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Abstract

This paper investigates the supervised learning problem with observations drawn from
certain general stationary stochastic processes. Here by general, we mean that many sta-
tionary stochastic processes can be included. We show that when the stochastic processes
satisfy a generalized Bernstein-type inequality, a unified treatment on analyzing the learning
schemes with various mixing processes can be conducted and a sharp oracle inequality for
generic regularized empirical risk minimization schemes can be established. The obtained or-
acle inequality is then applied to derive convergence rates for several learning schemes such
as empirical risk minimization (ERM), least squares support vector machines (LS-SVMs)
using given generic kernels, and SVMs using Gaussian kernels for both least squares and
quantile regression. It turns out that for i.i.d. processes, our learning rates for ERM recover
the optimal rates. On the other hand, for non-i.i.d. processes including geometrically α-
mixing Markov processes, geometrically α-mixing processes with restricted decay, φ-mixing
processes, and (time-reversed) geometrically C-mixing processes, our learning rates for SVMs
with Gaussian kernels match, up to some arbitrarily small extra term in the exponent, the
optimal rates. For the remaining cases, our rates are at least close to the optimal rates. As
a by-product, the assumed generalized Bernstein-type inequality also provides an interpre-
tation of the so-called “effective number of observations” for various mixing processes.

1 Introduction and Motivation

In this paper, we study the supervised learning problem which aims at inferring a functional
relation between explanatory variables and response variables [46]. In the literature of statistical
learning theory, one of the main research topics is the generalization ability of different learning
schemes which indicate their learnabilities on future observations. Nowadays, it has been well
understood that the Bernstein-type inequalities play an important role in deriving fast learning
rates. For example, the analysis of various algorithms from non-parametric statistics and ma-
chine learning crucially depends on these inequalities, see e.g. [12, 13, 18, 36]. Here, stronger
results can typically be achieved since the Bernstein-type inequality allows for localization due
to its specific dependence on the variance. In particular, most derivations of minimax optimal
learning rates are based on it.

The classical Bernstein inequality assumes that the data are generated by an i.i.d. process.
Unfortunately, however, this assumption is often violated in many real-world applications includ-
ing financial prediction, signal processing, system identification and diagnosis, text and speech
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recognition, and time series forecasting, among others. For this and other reasons, there has
been some effort to establish Bernstein-type inequalities for non-i.i.d. processes. For instance,
generalizations of Bernstein-type inequalities to the cases of α-mixing [31] and C-mixing [21] pro-
cesses have been found [7, 28, 27, 32] and [21, 19], respectively. These Bernstein-type inequalities
have been applied to derive various convergence rates. For example, the Bernstein-type inequal-
ity established in [7] was employed in [54] to derive convergence rates for sieve estimates from
strictly stationary α-mixing processes in the special case of neural networks. [20] applied the
Bernstein-type inequality in [28] to derive an oracle inequality (see Page 220 in [36] for the mean-
ing of the oracle inequality) for generic regularized empirical risk minimization algorithms with
stationary α-mixing processes. By applying the Bernstein-type inequality in [27], [4] derived
almost sure uniform convergence rates for the estimated Lévy density both in mixed-frequency
and low-frequency setups and proved their optimality in the minimax sense. Particularly, con-
cerning the least squares loss, [2] obtained the optimal learning rates for φ-mixing processes
by applying the Bernstein-type inequality established in [32]. By developing a Bernstein-type
inequality for C-mixing processes that include φ-mixing processes and many discrete-time dy-
namical systems, [21] established an oracle inequality as well as fast learning rates for generic
regularized empirical risk minimization algorithms with observations from C-mixing processes.

The above-mentioned inequalities are termed as Bernstein-type since they rely on the vari-
ance of the random variables. However, we note that these inequalities are usually presented in
similar but rather complicated forms which consequently are not easy to apply directly in ana-
lyzing the performance of statistical learning schemes and may be also lack of interpretability.
On the other hand, existing studies on learning from mixing processes may diverse from one to
another since they may be conducted under different assumptions and notations, which leads to
barriers in comparing the learnability of these learning algorithms.

In this work, we first introduce a generalized Bernstein-type inequality and show that it
can be instantiated to various stationary mixing processes. Based on the generalized Bernstein-
type inequality, we establish an oracle inequality for a class of learning algorithms including
ERM [36, Chapter 6] and SVMs. On the technical side, the oracle inequality is derived by
refining and extending the analysis of [37]. To be more precise, the analysis in [37] partially
ignored localization with respect to the regularization term, which in our study is addressed
by a carefully arranged peeling approach inspired by [36]. This leads to a sharper stochastic
error bound and consequently a sharper bound for the oracle inequality, comparing with that
of [37]. Besides, based on the assumed generalized Bernstein-type inequality, we also provide
an interpretation and comparison of the effective numbers of observations when learning from
various mixing processes.

Our second main contribution made in the present study lies in that we present a unified
treatment on analyzing learning schemes with various mixing processes. For example, we es-
tablish fast learning rates for α-mixing and (time-reversed) C-mixing processes by tailoring the
generalized oracle inequality. For ERM, our results match those in the i.i.d. case, if one replaces
the number of observations with the effective number of observations. For LS-SVMs, as far as
we know, the best learning rates for the case of geometrically α-mixing process are those derived
in [51, 43, 17]. When applied to LS-SVMs, it turns out that our oracle inequality leads to faster
learning rates that those reported in [51] and [17]. For sufficiently smooth kernels, our rates
are also faster than those in [43]. For other mixing processes including geometrically α-mixing
Markov chains, geometrically φ-mixing processes, and geometrically C-mixing processes, our
rates for LS-SVMs with Gaussian kernels match essentially the optimal learning rates, while for
LS-SVMs with given generic kernel, we only obtain rates that are close to the optimal rates.
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The rest of this work is organized as follows: In Section 2, we introduce some basics of
statistical learning theory. Section 3 presents the key assumption of a generalized Bernstein-
type inequality for stationary mixing processes, and present some concrete examples that satisfy
this assumption. Based on the generalized Bernstein-type inequality, a sharp oracle inequality
is developed in Section 4 while its proof is deferred to the Appendix. Section 5 provides some
applications of the newly developed oracle inequality. The paper is ended in Section 6.

2 A Primer in Learning Theory

Let (X,X ) be a measurable space and Y ⊂ R be a closed subset. The goal of (supervised)
statistical learning is to find a function f : X → R such that for (x, y) ∈ X × Y the value f(x)
is a good prediction of y at x. The following definition will help us define what we mean by
“good”.

Definition 1. Let (X,X ) be a measurable space and Y ⊂ R be a closed subset. Then a function
L : X × Y × R → [0,∞) is called a loss function, or simply a loss, if it is measurable.

In this study, we are interested in loss functions that in some sense can be restricted to
domains of the form X ×Y × [−M,M ] as defined below, which is typical in learning theory [36,
Definition 2.22] and is in fact motivated by the boundedness of Y .

Definition 2. We say that a loss L : X × Y × R → [0,∞) can be clipped at M > 0, if, for all
(x, y, t) ∈ X × Y × R, we have

L(x, y, Ût ) ≤ L(x, y, t),

where Ût denotes the clipped value of t at ±M , that is

Ût :=





−M if t < −M,

t if t ∈ [−M,M ],

M if t > M.

Throughout this work, we make the following assumptions on the loss function L:

Assumption 1. The loss function L : X × Y × R → [0,∞) can be clipped at some M > 0.
Moreover, it is both bounded in the sense of L(x, y, t) ≤ 1 and locally Lipschitz continuous, that
is,

|L(x, y, t) − L(x, y, t′)| ≤ |t− t′| . (1)

Here both inequalites are supposed to hold for all (x, y) ∈ X × Y and t, t′ ∈ [−M,M ].

Note that the above assumption with Lipschitz constant equals to one can typically be en-
forced by scaling. To illustrate the generality of the above assumptions on L, let us first consider
the case of binary classification, that is Y := {−1, 1}. For this learning problem one often uses
a convex surrogate for the original discontinuous classification loss 1(−∞,0](y sign(t)), since the
latter may lead to computationally infeasible approaches. Typical surrogates L belong to the
class of margin-based losses, that is, L is of the form L(y, t) = ϕ(yt), where ϕ : R → [0,∞) is
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a suitable, convex function. Then L can be clipped, if and only if ϕ has a global minimum, see
[36, Lemma 2.23]. In particular, the hinge loss, the least squares loss for classification, and the
squared hinge loss can be clipped, but the logistic loss for classification and the AdaBoost loss
cannot be clipped. On the other hand, [34] established a simple technique, which is similar to
inserting a small amount of noise into the labeling process, to construct a clippable modifica-
tion of an arbitrary convex, margin-based loss. Finally, both the Lipschitz continuity and the
boundedness of L can be easily verified for these losses, where for the latter it may be necessary
to suitably scale the loss.

