of sampled space becomes worse than that of full-data for both BSS and leverage-

score sampling. The risk in the sampled space is almost the same for both BSS and

Leverage-score sampling. The time to compute feature selection is less than a second

for both methods (See Table 7).

Table 7:Running time of various feature selection methods in seconds. For synthetic data, the

running time corresponds to the experiment whenr = 8n. For TechTC-300, the running time

corresponds to the experiment whenr = 400.

Synthetic Data TechTC (10341-14525) TechTC (10341-61792)

BSS 0.3368 68.8474 67.013

LVG 0.0045 0.3994 0.3909
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Figure 4: MSE/Risk for TechTC-300 data using different feature selection methods as

a function ofλ. The risk after feature selection is comparable to the risk of full-data.

6.2 TechTC-300

We use two TechTC-300 datasets, namely “10341-14525” and “10341-61792” to illus-

trate our theory. We add gaussian noise to the labels. We set the value ofr, the number

of features to be selected to 300, 400 and 500. The value ofλ was set to 0.1, 0.3 and 0.5.

We compared the risk of ridge regression using BSS and leverage-score sampling with

the risk of full-feature selection and report the MSE/Risk in the fixed design setting as a

measure of accuracy. Fig 4 shows the risk of real data for bothBSS and leverage-score

sampling as a function ofλ. The risk of the sampled data is comparable to the risk of

the full-data in most cases, which follows from our theory. The risk of the sampled data

decreases with increase inr. The time to perform feature selection is approximately a

minute for BSS and less than a second for leverage-score sampling (See Table 7).
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7 Conclusion

We present a provably accurate feature selection method forRLSC which works well

empirically and also gives better generalization peformance than prior existing methods.

The number of features required by BSS is of the orderO (n/ǫ2), which makes the result

tighter than that obtained by leverage-score sampling. BSShas been recently used

as a feature selection technique for k-means clustering (Boutsidis and Magdon-Ismail,

2013), linear SVMs (Paul et al., 2015) and our work on RLSC helps to expand research

in this direction. The risk of ridge regression in the sampled space is comparable to

the risk of ridge regression in the full feature space in the fixed design setting and we

observe this in both theory and experiments. An interestingfuture work in this direction

would be to include feature selection for non-linear kernels with provable guarantees.
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