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Abstract

Place cells in the rat hippocampus play a key role in creating the animal’s internal representation 

of the world. During active navigation, these cells spike only in discrete locations, together 

encoding a map of the environment. Electrophysiological recordings have shown that the animal 

can revisit this map mentally during both sleep and awake states, reactivating the place cells that 

fired during its exploration in the same sequence in which they were originally activated. Although 

consistency of place cell activity during active navigation is arguably enforced by sensory and 

proprioceptive inputs, it remains unclear how a consistent representation of space can be 

maintained during spontaneous replay. We propose a model that can account for this phenomenon 

and suggest that a spatially consistent replay requires a number of constraints on the hippocampal 

network that affect its synaptic architecture and the statistics of synaptic connection strengths.

1 Introduction

In the course of learning a spatial environment, an animal forms an internal representation of 

space that enables spatial navigation and planning (Schmidt & Redish, 2013). The 

hippocampus plays a key role in producing this map through the activity of location-specific 

place cells (O’Keefe & Nadel, 1978). At the neurophysiological level, these place cells 

exhibit spatially selective spiking activity. As the animal navigates its environment, the place 

cell fires only at a discrete location—its place field (see Figures 1A and 1B). It is believed 

that the entire ensemble of place cells serves as a neuronal basis of the animal’s spatial 

awareness (McNaughton, Battaglia, Jensen, Moser, & Moser, 2006; Best, White, & Minai, 

2001).

Remarkably, place cells spike not only during active navigation but also during quiescent 

wake states (Pfeiffer & Foster, 2013; Davidson, Kloosterman, &Wilson, 2009) and even 

during sleep (Louie &Wilson, 2001; Skaggs & McNaughton, 1996; Wilson & McNaughton, 

1994). For example, the animal can “replay” place cells in sequences that correspond to the 

physical routes traversed during active navigation (Foster & Wilson, 2006; Diba & Buzsaki, 

2008; Hasselmo, 2008) or “preplay” sequences that represent possible future trajectories, in 

either direct or reversed order, while pausing at a decision point (Johnson&Redish, 2007; 

Pastalkova, Itskov, Amarasingham, & Buzsaki, 2008). This phenomenon implies that after 

learning, the animal can explore and retrieve spatial information by cuing the hippocampal 

network (Tsao, Moser, & Moser, 2013; Dragoi&Tonegawa, 2011), which may in turn be 
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viewed as a physiological correlate of mental exploration (Hopfield, 2010; Hasselmo, 

Giocomo, Brandon, & Yoshida, 2010).

It bears noting, however, that the actual functional units for spatial information processing in 

the hippocampal network are not individual cells but repeatedly activated groups of place 

cells known as cell assemblies (see Buzsaki, 2010, and Figure 1C). Although the 

physiological properties of the place cell assemblies remain largely unknown, it is believed 

that the cells constituting an assembly synaptically drive a certain readout unit downstream 

from the hippocampus. In the reader-centric view, this readout neuron—a small network or, 

most likely, a single neuron—is what actually defines the cell assembly by actualizing the 

information provided by its activity (Buzsaki, 2010). The identity of the readout neurons in 

some cases is suggested by the network’s anatomy. For example, there are direct many-to-

one projections from the CA3 region of the hippocampus to the CA1 region. Since replays 

are believed to be initiated in CA3 (Carr, Jadhav, & Frank, 2011; Johnson & Redish, 2007), 

this implies that the CA1 place cells may serve as the readout neurons for the activity of the 

CA3 place cells. Assuming that contemporaneous spiking of place cells implies overlap of 

their respective place fields (see Figures 1A and 1B), it is possible to decode the rat’s current 

location from the ongoing spiking activity of a mere 40 to 50 neurons (Brown, Frank, Tang, 

Quirk, &Wilson, 1998). This suggests that the readout neurons may be wired to encode 

spatial connectivity between place fields by responding to place cell coactivity (see Figures 

1A to 1C and Jarsky, Roxin, Kath, & Spruston, 2005; Katz, Kath, Spruston, & Hasselmo, 

2007; Dabaghian, Brandt, & Frank, 2014).

A natural assumption underlying both the trajectory reconstructing algorithms (Brown et al., 

1998) and various path integration models (McNaughton et al., 2006; Samsonovich & 

McNaughton, 1997; Issa & Zhang, 2012) is that the representation of spatial locations 

during physical navigation is reproducible. If the rat begins locomotion at a certain location 

and at a certain moment of time, t0, and then returns to the same location at a later time, t1, 

then the population activity of the place cells at t0 and t1 is the same. Similarly, if spatial 

information is consistently represented during replays, then the activity packet in the 

hippocampal network should be restored on “replaying” a closed path. Whereas the 

correspondence between place cell activity and spatial locations (i.e., place fields) during 

physical navigation is enforced by sensory and proprioceptive inputs (Samsonovich & 

McNaughton, 1997), the consistency of spatial representation during replay must be 

attributable solely to the network’s internal dynamics (Gupta, van der Meer, Touretzky, & 

Redish, 2010).