Bounded regression is another class of learning problems, where the assumptions made on L
are often satisfied. Indeed, if Y := [−M,M ] and L is a convex, distance-based loss represented
by some ψ : R → [0,∞), that is L(y, t) = ψ(y − t), then L can be clipped whenever ψ(0) = 0,
see again [36, Lemma 2.23]. In particular, the least squares loss

L(y, t) = (y − t)2 (2)

and the τ -pinball loss

Lτ (y, t) := ψ(y − t) =

{
−(1− τ)(y − t), if y − t < 0,

τ(y − t), if y − t ≥ 0,
(3)

used for quantile regression can be clipped. Again, for both losses, the Lipschitz continuity and
the boundedness can be easily enforced by a suitable scaling of the loss.

Given a loss function L and an f : X → R, we often use the notation L ◦ f for the func-
tion (x, y) 7→ L(x, y, f(x)). Our major goal is to have a small average loss for future unseen
observations (x, y). This leads to the following definition.

Definition 3. Let L : X × Y × R → [0,∞) be a loss function and P be a probability measure
on X × Y . Then, for a measurable function f : X → R, the L-risk is defined by

RL,P (f) :=

∫

X×Y

L(x, y, f(x)) dP (x, y).

Moreover, the minimal L-risk

R∗
L,P := inf{RL,P (f) | f : X → R measurable}

is called the Bayes risk with respect to P and L. In addition, a measurable function f∗L,P : X → R

satisfying RL,P (f
∗
L,P ) = R∗

L,P is called a Bayes decision function.

Let (Ω,A, µ) be a probability space, Z := (Zi)i≥1 be an X × Y -valued stochastic process on
(Ω,A, µ), we write

D :=
Ä
(X1, Y1), . . . , (Xn, Yn)

ä
:= (Z1, . . . , Zn) ∈ (X × Y )n

for a training set of length n that is distributed according to the first n components of Z.
Informally, the goal of learning from a training set D is to find a decision function fD such that
RL,P (fD) is close to the minimal risk R∗

L,P . Our next goal is to formalize this idea. We begin
with the following definition.

Definition 4. Let X be a set and Y ⊂ R be a closed subset. A learning method L on X × Y
maps every set D ∈ (X × Y )n, n ≥ 1, to a function fD : X → R.
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Now a natural question is whether the functions fD produced by a specific learning method
satisfy

RL,P (fD) → R∗
L,P , n→ ∞ .

If this convergence takes place for all P , then the learning method is called universally consistent.
In the i.i.d. case many learning methods are known to be universally consistent, see e.g. [12] for
classification methods, [18] for regression methods, and [36] for generic SVMs. For consistent
methods, it is natural to ask how fast the convergence rate is. Unfortunately, in most situations
uniform convergence rates are impossible, see [12, Theorem 7.2], and hence establishing learning
rates require some assumptions on the underlying distribution P . Again, results in this direction
can be found in the above-mentioned books. In the non-i.i.d. case, [30] showed that no uniform
consistency is possible if one only assumes that the data generating process Z is stationary and
ergodic. On the other hand, if some further assumptions of the dependence structure of Z are
made, then consistency is possible, see e.g. [40].

Let us now describe the learning algorithms of particular interest to us. To this end, we
assume that we have a hypothesis set F consisting of bounded measurable functions f : X → R,
which is pre-compact with respect to the supremum norm ‖ · ‖∞. Since the cardinality of F can
be infinite, we need to recall the following concept, which will enable us to approximate F by
using finite subsets.

Definition 5. Let (T, d) be a metric space and ε > 0. We call S ⊂ T an ε-net of T if for all
t ∈ T there exists an s ∈ S with d(s, t) ≤ ε. Moreover, the ε-covering number of T is defined by

N (T, d, ε) := inf

{
n ≥ 1 : ∃s1, . . . , sn ∈ T such that T ⊂

n⋃

i=1

Bd(si, ε)

}
,

where inf ∅ := ∞ and Bd(s, ε) := {t ∈ T : d(t, s) ≤ ε} denotes the closed ball with center s ∈ T
and radius ε.

Note that our hypothesis set F is assumed to be pre-compact, and hence for all ε > 0, the
covering number N (F , ‖ · ‖∞, ε) is finite.

Denote Dn := 1
n

∑n
i=1 δ(Xi,Yi), where δ(Xi,Yi) denotes the (random) Dirac measure at (Xi, Yi).

In other words, Dn is the empirical measure associated to the data set D. Then, the risk of a
function f : X → R with respect to this measure

RL,Dn(f) =
1

n

n∑

i=1

L(Xi, Yi, f(Xi))

is called the empirical L-risk.

With these preparations we can now introduce the class of learning methods of interest:

Definition 6. Let L : X × Y × R → [0,∞) be a loss that can be clipped at some M > 0, F
be a hypothesis set, that is, a set of measurable functions f : X → R, with 0 ∈ F , and Υ be a
regularizer on F , that is, Υ : F → [0,∞) with Υ(0) = 0. Then, for δ ≥ 0, a learning method
whose decision functions fDn,Υ ∈ F satisfy

Υ(fDn,Υ) +RL,Dn(
ÛfDn,Υ) ≤ inf

f∈F
(Υ(f) +RL,Dn(f)) + δ (4)

for all n ≥ 1 and Dn ∈ (X × Y )n is called δ-approximate clipped regularized empirical risk
minimization (δ-CR-ERM) with respect to L, F , and Υ.
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In the case δ = 0, we simply speak of clipped regularized empirical risk minimization (CR-
ERM). In this case, fDn,Υ in fact can be also defined as follows:

fDn,Υ = argmin
f∈F

Υ(f) +RL,Dn(f).

Note that on the right-hand side of (4) the unclipped loss is considered, and hence CR-ERMs
do not necessarily minimize the regularized clipped empirical risk Υ(·) + RL,Dn(Û·). Moreover,
in general CR-ERMs do not minimize the regularized risk Υ(·) + RL,Dn(·) either, because on
the left-hand side of (4) the clipped function is considered. However, if we have a minimizer of
the unclipped regularized risk, then it automatically satisfies (4). In particular, ERM decision
functions satisfy (4) for the regularizer Υ := 0 and δ := 0, and SVM decision functions satisfy
(4) for the regularizer Υ := λ‖ · ‖2H and δ := 0. In other words, ERM and SVMs are CR-ERMs.

3 Mixing Processes and A Generalized Bernstein-type Inequal-

ity

In this section, we introduce a generalized Bernstein-type inequality. Here the inequality is
said to be generalized in that it depends on the effective number of observations instead of the
number of observations, which, as we shall see later, makes it applicable to various stationary
stochastic processes. To this end, let us first introduce several mixing processes.

3.1 Several Stationary Mixing Processes

We begin with introducing some notations. Recall that (X,X ) is a measurable space and
Y ⊂ R is closed. We further denote (Ω,A, µ) as a probability space, Z := (Zi)i≥1 as an
X × Y -valued stochastic process on (Ω,A, µ), Ai

1 and A∞
i+n as the σ-algebras generated by

(Z1, . . . , Zi) and (Zi+n, Zi+n+1, . . .), respectively. Throughout, we assume that Z is stationary,
that is, the (X × Y )n-valued random variables (Zi1 , . . . , Zin) and (Zi1+i, . . . , Zin+i) have the
same distribution for all n, i, i1, . . . , in ≥ 1. Let χ : Ω → X be a measurable map. µχ is denoted
as the χ-image measure of µ, which is defined as µχ(B) := µ(χ−1(B)), B ⊂ X measurable. We
denote Lp(µ) as the space of (equivalence classes of) measurable functions g : Ω → R with finite
Lp-norm ‖g‖p. Then Lp(µ) together with ‖g‖p forms a Banach space. Moreover, if A′ ⊂ A is
a sub-σ-algebra, then Lp(A′, µ) denotes the space of all A′-measurable functions g ∈ Lp(µ). ℓ

d
2

denotes the space of d-dimensional sequences with finite Euclidean norm. Finally, for a Banach
space E, we write BE for its closed unit ball.

In order to characterize the mixing property of a stationary stochastic process, various no-
tions have been introduced in the literature [9]. Several frequently considered examples are
α-mixing, β-mixing and φ-mixing, which are, respectively, defined as follows:

Definition 7 (α-Mixing Process). A stochastic process Z = (Zi)i≥1 is called α-mixing if
there holds

lim
n→∞

α(Z, n) = 0,

where α(Z, n) is the α-mixing coefficient defined by

α(Z, n) = sup
A∈Ai

1
, B∈A∞

i+n

|µ(A ∩B)− µ(A)µ(B)|.
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Moreover, a stochastic process Z is called geometrically α-mixing, if

α(Z, n) ≤ c exp(−bnγ), n ≥ 1, (5)

for some constants b > 0, c ≥ 0, and γ > 0.

Definition 8 (β-Mixing Process). A stochastic process Z = (Zi)i≥1 is called β-mixing if
there holds

lim
n→∞

β(Z, n) = 0,

where β(Z, n) is the β-mixing coefficient defined by

β(Z, n) := E sup
B∈A∞

i+n

|µ(B)− µ(B|Ai
1)|.

