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Abstract

We introduce single-set spectral sparsification as a detestic sampling based feature
selection technique for regularized least squares cleasdn, which is the classifica-
tion analogue to ridge regression. The method is unsumehasd gives worst-case
guarantees of the generalization power of the classificdtinction after feature selec-

tion with respect to the classification function obtainehgsll features. We also intro-
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duce leverage-score sampling as an unsupervised randbfeaeire selection method
for ridge regression. We provide risk bounds for both sirggespectral sparsification
and leverage-score sampling on ridge regression in the féigsayn setting and show
that the risk in the sampled space is comparable to the rigleifull-feature space. We
perform experiments on synthetic and real-world datasetsiely a subset of TechTC-
300 datasets, to support our theory. Experimental resudicate that the proposed

methods perform better than the existing feature seleatietinods.

1 Introduction

Ridge regression is a popular technique in machine leamagstatistics. It is a com-
monly used penalized regression method. Regularized Sepstres Classifier (RLSC)
is a simple classifier based on least squares and has a ldogyhis machine learn-
ing (Zhang and Peng, 2004; Poggio and Smale, 2003; Rifkin.,e2@03; Fung and
Mangasarian, 2001; Suykens and Vandewalle, 1999; Zhan@#g] 2001; Agarwal,
2002). RLSC is also the classification analogue to ridgeesesggon. RLSC has been
known to perform comparably to the popular Support VectocMiaes (SVM) (Rifkin
et al., 2003; Fung and Mangasarian, 2001; Suykens and Vatded999; Zhang and
Oles, 2001). RLSC can be solved by simple vector space aopesaind do not require
guadratic optimization techniques like SVM.

We propose a deterministic feature selection techniquRlE&C with provable guaran-
tees. There exist numerous feature selection techniqueshwork well empirically.

There also exist randomized feature selection methodddikerage-score sampling,



(Dasgupta et al., 2007) with provable guarantees which walkempirically. But the
randomized methods have a failure probability and have t@fyen multiple times to
get accurate results. Also, a randomized algorithm mayeletsthe same features in
different runs. A deterministic algorithm will select tharse features irrespective of
how many times it is run. This becomes important in many aggitbns. Unsupervised
feature selection involves selecting features obliviauhe class or labels.

In this work, we present a new provably accurate unsupeahfsaure selection tech-
nique for RLSC. We study a deterministic sampling basedifeagelection strategy for
RLSC with provable non-trivial worst-case performancerimsi

We also use single-set spectral sparsification and levesege sampling as unsuper-
vised feature selection algorithms for ridge regressidghétixed design setting. Since
the methods are unsupervised, it will ensure that the msthaatk well in the fixed
design setting, where the target variables have an additw@skedastic noise. The
algorithms sample a subset of the features from the origiat matrix and then per-
form regression task on the reduced dimension matrix. Weigeaisk bounds for the
feature selection algorithms on ridge regression in thelfdesign setting.

The number of features selected by both algorithms is ptmpad to the rank of the
training set. The deterministic sampling-based featutecten algorithm performs

better in practice when compared to existing methods ofifeagelection.

2 Our Contributions

We introduce single-set spectral sparsification as a ptgeaicurate deterministic fea-

ture selection technique for RLSC in an unsupervised ggtfline number of features
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selected by the algorithm is independent of the number @fifes, but depends on the
number of data-points. The algorithm selects a small nurobé&atures and solves
the classification problem using those features. Dasgujatia @007) used a leverage-
score based randomized feature selection technique foCRINE provided worst case
guarantees of the approximate classifier function to thatguall features. We use
a deterministic algorithm to provide worst-case genea#ilin error guarantees. The
deterministic algorithm does not come with a failure praligband the number of

features required by the deterministic algorithm is lesisen that required by the ran-

domized algorithm. The leverage-score based algorithnatsaenpling complexity of

O (E% log (@f/ﬁ)) whereas single-set spectral sparsification requirés/c?) to be

picked, wheren is the number of training pointg, € (0, 1) is a failure probability
ande € (0,1/2] is an accuracy parameter. Like in Dasgupta et al. (2007), lae a
provide additive-error approximation guarantees for ast-point and relative-error
approximation guarantees for test-points that satisfyesoonditions with respect to
the training set.

We introduce single-set spectral sparsification and lgeeszore sampling as unsuper-
vised feature selection algorithms for ridge regressiah@ovide risk bounds for the
subsampled problems in the fixed design setting. The ridkarsampled space is com-
parable to the risk in the full-feature space. We give re¢agrror guarantees of the risk
for both feature selection methods in the fixed design gettin

From anempirical perspective we evaluate single-set spectral sparsification on syn-
thetic data and 48 document-term matrices, which are a swlbdbe TechTC-300

(Davidov et al., 2004) dataset. We compare the single-ssttisg) sparsification al-



gorithm with leverage-score sampling, information gaank-revealing QR factoriza-
tion (RRQR) and random feature selection. We do not repaoniing times because
feature selection is an offline task. The experimental tesobicate that single-set
spectral sparsification out-performs all the methods im$eof out-of-sample error for
all 48 TechTC-300 datasets. We observe that a much smalhebewof features is re-
quired by the deterministic algorithm to achieve good pannce when compared to

leverage-score sampling.