Here we develop a model that accounts for how a neuronal network could maintain 

consistency of spatial information over the course of multiple replays or preplays. This 

model is based on the discrete differential geometry theory developed in Novikov (2004), 

which reveals that key geometric concepts can be expressed in purely combinatoric terms. 

The choice of this theory is driven in part by recent work that indicates that the hippocampus 

provides a topological framework for spatial information rather than a geometric or 

Cartesian map (Dabaghian et al., 2014; Alvernhe, Sargolini, & Poucet, 2012; Wu & Foster, 

2014).
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The results suggest that to maintain consistency of spatial information during path replay, 

the synaptic connections between the place cells and the readout neurons must adhere to a 

zero holonomy principle.

2 The Model

2.1 The Simplicial Model of the Cell Assembly Network

A convenient framework for representing a population of place cell assemblies is provided 

by simplicial topology (Bredon, 1997; Dubrovin, Fomenko, & Novikov, 1992; Aleksandrov, 

1965). In this approach, an assembly of d + 1 place cells, {ci0, ci1, . . . , cid}, is represented 

by a d-dimensional abstract simplex (not to be confused with a geometric simplex) 

containing d + 1 vertexes, σ = [vi0, vi1, . . . , vid], where each vertex, vi, corresponds to a 

place cell ci (in the following, the same symbol, σ, will be used to denote a cell assembly 

and the simplex that represents it) (Dabaghian, Mémoli, Frank, & Carlsson, 2012; Arai, 

Brandt, & Dabaghian, 2014). The entire network can then be represented by a purely 

combinatorial simplicial complex  (Aleksandrov, 1965; Prasolov, 2006) whose maximal 

simplexes correspond to place cell assemblies (Babichev, Mémoli, & Dabaghian, 2015). 

Simplexes in  may overlap: physiological studies demonstrate that a given place cell may 

be part of many cell assemblies (Georgopoulos, Schwartz, & Kettner, 1986; Tudusciuc & 

Nieder, 2007). Many authors have suggested that place cell assemblies should overlap 

significantly in order to better represent contiguous spatial locations (Curto & Itskov, 2008; 

Jahans-Price, Gorochowski, Wilson, Jones, & Bogacz, 2014; Maurer, Cowen, Burke, 

Barnes, & McNaughton, 2006; Gupta, van der Meer, Touretzky, & Redish, 2012): the more 

cells shared by σ1 and σ2, the closer the encoded locations are to one another. The most 

detailed representation of the environment is produced by a population of maximally 

overlapping cell assemblies, which differ by a single cell. In such case, a transition of the 

activity from one cell assembly σ1 to another σ2 occurs when one place cell in σ1 turns off 

and another cell in the new assembly σ2 turns on. The resulting simplicial complex  has 

the structure of a combinatorial d-dimensional simplicial manifold (in the literature also 

referred to as “pure complex” or “pseudomanifold”; Prasolov, 2006).

2.2 Population Activity in the Cell Assembly Complex 

The simplicial complex  is a convenient instrument for relating place cell coactivity to the 

topology of the rat’s environment (Dabaghian et al., 2012; Arai et al., 2014). The rat’s 

movements in the physical environment induce a packet of place cell activity that propagates 

in the hippocampal network—an “activity bump” (Samsonovich &McNaughton, 1997). In 

our model the propagation of the activity bump corresponds to an “active simplex” 

propagating through . The resulting population activity vector is then

fσ
⊤ = f σ, f σ, vi0

, f σ, vi1
, …, f σ, vik

, (2.1)
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where the first component fσ represents the spiking rate of the readout neuron and fσ,vi 
denotes the spiking rate of the place cell ci within the assembly σ. Roughly speaking, fσ,vi 
can be viewed as the firing rate of ci at the location where the place fields of the cells 

constituting the assembly σ overlap, which we refer to as the cell assembly field, lσ (the 

domain l123 on Figure 1B). A given place cell ci is a part of many cell assemblies σ1, σ2, . . ., 

whose fields lσ1, lσ2, . . . are contained in the ci’s place field; thus, the higher the orders of 

the cell assemblies, the (statistically) smaller the lσ s (Babichev et al., 2015). Since the 

individual place cell spiking rates are well approximated by smooth gaussian functions of 

the rat’s coordinates (Eden, Frank, Barbieri, Solo, & Brown, 2004), the quantities fσ,vi 
remain approximately constant over lσ. The components of the population activity vector, 

equation 2.1, in a given cell assembly can then be related to the corresponding place cells’ 

maximal firing rates fvi by a set of factors 0 ≤ hσ,vi ≤ 1, that are specific to a given cell and a 

given cell assembly,

f σ, vi
= hσ, vi

f vi
, (2.2)

which may be viewed as measures of the separation between the location lσ and the 

respective place fields’ centers (see Figure 1B). In other words, the coefficients hσ,vi provide 

a discrete description of the place field map’s geometry.

