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Neuromorphic engineering combines the architectural and computational
principles of systems neuroscience with semiconductor electronics, with the
aim of building efficient and compact devices that mimic the synaptic and
neural machinery of the brain. Neuromorphic engineering promises ex-
tremely low energy consumptions, comparable to those of the nervous sys-
tem. However, until now the neuromorphic approach has been restricted to
relatively simple circuits and specialized functions, rendering elusive a direct
comparison of their energy consumption to that used by conventional von
Neumann digital machines solving real-world tasks. Here we show that a re-
cent technology developed by IBM can be leveraged to realize neuromorphic
circuits that operate as classifiers of complex real-world stimuli. These cir-
cuits emulate enough neurons to compete with state-of-the-art classifiers.
We also show that the energy consumption of the IBM chip is typically 2 or
more orders of magnitude lower than that of conventional digital machines
when implementing classifiers with comparable performance. Moreover,
the spike-based dynamics display a trade-off between integration time and
accuracy, which naturally translates into algorithms that can be flexibly
deployed for either fast and approximate classifications, or more accurate
classifications at the mere expense of longer running times and higher en-
ergy costs. This work finally proves that the neuromorphic approach can be
efficiently used in real-world applications and it has significant advantages
over conventional digital devices when energy consumption is considered.

neuromorphic electronic hardware | VLSI technology | neural networks | classifica-
tion

Abbreviations: SVM: support vector machine — SV: support vector — RCN: ran-
domly connected neuron

Introduction Recent developments in digital technology and
machine learning are enabling computers to perform an in-
creasing number of tasks that were once solely the domain
of human expertise, such as recognizing a face in a picture
or driving a car in city traffic. These are impressive achieve-
ments, but we should keep in mind that the human brain
carries out tasks of such complexity using only a small frac-
tion of the energy needed by conventional computers, the dif-
ference in energy consumption being often of several orders
of magnitude. This suggests that one way to reduce energy
consumption is to design machines whose architecture takes
inspiration from the biological brain, an approach that was
proposed by Carver Mead in the late 1980s [I] and that is
now known as “neuromorphic engineering”. Mead’s idea was
to use very-large-scale integration (VLSI) technology to build
electronic circuits that mimic the architecture of the nervous
system. The first electronic devices inspired by this concept
were analog circuits that exploited the subthreshold properties
of transistors to emulate the biophysics of real neurons. Nowa-
days the term “neuromorphic” refers to any analog, digital,
or hybrid VLSI system whose design principles are inspired
by those of biological neural systems [2].

Neuromorphic hardware has convincingly demonstrated
its potential for energy efficiency, as proven by devices that
consume as little as a few picojoules per neural event (spike)
[3L [ B]. These devices contain however a relatively small
number of elements (neurons and synapses) and they can typ-
ically perform only simple and specialized tasks, making it

1-12

difficult to directly compare their energy consumption to that
of conventional digital machines.

The situation has changed recently with the development
by IBM of the TrueNorth processor, a neuromorphic device
that implements enough artificial neurons to perform com-
plex real-world tasks, like large-scale pattern classification [6].
Here we show that a pattern classifier implemented on the
IBM chip can achieve performances comparable to those of
state-of-the-art conventional devices based on the von Neu-
mann architecture. More importantly, our chip-implemented
classifier uses 2 or more orders of magnitude less energy than
current digital machines performing the same classification
tasks. These results show for the first time the deployment
of a neuromorphic device able to solve a complex task, while
meeting the claims of energy efficiency contented by the neu-
romorphic engineering community for the last few decades.

Results

We chose pattern classification as an example of a complex
task because of the availability of well-established bench-
marks. A classifier takes an input, like the image of a hand-
written character, and assigns it to one among a set of discrete
classes, like the set of digits. To train and evaluate our clas-
sifiers we used three different datasets consisting of images of
different complexity (see Fig. [Th).

We start by describing the architecture of the classifier
that we plan to implement on the neuromorphic chip. The
classifier is a feed-forward neural network with three layers of
neurons, and it can be simulated on a traditional digital com-
puters. We will call this network the ‘neural classifier’ to dis-
tinguish it from its final chip implementation, which requires
adapting the architecture to the connectivity constraints im-
posed by the hardware. The neural classifier also differs from
the final hardware implementation in that it employs neu-
rons with a continuous activation function, whereas the IBM
neuromorphic chip emulates spiking neurons. Despite the dif-
ferences, the functionality of the neural classifier and its final
chip implementation is approximately the same, as we show
below. We list the procedure for adapting the architecture of
the neural classifier into its chip implementation as a contribu-
tion in its own right, since it can be directly extended for the
implementation of generic neural systems on other hardware
substrates.

Architecture of the neural classifier Figure illustrates the
three-layer neural classifier. The first layer encodes the pre-
processed input and projects to the neurons in the interme-
diate layer through connections with random weights. Each
of these Randomly Connected Neurons (RCNs) receives there-
fore a synaptic current given by a randomly weighted sum of
the inputs, which the RCNs transform into activation levels
in a non-linear way—in our case, through a linear rectifica-
tion function: f(z) = z if « > 0, and 0 otherwise. The
combination of a random mixing of the inputs together with
a non-linear input-output transformation efficiently expands
the dimensionality of the resulting signal (see e.g. [7} [8, []),
thereby increasing the chances that downstream neurons can
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Figure 1. Datasets, architecture of the classifier, architecture of a single core, and chip implementation. a Samples of the three
datasets used to evaluate the performance of our classifier. MNIST contains handwritten digits (10 classes); MNIST-back-image contains the digits of the MNIST dataset
on a background patch extracted randomly from a set of 20 images downloaded from the Internet; IATEX contains distorted versions of 293 characters used in the IATEX
document preparation system. For more details about the datasets, see Methods. b Architecture of the neural network classifier. The images to classify are preprocessed (see
Methods) and represented as patterns of activity of a population of Njy, input neurons (left, black dots). These input neurons send random projections to a second layer of
N Randomly Connected Neurons (RCNs) (green circles), which transform nonlinearly their synaptic inputs into firing activity. The activity of the RCNs is then read
out by a third layer of neurons, each of which is trained to respond to only one class (red circles). € Architecture of a single core in the chip. Horizontal lines represent inputs,
provided by the axons of neurons that project to the core. Vertical lines represent the dendrites of the neurons in the core (one dendrite per neuron). Active synapses are shown
as dots in a particular axon-dendrite junction. The synaptic input collected by the dendrites is integrated and transduced into spike activity at the soma (filled squares on top).
The spikes emitted by the neuron are sent via its axon to a particular input line, not necessarily on the same core. Blue lines represent the flow of input and output signals.
The panel includes an example of internal connection: the upmost axon carries the output activity of the leftmost neuron in the core (other connections are left unspecified).
d Implementation of the neural network classifier in a chip with connectivity constraints. The input is fed into all the cores in the RCN layer (shaded blue), whose neurons
project to the input lines of readout cores (shaded yellow) in a one-to-one manner (green curves). The outputs of the readout units are combined together off-line to generate

the response of the output neuron (shaded red). See the main text for the description of the different modules.

discriminate signals belonging to distinct classes. This dis-
crimination is carried out by a set of output units in the last
layer, which compute a weighted sum of the RCNs activity.
The weights are trained so that each output unit responds to
one separate class (one-vs-all code). Details are given in the
Methods. Once the network is trained, a class is assigned to
each input patterns according to which output unit exhibits
the highest activation.