3 Background and Related Work

3.1 Notation

A, B, ... denote matrices and, b, ... denote column vectorg; (foralli = 1...n)

is the standard basis, whose dimensionality will be cleamfcontext; and, is the

n x n identity matrix. The Singular Value Decomposition (SVD)aofatrixA ¢ R™*4

is equal toA = UXV7T, whereU € R™*? is an orthogonal matrix containing the
left singular vectorsY ¢ R%*‘ is a diagonal matrix containing the singular values
o1 > 09 > ...0q > 0,andV € R¥9is a matrix containing the right singular vectors.
The spectral norm oA is [|A||, = 01. 0ye andoy,, are the largest and smallest
singular values oAA. kAo = 0,00/ min 1S the condition number oA. U* denotes any

n x (n — d) orthogonal matrix whose columns span the subspace ortabgwh/. A
vectorq € R” can be expressed ag:= Ao + U1 3, for some vectorsx € R% and

B € R"4,i.e. q has one component alorgand another component orthogonalXo



3.2 Matrix Sampling Formalism

We now present the tools of feature selection. Aet R¥" be the data matrix consist-
ing of n points and/ dimensionsS € R™*“ be a matrix such tha&8A € R™*" contains

r rows of A. Matrix S is a binary(0/1) indicator matrix, which has exactly one non-
zero element in each row. The non-zero elemerd ofdicates which row oA will be
selected. LeD € R™*" be the diagonal matrix such thBXSA € R"*" rescales the
rows of A that are inSA. The matricesS andD are called the sampling and re-scaling
matrices respectively. We will replace the sampling andaaing matrices by a single
matrix R € R™¢, whereR = DS denotes the matrix specifying which of theows

of A are to be sampled and how they are to be rescaled.

3.3 RLSC Basics

Consider a training data efpoints ind dimensions with respective labelse {—1,+1}
fori = 1,..,n. The solution of binary classification problems via Tikhomegulariza-
tion in a Reproducing Kernel Hilbert Space (RKHS) using tipgased loss function re-
sults in Regularized Least Squares Classification (RLS@)Ipm (Rifkin et al., 2003),
which can be stated as:

min
xcR™?

Kx -y + Ax"Kx (1)

whereK is then x n kernel matrix defined over the training datases a regularization
parameter ang is then dimensiona{+1} class label vector. In matrix notation, the
training data-seX is ad x n matrix, consisting of: data-points and featureqd > n).
Throughout this study, we assume tb&ats a full-rank matrix. We shall consider the
linear kernel, which can be written 4 = X”X. Using the SVD ofX, the optimal
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solution of Egn. 1 in the full-dimensional space is
Xopt = V (2 4+ A1)~ Vy. ()

The vectorx,,; can be used as a classification function that generalizestalata. If

q € R%is the new test point, then the binary classification furrctso

fla) = x5, X"a. (3)
Then,sign(f(q)) gives the predicted labell or +1) to be assigned to the new test
pointq.

Our goal is to study how RLSC performs when the determinsdimpling based
feature selection algorithm is used to select features inremupervised setting. Let
R ¢ R™“ pe the matrix that samples and re-scale®ws of X thus reducing the
dimensionality of the training set fromhto » < d andr is proportional to the rank of
the input matrix. The transformed dataset intdimensions is given bX = RX and

the RLSC problem becomes

min
x€ER™

- 2 ~
Kx — yH +xTKx, (4)
2
thus giving an optimal vectax,,,. The new test poind is first dimensionally reduced

toq = Rq, whereq € R" and then classified by the function,

f=f@=x,Xa (5)
In subsequent sections, we will assume that the test-gambf the formq = Xa +
U~ 3. The first part of the expression shows the portion of thepestt that is similar
to the training-set and the second part shows how much thpdas is novel compared

to the training set, i.e|| 3|, measures how much gflies outside the subspace spanned

by the training set.



3.4 Ridge Regression Basics

Consider a data-sé& of n points ind dimensions withd > n. HereX containsn

i.i.d samples from the dimensional independent variablg.€ R" is the real-valued
response vector. Ridge Regression(RR) or Tikhonov regaléon penalizes thé,
norm of a parameter vect@ and shrinks the estimated coefficients towards zero. In
the fixed design setting, we haye= X’ 3 + w wherew € R" is the homoskedastic
noise vector with mean 0 and variance Let 3, be the solution to the ridge regression

problem. The RR problem is stated as:
A o1 2
B = arg min — ||y — X B[, + 11813 (6)
BeRE N

The solution to Eqn.6 iﬁA = (XXT + n)\Id)_1 Xy. One can also solve the same
problem in the dual space. Using change of varialifes, X, wherea € R™ and let
K = X”X be then x n linear kernel defined over the training dataset. The optition

problem becomes:
. 1 2 T
&y = arg min — [y — Ke; + Aa” Ka. (7)
acR™ N

Throughout this study, we assume tb&ats a full-rank matrix. Using the SVD oX,
the optimal solution in the dual space (Eqgn. 7) for the futheinsional data is given by
&y, = (K 4+ nAlL,)"'y. The primal solution is3, = Xa,.
In the sampled space, we halie= X X. The dual problem in the sampled space

can be posed as:

~ 1 - 2 i

Q) = arg min — Hy — Ka” + o’ Ka. (8)

acR™ n, 2

- -1
The optimal dual solution in the sampled spacé js= (K + n)\In) y. The primal

solution isB3y, = Xa,.



3.5 Related Work

The work most closely related to ours is that of Dasgupta .e{2807) who used a
leverage-score based randomized feature selection tpehifor RLSC and provided
worst case bounds of the approximate classifier with thahefdassifier for all fea-
tures. The proof of their main quality-of-approximatiorsuéis provided an intuition
of the circumstances when their feature selection methddwork well. The running
time of leverage-score based sampling is dominated byttt compute SVD of the
training set i.e.O (n%d), whereas, for single-set spectral sparsification, @ i3-dn?).
Single-set spectral sparsification is a slower and morerateumethod than leverage-
score sampling. Another work on dimensionality reductidiRbSC is that of Avron
et al. (2013) who used efficient randomized-algorithms fWviag RLSC, in settings
where the design matrix has a Vandermonde structure. Howing technique is dif-
ferent from ours, since their work is focused on dimensibyatduction using linear
combinations of features, but not on actual feature selecti

Lu et al. (2013) used Randomized Walsh-Hadamard transfodowter the dimension
of data matrix and subsequently solve the ridge regressayigm in the lower dimen-
sional space. They provided risk-bounds of their algorithrthe fixed design setting.
However, this is different from our work, since they use ineombinations of features,

while we select actual features from the data.