Definition 9 (φ-Mixing Process). A stochastic process Z = (Zi)i≥1 is called φ-mixing if
there holds

lim
n→∞

φ(Z, n) = 0,

where φ(Z, n) is the φ-mixing coefficient defined by

φ(Z, n) := sup
A∈Ai

1
,B∈A∞

i+n

|µ(B)− µ(B|A)|.

The α-mixing concept was introduced by Rosenblatt [31] while the β-mixing coefficient was
introduced by [49, 50], and was attributed there to Kolmogorov. Moreover, Ibragimov [22]
introduced the φ-coefficient, see also [23]. An extensive and thorough account on mixing concepts
including β- and φ-mixing is also provided by [10]. It is well-known that, see e.g. [20, Section
2], the β- and φ-mixing sequences are also α-mixing, see Figure 1. From the above definition,
it is obvious that i.i.d. processes are also geometrically α-mixing processes since (5) is satisfied
for c = 0 and all b, γ > 0. Moreover, several time series models such as ARMA and GARCH,
which are often used to describe, e.g. financial data, satisfy (5) under natural conditions [16,
Chapter 2.6.1], and the same is true for many Markov chains including some dynamical systems
perturbed by dynamic noise, see e.g. [48, Chapter 3.5].

Another important class of mixing processes called (time-reversed) C-mixing processes was
originally introduced in [25] and recently investigated in [21]. As shown below, it is defined in
association with a function class that takes into account of the smoothness of functions and
therefore could be more general in the dynamical system context. As illustrated in [25] and [21],
the C-mixing process encounters a large family of dynamical systems. Given a semi-norm ‖ · ‖
on a vector space E of bounded measurable functions f : Z → R, we define the C-norm by

‖f‖C := ‖f‖∞ + ‖f‖, (6)

and denote the space of all bounded C-functions by C(Z) :=
{
f : Z → R

∣∣∣ ‖f‖C <∞
}
.

Definition 10 (C-Mixing Process). Let Z = (Zi)i≥1 be a stationary stochastic process. For
n ≥ 1, the C-mixing coefficients are defined by

φC(Z, n) := sup
¶
cor(ψ, h ◦ Zk+n) : k ≥ 1, ψ ∈ BL1(Ak

1
,µ), h ∈ BC(Z)

©
,
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φ-mixing β-mixing α-mixing

Figure 1: Relations among α-, β-, and φ-mixing processes

φ-mixingα-mixing C-mixing

Figure 2: Relations among α-, φ-, and C-mixing processes

and similarly, the time-reversed C-mixing coefficients are defined by

φC,rev(Z, n) := sup
¶
cor(h ◦ Zk, ϕ) : k ≥ 1, h ∈ BC(Z), ϕ ∈ BL1(A∞

k+n
,µ)

©
.

Let (dn)n≥1 be a strictly positive sequence converging to 0. Then we say that Z is (time-
reversed) C-mixing with rate (dn)n≥1, if we have φC,(rev)(Z, n) ≤ dn for all n ≥ 1. Moreover,
if (dn)n≥1 is of the form

dn := c exp
Ä
−bnγ

ä
, n ≥ 1,

for some constants c > 0, b > 0, and γ > 0, then X is called geometrically (time-reversed)
C-mixing. If (dn)n≥1 is of the form

dn := c · n−γ , n ≥ 1,

for some constants c > 0, and γ > 0, then X is called polynomial (time-reversed) C-mixing.

Figure 2 illustrates the relations among α-mixing processes, φ-mixing processes, and C-mixing
processes. Clearly, φ-mixing processes are C-mixing [21]. Furthermore, various discrete-time dy-
namical systems including Lasota-Yorke maps, uni-modal maps, and piecewise expanding maps
in higher dimension are C-mixing, see [25]. Moreover, smooth expanding maps on manifolds,
piecewise expanding maps, uniformly hyperbolic attractors, and non-uniformly hyperbolic uni-
modal maps are time-reversed geometrically C-mixing, see [47, Proposition 2.7, Proposition 3.8,
Corollary 4.11 and Theorem 5.15], respectively.
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3.2 A Generalized Bernstein-type Inequality

As discussed in the introduction, the Bernstein-type inequality plays an important role in many
areas of probability and statistics. In the statistical learning theory literature, it is also crucial
in conducting concentrated estimation for learning schemes. As mentioned previously, these
inequalities are usually presented in rather complicated forms under different assumptions, which
therefore limit their portability to other contexts. However, what is common behind these
inequalities is their relying on the boundedness assumption of the variance. Given the above
discussions, in this subsection, we introduce the following generalized Bernstein-type inequality,
with the hope of making it as an off-the-shelf tool for various mixing processes.

Assumption 2. Let Z := (Zi)i≥1 be an X×Y -valued, stationary stochastic process on (Ω,A, µ)
and P := µZ1

. Furthermore, let h : X × Y → R be a bounded measurable function for which
there exist constants B > 0 and σ ≥ 0 such that EPh = 0, EPh

2 ≤ σ2, and ‖h‖∞ ≤ B. Assume
that, for all ε > 0, there exist constants n0 ≥ 1 independent of ε and neff ≥ 1 such that for all
n ≥ n0, we have

P

(
1

n

n∑

i=1

h(Zi) ≥ ε

)
≤ C exp

Ç
− ε2neff

cσσ2 + cBεB

å
, (7)

where neff ≤ n is the effective number of observations, C is a constant independent of n, and cσ,
cB are positive constants.

Note that in Assumption 2, the generalized Bernstein-type inequality (7) is assumed with
respect to neff instead of n, which is a function of n and is termed as the effective number
of observations. The terminology, effective number of observations, “provides a heuristic un-
derstanding of the fact that the statistical properties of autocorrelated data are similar to a
suitably defined number of independent observations” [55]. We will continue our discussion on
the effective number of observations neff in Subsection 3.4 below.

3.3 Instantiation to Various Mixing Processes

We now show that the generalized Bernstein-type inequality in Assumption 2 can be instantiated
to various mixing processes, e.g., i.i.d processes, geometrically α-mixing processes, restricted
geometrically α-mixing processes, geometrically α-mixing Markov chains, φ-mixing processes,
geometrically C-mixing processes, polynomially C-mixing processes, among others.

3.3.1 I.I.D Processes

Clearly, the classical Bernstein inequality [5] satisfies (7) with n0 = 1, C = 1, cσ = 2, cB = 2/3,
and neff = n.

3.3.2 Geometrically α-Mixing Processes

For stationary geometrically α-mixing processes Z, [28, Theorem 4.3] bounds the left-hand side
of (7) by

(1 + 4e−2c) exp

Ç
− 3ε2n(γ)

6σ2 + 2εB

å

9



for any n ≥ 1, and ε > 0, where

n(γ) :=
⌊
n
†
(8n/b)1/(γ+1)

£−1
⌋
,

where ⌊t⌋ is the largest integer less than or equal to t and ⌈t⌉ is the smallest integer greater than
or equal to t for t ∈ R. Observe that ⌈t⌉ ≤ 2t for all t ≥ 1 and ⌊t⌋ ≥ t/2 for all t ≥ 2. From this
it is easy to conclude that, for all n ≥ n0 with

n0 := max{b/8, 22+5/γb−1/γ}, (8)

we have n(γ) ≥ 2−
2γ+5

γ+1 b
1

γ+1n
γ

γ+1 . Hence, the right-hand side of (7) takes the form

(1 + 4e−2c) exp

Ç
− ε2nγ/(γ+1)

(82+γ/b)1/(1+γ)(σ2 + εB/3)

å
.

It is easily seen that this bound is of the generalized form (7) with n0 given in (8), C = 1+4e−2c,
cσ = (82+γ/b)1/(1+γ), cB = (82+γ/b)1/(1+γ)/3, and neff = nγ/(γ+1).

3.3.3 Restricted Geometrically α-Mixing Processes

A restricted geometrically α-mixing process is referred to as a geometrically α-mixing process
(see Definition 10) with γ ≥ 1. For this kind of α-mixing processes, [27, Theorem 2] established
a bound for the right-hand side of (7) that takes the following form

cc exp

Ç
− cbε

2n

v2 +B2/n+ εB(log n)2

å
, (9)

for all ε > 0 and n ≥ 2, where cb is some constant depending only on b, cc is some constant
depending only on c, and v2 is defined by

v2 := σ2 + 2
∑

2≤i≤n

|cov(h(X1), h(Xi))| . (10)

In fact, for any ǫ > 0, by using Davydov’s covariance inequality [11, Corollary to Lemma
2.1] with p = q = 2 + ǫ and r = (2 + ǫ)/ǫ, we obtain for i ≥ 2,

cov(h(Z1), h(Zi)) ≤ 8‖h(Z1)‖2+ǫ‖h(Zi)‖2+ǫα(Z, i− 1)ǫ/(2+ǫ)

≤ 8
Ä
EPh

2+ǫ
ä2/(2+ǫ)Ä

ce−b(i−1)
äǫ/(2+ǫ)

≤ 8cǫ/(2+ǫ)B2ǫ/(2+ǫ)σ2·2/(2+ǫ) exp
Ä
−bǫ(i− 1)/(2 + ǫ)

ä
.