Chip implementation of the neural classifier We implemented
the neural classifier on the IBM neuromorphic chip described
n [10,[6]. The first step of the conversion of the abstract neu-
ral classifier to an explicit chip implementation is the transfor-
mation of the input patterns into a format that is compatible
with the spike-based coding of the TrueNorth system. For this
we simply employ a firing rate coding and convert the integer
value of every input component to a spike train with a propor-
tional number of spikes, a prescription that is commonly used
in neurocomputational models such as the Neural Engineering
framework [II]. Specifically, input patterns are preprocessed
and formatted into 256-dimensional vectors representing the
firing activity of the input layer (the same preprocessing step
was applied in the neural classifier, see Methods). This vector
of activities is then used to generate 256 regular-firing spike
trains that are fed into a set of cores with random and sparse
connectivity. This set of cores constitutes the RCN layer. Like
in the neural classifier, the neurons in the RCN layer receive
synaptic inputs that consist of randomly weighted combina-
tions of the input, and transform their synaptic inputs into
firing activity according to a nonlinear function. On the chip
this function is given by the neuronal current-to-rate transduc-
tion, which approximates a linear-rectification function [12].
Discriminating the inputs coming from the RCN layer re-
quires each output unit to read from the whole layer of RCNs,
which in our implementation contains a number of neurons N
that can be as large as 2'4. Moreover, all the readout connec-
titions have to be set at the weights computed by the training
procedure. These requirements exceed the constraints set by
the chip design, in terms of the maximal number of both in-
coming and outgoing connections per neuron, as well as the
resolution and the freedom with which synaptic weights can
be set. In this paragraph we will present a set of prescrip-

tions that will allow us to circumvent these limitations, and
successfully instantiate our neural classifier on the IBM sys-
tem. The prescriptions we are presenting are specific to the
TrueNorth architecture, but the types of constraints that they
solve are shared by any physical implementation of neural
systems, whether it is biological or electronic. It is therefore
instructive to discuss the constraints and the prescriptions to
obviate them in detail, as they can be easily extended to other
more generic settings.

1. Constraints on connectivity. The IBM chip is organized in
cores, each of which contains 256 integrate-and-fire neurons
and 256 input lines that intersect with one another forming
a crossbar matrix of programmable synapses (Fig. ) Each
neuron can connect to other neurons by projecting its axon
(output) to a single input line, either on the same core or
on a different core. With this hardware design the maximum
number of incoming connections per neuron, or fan in, is 256.
Likewise, the maximal number of outgoing connections per
neuron, or fan out, is 256, each of which are restricted to
target neurons within a single core.

2. Constraints on synaptic weight precision. Synapses can be
either inactive or active. The weight of an active synapse can
be selected from a set of four values given by signed integers
of 9-bit precision. These values can differ from neuron to neu-
ron. Which of the four values is assigned to an active synapse
depends on the input line: all synapses on the same input line
are assigned an index that determines which of the four val-
ues is taken by each synapse (e.g. if the index assigned to the
input line is 2, all synapses on the input line take the second
value of the set of four available synaptic weights, which may
differ from neuron to neuron).

The design constraints that we just described can be over-
come with the following set of architectural prescriptions.

P1. Overcoming the constraints on connectivity. We intro-
duced an intermediate layer of neurons, each of which inte-
grates the inputs from 256 out of the total N RCNs. Accord-
ingly, the firing rates of these intermediate neurons represent
a 256/N portion of the total input to an output unit. These
partial inputs can then be combined by a downstream neu-
ron, which will have the same activity as the original output



unit. If the total number of the partial inputs is larger than
the total number of incoming connections of the neurons that
represent the output units (in our case 256), the procedure
can be iterated by introducing additional intermediate layers.
The final tree will contain a number of layers that scales only
logarithmically with the total number of RCNs. For simplic-
ity we did not implement this tree on chip and we summed
off-chip the partial inputs represented by the firing activity
of the readout neurons. Notice also that this configuration
requires readout neurons to respond approximately linearly
to their inputs, which can be easily achieved by tuning read-
out neurons to operate in the linear regime of their current-
to-rate transduction function (i.e., the regime in which their
average input current is positive). This procedure strongly
relies on the assumption that information is encoded in the
firing rates of neurons; if the spiking inputs happen to be
highly synchronized and synchronization encodes important
information, this approach would not work.

P2. Overcoming the constraints on synaptic weight preci-
sion. Reducing the weight precision after learning usually
only causes moderate drops in classification performance. For
example, in the case of random uncorrelated inputs, the scal-
ing properties of the capacity of the classifier (i.e., number
of classes that can be correctly classified) remain unchanged,
even when the number of states of the synaptic weights is
reduced to two [I3]. Instead, the performance drop is catas-
trophically larger when the weight precision is limited also
during learning [14), [15] and in some situations the learning
problem becomes NP-complete [I6] In our case the readout
weights are determined off-chip, using digital conventional
computers that operate on 64 bit numbers, and then quan-
tized in the chip implementation. The performance drop is
almost negligible for a sufficient number of synaptic levels.
In our case we quantized the readout weights of the original
classifier on an integer scale between —28 and 28. Each quan-
tized weight was then implemented as the sum of four groups
of 6 synaptic contacts, where each contact in the group can
either be inactive (value 0) or activated at one of the 6 values:
+1, 42, +4. The multiplicity of this decomposition (19 can be
for instance decomposed as (4) + (1 4+4)+ (1+4)+ (1+4) or
(2)4+(24+4)+(2+4)+(1+4)) is resolved by choosing the decom-
position that is closest to a balanced assignment of the weights
across the 4 groups (e.g. 19 = (4)+(1+4)+ (1+4)+ (1+4)).
This strategy requires that each original synapse be repre-
sented by 24 synapses. We implemented this strategy by
replicating each readout neuron 24 times and by distributing
each original weight across 24 different dendritic trees. These
synaptic inputs are then summed together by the off-line sum-
mation of all readout neuron activities that correspond to the
partial inputs to a specific output unit (see Methods for de-
tails). A similar strategy can be used to implement networks
with synaptic weights that have even a larger number of lev-
els and the number of additional synapses would scale only
logarithmically with the total number of synaptic levels that
is required. However, it is crucial to limit individual synapses
to low values, in order to avoid synchronization between neu-
rons. This is why we limited to 4 the maximum synaptic value
of individual synapses of the chip.