As the rat moves from one cell assembly field to another (e.g., from lσ1 to lσ2), the activity 

packet in  shifts from the maximal simplex σ1 to the maximal simplex σ2, then to σ3, and 

so on, tracing a “simplicial path,”

Γ = σ1, σ2, …, σn (2.3)

(these are “thick paths” in the terminology of Novikov, 2004). As a result, every path γ in 

the rat’s physical environment corresponds to a simplicial path Γ ∈ , which can be viewed 

as an abstract representation of the place cell trajectory code used in (Brown et al., 1998). 

However, in order to represent the path Γ in the hippocampal network, the activity of each 

place cell assembly σ ∈ Γ should activate the corresponding readout neuron cσ. Thus, during 

the activation period, the net input from the presynaptic cells in σ should exceed the 

corresponding readout neuron’s firing threshold θσ,

∑
vi ∈ σ

wσ, vi
f σ, vi

≥ θσ, (2.4)

where the coefficients wσ,vi represent the strengths of synaptic connections between the 

place cells and the readout neuron (Buzsaki, 2010; Legenstein & Maass, 2007).
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In other words, this is a rate model in that the activity of cells is described by a single 

parameter: the firing rate, f, related via coefficients h to the maximal rate, equation 2.2. If the 

network is trained—the synaptic architecture is fixed, place fields are stable—then each cell 

assembly fires when the rat visits (or replays) a specific spot where the respective place 

fields overlap. Because this spot is very small compared to the size of place fields, the left 

side of equation 2.4 is the essentially the same every time.

Using equation 2.2, the condition 2.4 becomes

∑
vi ∈ σ

bσ, vi
f vi

≥ θσ, (2.5)

where the variables θ and

bσ, vi
= wσ, vi

hσ, vi
(2.6)

are defined on all simplexes (i.e., all cell assemblies) and the variable f on the vertexes (i.e., 

place cell).

2.3 Dressed Cell Assembly Complex *

The coefficients bσ,vi can be regarded as characteristics of the maximal simplexes of  and 

the values fvi as characteristics of its vertexes. Together, these parameters produce a 

“dressing” of the cell assembly complex with physiological information about the cells’ 

spiking and the network’s synaptic architecture. Equation 2.5 singles out a set ℬ * of valid 

dressings, b * = {bσ,v : equation 2.5 is satisfied} which enable readout neurons to respond 

to presynaptic activity and thus defines the scope of working synaptic architectures of the 

place cell assembly networks.

Replays occur on a millisecond timescale and produce only a few spikes per activity period 

(Hasselmo et al., 2010; see Figure 1D), which is comparable to the stochastic background 

activity of neurons. In order to distinguish cell assembly activation from the assembly’s 

background activity, the readout neuron should be tuned to a particular combination of 

inputs; the physiological process most likely involves gating specific parts of the dendritic 

tree by timed inputs from the presynaptic cells. Here, the model employs a simplified 

version of this process: we propose that the readout neuron should remain in a sensitive, 

near-threshold state (Buzsaki, 1989) that allows it to quickly respond to the cell assembly 

during each individual step of replay. Thus, we hypothesize that during replays, the 

inequality 2.5 may be approximated by the equation
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∑
vi ∈ σ

bσ, vi
f vi

= θσ, (2.7)

which further restricts the set of valid dressings to a special marginal set ℬ̄ *, for which 

spontaneous replays of place cell assemblies are possible. Note, however, that equation 2.7 

does not fix the values of the parameters fvi and bσ,vi, and so it allows a significant 

variability of spiking activity and of the synaptic connection strengths. To emphasize the 

assumption that place cell activity during replays elicits a response from the readout neuron 

at a constant rate fσ > 0, it is convenient to use the notation

θσ ≡ bσ, σ f σ, (2.8)

where bσ,σ > 0 is a fixed parameter that can be interpreted as the readout neuron’s 

susceptibility to discharge.

2.4 Replays

Equation 2.7 defined at each simplex of * (Novikov, 2004) provides a simple tool for 

building a model of hippocampal replay. As an illustration, consider the case when * is 

two-dimensional, and let σ1 = [v0, v1, v2] be a 2D simplex representing an assembly of three 

cells with the firing rates fv0, fv1 and fv2. If equation 2.7 holds over σ1, then the readout 

neuron cσ1 fires with the rate fσ1 in response to the coactivity of c1, c2, and c3:

bσ1, v0
f v0

+ bσ1, v1
f v1

+ bσ1, v2
f v2

= bσ1, σ1
f σ1

. (2.9)