Consequently, we have

v2 ≤ σ2 + 16cǫ/(2+ǫ)B2ǫ/(2+ǫ)σ2·2/(2+ǫ)
∑

2≤i≤n

exp
Ä
−bǫ(i− 1)/(2 + ǫ)

ä

≤ σ2 + 16cǫ/(2+ǫ)B2ǫ/(2+ǫ)σ2·2/(2+ǫ)
∑

i≥1

exp(−bǫi/(2 + ǫ)).

Setting

cǫ := 16cǫ/(2+ǫ)B2ǫ/(2+ǫ)
∑

i≥1

exp(−bǫi/(2 + ǫ)), (11)
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then the probability bound (9) can be reformulated as

cc exp

Ç
− cbε

2n

σ2 + cǫσ4/(2+ǫ) +B2/n+ εB(log n)2

å
.

When n ≥ n0 with

n0 := max
¶
3, exp

Ä√
cǫσ

−ǫ/(2+ǫ)
ä
, B2/σ2

©
,

it can be further upper bounded by

cc exp

Ç
−cbε

2(n/(log n)2)

3σ2 + εB

å
.

Therefore, the Bernstein-type inequality for the restricted C-mixing process is also of the gener-
alized form (7) where C = cc, cσ = 3/cb, cB = 1/cb, and neff = n/(log n)2.

3.3.4 Geometrically α-Mixing Markov Chains

For the stationary geometrically α-mixing Markov chain with centered and bounded random
variables, [1] bounds the left-hand side of (7) by

exp

Ç
− nε2

σ̃2 + εB log n

å
,

where σ̃2 = limn→∞
1
n · Var∑n

i=1 h(Xi).

Following the similar arguments as in the restricted geometrically C-mixing case, we know
that for an arbitrary ǫ > 0, there holds

Var
n∑

i=1

h(Xi) = nσ2 + 2
∑

1≤i<j≤n

|cov(h(Xi), h(Xj))|

≤ nσ2 + 2n
∑

2≤i≤n

|cov(h(X1), h(Xi))|

= n · v2 ≤ n
Ä
σ2 + cǫσ

4/(2+ǫ)
ä
,

where v2 is defined in (10) and cǫ is given in (11). Consequently the following inequality holds

exp

Ç
− nε2

σ2 + cǫσ4/(2+ǫ) + εB log n

å
≤ exp

Ç
−ε

2(n/ log n)

2σ2 + εB

å
,

for n ≥ n0 with

n0 := max
{
3, exp

Ä
cǫσ

−2ǫ/(2+ǫ)
ä}
.

That is, when n ≥ n0 the Bernstein-type inequality for the geometrically α-mixing Markov
chain can be also formulated as the generalized form (7) with C = 1, cσ = 2, cB = 1, and
neff = n/ log n.

11



3.3.5 φ-Mixing Processes

For a φ-mixing process Z, [32] provides the following bound for the left-hand side of (7)

exp

Ç
− ε2n

8cφ(4σ2 + εB)

å
,

where cφ :=
∑∞

k=1

»
φ(Z, k). Obviously, it is of the general form (7) with n0 = 1, C = 1,

cσ = 32cφ, cB = 8cφ, and neff = n.

3.3.6 Geometrically C-Mixing Processes

For the geometrically C-mixing process in Definition 10, [21] recently developed a Bernstein-type
inequality. To state the inequality, the following assumption on the semi-norm ‖ · ‖ in (6) is
needed

∥∥∥ef
∥∥∥ ≤

∥∥∥ef
∥∥∥
∞
‖f‖, f ∈ C(Z).

Under the above restriction on the semi-norm ‖ · ‖ in (6), and the assumptions that ‖h‖ ≤ A,
‖h‖∞ ≤ B, and EPh

2 ≤ σ2, [21] states that when n ≥ n0 with

n0 := max
¶
min
¶
m ≥ 3 : m2 ≥ 808c(3A +B)/B and m/(logm)2/γ ≥ 4

©
, e3/b

©
. (12)

the right-hand side of (7) takes the form

2 exp

Ç
−ε

2n/(log n)2/γ

8(σ2 + εB/3)

å
. (13)

It is easy to see that (13) is also of the generalized form (7) with n0 given in (12), C = 2, cσ = 8,
cB = 8/3, and neff = n/(log n)2/γ .

3.3.7 Polynomially C-Mixing Processes

For the polynomially C-mixing processes, a Bernstein-type inequality was established recently
in [19]. Under the same restriction on the semi-norm ‖ · ‖ and assumption on h as in the
geometrically C-mixing case, it states that when n ≥ n0 with

n0 := max
{Ä

808c(3A +B)/B
ä1/2

, 4(γ+1)/(γ−2)
}
, γ > 2, (14)

the right-hand side of (7) takes the form

2 exp

Ç
−ε

2n(γ−2)/(γ+1)

8(σ2 + εB/3)

å
.

An easy computation shows that it is also of the generalized form (7) with n0 given in (14),
C = 2, cσ = 8, cB = 8/3, and neff = n(γ−2)/(γ+1) with γ > 2.

12



3.4 From Observations to Effective Observations

The generalized Bernstein-type inequality in Assumption 2 is assumed with respect to the ef-
fective number of observations neff. As verified above, the assumed generalized Bernstein-type
inequality indeed holds for many mixing processes whereas neff may take different values in
different circumstances. Supposing that we have n observations drawn from a certain mixing
process discussed above, Table 1 reports its effective number of observations. As mentioned
above, it can be roughly treated as the number of independent observations when inferring the
statistical properties of correlated data. In this subsection, we make some effort in presenting
an intuitive understanding towards the meaning of the effective number of observations.

Table 1: Effective Number of Observations for Different Mixing Processes

examples effective number of observations

i.i.d processes n

geometrically α-mixing processes nγ/(γ+1)

restricted geometrically α-mixing processes n/(log n)2

geometrically α-mixing Markov chains n/ log n

φ-mixing processes n

geometrically C-mixing processes n/(log n)2/γ

polynomially C-mixing processes n(γ−2)/(γ+1) with γ > 2

The terminology - effective observations, which may be also referred as the effective number
of observations depending on the context, appeared probably first in [3] when studying the
autocorrelated time series data. In fact, many similar concepts can be found in the literature of
statistical learning from mixing processes, see e.g., [24, 52, 28, 33, 55]. For stochastic processes,
mixing indicates the asymptotic independence. In some sense, the effective observations can be
taken as the independent observations that can contribute when learning from a certain mixing
process.

1 2 3 neff − 3 neff − 2 neff − 1 neff

Figure 3: An illustration of the effective number of observations when inferring the statistical
properties of the data drawn from mixing processes. The data of size n are split into neff blocks,
each of size n/neff.

In fact, when inferring statistical properties with data drawn from mixing processes, a
frequently employed technique is to split the data of size n into k blocks, each of size ℓ
[53, 28, 8, 29, 21]. Each block may be constructed either by choosing consecutive points in
the original observation set or by a jump selection [28, 21]. With the constructed blocks, one
can then introduce a new sequence of blocks that are independent between the blocks by using
the coupling technique. Due to the mixing assumption, the difference between the two sequences
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of blocks can be measured with respect to a certain metric. Therefore, one can deal with the in-
dependent blocks instead of dependent blocks now. On the other hand, for observations in each
originally constructed block, one can again apply the coupling technique [8, 14] to tackle, e.g.,
introducing ℓ new i.i.d observations and bounding the difference between the newly introduced
observations and the original observations with respect to a certain metric. During this process,
one tries to ensure that the number of blocks k is as large as possible, for which neff turns out
to be the choice. An intuitive illustration of this procedure is shown in Fig. 3.

4 A Generalized Sharp Oracle Inequality

In this section we present one of our main results: an oracle inequality for learning from mixing
processes satisfying the generalized Bernstein-type inequality (7). We first introduce a few more
notations. Let F be a hypothesis set in the sense of Definition 6. For

r∗ := inf
f∈F

Υ(f) +RL,P ( Ûf )−R∗
L,P , (15)

and r > r∗, we write

Fr :=
¶
f ∈ F : Υ(f) +RL,P ( Ûf )−R∗

L,P ≤ r
©
. (16)

Since L(x, y, 0) ≤ 1, 0 ∈ F , and Υ(0) = 0, then we have r∗ ≤ 1, Furthermore, we assume that
there exists a function ϕ : (0,∞) → (0,∞) that satisfies

lnN (Fr, ‖ · ‖∞, ε) ≤ ϕ(ε)rp (17)

for all ε > 0, r > 0 and a suitable constant p ∈ (0, 1]. Note that there are actually many
hypothesis sets satisfying Assumption (17), see Section 5 for some examples.