4 Our main tools

4.1 Single-set Spectral Sparsification

We describe the Single-Set Spectral Sparsification ahgnr(BSSl for short) of Bat-
son et al. (2009) as Algorithm 1. Algorithm 1 is a greedy tegha that selects
columns one at a time. Consider the input matrix as a sétaalumn vectordJ” =
[uy, vy, ..., uy], With u; € Rf(i =1,..,d). Givenl andr > ¢, we iterate overr =
0,1,2,..r — 1. Define the parametels. = 7 — /¢, 6, = 1,U, = 6y (7 + %) and
ou = (1 + \/€/7> / (1 — \/£/7> ForU,L € RandA € R a symmetric positive
definite matrix with eigenvalues;, \,, ..., A, define

4 1 L

@(L,A):Z)\i_L; @(U,A):ZUi)\_

i=1 i=1 ’

as the lower and upper potentials respectively. These paltémnctions measure how
far the eigenvalues oA are from the upper and lower barridisand L respectively.
We definel (u, dr, A, L) and/ (u, iy, A, U) as follows:

u" (A - (L+6,)I) u

L0 A L) = G A - G (LLA)

u"(A—(L+6)I) 'u

T o -2
U (a6, A U) = = ((U”U) L—A) u +u? (U +6)I,— A) " u
O (U,A) — & (U + 0y, A)

At every iteration, there exists an indéx and a weightt, > 0 such thatt, ! <
L(u; 0, A, L)andt, ™' > U (v, , 6y, A, U) . Thus, there will be at most columns
selected after iterations. The running time of the algorithm is dominatgdtie search

for an index:, satisfying

Z/{ (u’i775U7AT7 UT) S ﬁ (uz}-aaLaATaLT)

1The name BSS comes from the authors Batson, Spielman arab@na.
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and computing the weight.. One needs to compute the upper and lower potentials
® (U, A) and® (L, A) and hence the eigenvaluesAf Cost per iteration i) (¢*) and

the total costi®) (r¢3) . Fori = 1, .., d, we need to computé and/ for everyu; which

can be done irD (d¢?) for every iteration, for a total of (rd¢?) . Thus total running
time of the algorithm i< (rd¢?) . We present the following lemma for the single-set

spectral sparsification algorithm.

Input: V7' = [vy, vs, ...v4] € R with v; € R andr > /.
Output: MatricesS € R D € R™",

1. Initialize Ag = 0pxp, S = 045, D = 0,5,

2. Set constantd;, = 1 anddy = (1 -+ \/6/7) / (1 — \/6/7>

3.forr=0tor —1do
o Letl, — 7 —rl:U. — 6 <7‘+\/€_7’).
e Pickindex: € {1,2,..d} and numbet.. > 0, such that

u (Vi75U7A7'7 U’T‘) S L (V’ivéLvATv LT) .

o Let t;l = % (L{ (Vi7 6U, AT, UT) + L (VZ', 6L7 AT, LT))
e UpdateA, ., = A, +t,v;v} ;setS; .., =1andD, ;.1 = 1/V/4,.

4. end for

5. Multiply all the weights irfD by \/7'_1 (1 - (g/r)).

6. ReturnS andD.

Algorithm 1: Single-set Spectral Sparsification
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Lemma 1. BSS (Batson et al., 2009): GivetJ € R?* satisfyingU”’U = I, and
r > {, we can deterministically construct sampling and resaalimatricesS ¢ R™*¢

andD € R™" with R = DS, such that, for ally € R’ :

2 2
(1= V) Uyl < IRUyIE < (14 VE7r) Uy,
We now present a slightly modified version of Lemma 1 for oeotiems.

Lemma 2. GivenU € R*** satisfyingU” U = I, andr > ¢, we can deterministically
construct sampling and rescaling matricBsc R™*¢ and D € R"*" such that for
R = DS,
|UTU - U'R'RU||, < 3y/(/r.
Proof. From Lemma 1, it follows,
2 2
o (U"R™RU) > (1-/I/r) andey (U'R'RU) < (1+/7/7) .
Thus,
2
Amaz (UTU = UTR'RU) < (1 — <1 — \/ﬁ/r) ) < 23/0/r.
Similarly,

Amin (UTU — U'RTRU) > (1 — (1 + \/€/7)2) > 3/0)r.

Combining these, we havgU" U — U"R"RU||, < 3./(/r.
Note: Lete = 3,/¢/r. It is possible to set an upper bound ©hy setting the value of

r. We will assume € (0, 1/2]. O
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4.2 Leverage Score Sampling

Our randomized feature selection method is based on impmatsampling or the so-
called leverage-score sampling of Rudelson and Vershyp@iiq). LetU be the topp
left singular vectors of the training s&t. A carefully chosen probability distribution of
the form

2
D = ”Ii’”% fori=1,2,....d, 9)

i.e. proportional to the squared Euclidean norms of the rofatke left-singular vec-
tors and select rows of U in i.i.d trials and re-scale the rows witly,/p;. The time

complexity is dominated by the time to compute the SVIXof

Lemma 3. (Rudelson and Vershynin, 2007) leet (0, 1/2] be an accuracy parameter

ando € (0,1) be the failure probability. GivelU € R*‘ satisfyingU’ U = I,.

Let p = min{l,rp;}, let p, be as Eqn. 9 and let = O <E%log <E2"ﬁ>> Con-
struct the sampling and rescaling matdk. Then with probability at leastl — §),

|U"U - U'R'RU||, <e.

5 Theory

In this section we describe the theoretical guarantees @@Rusing BSS and also
the risk bounds of ridge regression using BSS and Leverageesampling. Before
we begin, we state the following lemmas from numerical liredgebra which will be

required for our proofs.

Lemma 4. (Stewart and Sun, 1990) For any matiix such thatl + E is invertible,

(I+B)" =T+ 3 (-B).
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Lemma 5. (Stewart and Sun, 1990) LAtand A = A +E be invertible matrices. Then

-1

A AT _A'EAT

Lemma 6. (Demmel and Veselic, 1992) LBtand X be matrices such that the product
DXD is a symmetric positive definite matrix with matixx; = 1. Let the product
DED be a perturbation such that| E||, = n < Ayin(X). Here \,,;, corresponds to
the smallest eigenvalue &. Let \; be the i-th eigenvalue dDXD and let)\; be the

Ai— A n
)\i } S A'min(x).

i-th eigenvalue oD (X + E) D. Then,

Lemma 7. Lete € (0,1/2]. Then||q"UU"R'RU||, < ¢||[U U ]|, .