Suppose that equation 2.7 also holds for an adjacent (maximally overlapping) cell assembly, 

represented by an adjacent simplex σ2 = [v1, v2, v3], so that the second readout neuron cσ2 
fires with the rate fσ2:

bσ2, v1
f v1

+ bσ2, v2
f v2

+ bσ2, v3
f v3

= bσ2, σ2
f σ2

. (2.10)

A key observation here is that since σ2 shares vertexes v1 and v2 with σ1, the corresponding 

firing rates fv1 and fv2 in equation 2.10 define uniquely the firing rate of the remaining cell, 

fv3, required to activate the readout neuron cσ2 (see Figure 2A),

f v3
= 1

bσ2, v3
bσ2, σ2

f σ2
− bσ2, v1

f v1
− bσ2, v2

f v2
. (2.11)
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Similarly, if there is another 2D simplex σ3 = [v2, v3, v4] adjacent to σ2, then once the value 

fv3 is found from equation 2.11, the firing rate at v4 can be obtained from fv2 and fv3, and so 

on (see Figure 2B). In other words, once the synaptic connections bσ,v are specified for all 

simplexes, equation 2.7 can be used to describe the conditions for transferring the activity 

vector fσ over the entire complex * (Novikov, 2004). Notice however, that equations 2.9 to 

2.11 do not specify the mechanism responsible for generating place cell activity; they only 

describe the conditions required to ignite the cell assemblies in a particular sequence. While 

the subsequent simplexes σn and σn+1 in the simplicial path, equation 2.3, are not 

necessarily adjacent, the activity according to equation 2.7 is propagated along a sequence of 

adjacent maximal simplexes, such as depicted in Figure 2B.

2.5 Discrete Holonomy

Using the notation

μx, y
σ ≡

bσ, x
bσ, y

, (2.12)

equation 2.11 defined over a simplex σp can be rewritten in matrix form,

fq = Mq, p
vtvsf p, (2.13)

where the transfer matrix Mq, p
vtvs propagates the population activity vector from the incoming 

facet of the simplex σp into the activity vector of the outgoing, opposite facet shared with the 

next simplex σq (edges [v0, v1] and [v1, v2], respectively, on Figure 2A), in which the vertex 

vs of the simplex σp shuts off and the vertex vt of the adjacent simplex activates. If there is a 

total of n simplexes in the path Γ (n = 17 for the closed simplicial path Γ1 shown on Figure 

2B), then the corresponding chain of n equations, 2.13, will produce

fn = Mqn, pn

vtn
vsnMqn − 1, pn − 1

vtn − 1
vsn − 1…Mq1, p1

vt1
vs1f1 . (2.14)

If the simplicial path is closed, then the activity vector should be restored on completing the 

loop: fn = f1. According to equation 2.14, this will happen if the product of the transfer 

matrices along Γ yields a unit matrix,

MΓ ≡ Mqn, pn

vtn
vsnMqn − 1, pn − 1

vtn − 1
vsn − 1…Mq1, p1

vt1
vs1 = 1 . (2.15)

Dabaghian Page 7

Neural Comput. Author manuscript; available in PMC 2018 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



It can be directly verified, however, that condition 2.15 is not satisfied automatically: the 

product of transfer matrices, equation 2.15, has the structure

MΓ =
1 0 0
0 1 0

κΓ, 1 κΓ, 2 1 + κΓ, 3

, (2.16)

which differs from the unit matrix MΓ ≠ 1 (see the appendix). This implies that a population 

activity vector fσ is in general altered by translations around closed simplicial paths, fσ 
(tstart) ≠ fσ (tend). To formulate this another way, the spiking condition, equation 2.7, does 

not automatically guarantee that the readout neurons will consistently represent spatial 

connectivity; the latter requires additional constraints (see equation 2.15) irrespective of the 

mechanism that shifts the activity bump.

Mathematically, a mismatch between the starting and the ending orientation of the 

population activity vector is akin to the differential-geometric notion of holonomy, which, on 

Riemannian manifolds, measures the change of a vector’s orientation as a result of a parallel 

transport around a closed loop (Novikov, 2004; Bredon, 1997; Dubrovin et al., 1992; 

Sternberg, 1964). Hence, the requirement (see equation 2.15) that the activity vector should 

be the same after completing a closed simplicial trajectory implies that the discrete 

holonomy along paths in * should vanish.

2.6 Discrete Curvature

In differential geometry, zero holonomy on a Riemannian manifold is achieved by requiring 

that the Riemannian curvature tensor R jkl
i  associated with the connection Γ jk

i  vanishes at 

every point x (Dubrovin et al., 1992; Sternberg, 1964). This condition is established by 

contracting closed paths to infinitesimally small loops encircling a point x and translating in 

parallel a unit vector n⃗ around that loop. The difference between the starting and the ending 

orientations of n⃗ defines the curvature at the point x (Sternberg, 1964). An analogous 

procedure can be performed on a discrete manifold *. However, there is a natural limit to 

shrinking simplicial paths: in a d-dimensional complex, the tightest simplicial paths consist 

of d-dimensional simplexes σ (d) that intersect the same (d – 2) dimensional face (see Figure 

3B). Such a path Γσ(d–2)we will call an “elementary closed path,” following Novikov (2004). 