Classification performance and speed-accuracy trade-off Our
neuromorphic classifier implemented on the TrueNorth chip
was emulated on a simulator developed by IBM. As the
TrueNorth chip is entirely digital, the simulator reproduces
exactly the behavior of the chip [I0]. In Fig. we show
the dynamics of two typical runs of the simulator classifying
images from the MNIST-back-image dataset. Upon image
presentation, the RCNs in the intermediate layer start inte-
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Figure 2. The neuromorphic classifier in action. a Spikes emit-
ted by readout neurons during an easy (top) and a difficult (bottom) classification,
after removing the trend caused by the intrinsic constant currents. Each curve corre-
sponds to the readout output associated with the digit indicated by the color code.
Samples are drawn from the MNIST-back-image dataset. b Test error as a function
of classification time (i.e., the time over which spikes are integrated) and energy. The
error is averaged over the first 1000 test samples of the MNIST (red) and MNIST-
back-image (blue) datasets. Each dashed horizontal line indicates the best test error
achieved with support vector classifiers for a given dataset, based on the evaluation
of the whole test set. ¢ Classification times for different thresholds in spike differ-
ence (as indicated in the legend), for the MNIST and MNIST-back-image datasets.
For each threshold we plot all classification times (thin lines) as well as the sample
mean (shorter ticks on top). The performances associated with each threshold are
indicated in the y-axis. When the threshold in spike difference is infinite (black), the
classification is assessed at ¢ = 500 ms (i.e., there is no stopping criterion). In all
panels the chip uses N = 16384 RCNs.

grating the input signal (not shown) and, a few tens of mil-
liseconds later, they start emitting spikes, which are passed
to the readout neurons. The figure shows the total number of
spikes emitted by the readout neurons since input activation,
after subtracting the overall activity trend caused by baseline
activity.

For simple classifications, in which the input is easily rec-
ognizable, the readout neuron associated with the correct class
is activated in less than 100ms (Fig. [2h, top). More diffi-
cult cases require the integration of spikes over longer time
intervals, as the average synaptic inputs to different readout
neurons can be very similar (Fig. [2h, bottom). This sug-
gests that the performance of the classifier, as measured by
the classification error rate on the test set, should improve
with longer integration intervals. This trade-off between speed
and performance is illustrated in Fig. [2p, which shows the
classification performance versus elapsed time for the MNIST
and MNIST-back-image datasets. The performance increases
monotonically with time until it saturates in about half a
second, with a highest performance of 97.27% for MNIST
(98.2% with 10-fold bagging), and 77.30% for MNIST-back-
image. These performances are not too far from the best
classification results achieved so far: 99.06% for MNIST (us-
ing maxout networks on the permutation invariant version of
the MNIST dataset, which does not exploit any prior knowl-
edge about the two-dimensional structure of the patterns [17])
and 77.39% for MNIST-back-image (with support vector clas-
sifiers [I8], although methods combining deep nets, feature



learning, and feature selection can achieve performances as
high as 87.75% [19]).

Energy-speed-accuracy trade-off As just discussed, accuracy
has a cost in term of energy because longer integration times
entail more emitted spikes per classification and a larger base-
line energy costs, which in our case is the dominant contri-
bution to the total energy consumption. We estimated the
energy consumption as described in section [5] and we found
that the energy per classification never exceeds 1 mJ for our
network configuration. With the energy needed to keep lit a
100 W light bulb for a second, one could perform 10° classi-
fications, which is equivalent to around one classification per
second uninterruptedly for almost one day. Notice that this
estimate is based on a classification that lasts 0.5s and, there-
fore, does not take into account the fact that most patterns are
correctly classified in a significantly shorter time (see Fig. ,
top). If the integration and emission of spikes is stopped as
soon as one of the output units is significantly more active
than the others, then the average energy consumption can be
strongly reduced. The criterion we used to decide when to
stop the integration of spikes (and thus the classification) was
based on the spikes emitted by the readout units. Specifically,
we monitored the cumulative activity of each output unit by
counting all the spikes emitted by the corresponding readout
neurons. We stopped the classification when the accumulated
activity of the leading unit exceeded that of the second unit
by some threshold. The decision was the class associated with
the leading output unit.

In Fig. we show the performances and the correspond-
ing classification times for several thresholds. Low thresholds
allow for faster yet less accurate classifications. In both the
MNIST and MNIST-back-image datasets, the patterns that
require long classifications times are rare. While the perfor-
mance barely changes for large enough thresholds, the average
classification time can be substantially reduced by lowering
the threshold. For example, for the MNIST dataset the clas-
sification time drops by a factor of 5 (from 500 ms to 100 ms)
and, accordingly, so does the energy consumption (from 1mJ
to 0.2mJ). Faster classifications are also possible by increas-
ing either the average firing rate or the total number of RCNs,
both of which entail an increase in energy consumption, which
might be partially or entirely compensated by the decrease in
the classification time. These expedients will speed up the
integration of spike-counts and, as a result, the output class
will be determined faster.

In all cases both the energy cost and the classification per-
formance increase with the total number of emitted spikes or,
equivalently, with integration time, if the average firing rate
is fixed. This is a simple form of a more general energy-speed-
accuracy trade-off, a phenomenon that has been described in
several biological information-processing systems (e.g. [20]),
and that can confer great functional flexibility to our classi-
fier. One advantage of basing the computation on a temporal
accumulation of spikes is that the classifier can be interrupted
at any time at the cost of reduced performance, but with-
out compromising its function. This is in stark contrast to
some conventional clock-based centralized architectures whose
mode of computation crucially relies on the completion of en-
tire monolithic sets of instructions. We can then envisage uti-
lization scenarios where a spiking-based chip implementation
of our classifier is required to flexibly switch between precise
long-latency classifications (like, e.g., those involving the iden-
tification of targets of interest) and rapid responses of limited
accuracy (like the quick avoidance of imminent danger).

Notice that both the simulated and implemented net-
works, although entirely feed-forward, exhibit complex dy-

namics leading to classification times that depend on the dif-
ficulty associated with the input. This is because neurons are
spiking and the final decision requires some sort of accumu-
lation of evidence. When a stimulus is ambiguous, the units
representing the different decisions receive similar inputs and
the competition becomes harder and longer. This type of be-
havior is also observed in human brains [21].

We will now focus on the comparison of energy consump-
tion and performance between the neuromorphic classifier and
more conventional digital machines.