The proof of this lemma is similar to Lemma 4.3 of Drineas e{2006).

5.1 Our Main Theroems on RLSC

The following theorem shows the additive error guaranté#ssogeneralization bounds
of the approximate classifer with that of the classifier withfeature selection. The
classification error bound of BSS on RLSC depends on the tondiumber of the

training set and on how much of the test-set lies in the sudgspbthe training set.

Theorem 1. Lete € (0,1/2] be an accuracy parameter,= O (n/e?) be the number
of features selected by BSS. [Retc R™*“ be the matrix, as defined in Lemma 2. Let
X e R with d >> n, be the training setX = RX is the reduced dimensional
matrix andq € R¢ be the test point of the forep = Xa + UL 3. Then, the following

hold:
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o If A =0, then)qTngopt g XX

< 1Bl Myl -

— Omax

< 2erx [y llylly + 2= 18I, Iy, -

Omax

o If \ >0, then)qTXiOpt — q" XXt

Proof. We assume thaX is a full-rank matrix. LetE = U'U — U'R’RU and

|E|l, = ||[I- U"R"RUJ|, = € < 1/2. Using the SVD ofX, we define
A =XU'R'TRUT =X (I+E)X. (10)
The optimal solution in the sampled space is given by,
Kopt = V(A + AI)' VT, (11)

It can be proven easily th& andA + AI are invertible matrices. We focus on the term

q? Xx,,:. Using the SVD ofX, we get
d' Xxopt = o' X' Xxpp + LU (UESVT) x,
= aTVE? (224 A1) VTy (12)
= TV (I+Ax72) 7 vy, (13)

Eqn(12) follows because of the fact-" U = 0 and by substituting,,, from Eqn.(2).

Eqn.(13) follows from the fact that the matricE$ andX? + \I are invertible. Now,

qTXXopt - qTXiopt - }qTXXopt - qTRTRXiopt‘

S }qTXXOpt — aTXTRTRXiopt} (14)

+ |[BTUTRTRX Koy | - (15)
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We bound (14) and (15) separately. Substituting the valtigs pandA,
o' X"R'RX%,,y = a'"VAVTx,,
= o"VA(A+ ) 'VTy

— ATV (I+rAa N VTy

-1

= 'VI+\Z'(I+E)'sY) Vly

= TV (I+An 24 antex ) VTy.  (16)

The last line follows from Lemma 4 in Appendix, which stateat{I + E) ' = I+ ®,
where® = >~ (—E)". The spectral norm o is bounded by,
=1

oo

> (E)

i=1

1], =

<Y IEL <) e =¢/(1—e). (17)
9 i=1 i=1
We now bound (14). Substituting (13) and (16) in (14),

|q" Xxopt — " XTRTRX Xyt

= Ja"V{ITraz Az en ) - (14an ) VT,

IN

lo"V @+ A=), [V, 1l

The last line follows because of Lemma 5 and the fact that alfrices involved are

invertible. Here,

T = AR (I+AZ 2+ Anlexn!)
1

= AN (BTN (B 4+ AL+ A@) B )T
= AZ7'® (D2 AL+ D) X
Since the spectral norms &, X! and ® are bounded, we only need to bound the

spectral norm of(E2 + I+ )\<I>)_1 to bound the spectral norm &F. The spectral
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norm of the matrix(E2 + M+ )\<I>)_1 is the inverse of the smallest singular value of
(22 + I+ )\<I>) . From perturbation theory of matrices Stewart and Sun (199d)

(17), we get
0; (B2 + ML+ A@) — 0; (B2 + AI)| < [[A®[, < el

Here,o;(Q) represents thé" singular value of the matriQ.

Also,0;? (X* + M) = 0;> 4+ A, whereo; are the singular values &X.
02+ (1=eA<0; (B2 + AN+ A®) <0,° + (1 +e)A
Thus,
H (2% + M\ + A@)_lHZ = 1/ Opin (524 AL+ AB) < 1/ (0%in + (1 — ) N)) .

Here, 0,4, ando,.i,, denote the largest and smallest singular valié oBince | 3|, [|[Z71||, =

Omaz/Tmin < kx, (condition number oX) we bound (14):

T T~TpT < EARX
XX, — " X'R RXX,,: | <
‘q Pt pt‘_UQmm+(1—e

T —2\—1 T
))\Ha V()7 V7],

(18)
For\ > 0, the termo?,,;,, + (1 — €)\ in Eqn.(18) is always larger thai — ¢) ), so it

can be upper bounded Ryxx (assuming < 1/2). Also,
Jo"v @+ xz) 7| < fla V], [|@+az) 7 < fall,.

This follows from the fact, thatja” V||, = ||, and [|[Vy|, = [ly|, asV is a full-
rank orthonormal matrix and the singular valued of AX "2 are equal td + \/0;?;

making the spectral norm of its inverse at most one. Thus we ge

4" Xxopt — " XTRTRX Xop| < 2erx |y [ly ]l - (19)
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We now bound (15). Expanding (15) using SVD ang,,

|BTUTR'RX%,,| = [B"U"R"RUX (A + AI) V'y|

IN

la" U U RIRU, [ (A + A1), [[V7yl,

IN

c[UrUal, [VIyl, = A +AD7,

< €8l lylly [[= (A + D)7,

The first inequality follows from3 = U+ q; and the second inequality follows from
Lemma 7. To conclude the proof, we bound the spectral nor® @ + AI)~'. Note
that from Eqn.(10)2 A ' =TI+ EandEx ' =1,

1

SAFA) T = (ZTIAS T AR ) T S = (14 A8 24 E) s

One can get a lower bound for the smallest singular vall(é af A2 + E)_1 using
matrix perturbation theory and by comparing the singuldwes of this matrix to the

singular values of + A\X 2. We get,

(1—e)+%§0i(I+E+)\E_2) §(1+e)+i.

ag; 0'2'2
2
[+ A2 24+ E)" 2—1H < 9 maz
H( + + ) 2 = (1—=€)o%nae + ) Omin

o KX Omaz

B (1 =€) + A
2

< X (20)
O’m(lfﬂ

We assumed that< 1/2, which implies(1 — ¢) + /02,4, > 1/2. Combining these,
we get,

~ 2ek
‘ﬁTUJ—TRTRXXopt} S O_—X ||/6||2 ||Y||2 : (21)

Combining Eqgns (19) and (21) we complete the proof for the das 0. For A = 0,
Eqn.(18) becomes zero and the result follows. O
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Our next theorem provides relative-error guarantees tdothmd on the classification

error when the test-point has no-new components{.€. 0.