The order sn of such a path is defined by the number of d-dimensional simplexes σ (d) 

encircling a simplex σ (d–2). In the following we will use the short notation σ̂ for the pivot 

simplexes σ̂ ≡ σ (d–2), whereas the elementary simplicial path encircling σ̂ will be denoted 

as Γσ̂.

In order to ensure zero holonomy of place cell activity along all closed paths in *, it is 

sufficient to verify that the holonomy vanishes for all elementary closed paths (Novikov, 

2004). The product of the matrices Mq, p
vtvs encircling the pivot σ̂ (see Figure 3B) has the same 

form as equation 2.16; however, the coefficients κσ̂,i at the bottom row of the matrix Mσ̂ can 

be viewed as the curvatures defined at σ̂. Thus, to ensure zero holonomies, the conditions
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κσ, i = 0, (2.17)

i = 1, . . ., d + 1, must be imposed on the connection coefficients bσ,vi at every pivot simplex 

σ̂ of a d-dimensional dressed cell assembly simplicial complex. For example, an elementary 

2D closed path encircling a vertex v0 with n simplexes enumerated as shown on Figure 3C 

yields the holonomy matrix

Mv0
=

1 0 0
0 1 0

κv0, 1 κv0, 2 1 + κv0, 3
.

The values κv0,i, i = 1, 2, 3, of the bottom row that distinguish Mv0 from the unit matrix 

should be considered as discrete curvatures defined at the pivot vertex v0 (see Figure 3C and 

Novikov, 2004), which need to vanish in order to ensure a consistent representation of space 

during replays.

Since there exists a finite number of pivot simplexes, the number of constraints (see equation 

2.17) on a given dressing b  ∈ ℬ̄ * is finite. Thus, the scope of nontrivial zero holonomy 

conditions (see equation 2.15) drastically reduces, and the task of ensuring consistency of 

translations of the population activity vectors over * becomes tractable. Nevertheless, zero 

curvature conditions (see equation 2.17) are in general quite restrictive and impose nontrivial 

constraints on the synaptic architecture of the place cell assemblies. As the simplest 

illustration, consider the case when the firing rates of all the place cells and readout neurons 

are the same, fvi = fσk = f, and all the connection strengths from the place cells to the readout 

neuron in all cell assemblies are identical, bσi,vi = b̄, giving a constant connection dressing b 
b̄ *. It can be shown that in this case, the resulting transfer matrix is idempotent, that is, 

Mσ
2 = 1, so that the zero curvature condition, equation 2.17, is satisfied identically for the 

even order elementary closed paths and cannot be satisfied if the paths’ order is odd. Under 

more general and physiologically more plausible assumptions, equation 2.17 does not 

necessarily restrict the order of the cell assemblies. However, the domain of permissible 

dressings, ℬ̄ * is significantly restricted by equation 2.17, as compared to the domain 

occupied by the synaptic parameters of the unconstrained cell assembly networks.

3 Statistics of Synaptic Weights in the Limit of Weak Synaptic Noise

The zero curvature constraints, equation 2.17, affect the net statistics of the synaptic weights. 

Since the structure of the full space of marginal dressings ℬ̄ * and of the corresponding 

probability measures is too complex, we considered a family of connections parameterized 

as
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bσ, v = b 1 + εσ, v + O(εσ, v
2 ) , (3.1)

in which the fluctuations εσ,v are normally distributed:

P(εσ, v) = 1
ε π

e
−

εσ, v
2

ε2
. (3.2)

In the absence of zero curvature constraints, cell assemblies are uncoupled and the synaptic 

fluctuations are statistically independent, so that the joint probability distribution of εσ,v is

𝒫(ε) = ∏
σ, v

P εσ, v . (3.3)

Under zero-curvature conditions (see equation 2.17), the parameters of the synaptic 

architecture are coupled (see Figure 5 in the appendix) and the probability distribution for a 

particular variable εσ,v is obtained by averaging the joint distribution, equation 3.3, under 

delta-constraints:

P(εσ, v) = C∫ ⋯∫ ∏
σ

∏
i = 1

d + 1
δ κσ, i(ε) 𝒫(ε)D′ε, (3.4)

where C is the normalization constant and D′ε ≡ Π′ dεσ,v denotes integration over all εσ′,v′ 
≠ εσ,v.