Energy consumption and performance: comparison with con-
ventional digital machines We compared both the classifica-
tion performance and the energy consumption of our neuro-
morphic classifier to those obtained with conventional digi-
tal machines implementing Support Vector Machines (SVMs).
SVMs offer a reasonable comparison because they are among
the most successful and widespread techniques for solving
machine-learning problems involving classification and regres-
sion [22] 23], 24], and because they can be efficiently imple-
mented on digital machines.

To better understand how the energy consumption scales
with the complexity of the classification problem, it is useful
to summarize how SVMs work. After training, SVMs classify
an input pattern according to its similarity to a set of tem-
plates, called the support vectors, which are determined by the
learning algorithm to define the boundaries between classes.
The similarity is expressed in terms of the scalar product be-
tween the input vectors and the support vectors. As argued
above, we can improve classification performance by embed-
ding the input vectors in a higher-dimensional space before
classifying them. In this case SVMs evaluate similarities by
computing classical scalar products in the higher-dimensional
space. One of the appealing properties of SVMs is that there
is no need to compute explicitly the transformation of inputs
into high-dimensional representations. Indeed, one can skip
this step and compute directly the scalar product between the
transformed vectors and templates, provided that one knows
how the distances are distorted by the transformation. This is
known as the “kernel trick” because the similarities in a high-
dimensional space can be computed and optimized over with
a kernel function applied to the inputs. Interestingly, the ker-
nel associated with the transformation induced by the RCNs
of our neural classifier can be computed explicitly in the limit
of a large number of RCNs [I§]. This is also the kernel that
we used to compare the performance of SVMs against that of
our neural classifier.

Unfortunately, classifying a test input by computing its
similarity to all support vectors becomes unwieldy and com-
putationally inefficient for large datasets, as the number of
support vectors typically scales linearly with the size of the
training set in many estimation problems [25]. This means
that the number of operations to perform, and hence the en-
ergy consumption per classification, also scales with the size of
the training set. This makes SVMs and kernel methods com-
putationally and energetically expensive in many large-scale
tasks. In contrast, our neural network algorithm evaluates a
test sample by means of the transformation carried out by
the RCNs. If the RCN layer comprises N neurons and the
input dimension is Ni,, evaluating the output of a test sam-
ple requires O(Nin - N) synaptic events. Thus for large sam-
ple sizes, evaluating a test sample in the network requires far
fewer operations than when using the “kernel trick”, because
the number is effectively independent of the size of training
set (cfr. |26 27]). Systems such as ours may therefore display
considerable energy advantages over SVMs when datasets are
large.
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Figure 3. Energy-accuracy trade-off. a,c Dependence of the classification accuracy on the number of Randomly Connected Neurons (RCNs) in the neural
classifier and on the number of support vectors (SVs) in the SVC. Panel a shows this dependence for the MNIST dataset, and panel b for the MNIST-back-image. As the
number of RCNs increases, the classifier becomes more accurate at the cost of higher energy consumptions (b,d). The energy consumption is based on the average time it
takes to the neural classifier to perform the classification (see Fig. ) We also show the performance achieved by three different implementations of support vector classifiers
(legend code: SVC, 1ibsvm; rSVC, reduced primal; SVC; SVCperf, cutting plane subspace pursuit). The algorithms rSVC, SVCperf minimize the number of support vectors
(SVs) with respect to the optimal value and reduce, therefore, the energy consumption levels at test time. The number of SVs used by the standard algorithm (libsvm), on
the other hand, can go beyond the optimal value by reducing sufficiently the soft-margin parameter and pushing the classifier to overfit the data. In all cases, the energy
consumption increases linearly with the number of SVs, as the number of operations per classification at test time scales linearly with the number of SVs. The vertical thin
lines indicate the abscissa at best performance for the IBM chip (red) and SVM implementations (black). For reference we indicate the best performance achieved by the
chip with a horizontal dashed line. The horizontal arrow indicates the reduction in energy consumption that would be attained if the efficiency of digital machines reached the
theoretical lower bound estimated by [28]. The relation between number of SVs and energy consumption was determined by simulating the i7 Intel chip running a program that
implements an SVM at test time. b Same as a, but on the MNIST-back-image dataset. In both cases our neuromorphic classifier exhibits an energy cost per classification

that is orders of magnitude smaller.

In Fig. |3| we compare the energy consumption and per-
formance of the neuromorphic classifier to those of an SVM
implemented on a conventional digital machine. More specif-
ically, we estimated the energy expenditure of a digital SVM
using a simulator of the Intel i7 processor, which was the ma-
chine with the best energy performance among those that we
simulated (see Methods section [5| and Discussion). The en-
ergy cost per support vector per pattern was estimated to be
around 5.2 pJ, a quantity that is not far above what is con-
sidered as a lower bound on energy consumption for digital
machines [28]. For both the neuromorphic classifier and the
digital SVM we progressively increased the performance of
the classifiers by increasing the number of RCNs (in the case
of the neuromorphic classifier), and by varying the number of
support vectors (in the case of the SVM), see Figures ,c. For
the SVM we tried three different algorithms to minimize the
number of support vectors and hence the energy consump-
tion (for more details, see caption of Fig. and Methods).
For the IBM chip we estimated the energy consumption both
in the case in which we stopped the classifications with the
criterion described in the previous section and in the case in
which the classification time was fixed at 500 ms (see Fig. E in
Suppl. Info.). In both cases the energy consumption is signif-
icantly lower for the neuromorphic classifier, being in the for-
mer case approximately 2 orders of magnitude smaller for both
the MNIST and the MNIST-back-image datasets, while still
achieving comparable maximal performances (Fig. ,d).

Scalability The MNIST dataset only has 10 output classes. We
wondered whether the advantage of the neuromorphic clas-
sifier in terms of energy consumption is preserved when the
number of classes increases and the classification task becomes

more complex. To study how the energy consumption scales
with the number of classes we used the KTEX dataset, which
contains 293 classes of distorted characters. We progressively
increased the number of classes to be learned and classified
and we studied the performance and the energy consumption
of both the digital implementation of the SVM and the neuro-
morphic classifier. Specifically, given a number of classes that
was varied between 2 and 293, we selected a random subset of
all the available classes, and we trained both the SVM and the
neural classifier on the same subset. The results are averaged
over 10 repetitions, each one with a different sample of output
classes.

To make a meaningful comparison between the the en-
ergy consumed by a SVM and the neuromorphic classifier, we
equalized all the classification accuracies, as follows. For each
classification problem we varied the margin penalty param-
eter of the standard SVC using grid search and picked the
best performance achieved. We then varied the relevant pa-
rameters of the other two classifiers so that their classification
accuracy matched or exceeded the accuracy of the standard
SVC. Specifically, we progressively increased the number of
basis functions (in the primalSVC method) and the number
of RCNs (in the neural classifier) until both reached the tar-
get performance. For each classification problem we averaged
over 10 realizations of the random projections of the neural
classifier.