Theorem 2. Lete € (0,1/2] be an accuracy parametetr,= O (n/e?) be the number of
features selected by BSS ahd- 0. Letq € R be the test point of the forp = Xa,
i.e. it lies entirely in the subspace spanned by the traisieig and the two vectoé”y

and (I+\X7?) ~''vTq satisfy the property,

[as) vra| viyl, < (@452 via) vy

2

= w }qTXxopt}
for some constant. If we run RLSC after BSS, then

QTX@M — qTXXOpt < 2ewkx ‘qTXxopt .

The proof follows directly from the proof of Theorem 1 if werder3 = 0.

5.2 Our Main Theorems on Ridge Regression

We compare the risk of subsampled ridge regression withistkeof true dual ridge
regreesion in the fixed design setting. Recall that the respoectoly = X738 + w
wherew € R" is the homoskedastic noise vector with mean 0 and variaficélso,

we assume that the data matrix is of full rank.
Lemma 8. Let p be the rank oiX. FormK using BSS. Then,
(1-A)K=<K=(1+A)K,

whereA = C+/p/r. For p.s.d matricesA = B meansB — A is p.s.d.
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Proof. Using the SVD ofX, K = VX (U'R'RU) £V”. Lemma 2 implies
L(1-A) = (U'R'RU) <L, (1+A).

Multiplying left and right hand side of the inequality By~ andX V7’ respectively, to

the above inequality completes the proof. O

Lemma 9. Letp be the rank ofX. FormK using leverage-score sampling. Then, with

probability at least1 — 4), whered € (0,1),
(1-A)K=<K=(1+A)K,

whereA = C'% log (@f/s) .

5.1 Risk Function for Ridge Regression

Letz = E,[y] = X" 3. The risk for a prediction functiogr € R" is %Ew |y — z||§.
For anyn x n positive symmetric matri¥<, we define the following risk function:

2

R(K) = %Tr (K2 (K + nAL,) %) + 23227 (K + nAL,) 2.

Theorem 3. Under the fixed design setting, the risk for the ridge regmssolution

in the full-feature space i%(K) and the risk for the ridge regression in the reduced

dimensional space iB(K).

Proof. The risk of the ridge regression estimator in the reducededsional space is

2

1 2

“E,

- _ %Ew K (K + n)\In>_1 vz (22)

Kd)\—Z)

2

2
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~ ~ —1
TakingK (K + nAIn) asQ we can write Eqn.(22) as,

1 1
~E. |Qy — B, [Qylll; + — [E. [Qy] — 2,

2 2

— %Ew[“K(K—i—nAIn)_lw ) +% K(K"‘ﬂ)\In)_lZ—Z )
— % (K2 (K + nAIn) - wa) + %ZT <In - K (K + n)\In> _1> 2 Z
o2 —2

= —Tr (f{2 (K + n)\In> _2) + n\2z (K + n)\In> Z.

n

The expectation is only over the random nais@nd is conditional on the feature se-

lection method used. O

Our next theorem bounds the risk inflation of ridge regressidhe reduced dimen-

sional space compared with the ridge regression solutitimeifull-feature space.

Theorem 4. Let p be the rank of the matriX. When using leverage-score sampling as

a feature selection technique, with probability at least §, wherej € (0, 1),

R(K) < (1-A)R(K),

whereA = C'% log (@f/s) .

Proof. For any positive semi-definite matril{ € R"*", we define the bia®(K) and

varianceV' (K) of the risk function as follows:

B(K) = nA\%2" (K +n)lL,) 2,

2

V(K) = %T& <K2 (K + n)\In> _2> .

Therefore,R(K) = B(K) + V(K). Now due to Bach (2013) we know(K) is non-
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increasing inK andV (K) is non-decreasing iKK. When Lemma 9 holds,

R(K) = V(K)+ B(K)
< V(1+A)K)+ B((1-A)K)
< (1+A)°V(K)+(1-A)B(K)
< (1-2)7(V(K) + B(K))

= (1-A)?R(K).

We can prove a similar theorem for BSS.

Theorem 5. Let p be the rank of the matriX. When using BSS as a feature selection
technique, withA = Cp/é?,

R(K) < (1 — A)2R(K).

6 Experiments

All experiments were performed in MATLAB R2013b on an Intél processor with

16GB RAM.

6.1 BSS Implementation Issues

The authors of Batson et al. (2009) do not provide any impteat®n details of the
BSSalgorithm. Here we discuss several issues arising duriagiiplementation.
Choice of column selection:At every iteration, there are multiple columns which sat-
isfy the conditiori/ (u;, oy, A, U;) < L (w;, 9., A, L;) . The authors of Batson et al.
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(2009) suggest picking any column which satisfies this cairgt Instead of breaking
ties arbitrarily, we choose the colunup which has not been selected in previous itera-
tions and whose Euclidean-norm is highest among the catedseé Columns with zero
Euclidean norm never get selected by the algorithm. In theriftoop of Algorithm 1,

U and L has to be computed for all thiecolumns in order to pick a good column. This
step can be done efficiently using a single line of Matlab cbgilenaking use of matrix

and vector operations.