In the appendix, we demonstrate that for weak fluctuations, the shape of the distribution, 

equation 3.2, remains gaussian,

P εσ, v = 1
πε∗

e

−
εσ, v
2

ε∗
2

, (3.5)

but its width decreases: ε* < ε. Thus, zero curvature conditions narrow the distribution of the 

uncorrelated weights, that is, produce a “tuning” of the synaptic connections bσ,v. This result 

also applies to the synaptic weights. In cases where the place fields are distributed regularly, 

so that the coefficients hσ,vi have a well-defined mean, h̄, and a small multiplicative 

variance,

Dabaghian Page 10

Neural Comput. Author manuscript; available in PMC 2018 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



hσ, vi
= h 1 + δσ, vi

,

δσ,vi ≪ 1, the coefficients μv1, v2
σ  are approximately defined by the ratios of the synaptic 

weights,

μv1, v2
σ =

bσ, v1
bσ, v2

=
wσ, v1
wσ, v2

hσ, v1
hσ, v2

=
wσ, v1
wσ, v2

1 + δσ, v1
− δσ, v2

≈
wσ, v1
wσ, v2

,

and therefore the zero curvature conditions produce the same effect on wσ,v as on bσ,v, that 

is, reduce the variability of synaptic weights.

Understanding the effects produced by zero curvature constraints, equation 2.17, on a wider 

range of fluctuations is mathematically more challenging. The qualitative results obtained 

here, however, may generalize beyond the limit of small multiplicative synaptic noise and 

could eventually be experimentally verified. A physiological implication of the result, 

equation 3.5, is that the distribution of the unconstrained synaptic weights in a network that 

does not encode a representation of space (e.g., measured in vitro) should be broader than 

the distribution measured in vivo in healthy animals, which can be tested once such 

measurements become technically possible.

4 Discussion

The task of encoding a consistent map of the environment imposes a system of constraints 

on the hippocampal network (i.e., on the coefficients bσ,v) that enforce the correspondence 

between place cell activity and the animal’s location in the physical world. Here we show 

that zero holonomy is a key condition, which is implemented by requiring that curvatures 

vanish at the pivot simplexes. This approach works within a combinatorial framework, but a 

similar intuition guided a geometric approach (Issa & Zhang, 2012), where the place cells’ 

ability to encode the location of the animal—but not the path leading to that location—was 

achieved by imposing the conditions of Stoke’s theorem (Dubrovin et al., 1992) on the 

synaptic weights of the hippocampal network, which were viewed as functions of Cartesian 

coordinates. Our model is based on the same requirement of path invariance of place cell 

population activity, implemented on a discrete representation of space—a dressed abstract 

simplicial complex * —without involving geometric information about the animal’s 

environment.

In particular, note that the concepts of curvature and holonomy are defined in combinatorial, 

not geometric, terms. This is an advantage in light of (and indeed was motivated by) recent 

work indicating that the hippocampus provides a topological framework for spatial 

experience rather than Cartesian map of the environment (Dabaghian et al., 2014), and it 

also makes our model somewhat more realistic. It does, however, lead to a number of 

technical complications. For example, discrete connections (see equation 2.6) defined over 
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* are nonabelian (Novikov, 2004), so using the approach of Issa and Zhang (2012) would 

require a nontrivial generalization of Stoke’s theorem, which is valid only in spaces with 

abelian differential-geometric connections (Broda, 2002). Our approach is based on the 

analysis of discrete holonomies suggested in the pioneering work of Novikov (2004) which, 

in fact, explains the mathematical underpinning of the Stoke’s theorem approach in both 

abelian and nonabelian cases (Bredon, 1997; Dubrovin et al., 1992; Sternberg, 1964). 

Indeed, the zero-holonomy constraint ensures that no matter what direction the activity is 

propagated in the network (forward, backward, or skipping over some cell assemblies), the 

integrity of the spatial information remains intact.

4.1 Generality of the Approach

A key instrument of our analyses is equation 2.7, which describes the conditions necessary 

for propagating spiking conditions over the cell assembly network. The exact form of this 

equation is not essential; a physiologically more detailed description of near-threshold 

neuronal spiking (Poirazi, Brannon, & Mel, 2003a, 2003b; Wallach, Eytan, Gal, Zrenner, & 

Marom, 2011) could be used to establish more accurate zero holonomy and curvature 

constraints on the hippocampal network’s synaptic architecture, which should be viewed as 

a general requirement for any spatial replay model.

The assumption of maximally overlapping place cell assemblies may also be relaxed, since 

equation 2.7 can be applied in cases where the order of the cell assemblies varies, that is, 

when the simplicial complex * is not a manifold but a quasimanifold (see Figure 4 and 

Floriani, Mesmoudi, Morando, & Puppo, 2002; Lienhardt, 1994). Unfortunately, 

implementing the zero holonomy principle in this case would require rather arduous 

combinatorial analysis. For example, propagating the activity packets using equation 2.14 

would impose relationships between the dimensionalities of the maximal simplexes and their 

placement in * (i.e., require a particular cell assembly network architecture).