The results are summarized in Fig. [l The energy con-
sumption is about two orders of magnitude larger for the
SVM throughout the entire range of variation of the num-
ber of classes that we considered, although for a very small
(2-3) number of classes the advantage of the neuromorphic
classifier strongly reduces, most likely because the algorithms
to minimize the number of SVs work best when the number



of classes is low. This plot indicates that the energy advan-
tage of the neuromorphic classifier over SVMs implemented
on conventional digital machines is maintained also for more
complex tasks involving a larger number of classes.

It is interesting to discuss the expected scaling for grow-
ing number of classes. Consider the case of generic C' classes
multi-class problems solved through reduction with multiple
combined binary SVMs. In a one-vs-all reduction scheme,
each binary classifier is trained to respond to exactly one of
the C classes, and hence C SVMs are required. For each
SVM, one needs to compute the scalar products between the
test sample to be classified and the Ngy support vectors. Each
scalar product requires Ni, multiplications and sums. In the
favorable case in which all binary classifiers happen to share
the same support vectors, the scalar products can be com-
puted only once and would require Ni,-Nsv operations. These
Ngy scalar products then need to be multiplied by the cor-
responding coefficients, which are different for the different
SVMs. This requires additional C'Ngy operations. If Ngy
scales linearly with C, as in the cases we analyzed, then the
total energy E will scale as

E~ NinC + 02.

When C' is small compared to Ny, the first term dominates,
and the expected scaling is linear. However, for C > Ni,
the scaling is expected to be at least quadratic. It can grow
more rapidly if the support vectors are different for different
classifiers.

Interestingly the expected scaling for the neural network
classifiers that we considered is the same. The energy con-
sumption mostly depends on the number of needed cores. This
number will be proportional to the number of RCNs, N, mul-
tiplied by the number of classes. Indeed, each core can receive
up to 256 inputs, so the total number of needed cores will be
proportional to [N/256], with [-] denoting the ceiling func-
tion. Moreover, the number of readout units, which are the
output lines of these cores, will be proportional to the num-
ber of classes. Hence the NC' dependence. In the cases we
analyzed N depends linearly on the number of classes, and
hence the energy depends quadratically on C, as in the case
of the SVMs when C' is large enough. Notice that the there
is a second term which also scales quadratically with C' that
contributes to the energy. The second term comes from the
necessity of replicating the RCNs C' times, due to the limited
fan out of the RCNs. Again, under the assumption of N ~ C,
also this term will scale quadratically with C.

Given that the scaling with the number of classes is basi-
cally the same for the neuromorhic classifier as for the SVMs,
it is not unreasonable to hypothesize that the energy consump-
tion advantage of the neuromorphic implementation would be
preserved also for a much larger number of classes.

Discussion

Our results indicate that neuromorphic devices are mature
enough to achieve performances on a real-world machine-
learning task that are comparable to those of state-of-the-art
conventional devices with von Neumann architecture, all just
by using a tiny fraction of their energy. Our conclusions are
based on a few significant tests, based on a comparison limited
to our neuromorphic classifier and a few digital implementa-
tions of SVMs. This clearly restricts the generality of our
results and does not preclude situations in which the advan-
tage of the neuromorphic approach might be less prominent.
In any case, the merit of our study is to offer a solid com-
parison with implementations on current conventional digital

platforms that are energy-efficient themselves. In particular,
the algorithm we used on conventional digital machines in-
volves only multiplications between matrices and vectors, the
efficiency of which has been dramatically increased in the last
decades thanks to optimized parallelization. Furthermore, not
only we tried to match the classification performance of the
competitors, but we also considered two additional SVM al-
gorithms that minimize the number of support vectors, and
hence the final number of operations. Other choices for SVM
algorithms would certainly lead to different estimates for en-
ergy consumption, but it is rather unlikely that they would
change across 2 orders of magnitude. It is possible that full
custom unconventional digital machines based, e.g., on field
programmable gate arrays (FPGAs) would be more energy-
efficient, but it is hard to imagine that they would break the
predicted energy wall discussed in [2§]. If this assumption is
right, neuromorphic hardware would always be more efficient
when performing the type of tasks that we considered. More-
over, analog neuromorphic VLSI or unreliable digital tech-
nologies might allow for a further reduction of energy con-
sumption, probably by another order of magnitude [5} [29] [30].
The current energy consumption levels achieved by analog sys-
tems are very close to those of biological brains in terms of en-
ergy per spike, although many of these systems are relatively
small and it is unclear whether they can ever be extended to
brain-scale architectures.

Other custom chips that can solve real-world tasks have
been designed. An example is the FPGA chip NeuFlow, de-
signed to implement convolutional networks for visual recog-
nition. The chip is digital and uses as little as 4.9 x
10! operations/W or, equivalently, 2 pJ/operation.

It is also interesting to discuss the performance of other
conventional digital processors in the benchmarks we exam-
ined. Let us consider for example the implementations of
SVMs classifying the MNIST digits with about 10* support
vectors, which is roughly the number of vectors we need to
achieve the best classification accuracy. As we have shown,
the Intel i7 takes about 10 ms to perform a classification, at
an approximate cost of 50 mJ. The IBM chip, in contrast, re-
quired 1mJ for the longest classification times (500 ms), and
0.2mJ for the average classification time (100ms). We also
quantified the energy cost of the ARMv7, which is a more
energy-efficient yet slower microprocessor often used in mo-
bile technologies. Its energy consumption per classification
was substantially higher, around 700 mJ. The main reason for
this high consumption is that it takes more than 0.6 seconds to
perform a single classification. And the baseline consumption,
which increases linearly with the classification time, is a large
portion of the total energy needed for a classification. Finally,
we considered the recent Xeon Phi, which has a massively par-
allel architecture and is employed in high performance com-
puting applications. As we do not have a simulator for the
Phi, we could only indirectly estimate a lower bound for the
energy consumption (see Methods for more details). Accord-
ing to our estimate, a single classification requires only 0.2 us
and uses about 16 mJ, which would be significantly lower than
the energy cost of the i7 and very close to the estimated lower
limit of energy consumption [28], but still larger than the con-
sumption of the IBM chip. Notice however that both the clas-
sification time and the energy consumption of the Xeon Phi
processor are very likely to be grossly underestimated, as they
are simply derived from the peak performance of 100 Tflop/s.
The estimates for the i7 and the ARMv7 are significantly more
reliable, because we derived them by simulating the proces-
SOTS.