Now, we present the oracle inequality as follows:

Theorem 1. Let Z be a stochastic process satisfying Assumption 2 with constants n0 ≥ 1,
C > 0, cσ > 0, and cB > 0. Furthermore, let L be a loss satisfying Assumption 1. Moreover,
assume that there exists a Bayes decision function f∗L,P and constants ϑ ∈ [0, 1] and V ≥ 1 such
that

EP (L ◦ Ûf − L ◦ f∗L,P )2 ≤ V ·
Ä
EP (L ◦ Ûf − L ◦ f∗L,P )

äϑ
, f ∈ F , (18)

where F is a hypothesis set with 0 ∈ F . We define r∗ and Fr by (15) and (16), respectively and
assume that (17) is satisfied. Finally, let Υ : F → [0,∞) be a regularizer with Υ(0) = 0, f0 ∈ F
be a fixed function, and B0 ≥ 1 be a constant such that ‖L ◦ f0‖∞ ≤ B0. Then, for all fixed
ε > 0, δ ≥ 0, τ ≥ 1, n ≥ n0, and r ∈ (0, 1] satisfying

r ≥ max





Ç
cV (τ + ϕ(ε/2)2prp)

neff

å 1

2−ϑ

,
8cBB0τ

neff

, r∗



 (19)

with cV := 64(4cσV + cB), every learning method defined by (4) satisfies with probability µ not
less than 1− 8Ce−τ :

Υ(fDn,Υ) +RL,P ( ÛfDn,Υ)−R∗
L,P < 2Υ(f0) + 4RL,P (f0)− 4R∗

L,P + 4r + 5ε+ 2δ. (20)
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The proof of Theorem 1 will be provided in the Appendix. Before we illustrate this oracle
inequality in the next section with various examples, let us briefly discuss the variance bound
(18). For example, if Y = [−M,M ] and L is the least squares loss, then it is well-known
that (18) is satisfied for V := 16M2 and ϑ = 1, see e.g. [36, Example 7.3]. Moreover, under
some assumptions on the distribution P , [38] established a variance bound of the form (18)
for the so-called pinball loss used for quantile regression. In addition, for the hinge loss, (18)
is satisfied for ϑ := q/(q + 1), if Tsybakov’s noise assumption [45, Proposition 1] holds for q,
see [36, Theorem 8.24]. Finally, based on [6], [34] established a variance bound with ϑ = 1 for
the earlier mentioned clippable modifications of strictly convex, twice continuously differentiable
margin-based loss functions.

We remark that in Theorem 1 the constant B0 is necessary since the assumed boundedness
of L only guarantees ‖L◦ Ûf‖∞ ≤ 1, while B0 bounds the function L◦f0 for an unclipped f0 ∈ F .
We do not assume that all f ∈ F satisfy Ûf = f , therefore in general B0 is necessary. We refer
to Examples 2, 3 and 4 for situations, where B0 is significantly larger than 1.

5 Applications to Statistical Learning

To illustrate the oracle inequality developed in Section 4, we now apply it to establish learning
rates for some algorithms including ERM over finite sets and SVMs using either a given generic
kernel or a Gaussian kernel with varying widths. In the ERM case, our results match those
in the i.i.d. case, if one replaces the number of observations n with the effective number of
observations neff while, for LS-SVMs with given generic kernels, our rates are slightly worse
than the recently obtained optimal rates [41] for i.i.d. observations. The latter difference is
not surprising when considering the fact that [41] used heavy machinery from empirical process
theory such as Talagrand’s inequality and localized Rademacher averages while our results only
use a light-weight argument based on the generalized Bernstein-type inequality and the peeling
method. However, when using Gaussian kernels, we indeed recover the optimal rates for LS-
SVMs and SVMs for quantile regression with i.i.d. observations.

Let us now present the first example, that is, the empirical risk minimization scheme over a
finite hypothesis set.

Example 1 (ERM). Let Z be a stochastic process satisfying Assumption 2 and the hypothesis
set F be finite with 0 ∈ F and Υ(f) = 0 for all f ∈ F . Moreover, assume that ‖f‖∞ ≤ M
for all f ∈ F . Then, for accuracy δ := 0, the learning method described by (4) is ERM, and
Theorem 1 shows by some simple estimates that

RL,P (fDn,Υ)−R∗
L,P ≤ 4 inf

f∈F

Ä
RL,P (f)−R∗

L,P

ä
+ 4

Ç
cV (τ + ln |F|)

neff

å1/(2−ϑ)

+
32cBτ

neff

hold with probability µ not less than 1− 8Ce−τ .

Recalling that for the i.i.d. case we have neff = n, therefore, in Example 1 the oracle inequality
(20) is thus an exact analogue to standard oracle inequality for ERM learning from i.i.d. processes
(see e.g. [36, Theorem 7.2]), albeit with different constants.

For further examples let us begin by briefly recalling SVMs [36]. To this end, let X be a
measurable space, Y := [−1, 1] and k be a measurable (reproducing) kernel on X with repro-
ducing kernel Hilbert space (RKHS) H. Given a regularization parameter λ > 0 and a convex
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loss L, SVMs find the unique solution

fDn,λ = argmin
f∈H

Ä
λ‖f‖2H +RL,Dn(f)

ä
.

In particular, SVMs using the least squares loss (2) are called least squares SVMs (LS-SVMs)
[44] where a primal-dual characterization is given, and also termed as kernel ridge regression
in the case of zero bias term as studied in [36]. SVMs using the τ -pinball loss (3) are called
SVMs for quantile regression. To describe the approximation properties of H, we further need
the approximation error function

A(λ) := inf
f∈H

Ä
λ‖f‖2H +RL,P (f)−R∗

L,P

ä
, λ > 0, (21)

and denote fP,λ as the population version of fDn,λ, which is given by

fP,λ := argmin
f∈H

Ä
λ‖f‖2H +RL,P (f)−R∗

L,P

ä
. (22)

The next example discusses learning rates for LS-SVMs using a given generic kernel.

Example 2 (Generic Kernels). Let (X,X ) be a measurable space, Y = [−1, 1], and Z be a
stochastic process satisfying Assumption 2. Furthermore, let L be the least squares loss and H
be an RKHS over X such that the closed unit ball BH of H satisfies

lnN (BH , ‖ · ‖∞, ε) ≤ aε−2p, ε > 0,

for some constants p ∈ (0, 1] and a > 0. In addition, assume that the approximation error
function satisfies A(λ) ≤ cλβ for some c > 0, β ∈ (0, 1], and all λ > 0.

Recall that for SVMs we always have fDn,λ ∈ λ−1/2BH , see [36, (5.4)]. Consequently we only
need to consider the hypothesis set F = λ−1/2BH . Then, (16) implies that Fr ⊂ r1/2λ−1/2BH

and consequently we find

lnN (Fr, ‖ · ‖∞, ε) ≤ aλ−pε−2prp. (23)

Thus, we can define the function ϕ in (17) as ϕ(ε) := aλ−pε−2p. For the least squares loss, the
variance bound (18) is valid with ϑ = 1, hence the condition (19) is satisfied if

r ≥ max

®Ä
cV 2

1+3pa
ä 1

1−p λ
− p

1−pn
− 1

1−p
eff ε

− 2p
1−p ,

2cV τ

neff

,
8cBB0τ

neff

, r∗
´
. (24)

Therefore, let r be the sum of the terms on the right-hand side. Since for large n the first and
next-to-last term in (24) dominate, the oracle inequality (20) becomes

λ‖fDn,λ‖2H +RL,P ( ÛfDn,λ)−R∗
L,P ≤ 4λ‖fP,λ‖2H + 4RL,P (fP,λ)− 4R∗

L,P + 4r + 5ε

≤ C
(
λβ + λ

− p
1−pn

− 1

1−p
eff ε

− 2p
1−p + λβ−1n−1

eff τ + ε
)
,

where fP,λ is defined in (22) and C is a constant independent of n, λ, τ , or ε. Now optimizing

over ε, we then see by [36, Lemma A.1.7] that the LS-SVM using λn := n
−ρ/β
eff learns with the

rate n−ρ
eff , where

ρ := min

ß
β,

β

β + pβ + p

™
. (25)
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In particular, for geometrically α-mixing processes, we obtain the learning rate n−αρ, where
α := γ

γ+1 and ρ as in (25). Let us compare this rate with the ones previously established for
LS-SVMs in the literature. For example, [37] proved a rate of the form

n
−αmin{β, β

β+2pβ+p
}

under exactly the same assumptions. Since β > 0 and p > 0, our rate is always better than that
of [37]. In addition, [17] generalized the rates of [37] to regularization terms of the form λ‖ · ‖qH
with q ∈ (0, 2]. The resulting rates are again always slower than the ones established in this
work. For the standard regularization term, that is q = 2, [51] established the rate

n
− αβ

2p+1 ,

which is always slower than ours, too. Finally, in the case p = 1, [42] established the rate

n−
2αβ
β+3 ,

which was subsequently improved to

n−
3αβ
2β+4

in [43]. The latter rate is worse than ours, if and only if (1 + β)(1 + 3p) ≤ 5. In particular,
for p ∈ (0, 1/2] we always get better rates. Furthermore, the analysis of [42, 43] is restricted to
LS-SVMs, while our results hold for rather generic learning algorithms.