6.2 Other Feature Selection Methods

In this section, we describe other feature-selection nusthwith which we compare

BSS.

6.1 Rank-Revealing QR Factorization (RRQR)

Within the numerical linear algebra community, subsetcala algorithms use the so-
called Rank Revealing QR (RRQR) factorization. Here wehghjgabuse notation and
stateA as a short and fat matrix as opposed to the tall and thin matetxA be an x d
matrix with (n < d) and an integek (k < d) and assume partial QR factorizations of

the form

Rll R12
AP =Q ;

0 Ry

whereQ € R™*" is an orthogonal matrixP ¢ R%*¢ is a permutation matrixR,, €
RF*F R,y € RFX(@=K) R,, € R@-k)x(@-k) The above factorization is called a RRQR
factorization ifo,.;, (R11) > ok (A) /p(k,d), Omae (R22) < 0pnin(A)p(k, d), where
p(k, d) is a function bounded by a low-degree polynomiakiandd. The important
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Rll
columns are given bA; = Q ando; (A1) = o0;(Ryp) with 1 < ¢ < k.

0
We perform feature selection using RRQR by picking the ingodrcolumns which

preserve the rank of the matrix.
6.2 Random Feature Selection

We select features uniformly at random without replacemdmth serves as a baseline

method. To get around the randomness, we repeat the sarpptiogss five times.

6.3 Leverage-Score Sampling

For leverage-score sampling, we repeat the experimentdiriines to get around the
randomness. We pick the tgpleft singular vectors oX, wherep is the rank of the

matrix X.

6.4 Information Gain (1G)

The Information Gain feature selection method (Yang ana:Pesh, 1997) measures the
amount of information obtained for binary class predictigrknowing the presence or
absence of a feature in a dataset. The method is a supertriata)g, whereas the other

methods used here are unsupervised.

6.3 Experiments on RLSC

The goal of this section is to compare BSS with existing feaselection methods for

RLSC and show that BSS is better than the other methods.
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Table 1:Most frequently selected features using the syntheticséata

r =80 k=90 k =100

BSS 89, 88, 87, 86, 85 100, 99, 98, 97, 94

RROQR 90, 80, 79, 78, 71 100, 80, 79, 78, 71

Lvg-Score| 73, 85, 84, 81, 87 93, 87, 95, 97, 96

IG 80,79,78,77,74 80,79,78,77,76

r =90 k=90 k =100

BSS 90, 88, 87, 86, 85 100, 99, 98, 97, 94

RRQR | 90, 89, 88, 87, 86 100, 90, 89, 88, 87

Lvg-Score || 67, 88, 83, 87, 83 100, 97, 92, 48, 5§

IG 90, 89, 88, 87, 84 90, 89, 88, 87, 86

Table 2:Running time of various feature selection methods in segoRdr synthetic data, the

running time corresponds to the experiment whea 80 andk = 90 and is averaged over

ten ten-fold cross-validation experiments. For TechT©;3Be running time corresponds to the
experiment whem = 400 and is averaged over ten ten-fold cross-validation expErtsiand

over 48 TehTC-300 datasets.

BSS IG LVG | RRQR

Synthetic Datal| 0.1025 | 0.0003| 0.0031| 0.0016

TechTC-300 || 75.7624| 0.0242| 0.4054| 0.2631

6.1 Synthetic Data

We run our experiments on synthetic data where we contraitingber of relevant fea-

tures in the dataset and demonstrate the working of Algoritton RLSC. We generate
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synthetic data in the same manner as given in Bhattacha@@@]. The dataset has
data-points and features. The class labgl of each data-point was randomly chosen
to be 1 or -1 with equal probability. The firstfeatures of each data-powt are drawn
from y; N (—j, 1) distribution, where\ (i, o%) is a random normal distribution with
meany and variancer? and; varies from 1 to k. The remaining — k features are
chosen from aV'(0, 1) distribution. Thus the dataset hiaselevant features and — k)
noisy features. By construction, among the firééatures, théth feature has the most
discriminatory power, followed byt — 1)th feature and so on. We seto 30 andd to
1000. We set to 90 and 100 and ran two sets of experiments.

We set the value of, i.e. the number of features selected by BSS to 80 and 90 for
all experiments. We performed ten-fold cross-validatiod eepeated it ten times. The
value of A was set to 0, 0.1, 0.3, 0.5, 0.7, and 0.9. We compared BSS ROQRR
IG and leverage-score sampling. The mean out-of-sampde wwas O for all methods
for bothk = 90 andk = 100. Table 1 shows the set of five most frequently selected
features by the different methods for one such synthetasgdiaicross 100 training sets.
The top features picked up by the different methods are tlegaet features by con-
struction and also have good discriminatory power. Thisashthat BSS is as good
as any other method in terms of feature selection and oftgs pnore discriminatory
features than the other methods. We repeated our expesmeten different synthetic
datasets and each time, the five most frequently selectaatésavere from the set of
relevant features. Thus, by selecting only 8%-9% of alldezg, we show that we are
able to obtain the most discriminatory features along witlhdjout-of-sample error

using BSS.
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Table 3: Out-of-sample error of TechTC-300 datasets averaged arerten-fold cross-
validation and over 48 datasets for three values.ofr he first and second entry of each cell

represents the mean and standard deviation. Items in bdilchie the best results.