To summarize, our results compellingly suggest that the
neuromorphic approach is finally competitive in terms of en-
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Figure 4. Dependence of the energy consumption on the number of classes a Classification accuracy for the neural classifier and for two SVM
algorithms, as a function of the number C' of classes for the IATEX dataset. The parameters of the different classifiers are tuned to have approximately the same classification
accuracy. b Energy consumption as a function of the number of classes, for the IATEX dataset. Given a number C' of classes, every point in the plot is obtained by training
a given classifier on C' randomly sampled classes among the 293 available ones. This procedure is repeated 10 times for every value of C' and every type of classifier. Each
datapoint associated with the neural classifier ('"RCN') was in turn estimated from a sample of 10 realizations of the random connections (squares indicate sample means,
errorbars indicate the 0.1 and 0.9 fractile of the sample). ¢ As in b, but number of support vectors and RCNs as a function of the number of classes.

size trai-

Dataset image num. size
size classes ning set test set
MNIST 28 x 28 10 60000 10000
MNIST-back-image 28 x 28 10 12000 50000
IATEX 32 x 32 293 14650 9376

ergy consumption in useful real-world machine learning tasks
and constitutes a promising direction for future scalable tech-
nologies. The recent success of deep networks for large-scale
machine learning [31] [32] makes neuromorphic approaches
particularly relevant and valuable. This will be certainly true
for neuromorphic systems with synaptic plasticity, which will
enable these devices to learn autonomously from experience.
Learning is now available only in small neuromorphic systems
[33] 134, [35], but hopefully new VLSI technologies will allow
us to implement it also in large-scale neural systems.
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Materials and Methods

Images sets for classification benchmarksWe used three
datasets in our study: MNIST, MNIST-back-image, and
I¥TEX. The MNIST dataset consists of images of handrwit-
ten digits (10 classes) [36]. The MNIST-back-image dataset
contains the same digits of MNIST, but in this case the back-
ground of each pattern is a random patch extracted from a
set of 20 black and white images downloaded from the In-
ternet [37]. Patches with low pixel variance (i.e. containing
little texture) are discarded. The KTEX dataset consists of
distorted versions of 293 characters used in the BTEX docu-
ment preparation system [38, [39]. All datasets consist of [ x
pixel gray-scale images, and each of such pixel images is asso-
ciated with one out of C' possible classes. The size of the pixel
images, the number of classes, and the sizes of the training
and test sets depend on the data set (see table below).

Preprocessing Every sample image was reshaped as a [*-
dimensional vector, and the average gray level of each compo-
nent was subtracted from the data. The dimensionality of the
resulting image vector was then reduced to 256 using PCA. To
guarantee that all the selected components contributed uni-
formly to the patterns, we applied a random rotation to the
principal subspace (see, e.g., [40]). We denote by Ni, = 256
the dimension of that subspace.

The architecture of the network and the training algorithm
‘We map the preprocessed Nin-dimensional vector image, s,
into a higher dimensional space through the transformation
z; = f(w;-s), i=1,...,N,
where w; is an Njy-dimensional sparse random vector and f(+)
is a nonlinear function. This is the transformation induced by
a neural network with N, input units and N output units
with activation function f(-). More succinctly,
x = f(WTs), [1]
where W is a weight matrix of dimensions Ni, X N formed
by adjoining all the column weight vectors w;, and where
f(-) acts componentwise, i.e., f(x) = (f(z1),..., f(zn,)7T.
The output of the random nonlinear transformation, x, is
used as the input to a linear Nc-class discriminant, consist-
ing of N¢ linear functions of the type y; = Zgzl JikTr, with
j=1,...,C. More compactly,

y = Jx, [2]
wherey = (y1,...,yc)7, J is a Cx N matrix, and x is given by
Eq. [[]]. A pattern x is assigned to class C; if y;(x) > yx(x)
for all j # k. The elements of J are learned offline by impos-
ing a 1-of-N¢ coding scheme on the output: if the target class
is j then the target output t is a vector of length N¢ where
all components are zero except component t;, which is 1. For
the offline training of weights we use the pseudoinverse, which
minimizes the mean squared error of the outputs. This tech-
nique has been shown to be a good replacement for empirical
minimization problems when the dataset is embedded in a ran-
dom high-dimensional space, which is our case [41], 26, 42 27].

Neuromorphic chip implementation

The chip is composed of multiple identical cores, each of which
consists of a neuromorphic circuit that comprises n = 256 ax-
ons, n neurons, and n? adjustable synapses ([43} [10, [6], see
also Fig. ) Each axon provides the inputs by feeding the
spiking activity of one given neuron that may or not reside in
the core. The incoming spiking activity to all n axons in a core
is represented by a vector of activity bits (A1(t),..., An(t))
whose elements indicate whether or not the neurons associ-
ated with the incoming axons emitted a spike in the previ-
ous time step. The intersection of the the n axons with the
n neurons forms a matrix of programmable synapses. The
weight of active synapses is determined by the type of axon
and the type of neuron the synapse lies on. Specifically, each
core can contain up to four different types of axon, labeled
G; = {1,2,3,4}, whereas it can accommodate an unlimited



number of neuron types, each of which having four associated
synaptic weights S; = (S7,...,S}). The strength of an active
synapse connecting axon j with neuron ¢ is SiG 7 that is, the
axon type determines which weight to pick among the weights
associated with neuron . The net input received by neuron
at time step ¢ is therefore hq(t) = >°7_, SiGj B;;jA;(t), where
B;; is 1 or 0 depending on whether the synapse between axon
j and dendrite ¢ is active or inactive.

At each time step the membrane potential V;(¢) of neu-
ron ¢ receiving input h(t) is updated according to Vi(t + 1) =
Vi(t) — B+ hi(t), where § is a constant leak. If V;(¢) becomes
negative after an update, it is clipped to 0. Conversely, when
Vi(t) reaches the threshold Vinr, the potential is reset to Vieset
and the neuron emits a spike, which is sent through the neu-
ron’s axon to the target core and neuron. This design implies
that each neuron can connect to at most n neurons, which
are necessarily in the same core. The initial voltage of each
neuron was initialized by drawing randomly and with equal
probability from a set of 4 evenly spaced values from Vieset to
‘/thr-

Signal-to-rate transduction The input to the neuromor-
phic chip consists of a set of spike trains fed to the neurons
of the input layer. To transform the vector signal s into spike
trains, we first shifted the signal by § = 30, where o is the
standard deviation across all signal components of all pat-
terns. The shifted signal was then scaled by a factor vs. cho-
sen to ensure moderate output rates in the RCN layer, and
the result was linear-rectified to positive values. In short, the
input rate v; associated with signal s; is v; = vsc[s: + 8]+,
it =1,..., Nin, where [z]1 is z if z > 0, or 0 otherwise. The
values v; were then used to generate regular spike trains with
fixed inter-spike-interval 1/v;.