4.2 Learning the Constraints

In this letter, the requirements 2.15 and 2.17 enforcing path consistency of place cell replay 

are imposed on a fully trained network. It is assumed that the place fields have had time to 

stabilize (Frank, Brown, & Stanley, 2006) and that the cell assemblies with constant weights 

wσ,vi have had time to form (Best et al., 2001). In a more realistic approach, these 

constraints should modulate the hippocampal network’s training process. For example, if the 

unconstrained network is trained by minimizing a certain cost functional S(b *) (Hopfield, 

1984, 2010), then the constraints (see equation 2.17) would contribute an additional 

“curvature term” R(b *),

S(b𝒯∗
) S(b𝒯∗

) + R(b𝒯∗
), (4.1)

defined, for example, by Lagrange multipliers ri,
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R(b𝒯∗
) = ∑

σ ∈ 𝒯∗
Rσ(b𝒯∗

) = ∑
σ, i

riκσ, i . (4.2)

Physiologically, the network may be trained by “ringing out” the violations of the conditions 

(see equation 2.17) in the neuronal circuit by replaying sequences and adapting the synaptic 

weights to get rid of the centers of nonvanishing holonomy. Curiously, the role played by 

R(b *) in equation 4.1 resembles the role played by the curvature term in the Hilbert–

Einstein action of general relativity theory (Dubrovin et al., 1992), which ensures that in the 

absence of gravitational field sources, the solution of the Hilbert-Einstein equations 

describes a flat space-time. By analogy, the constraints imposed by equation 2.17 may be 

viewed as conditions that enforce synaptic flatness of the hippocampal cognitive map.

(It is worth noting that the mechanism suggested here is an implementation of the zero 

holonomy condition in this simplest case of the reader-centric cell assembly theory that is 

consistent with physiology. The place cell readout might involve, instead of a single neuron, 

a small network of a few neurons (not yet identified experimentally), which might require a 

different implementation of zero holonomy principle, depending on the specific architecture 

of such a network. If the readout network is a cluster of synchronously activated downstream 

neurons, then this cluster of cells could be viewed as a meta-neuron, and the proposed 

approach would apply to this case as well. More complicated architectures would require 

modifications, but it is reasonable that the reproducibility of the population vector would 

require zero holonomy in all cases.)
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Appendix

Transfer matrix construction is carried out for the 2D case, since higher dimensions are 

similar. In the matrix form, equation 2.11, defined over the simplex σp, can be written as 

fq = Mq, p
vkv jf p, in which the matrix
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Mq, p
vkv j =

1 0 0
0 1 0

μσp, vk

σp −μvi, vk

σp −μv j, vk

σp

transfers the activity vector,

f p
⊤ = f σp

, f vi
, f v j

,

defined over the incoming edge [vi, vj] of the pth simplex into the activity vector at the 

outgoing edge [vi, vk] of the same simplex (e.g., from the edge [v0, v1] to the edge [v1, v2] 

of σ1 on Figure 2A),

f p
⊤ = f σp

, f vi
, f vk

. (A.1)

To ignite the readout neuron of the next cell assembly σq, which shares the edge [vi, vk] with 

σp, vector A.1 needs to be transformed into

fq
⊤ = f σq

, f vi
, f vk

by the diagonal matrix Dp,q = diag( fσq/fσp, 1, 1). Together, these two operations produce the 

transfer matrix:

Mq, p
vkv j = Dp, qMq, p

vkv j =

f σq
/ f σp

0 0

0 1 0

μσp, vk

σp −μvi, vk

σp −μv j, vk

σp
.

A direct verification shows that a product of n transfer matrices that start and end at the same 

simplex, has the form of equation 2.16 in which κΓ,i are nth-order polynomials of the 

coefficients, equation 2.12.

A.1 Tuning of the fluctuation distribution

When the fluctuations are small, ε ≪ 1, the constraints (see equation 2.17) uncouple (see 

Figure 5), yielding linearized curvature coefficients,

Dabaghian Page 16

Neural Comput. Author manuscript; available in PMC 2018 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



κσ, i = ∑
v ∈ Γσ

Qσ, i; σ, v εσ, v, (A.2)

where Qσ̂,i;σ,v are constant coefficients and the summation is over the vertexes of the 

elementary path Γσ̂ (see Figure 3B). To simplify expression 3.4, we rewrite it using indexes 

p = (σ, v) and l = ( σ̂, i),

P(εp) = C∫ ⋯∫ ∏
l

δ(κl(εp′))𝒫(εp′) ∏
p′ ≠ p

dεp′,

and exponentiate the delta-functions,

P(εp) = C∫ ⋯∫ ∫
η = − ∞

∞
⋯∫ 𝒫(εp′)∏

l
dηle

iηlκl ∏
p′ ≠ p

dεp′ . (A.3)