Example 3 (Smooth Kernels). Let X ⊂ R
d be a compact subset, Y = [−1, 1], and Z be a

stochastic process satisfying Assumption 2. Furthermore, let L be the least squares loss and
H =Wm(X) be a Sobolev space with smoothness m > d/2. Then it is well-known, see e.g. [41]
or [36, Theorem 6.26], that

lnN (BH , ‖ · ‖∞, ε) ≤ aε−2p, ε > 0,

where p := d
2m and a > 0 is some constant. Let us additionally assume that the marginal

distribution PX is absolutely continuous with respect to the uniform distribution, where the cor-
responding density is bounded away from 0 and ∞. Then there exists a constant Cp > 0 such
that

‖f‖∞ ≤ Cp‖f‖pH‖f‖1−p
L2(PX), f ∈ H

for the same p, see [26] and [41, Corollary 3]. Consequently, we can bound B0 ≤ λ(β−1)p as in
[41]. Moreover, the assumption on the approximation error function is satisfied for β := s/m,
whenever f∗L,P ∈W s(X) and s ∈ (0,m]. Therefore, the resulting learning rate is

n
− 2s

2s+d+ds/m
eff . (26)

Note that in the i.i.d. case, where neff = n, this rate is worse than the optimal rate n−
2s

2s+d ,
where the discrepancy is the term ds/m in the denominator. However, this difference can be
made arbitrarily small by picking a sufficiently large m, that is, a sufficiently smooth kernel k.
Moreover, in this case, for geometrically α-mixing processes, the rate (26) becomes

n
− 2sα

2s+d+ds/m ,

17



where α := γ
γ+1 . Comparing this rate with the one from [43], it turns out that their rate is

worse than ours, if m ≥ 1
16 (2s+ 3d+

√
4s2 + 108sd + 9d2). Note that by the constraint s ≤ m,

the latter is always satisfied for m ≥ d.

In the following, we are mainly interested in the commonly used Gaussian kernels kσ :
X ×X → R defined by

kσ(x, x
′) := exp

Ä
−‖x− x′‖22/σ2

ä
, x, x′ ∈ X,

where X ⊂ R
d is a nonempty subset and σ > 0 is a free parameter called the width. We writeHσ

for the corresponding RKHSs, which are described in some detail in [39]. The entropy numbers
for Gaussian kernels [36, Theorem 6.27] and the equivalence of covering and entropy numbers
[36, Lemma 6.21] yield that

lnN (BHσ , ‖ · ‖∞, ε) ≤ aσ−dε−2p, ε > 0, (27)

for some constants a > 0 and p ∈ (0, 1). Then (16) implies Fr ⊂ r1/2λ−1/2BHσ and consequently

lnN (Fr, ‖ · ‖∞, ε) ≤ aσ−dλ−pε−2prp.

Therefore, we can define the function ϕ in Theorem 1 as

ϕ(ε) := aσ−dλ−pε−2p. (28)

Moreover, [15, Section 2] shows that there exists a constant c > 0 such that for all λ > 0 and
all σ ∈ (0, 1], there is an f0 ∈ Hσ with ‖f0‖∞ ≤ c and

A(λ) ≤ λ‖f0‖2Hσ
+RL,P (f0)−R∗

L,P ≤ cλσ−d + cσ2t .

Example 4 (Gaussian Kernels). Let Y := [−M,M ] for some M > 0, Z := R
d × Y , Z be

a stochastic process satisfying Assumption 2, and P be a distribution on Z whose marginal
distribution on R

d is concentrated on X ⊂ Bℓd
2
and absolutely continuous w.r.t. the Lebesgue

measure µ on R
d. We denote the corresponding density g : Rd → [0,∞) and assume µ(∂X) = 0

and g ∈ Lq(µ) for some q ≥ 1. Moreover, assume that the Bayes decision function f∗L,P =
EP (Y |x) satisfies f∗L,P ∈ L2(µ) ∩ L∞(µ) as well as f∗L,P ∈ Bt

2s,∞ for some t ≥ 1 and s ≥ 1 with
1
q +

1
s = 1. Here, Bt

2s,∞ denotes the Besov space with the smoothness parameter t, see also [15,
Section 2]. Recall that, for the least squares loss, the variance bound (18) is valid with ϑ = 1.
Consequently, Condition (19) is satisfied if

r ≥ max

®Ä
cV 2

1+3pa
ä 1

1−p σ−
d

1−pλ−
p

1−pn
− 1

1−p
eff ε−

2p
1−p ,

2cV τ

neff

,
8cBB0τ

neff

, r∗
´
. (29)

Note that in the right-hand side of (29), the first term dominates when n goes large. In this
context, the oracle inequality (20) becomes

λ‖fDn,λ‖2Hσ
+RL,P ( ÛfDn,λ)−R∗

L,P ≤ C
(
λσ−d + σ2t + σ

− d
1−pλ

− p
1−pn

− 1

1−p
eff ε

− 2p
1−p τ + ε

)
.

Here C is a constant independent of n, λ, σ, τ , or ε. Again, optimizing over ε together with
some standard techniques, see [36, Lemma A.1.7], we then see that for all ξ > 0, the LS-SVM
using Gaussian RKHS Hσ and

λn = n−1
eff and σn = n

− 1

2t+d

eff ,

learns with the rate

n
− 2t

2t+d
+ξ

eff . (30)
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In the i.i.d. case we have neff = n, and hence the learning rate (30) becomes

n−
2t

2t+d
+ξ . (31)

Recall that modulo the arbitrarily small ξ > 0 these learning rates are essentially optimal, see
e.g. [41, Theorem 13] or [18, Theorem 3.2]. Moreover, for geometrically α-mixing processes, the
rate (30) becomes

n−
2t

2t+d
α+ξ ,

where α := γ
γ+1 . This rate is optimal up to the factor α and the additional ξ in the exponent.

Particularly, for restricted geometrically α-mixing processes, geometrically α-mixing Markov
chains, φ-mixing processes, we obtain the essentially optimal learning rates (31). Moreover,
the same essentially optimal learning rates can be achieved for (time-reversed) geometrically
C-mixing processes, if we additionally assume f∗L,P ∈ Lip(Rd), see also [21, Example 4.7].

In the last example, we will briefly discuss learning rates for SVMs for quantile regression.
For more information on such SVMs we refer to [15, Section 4].

Example 5 (Quantile Regression with Gaussian Kernels). Let Y := [−1, 1], Z := R
d×Y , Z be

a stochastic process satisfying Assumption 2, P be a distribution on Z, and Q be the marginal
distribution of P on R

d. Assume that X := suppQ ⊂ Bℓd
2
and that for Q-almost all x ∈ X, the

conditional probability P (·|x) is absolutely continuous w.r.t. the Lebesgue measure on Y and the
conditional densities h(·, x) of P (·|x) are uniformly bounded away from 0 and ∞, see also [15,
Example 4.5]. Moreover, assume that Q is absolutely continuous w.r.t. the Lebesgue measure on
X with associated density g ∈ Lu(X) for some u ≥ 1. For τ ∈ (0, 1), let f∗τ,P : Rd → R be a
conditional τ -quantile function that satisfies f∗τ,P ∈ L2(µ)∩L∞(µ). In addition, we assume that

f∗τ,P ∈ Bt
2s,∞ for some t ≥ 1 and s ≥ 1 such that 1

s + 1
u = 1. Then [38, Theorem 2.8] yields a

variance bound of the form

EP (Lτ ◦ Ûf − Lτ ◦ f∗τ,P )2 ≤ V · EP (Lτ ◦ Ûf − Lτ ◦ f∗τ,P ) , (32)

for all f : X → R, where V is a suitable constant and Lτ is the τ -pinball loss. Then, following
similar arguments with those in Example 4, with the same choices of λn and σn, the same rates
can be obtained as in Example 4.

Here, we give two remarks on Example 5. First, it is noted that the Bernstein condition (32)
holds when the distribution P is of a τ -quantile of p-average type q in the sense of Definition
2.6 in [38]. Two distributions of this type can be found in Examples 2.3 and 2.4 in [35]. On the
other hand, the rates obtained in Example 5 are in fact for the excess Lτ -risk. However, since
[38, Theorem 2.7] shows

‖ Ûf − f∗τ,P‖2L2(PX) ≤ c
Ä
RLτ ,P (

Ûf )−R∗
Lτ ,P

ä

for some constant c > 0 and all f : X → R, we also obtain the same rates for ‖ Ûf − f∗τ,P‖2L2(PX).
Last but not least, optimality for various mixing processes can be discussed along the lines of
LS-SVMs.
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6 Conclusions

In the present paper, we proposed a unified learning theory approach to studying learning
schemes sampling from various commonly investigated stationary mixing processes that include
geometrically α-mixing processes, geometrically α-mixing Markov chains, φ-mixing processes,
and geometrically C-mixing processes. The proposed approach is considered to be unified in
the following sense: First, in our study, the empirical processes of the above-mentioned mixing
processes were assumed to satisfy a generalized Bernstein-type inequality, which includes many
commonly considered cases; Second, by instantiating the generalized Bernstein-type inequality
to different scenarios, we illustrated the effective number of observations for different mixing
processes; Third, based on the above generalized Bernstein-type concentration assumption, a
generalized sharp oracle inequality was established within the statistical learning theory frame-
work. Finally, faster or at least comparable learning rates can be obtained by applying the
established oracle inequality to various learning schemes with different mixing processes.
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Appendix

Proof of Theorem 1 in Section 4

Since the proof of Theorem 1 is rather complicated, we first describe its main steps briefly: First we
decompose the regularized excess risk into an approximation error term and two stochastic error terms.
The approximation error and the first stochastic error term can be estimated by standard techniques.
Similarly, the first step in the estimation of the second error term is a rather standard quotient approach,
see e.g. [36, Theorem 7.20], which allows for localization with respect to both the variance and the regu-
larization. Due to the absence of tools from empirical process theory, however, the remaining estimation
steps become more involved. To be more precise, we split the “unit ball” of the hypothesis space F
into disjoint “spheres”. For each sphere, we then use localized covering numbers and the generalized
Bernstein-type inequality from Assumption 2, and the resulting estimates are then combined using the
peeling method. This yields a quasi-geometric series with rate smaller than 1 if the radius of the inner-
most ball is sufficiently large. As a result, the estimated error probability on the whole “unit ball” nearly
equals the estimated error probability of the innermost “ball”, which unsurprisingly leads to a significant
improvement compared to [37].