Basic architecture The circuit is divided in two functional
groups, or layers, each of which comprises several cores. The
first functional group is the RCN layer, which computes the
random nonlinear expansion in Eq. [] The second func-
tional group computes the C-class discriminant y = Jx. The
output of the classifier is just argmax; y;, where j runs over
the C possible categories. The argmax operation was not com-
puted by the chip, but was determined off-line by comparing
the accumulated spike counts across all outputs. In the fol-
lowing, we describe the implementation of the two layers in
more detail.

RCN layer We first set the dimensionality of the input to
the number of available axons per core, i.e., Nin = n = 256. A
convenient choice for W is a n x N matrix where each column
is vector of zeros except for exactly m < n nonzero entries,
which are randomly placed and take a fixed integer value w.
We took m = 26, which corresponds to a connectivity level
of around 0.1. Lowering the connectivity has the advantage
of decreasing energy costs by reducing the number of total
spikes and active synapses, without impacting the classifica-
tion performance. The random expansion was mapped in the
chip by splitting the matrix W7 into [N/n] submatrices of
size n X n, and using each submatrix as the (boolean) connec-
tivity matrix B;; of a core.

With this arrangement, each of the N neurons distributed
among the [N/n] cores receives a sparse and random linear
combination of signals. Specifically, the average current re-
ceived by each RCN is

hi:ZWjiVj7 i:l,...,N,
j=1

A zero-th order approximation of the firing rate of a gen-
eral VLSI neuron receiving a current h; is

- [hi — B+

= 3
Whr - ‘/reset [ ]

where Viy, is the threshold for spike emission and Vieget is the
reset potential [12].

We chose the parameters w and [ to meet two criteria.
First, we required the fraction of RCNs showing any firing
activity (i.e., the coding level f) to be around 0.25. This
coding level is a good compromise between the need for dis-
crimination and generalization, and it keeps finite-size effects
at bay [9]. Second, we required the distribution of activities
across active RCNs to be sufficiently wide. Otherwise the in-
formation carried by the spiking activity of the RCNs is too
imprecise to discriminate among patterns.

All the cores in the RCN layer receive exactly the same
n-dimensional input signal.

Readout

The readout matrix J was trained offline and mapped to the
chip architecture as follows.

Weight quantization Because the chip can hold only
integer-valued synapses, we need to map the set of all compo-
nents of J into an appropriate finite set of integers. We started
clipping the synaptic weights within the bounds (—4c,40),
where o is the standard deviation of the sample composed of
all the components of J. We then rescaled the weights to a
convenient magnitude Jmax = 28 (see below), and rounded
the weight values to the nearest integer.

Weight assignment The TrueNorth connectivity con-
straints dictate that each RCN can project to only one axon,
meaning that there are at most n = 256 synaptic contacts
available to encode the C' = 10 weights, Joi,..., Jo; associ-
ated with the i-th RCN. We allocated 24 contacts per class
and per axon (see Fig. [5). Each of these 24 contacts were
divided in four groups comprising 6 weights each, with val-
ues 1,2,4,—1,—2,—4. This allowed us to represent any inte-
ger weight from —28 to 28 (each of the 4 groups encodes a
maximum weight of 7, sign aside). To distribute any weight
value w across the available synaptic contacts, we decom-
posed w in a sum of four terms, given by the integer divi-
sion of w by 4 with the remainder spread evenly across terms
(Ex: 19 =445+ 5+ 5). Each of such values was assigned
to one group, represented in base 2, and mapped to a pat-
tern of active-inactive synapses according to the weight as-
sociated with each axon-dendrite intersection. Positive and
negative weights, as well as strong and week weights, were
balanced along a dendrite by changing the sign and order of
the weights in the crossbar (see alternating colors and satura-
tions in Fig. .

Negative threshold For the readout to work properly, the
firing activity of readout neurons must be proportional to the
linear sum of the inputs from the RCNs. This requires neu-
rons to operate in the linear regime of their dynamic range,
a regime that can be enforced by lowering the threshold Bout
of readout neurons. We set Bout < 0, which is equivalent
to adding a constant positive current to each neuron. If
the current-to-rate transduction function were the threshold-
linear function of Eq. []7 the baseline activity induced by
this constant current would be |Bout|/(Vihr — Vieset) per read-
out neuron. The contribution of this background signal should
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Figure 5. Implementation of the readout matrix in a core. The diagram represents the first 8 input lines and first 48 dendrites (two output units)
of a typical readout core. Under each axon-dendrite contact is a square that indicates the potential synaptic strength at the site: color indicates whether the connection is
excitatory (red) or inhibitory (blue), while the saturation level represents the absolute value of the synaptic strength, which can be 1, 2, or 4 (low, medium, and high saturation,
respectively). Only the sites marked with a dot are active. The green frame highlights all the synaptic contacts allocated for an arbitrary weight of the readout matrix, in this
case J13 = —9, which is decomposed as the 4-term sum —9 = —2 —3 — 2 — 2 = —0102 — 0112 — 0102 — 0102. Note that in this particular axon the ordering of

weights is 20,21, 22 (rightmost bit is the most significant).

be subtracted from the readout outputs if one wants to get the
equivalent to Eq. [], although the step is unnecessary if one
only wishes to compare output magnitudes (as we implicitly
do in order to find the maximal output).

Support Vector Machines. We trained SVMs to perform mul-
ticlass classifications based on a one-vs-all scheme, so that
the number of output units coincides with the number of
classes (as in the neural classifier). SVMs were evaluated us-
ing arc-cosine kernels, whic mimic the computation of large
feedforward networks with one or more layers of hidden non-
linear units [I8]. For our particular architecture, based on
one hidden layer built with threshold-linear units, the kernel
is k(x,y) = ||x|||ly||J1(0), where J;(0) = sinf + (7w — 6) cos b
and @ is the angle between the inputs x and y.

We considered three types of SVM. For the standard SVM
we used the open library 1ibsvm [44], which we patched to in-
clude the arccos kernel. The other two SVMs reduce the num-
ber of support vectors without sacrificing performance sub-
stantially. One of such algorithms is primalSVC, which selects
greedily the basis functions by optimizing the primal objec-
tive function [45]. The other method is based on the so-called
Cutting-Plane Subspace Pursuit algorithm, which reduces the
number of support vectors by using basis functions that, un-
like standard SVMs, are not necessarily training vectors [46].
Such method is implemented in the library SVMperf. Unlike
the other two classifiers, SVMperf used RBF kernels instead of
arccos kernels.

Estimation of the IBM chip energy consumptionThe en-
ergy consumption of the IBM chip was estimated from the
TrueNorth specifications [6]. The total energy consumption
comprises the baseline energy (15.9 uW per core), the energy
to emit spikes (109 pJ per spike), the energy needed to read
active synapses (10.7pJ per active synapse), and the energy
necessary to update membrane potentials (1.2 pJ per neuron).
We ignored the input-output energy needed to transmit spikes
off chip and receive spikes on chip. These numbers provide
a reasonable estimate of the energy consumption of systems
with a conservative supply voltage of 0.775 V; most chips op-
erate near or below this estimate. For a setup with 2'* RCNs,
26 dendrites per class, and 10 classes, the power was about
2.08 mW, 95% of which corresponds to the baseline power.