Using the joint distribution, equation 3.3, and the linearized expressions, equation A.2 in 

equation A.3, produces

P(εp) = Ce
−

εp
2

ε2∫η = − ∞
∞

…∫ ∏
l

dηle
iηlVlpεp∫Uε(b𝒯∗

)
…∫ ∏

p′ ≠ p
dεp′ e

−
εp′
2

ε2
e
iηlVlp′εp′,

where the Vlp are the coefficients obtained by collecting the terms proportional to εp′s 

produced by equation A.2. Completing the square and integrating over εp′ yields a gaussian 

integral over a positive quadratic form A = VV⊤,

P(εp) = ε
−

εp
2

ε2∫
η = − ∞

∞
…∫ ∏

l
dηle

iεpvpη
e

− 1
4ε2(ηAη)

, (A.4)

where vp is the pth row of the matrix V. Evaluating equation A.4 yields

P(εp) = Ce
−

εp
2

ε2 −
εp
2

ε2
vpA−1vp = Ce

−
εp
2

ε∗
2

, (A.5)
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where

ε∗
2 = ε2 1 + vpA−1vp

−1 . (A.6)

Since the second term in the parentheses is positive, ε* < ε, which indicates narrowing of the 

uncoupled distribution, equation 3.2. The magnitude of the correction in equation A.6 

depends on the topological structure of the coactivity complex (e.g., its dimensionality d and 

the statistics of the pivots’ orders, n) and on the dressing parameters, ℬ̄ *. In the 

approximation, equation 3.1, ε ≪ 1, the diagonal matrix elements of the matrix A are of the 

order dn̄, and hence the vpA−1vp ~ d/n̄.

Dabaghian Page 18

Neural Comput. Author manuscript; available in PMC 2018 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Place cells, place fields, and cell assemblies. (A) A schematic representation of the spike 

trains produced by three place cells, c1, c2, and c3. The two red rectangles mark the periods 

during which the cells are coactive (Arai et al., 2014). (B) The gold, green, and blue areas 

represent place fields. Place cell firing rate is maximal at the center of the place field and 

attenuates toward its periphery; this pattern can be closely approximated by gaussian 

distribution. Place cell cofiring reflects overlap between respective place fields: cells c1 and 

c2 are coactive in location l12, cells c2 and c3 are coactive in location l23, and so on. The red 

links mark distances between the centers of the place fields and the triple overlap domain, 

l123 (dark region in the center). (C) A schematic representation of a cell assembly: the three 

place cells on the top synapse onto a readout neuron (red dot), which activates within the cell 

assembly field l123. (D) During replay, the place cells repeat on a millisecond timescale the 

order of spiking that they exhibit during active navigation.
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Figure 2. 
Propagation of place cell activity along simplicial paths. (A) The firing rate of the cell c2, 

required to activate the readout neuron of the cell assembly σ1, can be inferred from the 

firing rates of the other two cells, c0 and c1, using equation 2.10 (red arrow over σ1). The 

resulting rate f2 of c2 and the rate f0 of c0 define the rate f3 of the cell c3 required to activate 

the readout neuron in the next cell assembly σ2 according to the equation 2.11 (red arrow 

over the σ2). (B) A network of maximally overlapping cell assemblies is represented by a 

simplicial manifold *. The replayed sequences correspond to simplicial paths that can be 

closed (Γ1) or open (Γ2).
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Figure 3. 
Discrete geometry of a dressed simplicial complex. (A) Discrete holonomy. A population 

activity vector (red arrow) changes its direction from simplex to simplex as described by 

equation 2.13. Upon completing a closed path, the starting and ending vectors may differ, 

fstart ≠ fend, which indicates nonzero holonomy. (B) A 2D elementary closed path of the 

order n encircling a vertex v0. The “pivot” vertex v0 carries the discrete curvature 

coefficients defined by equation 2.17. (C) A higher-dimensional elementary closed path 

consisting of d-dimensional simplexes (one such exemplary simplex σ1
(d) is shadowed) 

sharing the same (d – 2)-dimensional face, the pivot simplex σ̂1, shown in red. The d – 2 

dimensional pivot simplex σ̂ shown in red carries the curvature coefficients κσ̂,i.
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Figure 4. 
A replay in simplicial quasimanifold. An example of a simplicial quasi-manifold containing 

2D and 3D simplexes. The activity of cells in the 3D simplexes is induced from the 2D 
simplexes approaching its sides. Two simplicial paths are shown by gray triangles, marked 

by red dotted lines.
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Figure 5. 
Coupling between simplexes. A schematic illustration of a maximal simplex σ1 span by 

three pivot vertexes, v0, v1, and v2, and shared by three overlapping elementary paths, Γ1, 

Γ2, and Γ3 in a 2D cell assembly complex. As a result, the synaptic connectivity coefficients 

bσ1,v will appear in three sets of discrete curvatures, κv0,i, κv1,i and κv2,i, i = 1, 2, 3, 

bootstrapping the constraints, equation 2.17.
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