Before we prove Theorem 1, we need to reformulate (7). Setting τ :=
ε2neff

cσσ2+εcBB , with some simple
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transformations we obtain

µ

({
ω ∈ Ω :

1

n

n∑

i=1

h(Zi(ω)) ≥
 
τcσσ2

neff

+
cBBτ

neff

})
≤ Ce−τ (33)

for all τ > 0 and n ≥ n0.

Proof of Theorem 1. Main Decomposition. For f : X → R we define hf := L ◦ f − L ◦ f∗
L,P . By the

definition of fDn,Υ, we then have

Υ(fDn,Υ) + EDn
hÛfDn,Υ

≤ Υ(f0) + EDn
hf0 + δ,

and consequently we obtain

Υ(fDn,Υ) +RL,P ( ÛfDn,Υ)−R∗
L,P = Υ(fDn,Υ) + EPhÛfDn,Υ

≤ Υ(f0) + EDn
hf0 − EDn

hÛfDn,Υ

+ EPhÛfDn,Υ

+ δ

= (Υ(f0) + EPhf0) + (EDn
hf0 − EPhf0) + (EPhÛfDn,Υ

− EDn
hÛfDn,Υ

) + δ.

(34)

Estimating the First Stochastic Term. Let us first bound the term EDn
hf0 − EPhf0 . To this

end, we further split this difference into

EDn
hf0 − EPhf0 =

Ä
EDn

(hf0 − hÛf0)− EP (hf0 − hÛf0)
ä
+ (EDn

hÛf0 − EPhÛf0). (35)

Now L ◦ f0 − L ◦ Ûf0 ≥ 0 implies hf0 − hÛf0 = L ◦ f0 − L ◦ Ûf0 ∈ [0, B0], and hence we obtain

EP

Ä
(hf0 − hÛf0)− EP (hf0 − hÛf0)

ä2 ≤ EP (hf0 − hÛf0)
2 ≤ B0EP (hf0 − hÛf0).

Inequality (33) applied to h := (hf0 − hÛf0)− EP (hf0 − hÛf0) thus shows that

EDn
(hf0 − hÛf0)− EP (hf0 − hÛf0) ≤

√
τcσB0EP (hf0 − hÛf0)

neff

+
cBB0τ

neff

holds with probability µ not less than 1− Ce−τ . Moreover, using
√
ab ≤ a

2 + b
2 , we find

√
n−1

eff τcσB0EP (hf0 − hÛf0) ≤ EP (hf0 − hÛf0) + n−1
eff
cσB0τ/4,

and consequently we have with probability µ not less than 1− Ce−τ that

EDn
(hf0 − hÛf0)− EP (hf0 − hÛf0) ≤ EP (hf0 − hÛf0) +

7cBB0τ

4neff

. (36)

In order to bound the remaining term in (35), that is EDn
hÛf0 − EPhÛf0 , we first observe that (1) implies

‖hÛf0‖∞ ≤ 1, and hence we have ‖hÛf0 − EPhÛf0‖∞ ≤ 2. Moreover, (18) yields

EP (hÛf0 − EPhÛf0)
2 ≤ EPh

2

Ûf0 ≤ V (EPhÛf0)
ϑ.

In addition, if ϑ ∈ (0, 1], the first inequality in [36, Lemma 7.1] implies for q := 2
2−ϑ , q

′ := 2
ϑ , a :=

(n−1
eff
cσ2

−ϑϑϑV τ)1/2, and b := (2ϑ−1
EPhÛf0)

ϑ/2, that

√
cσV τ(EP hÛf0)

ϑ

neff

≤
Å
1− ϑ

2

ãÇ
cσ2

−ϑϑϑV τ

neff

å 1

2−ϑ

+ EPhÛf0 ≤
Å
cσV τ

neff

ã 1

2−ϑ

+ EPhÛf0 .
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Since EPhÛf0 ≥ 0, this inequality also holds for ϑ = 0, and hence (33) shows that we have

EDn
hÛf0 − EPhÛf0 ≤ EPhÛf0 +

Å
cσV τ

neff

ã 1

2−ϑ

+
2cBτ

neff

with probability µ not less than 1−Ce−τ . By combining this estimate with (36) and (35), we now obtain
that with probability µ not less than 1− 2Ce−τ we have

EDn
hf0 − EPhf0 ≤ EPhf0 +

Å
cσV τ

neff

ã 1

2−ϑ

+
2cBτ

neff

+
7cBB0τ

4neff

, (37)

since 1 ≤ B0, i.e., we have established a bound on the second term in (34).

Estimating the Second Stochastic Term. For the third term in (34) let us first consider the case
neff < cV (τ + ϕ(ε/2)2prp). Combining (37) with (34) and using 1 ≤ B0, 1 ≤ V , cσV ≤ cV , 2 ≤ 41/(2−ϑ),
and EPhÛfDn,Υ

− EDn
hÛfDn,Υ

≤ 2, then we find

Υ(fDn,Υ) +RL,P ( ÛfDn,Υ)−R∗
L,P ≤ Υ(f0) + 2EPhf0 +

Å
cσV τ

neff

ã 1

2−ϑ

+
2cBτ

neff

+
7cBB0τ

4neff

+ (EPhÛfDn,Υ
− EDn

hÛfDn,Υ
) + δ

≤ Υ(f0) + 2EPhf0 +

Å
cσV (τ + ϕ(ε/2)2prp)

neff

ã 1

2−ϑ

+
4cBB0τ

neff

+ 2

Å
cV (τ + ϕ(ε/2)2prp)

neff

ã 1

2−ϑ

+ δ

≤ 2Υ(f0) + 4EPhf0 + 3

Å
cV (τ + ϕ(ε/2)2prp)

neff

ã 1

2−ϑ

+
8cBB0τ

neff

+ 2δ

with probability µ not less than 1−2Ce−τ . It thus remains to consider the case neff ≥ cV (τ+ϕ(ε/2)2
prp).

Introduction of the Quotients. To establish a non-trivial bound on the term EPhÛfD − EDn
hÛfD

in (34), we define functions

gf,r :=
EPhÛf − hÛf

Υ(f) + EPhÛf + r
, f ∈ F , r > r∗.

For f ∈ F , we have ‖EPhÛf − hÛf‖∞ ≤ 2. Moreover, for f ∈ Fr, the variance bound (18) implies

EP (hÛf − EPhÛf )
2 ≤ EPh

2

Ûf ≤ V (EPhÛf )
ϑ ≤ V rϑ. (38)

Peeling. For a fixed r ∈ (r∗, 1], let K be the largest integer satisfying 2Kr ≤ 1. Then we can get
the following disjoint partition of the function set F1:

F1 ⊂ Fr ∪
K+1⋃

k=1

(F2kr\F2k−1r) .

We further write Cε,r,0 for a minimal ε-net of Fr and Cε,r,k for minimal ε-nets of F2kr\F2k−1r, 1 ≤ k ≤
K+1, respectively. Then the union of these nets

⋃K+1
k=0 Cε,r,k =: Cε,1 is an ε-net of the set F1. Moreover,

we define

C̃ε,r,k :=

k⋃

l=0

Cε,r,l, 0 ≤ k ≤ K + 1,
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which are ε-nets of F2kr with C̃ε,r,k ⊂ C̃ε,r,k+1 for all 0 ≤ k ≤ K, and the net C̃ε,r,K+1 coincide with Cε,1.
For A ⊂ B an elementary calculation shows that

N (A, ‖ · ‖∞, ε) ≤ N (B, ‖ · ‖∞, ε/2). (39)

By using (39) for F2kr\F2k−1r ⊂ F2kr we can estimate the cardinality of C̃ε,r,k by

|C̃ε,r,k| =
∣∣∣∣∣

k⋃

l=0

Cε,r,l

∣∣∣∣∣ ≤
k∑

l=0

|Cε,r,l| =
k∑

l=0

N (F2kr\F2k−1r, ‖ · ‖∞, ε)

≤
k∑

l=0

N (F2kr, ‖ · ‖∞, ε/2) ≤
k∑

l=0

exp
(
ϕ(ε/2)(2lr)p

)

≤ (k + 1) exp
(
ϕ(ε/2)2kprp

)
, 0 ≤ k ≤ K + 1.