Scaling of the energy with the number of classes The
estimation was based on the energy cost of the simulated clas-
sifications of the MNIST dataset, and extrapolated to the de-
signs required by an increasing number of classes. As the

number of classes C' increases, so does the number of readout
neurons necessary to perform a classification and, therefore,
so does the required number of readout cores. Specifically, if
we assign s. synaptic contacts per axon and per class, we will
need a total of s.C output lines. These output lines need to
be connected to all the N neurons through the input lines of
the readout cores . Because each readout core can accomodate
256 output lines, connected to 256 input lines, the total num-
ber of readout cores will be [IN/2561[s.C/256] (]-] indicates
the ceiling function). In principle the number of RCN cores
will be simply [N/256]. However, each RCN should project to
[s.C/256] cores, which implies that each RCN core must be
cloned [s.C/256] times due to the fan-out constraint—each
RCN can project to only one core. The total number of cores
is therefore Neores = 2[N/256][s.C/256], where the factor 2
accounts for the contributions of both the readout and the
RCN cores.

The total number of spikes emitted was estimated from
the reference value we got from the chip simulation (for 10
classes, N = 2'* s, = 24, and 500 ms of classification time),
scaled appropriately for the new Ncores. More concretely, if
we denote by ngp the number of spikes emitted during our
reference simulation, the number of emitted spikes in a gen-
eral case is nsp = noy[5.C/256](T/500)(N/2'*), where T is
the duration of the simulation in milliseconds. We chose this
duration to be T'= 108 ms, which is the average classification
time of the chip implementation the MNIST dataset, when
the spike difference is 80 spikes and which yields only 0.1%
less in performance than in the fixed-duration case (97.2%
vs 97.3%). With T and the estimated values of Ncores and
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Figure 6. Simulation of a digital support vector machine. a
Number of operations (black circles, left ordinate) and runtime (blue dots, right ordi-
nate) required by a digital SVM to classify 10 test patterns from the MNIST dataset,
as a function of the number of support vectors. The SVM performance was estimated
with a simulator of the Intel i7 processor. b Energy consumption associated to the
datapoints shown in & (squares). The straight line is a least-square fit.
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Nsp, it is straightforward to compute the energy consumption
according to the values given in the previous paragraph.

Energy consumption in von Neumann digital machines
Configuration The runtime and power of microprocessors
with von Neumann architectures were estimated with the re-
cently developed simulators GEM5 (gemb.opt 2.0) [47] and
McPAT (ver. 1.2) [48]. For the estimation we used an architec-
ture configuration similar to that of the recent Intel Core™
i7 processors [49], which incorporate state-of-the-art CMOS
technology. Specifically, we used an x86_64, O3, single core
architecture at 2.66 GHz clock frequency, with 32KB 8-way
L1-i and 32KB 8-way L1-d caches, 256 KB 8-way L2 cache,
64B cache line size, and 8GB DDR3 1600 DRAM. Channel
length was 22 nm, HP type, using long channel if appropriate.
VDD was 0.9V, so slightly higher than the 0.775 V used for
the IBM chip. However, could we use the same voltage in
Intel i7 simulator, the energy consumption would be lower by
a factor (0.775/0.9)% = 0.74. This 26% reduction would not
change the main conclusions about the energy consumption
gap between the IBM chip and the conventional von Neumann
digital machines, which is 2-3 orders of magnitude.

Simulations The benchmark was the test phase of the
SVMs, already trained. Simulations showed that a modern
microprocessor based on a von-Neumann architecture takes
115.5ms to evaluate the test set with 8087 SVs, while con-
suming 424.6 mJ (DRAM energy consumption not included).
When we varied the number of support vectors from 9 to
8087, both the runtime and energy consumption grew propor-
tionally to the number of SVs, while the power was roughly
constant due to the fixed hardware configuration (see Fig |§[)
To estimate how the energy used by von Neumann digital
SVMs scales with the number of classes, we ran another set
of simulations with Intel i7 simulator, this time varying both
the number of support vectors and the number of classes in
the classification problem. This step was necessary to deter-
mine the overhead incurred when we increase the number of
output units. For a given number of classes, the energy cost
per support vector was estimated from the least-square fit of
the energies against the number of support vectors.

Mobile processor We also investigated the runtime and
energy consumption of a more energy-efficient but slower
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mobile microprocessor performing the same target workload.
The architecture configuration was: ARMv7, O3, single core,
1GHz CPU clock frequency, 32kB 4-way L1i and 32kB 4-way
L1d caches, and 128kB 8-way L2 cache, which is similar to the
architecture of ARM Cortex-A9 [50]. The technology node
(22nm) and simulators were the same as in the experiment
with the microprocessor mimicking Intel Core i7. For the
benchmark code with the largest number of SVs, the task re-
quired 1.2-10'° operations that took 6.35s at a cost of 7.34 J.

Discussion on Intel Xeon Phi Massively parallel archi-
tectures have gained a significant amount of attention to
improve the throughput and power efficiency of the high-
performance computing (HPC) technology, in response to the
relatively stagnated improvement in clock frequency. The
Xeon Phi coprocessor, recently developed by Intel, is one of
such efforts [51]. It integrates more than 50 CPU cores to-
gether with L1/L2 caches, network-on-chips, GDDR memory
controller, and PCle interface. Each core supports up-to 4-
thread in-order operation and the 512b SIMD VPU (Vector
processing unit). While the runtime and energy-consumption
of the coprocessor are highly dependent on the target work-
loads, several recent investigations quantified the performance
and energy-efficiency. In the high-performance configuration,
the system integrating Xeon and Xeon Phi shows the through-
put of 100 Tera floating-point operations (flop) per second, the
power consumption of 72.9 kW, marking the energy efficiency
of 0.74nJ/flop [51]. The classification benchmark codes (with
the largest number of SVs) require 0.02235 Gigaflop on the
desktop processor configuration similar to Intel Core i7. At
a first order approximation, therefore, the Xeon and Xeon
Phi-based system takes 0.2235 us and uses 16.5mJ per clas-
sification. This energy consumption seems significantly lower
than the one of the Intel Core i7, and very close to its lower
bound, which is approximately 3mJ. However, one should
keep in mind that the energy is grossly underestimated, as
not only we ignored the energy needed for the RAM, but we
also neglected the cost of the non floating point operations,
which are approximately twice as many as the floating point
operations. For all these reasons it is difficult to compare the
energy consumption for the Xean Phi to the Intel Core i7.
In any case, even for our very conservative energy consump-
tion estimate, the IBM chip remains significantly more energy
efficient.
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