r =300 A=0.1 A=0.3 A=0.5 A=0.7
BSS 31.76+£ 0.68 | 31.46+ 0.67 | 31.244+ 0.65 | 31.03+ 0.66
Lvg-Score | 38.22+ 1.26 | 37.63+ 1.25| 37.23+1.24 | 36.94+ 1.24
RROR 37.84+1.20| 37.07£ 1.19| 36.57+ 1.18 | 36.10+ 1.18
Randomfs | 50.01+ 1.2 | 49.43+1.2 | 49.18+ 1.19| 49.04+ 1.19
IG 38.35+£1.21| 36.64+ 1.18| 35.81+ 1.18| 35.15+ 1.17

r =400 A=0.1 A=0.3 A=0.5 A=0.7
BSS 30.59+ 0.66 | 30.33+£ 0.65| 30.11+ 0.65 | 29.96+ 0.65
Lvg-Score | 35.06+ 1.21| 34.63+ 1.20| 34.32+ 1.2 | 34.11+ 1.19
RROQR 36.61+1.19| 36.04+ 1.19| 35.46+ 1.18| 35.05+ 1.17
Randomfs | 47.82+ 1.2 | 47.024+ 1.21 | 46.59+ 1.21 | 46.27+1.2
IG 37.37£1.21| 3573+ 1.19| 34.884+ 1.18 | 34.194+ 1.18

r =500 A=0.1 A=03 A=0.5 A=0.7
BSS 29.80£ 0.77| 29.53£ 0.77| 29.34+0.76 | 29.18+ 0.75
Lvg-Score | 33.33£ 1.19| 32.98+ 1.18 | 32.73+1.18 | 32.52+ 1.17
RROR 35.77£1.18| 35.18+ 1.16| 34.67+1.16 | 34.25+1.14
Randomfs | 46.26+ 1.21 | 45.394+ 1.19 | 44.96+ 1.19 | 44.65+ 1.18
IG 36.24+ 1.20| 34.80+ 1.19| 33.94+ 1.18 | 33.394+ 1.17
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Figure 1: Out-of-sample error of 48 TechTC-300 documen&sayed over ten ten-
fold cross validation experiments for different valuesegularization parameterand

number of features = 300. Vertical bars represent standard deviation.

Though running time is not the main subject of this study, veeih like to point out
that we computed the running time of the different featufect®mn methods averaged
over ten ten-fold cross validation experiments. The timpddorm feature selection
for each of the methods averaged over ten ten-fold crosdatadn experiments was
less than a second (See Table 2), which shows that the mathndse implemented in

practice.

6.2 TechTC-300

We use the TechTC-300 data Davidov et al. (2004), consisiing family of 295

document-term data matrices. The TechTC-300 dataset ctsorashe Open Direc-
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Figure 2: Out-of-sample error of 48 TechTC-300 documen&sayed over ten ten-
fold cross validation experiments for different valuesegularization parameterand

number of features = 400 andr = 500. Vertical bars represent standard deviation.
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tory Project (ODP), which is a large, comprehensive dingctd the web, maintained
by volunteer editors. Each matrix in the TechTC-300 datasatains a pair of cat-
egories from the ODP. Each category corresponds to a labdltraus the resulting
classification task is binary. The documents that are deitbérom the union of all
the subcategories within each category are representbd lmaig-of-words model, with
the words constituting the features of the data Davidov .e28l04). Each data ma-
trix consists of 150-280 documents, and each document iwibded with respect to
10,000-50,000 words. Thus, TechTC-300 provides a divesbeation of data sets for
a systematic study of the performance of the RLSC using BSSréiwioved all words
of length at most four from the datasets. Next we grouped #tasets based on the
categories and selected those datasets whose categmezseg at least thrice. There
were 147 datasets, and we performed ten-fold cross validatid repeated it ten times
on 48 such datasets. We set the values of the regularizatimmeter of RLSC to
0.1,0.3,0.5 and0.7.

We setr to 300, 400 and 500. We report the out-of-sample error fod@ltatasets.
BSS consistently outperforms Leverage-Score samplingRIBQR and random fea-
ture selection on all 48 datasets for all values of the regaton parameter. Table 3
and Fig 1 shows the results. The out-of-sample error degsaaish increase in number
of features for all methods. In terms of out-of-sample eMB8S is the best, followed
by Leverage-score sampling, IG, RRQR and random featueets@mh. BSS is at least
3%-7% better than the other methods when averaged over 48t matrices. From
Fig 1 and 2, itis evident that BSS is comparable to the othéhaus and often better on

all 48 datasets. Leverage-score sampling requires gmeateloer of samples to achieve
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Table 4:A subset of the TechTC matrices of our study.

id1.id2 id1 id2

1092789236 Arts:Music:Styles:Opera US Navy:Decommisioned Submarin

D
2}

17899278949 | US:Michigan:Travel & Tourism Recreation:Sailing Clubs:UK

1789948446 | US:Michigan:Travel & Tourism Chemistry:Analytical:Products

14630814096 | US:Colorado:Localities:Boulder  Europe:lreland:Dublin:Localities

10539300332 US:Indiana:Localities:S Canada:Ontario:Localities:E
1056711346 US:Indiana:Evansville US:Florida:Metro Areas:Miami
10539194915 US:Indiana:Localities:S US:Texas:Localities:D

Table 5:Frequently occurring terms of the TechTC-300 datasets bieT4 selected by BSS

id1.id2 words

1092789236 naval,shipyard,submarine,triton,music,opera,librdieatre

17899278949 sailing,cruising,boat,yacht,racing,michigan,leelanasino

1789948446 | vacation,lodging,michigan,asbestos,chemical,arcalytaboratory

14630814096 ireland,dublin,boulder,colorado,lucan,swords,scluadkey

10539300332 ontario,fishing,county,elliot,schererville,shelbywjindiana,bullet

1056711346 florida,miami,beach,indiana,evansville,music,busissith

10539194915 texas,dallas,plano,denton,indiana,scherervilleegatiorth

31



Table 6: Frequently occurring terms of the TechTC-300 datasets bfeT4 selected by

Leverage-Score Sampling

id1.id2 words
1092789236 sturgeon, seawolf, skate, triton, frame, opera, finback
17899278949 sailing, yacht, laser, michigan,breakfast, county, clear

1789948446 | analysis, michigan, water, breakfast, asbestos, envieaiath) analytical

14630814096 ireland, dublin, estate, lucan, dalkey, colorado, boulder

10539300332 library, fishing, service, lodge, ontario, elliot, indiarshelbyville

1056711346 evansville, services, health, church, south, bullet, dkori

10539194915 dallas, texas, schererville, indiana, shelbyville, plano

the same out-of-sample error as BSS (See Tahte=3500 for Lvg-Score and = 300
for BSS). Therefore, for the same number of samples, BSSdotms leverage-score
sampling in terms of out-of-sample error. The out-of-sasrggror of supervised IG is
worse than that of unsupervised BSS, which could be due wwdinge generalization of
the supervised IG metric. We also observe that the out4oipsaerror decreases with
increase in\ for the different feature selection methods.