(40)

Using the peeling technique in [20, Theorem 5.2] with Zf := EDn
(EPhÛf − hÛf ), Γ(f) := Υ(f) + EPhÛf ,

mk :=





r∗ for k = 0,

2k−1r for 1 ≤ k ≤ K,

1 for k = K + 1,

and choosing ǫ = 1/4, we get

µ

Å
sup

f∈Cε,1

EDn
gf,r >

1

4

ã
= µ

Å
sup

f∈Cε,1

EDn
(EPhÛf − hÛf )

Υ(f) + EPhÛf + r
>

1

4

ã

≤
K+2∑

k=1

µ

Å
sup

f∈Cε,r,k

EDn
(EPhÛf − hÛf ) > (2k−1r + r)/4

ã

≤ µ

Å
sup

f∈Cε,r,0

EDn
(EPhÛf − hÛf) > (r∗ + r)/4

ã

+
K+1∑

k=1

µ

Å
sup

f∈Cε,r,k

EDn
(EPhÛf − hÛf) > (2k−1r + r)/4

ã

≤ µ

Å
sup

f∈C̃ε,r,1

EDn
(EPhÛf − hÛf ) > r/4

ã

+
K+1∑

k=1

µ

Å
sup

f∈C̃ε,r,k

EDn
(EPhÛf − hÛf ) > 2k−1r/4

ã

≤ 2
K+1∑

k=1

µ

Å
sup

f∈C̃ε,r,k

EDn
(EPhÛf − hÛf ) > 2k−3r

ã
.

Estimating the Error Probabilities on the “Spheres”. Our next goal is to estimate all the
error probabilities by using (7), (38) and the union bound. From ϑ ∈ [0, 1] and the estimations of the
covering numbers (40) follows that

µ

Å
sup

f∈C̃ε,r,k

EDn
(EPhÛf − hÛf ) > 2k−3r

ã

≤ C|C̃ε,r,k| exp
Å
− (2k−3r)2neff

cσV (2kr)ϑ + 2cB(2k−3r)

ã

≤ C · (k + 1) exp
(
ϕ(ε/2)2kprp

)
· exp

Å
− (2k−1r)2neff

32cσV (2k−1r)ϑ + 8cB(2k−1r)

ã
.
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For k ≥ 1, we denote the right-hand side of this estimate by pk(r), that is

pk(r) := C · (k + 1) exp
(
ϕ(ε/2)2kprp

)
· exp

Å
− (2k−1r)2neff

32cσV (2k−1r)ϑ + 8cB(2k−1r)

ã
.

Then we have

qk(r) :=
pk+1(r)

pk(r)
≤ k + 2

k + 1
· exp

(
ϕ(ε/2)(2k+1r)p − ϕ(ε/2)(2kr)p

)

· exp
Å
− 22(2k−1r)2neff

32cσV · 2(2k−1r)ϑ + 8cB · 2(2k−1r)
+

(2k−1r)2neff

32cσV (2k−1r)ϑ + 8cB(2k−1r)

ã

≤ 2 exp
(
ϕ(ε/2)2kp+1rp

)
· exp

Å
− (2k−1r)2neff

32cσV (2k−1r)ϑ + 8cB(2k−1r)

ã
,

and our assumption 2kr ≤ 1, 0 ≤ k ≤ K implies

qk(r) ≤ 2 exp
(
ϕ(ε/2)2kp+1rp

)
· exp

Å
− (2k−1r)2neff

32cσV (2k−1r)ϑ + 8cB(2k−1r)

ã

≤ 2 exp

Å
2(k−1)p · 4rpϕ(ε/2)− 2(k−1)(2−ϑ) · r2−ϑneff

32cσV + 8cB

ã
.

Since p ∈ (0, 1], k ≥ 1 and ϑ,∈ [0, 1], we have

2(k−1)p ≤ 2(k−1)(2−ϑ).

The first assumption in (19) implies that r ≥
(
64(4cσV + cB)ϕ(ε/2)r

p/neff

)1/(2−ϑ)
or equivalently that

4rpϕ(ε/2) ≤ 1

2
· r2−ϑneff

32cσV + 8cB
,

thus, using 2(k−1)(2−ϑ) ≥ 1, we find

qk(r) ≤ 2 exp

Å
−1

2
· r2−ϑneff

32cσV + 8cB

ã
.

Moreover, since τ ≥ 1, the first assumption in (19) implies also r ≥
(
64(4cσV + cB)/neff

)1/(2−ϑ)
or

equivalently that

1

2
· r2−ϑneff

32cσV + 8cB
≥ 4,

and hence qk(r) ≤ 2e−4, that is, pk+1(r) ≤ 2e−4pk(r) for all k ≥ 1.

Summing all the Error Probabilities. From the above discussion we have

µ

Å
sup

f∈Cε,1

EDn
gf,r >

1

4

ã
≤ 2

K+1∑

k=1

pk(r) ≤ 2 · p1(r) ·
K∑

k=0

(2e−4)k ≤ 3p1(r)

= 6C exp (ϕ(ε/2)2prp) · exp
Å
− r2neff

32cσV rϑ + 8cBr

ã

≤ 6C exp (ϕ(ε/2)2prp) · exp
Å
− r2neff

32cσV rϑ + 8cBrϑ

ã

≤ 6C exp (ϕ(ε/2)2prp) · exp
Ç
− r2−ϑneff

32cσV + 8cB

å
.

24



Then once again the first assumption in (19) gives

r ≥
Å
(32cσV + 8cB)(τ + ϕ(ε/2)2prp)

neff

ã 1

2−ϑ

and a simple transformation thus yields

µ

(
Dn ∈ (X × Y )n : sup

f∈Cε,1

EDn
gf,r ≤ 1

4

)
≥ 1− 6Ce−τ .

Consequently we see that with probability µ not less than 1− 6Ce−τ we have

EPhÛf − EDn
hÛf ≤ 1

4

Ä
Υ(f) + EPhÛf + r

ä
(41)

for all f ∈ Cε,1. Since r ∈ (0, 1], we have fDn,Υ ∈ F1, i.e. either fDn,Υ ∈ Fr, or there exists an integer
k ≤ K + 1 such that fDn,Υ ∈ F2kr\F2k−1r. Thus there exists an fDn

∈ Cε,r,0 ⊂ Fr or fDn
∈ Cε,r,k ⊂

F2kr\F2k−1r with ‖fDn,Υ − fDn
‖∞ ≤ ε. By the assumed Lipschitz continuity of the clipped L the latter

implies

|hÛfDn

(x, y)− hÛfDn,Υ

(x, y)| ≤ | ÛfDn
(x)− ÛfDn,Υ(x)| ≤ |fDn

(x) − fDn,Υ(x)| ≤ ε (42)

for all (x, y) ∈ X × Y . For fDn,Υ, fDn
∈ Fr we obviously have

Υ(fDn
) + EPhÛfDn

≤ r

and for the other cases fDn,Υ, fDn
∈ F2kr\F2k−1r we obtain

Υ(fDn
) + EPhÛfDn

≤ 2kr = 2 · 2k−1r ≤ 2
(
Υ(fDn,Υ) + EPhÛfDn,Υ

)
,

consequently, we always have

Υ(fDn
) + EPhÛfDn

≤ 2
(
Υ(fDn,Υ) + EPhÛfDn,Υ

)
+ r. (43)

Combining (42) with (41) and (43), we obtain

EPhÛfDn,Υ
− EDn

hÛfDn,Υ
≤ 1

2

(
Υ(fDn,Υ) + EPhÛfDn,Υ

+ ε+ r
)
+ 2ε

with probability µ not less than 1 − 6Ce−τ . By combining this estimate with (34) and (37), we then
obtain that

Υ(fDn,Υ) + EPhÛfDn,Υ

≤ Υ(f0) + 2EPhf0 +

Å
cσV τ

neff

ã 1

2−ϑ

+
2cBτ

neff

+
7cBB0τ

4neff

+ δ

+
Υ(fDn,Υ) + EPhÛfDn,Υ

2
+

5

2
ε+

1

2
r

holds with probability µ not less than 1− 8Ce−τ . From the assumptions in (19) follows that

Υ(fDn,Υ) + EPhÛfDn,Υ
≤ Υ(f0) + 2EPhf0 + 2r + δ +

Υ(fDn,Υ) + EPhÛfDn,Υ

2
+

5ε

2

holds with probability µ not less than 1− 8Ce−τ . Consequently, we have

Υ(fDn,Υ) + EPhÛfDn,Υ

≤ 2Υ(f0) + 4EPhf0 + 4r + 5ε+ 2δ.

Therefore, we have proved the assertion.
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