We list the most frequently occurring words selected by B6& laverage-score sam-
pling for ther = 300 case for seven TechTC-300 datasets over 100 training seds us
in the cross-validation experiments. Table 4 shows the sarhthe seven TechTC-300
document-term matrices. The words shown in Tables 5 and € sedected in all cross-
validation experiments for these seven datasets. The vaoeddosely related to the cat-

egories to which the documents belong, which shows that BE8$e&erage-score sam-
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pling select important features from the training set. F@aneple, for the document-pair
(1092_789236), where1092 belongs to the category of “Arts:Music:Styles:Opera” and
789236 belongs to the category of “US:Navy: Decommisioned Subnesfi, the BSS
algorithm selects submarine, shipyard, triton, operaettb, theatre which are closely
related to the two classes. The top words selected by lesesegre sampling for the
same document-pair are seawolf, sturgeon, opera, tritbadky which are closely re-
lated to the class. Another example is the documentip&iz9_300332, where10539
belongs to “US:Indiana:Localities:S” ars®0332 belongs to the category of “Canada:
Ontario: Localities:E”. The top words selected for this dment-pair are ontario, elliot,
shelbyville, indiana, schererville which are closely tethto the class values. Thus, we
see that using only 2%-4% of all features we are able to seddetant features and
obtain good out-of-sample error. The top words selectecelgrage-score sampling
are library, fishing, elliot, indiana, shelbyville, ontanrvhich are closely related to the
class.

Though feature selection is an offline task, we give a disonssf the running times
of the different methods to highlight that BSS can be impleteé in practice. We
computed the running time of the different feature selectiethods averaged over ten
ten-fold cross validation experiments and over 48 datgSsts Table 2). The average
time for feature selection by BSS is approximately over auténwhile the rest of the
methods take less than a second. This shows that BSS can legriented in practice
and can scale up to reasonably large datasets with 20,000&bfeatures. For BSS and
leverage-score sampling, the running time includes thepeeto compute SVD of the

matrix. BSS takes approximately a minute to select feafimss at least 3%-7% bet-
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ter in terms of out-of-sample error than the other metho@gakes less than a second

to select features, but is 4%-7% worse than BSS in terms ebbsample error.

6.4 Experiments on Ridge Regression in the fixed design seit)

In this section, we describe experiments on feature selean ridge regression in the

fixed design setting using synthetic and real data.
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Figure 3: MSE/Risk for synthetic data far= 90 andk = 100 using different feature

selection methods as a function xf The risk after feature selection is comparable to

the risk of full-data.
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6.1 Synthetic Data

We generate the features of the synthetic datan the same manner as described in
Section 6.1. We generatg~ N (0, 1) andy = X’ 3 + w, wherew € R* andg € R%.
We setn to 30 andd to 1000. We set the number of relevant featukey 90 and 100
and ran two sets of experiments. We set the value, afe. the number of features
selected by BSS and leverage-score sampling#m, wheret = 6,7,8,9 for both
experiments. The value of was set to 0.1, 0.3, 0.5 and 0.7. We compared the risk
of ridge regression using BSS and leverage-score samplihghve risk of full-feature
selection and report the MSE/Risk in the fixed design setisig measure of accuracy.
Fig 3 shows the risk of synthetic data for both BSS and levesampre sampling as a
function of \. The risk of the sampled data is comparable to the risk ofulelfta in
most cases, which follows from our theory. We observe thahigher values of\, the
risk of sampled space becomes worse than that of full-datiadithh BSS and leverage-
score sampling. The risk in the sampled space is almost the $ar both BSS and
Leverage-score sampling. The time to compute feature tsmbeis less than a second
for both methods (See Table 7).

Table 7:Running time of various feature selection methods in segoRdr synthetic data, the

running time corresponds to the experiment whea 8n. For TechTC-300, the running time

corresponds to the experiment whegs- 400.

Synthetic Datg TechTC (10341-14525) TechTC (10341-61792

BSS 0.3368 68.8474 67.013

LVG 0.0045 0.3994 0.3909
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Figure 4: MSE/Risk for TechTC-300 data using different featselection methods as

a function of\. The risk after feature selection is comparable to the rigklbdata.

6.2 TechTC-300

We use two TechTC-300 datasets, namely “10341-14525" ad84'1-61792" to illus-
trate our theory. We add gaussian noise to the labels. Waesegatue of-, the number

of features to be selected to 300, 400 and 500. The val¥ewals setto 0.1, 0.3 and 0.5.
We compared the risk of ridge regression using BSS and lgeeseore sampling with
the risk of full-feature selection and report the MSE/Risktie fixed design setting as a
measure of accuracy. Fig 4 shows the risk of real data for B8t and leverage-score
sampling as a function of. The risk of the sampled data is comparable to the risk of
the full-data in most cases, which follows from our theorleTisk of the sampled data
decreases with increaseinThe time to perform feature selection is approximately a

minute for BSS and less than a second for leverage-scordisgnipee Table 7).
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7 Conclusion

We present a provably accurate feature selection methddlf&C which works well
empirically and also gives better generalization peforoeahan prior existing methods.
The number of features required by BSS is of the o€dén/?), which makes the result
tighter than that obtained by leverage-score sampling. B&Sbeen recently used
as a feature selection technique for k-means clusteringtdtis and Magdon-Ismail,
2013), linear SVMs (Paul et al., 2015) and our work on RLS(@&&b expand research
in this direction. The risk of ridge regression in the sardpeace is comparable to
the risk of ridge regression in the full feature space in thedidesign setting and we
observe this in both theory and experiments. An interestinge work in this direction
would be to include feature selection for non-linear kesiveth provable guarantees.
Acknowledgements. Most of the work was done when SP was a graduate student at
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