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Predicting future events, and their order, is important for efficient planning. We propose a neural
mechanism to non-destructively translate the current state of memory into the future, so as to
construct an ordered set of future predictions. This framework applies equally well to translations
in time or in one-dimensional position. In a two-layer memory network that encodes the Laplace
transform of the external input in real time, translation can be accomplished by modulating the
weights between the layers. We propose that within each cycle of hippocampal theta oscillations, the
memory state is swept through a range of translations to yield an ordered set of future predictions.
We operationalize several neurobiological findings into phenomenological equations constraining
translation. Combined with constraints based on physical principles requiring scale-invariance and
coherence in translation across memory nodes, the proposition results in Weber-Fechner spacing
for the representation of both past (memory) and future (prediction) timelines. The resulting
expressions are consistent with findings from phase precession experiments in different regions of
the hippocampus and reward systems in the ventral striatum. The model makes several experimental
predictions that can be tested with existing technology.

I. INTRODUCTION

The brain encodes externally observed stimuli in real
time and represents information about the current spatial
location and temporal history of recent events as activity
distributed over neural networks. Although we are physi-
cally localized in space and time, it is often useful for us to
make decisions based on non-local events, by anticipating
events to occur at distant future and remote locations.
Clearly, a flexible access to the current state of spatio-
temporal memory is crucial for the brain to successfully
anticipate events that might occur in the immediate next
moment. In order to anticipate events that might occur
in the future after a given time or at a given distance from
the current location, the brain needs to simulate how the
current state of spatio-temporal memory representation
will have changed after waiting for a given amount of time
or after moving through a given amount of distance. In
this paper, we propose that the brain can swiftly and non-
destructively perform space/time-translation operations
on the memory state so as to anticipate events to occur
at various future moments and/or remote locations.

The rodent brain contains a rich and detailed repre-
sentation of current spatial location and temporal his-
tory. Some neurons–place cells–in the hippocampus fire
in circumscribed locations within an environment, re-
ferred to as their place fields. Early work excluded con-
founds based on visual [1] or olfactory cues [2], suggesting
that the activity of place cells is a consequence of some
form of path integration mechanism guided by the ani-
mal’s velocity. Other neurons in the hippocampus—time
cells—fire during a circumscribed period of time within
a delay interval [3–7]. By analogy to place cells, a set of
time cells represents the animal’s current temporal posi-
tion relative to past events. Some researchers have long
hypothesized a deep connection between the hippocam-
pal representations of place and time [8, 9].

Motivated by the spatial and temporal memory rep-
resented in the hippocampus, we hypothesize that the

FIG. 1. a. Theta oscillations of 4-8 Hz are observed in the
voltage recorded from the hippocampus. Hypothesis: Within
a theta cycle, a timeline of future translations of magnitude δ
is constructed. b. Two layer network with theta-modulated
connections. The t layer receives external input f in real time
and encodes its Laplace transform. The Laplace transform is
inverted via a synaptic operator L-1

k to yield an estimate of the
function f on the T layer nodes. By periodically manipulating
the weights in L-1

k , the memory state represented in T layer
can be translated to represent its future states.

translation operation required to anticipate the events at
a distant future engages this part of the brain [10, 11]. We
hypothesize that theta oscillations, a well-characterized
rhythm of 4-8 Hz in the local field potential observed in
the hippocampus may be responsible for the translation
operation. In particular, we hypothesize that sequential
translations of different magnitudes take place at differ-
ent phases within a cycle of theta oscillation, such that
a timeline of anticipated future events (or equivalently
a spaceline of anticipated events at distant locations) is
swept out in a single cycle (fig. 1a).
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Theta oscillations are prominently observed during pe-
riods of navigation [12]. Critically, there is a systematic
relationship between the animal’s position within a neu-
ron’s place field and the phase of the theta oscillation at
which that neuron fires [13], known as phase precession.
This suggests that the phase of firing of the place cells
conveys information about the anticipated future loca-
tion of the animal. This provides a strong motivation for
our hypothesis that the phase of theta oscillation would
be linked to the translation operation.

A. Overview

This paper develops a computational mechanism for
the translation operation of a spatial/temporal memory
representation constructed from a two-layer neural net-
work model [14], and links it to theta oscillations by im-
posing certain constraints based on some neurophysiolog-
ical observations and some physical principles we expect
the brain to satisfy. Since the focus here is to understand
the computational mechanism of a higher level cognitive
phenomena, the imposed constraints and the resulting
derivation should be viewed at a phenomenological level,
and not as emerging from biophysically detailed neural
interactions.

Computationally, we assume that the memory repre-
sentation is constructed by a two-layer network (fig. 1b)
where the first layer encodes the Laplace transform of
externally observed stimuli in real time, and the second
layer approximately inverts the Laplace transform to rep-
resent a fuzzy estimate of the actual stimulus history
[14]. With access to instantaneous velocity of motion,
this two layer network representing temporal memory
can be straightforwardly generalized to represent one-
dimensional spatial memory [15]. Hence in the context
of this two layer network, time-translation of the tem-
poral memory representation can be considered mathe-
matically equivalent to space-translation of the spatial
memory representation.

Based on a simple, yet powerful, mathematical obser-
vation that translation operation can be performed in the
Laplace domain as an instantaneous point-wise product,
we propose that the translation operation is achieved by
modulating the connection weights between the two lay-
ers within each theta cycle (fig. 1b). The translated rep-
resentations can then be used to predict events at distant
future and remote locations. In constructing the trans-
lation operation, we impose two physical principles we
expect the brain to satisfy. The first principle is scale-
invariance, the requirement that all scales (temporal or
spatial) represented in the memory are treated equally in
implementing the translation. The second principle is co-
herence, the requirement that at any moment all nodes
forming the memory representation are in sync, trans-
lated by the same amount.

Further, to implement the computational mechanism
of translation as a neural mechanism, we impose certain

phenomenological constraints based on neurophysiologi-
cal observations. First, there exists a dorsoventral axis
in the hippocampus of a rat’s brain, and the size of place
fields increase systematically from the dorsal to the ven-
tral end [16, 17]. In light of this observation, we hypoth-
esize that the nodes representing different temporal and
spatial scales of memory are ordered along the dorsoven-
tral axis. Second, the phase of theta oscillation is not
uniform along the dorsoventral axis; phase advances from
the dorsal to the ventral end like a traveling wave [18, 19]
with a phase difference of about π from one end to the
other. Third, the synaptic weights change as a function of
phase of the theta oscillation throughout the hippocam-
pus [20, 21]. In light of this observation, we hypothesize
that the change in the connection strengths between the
two layers required to implement the translation opera-
tion depend only on the local phase of the theta oscilla-
tion at any node (neuron).

In section II, we impose the above mentioned physi-
cal principles and phenomenological constraints to derive
quantitative relationships for the distribution of scales of
the nodes representing the memory and the theta-phase
dependence of the translation operation. This yields spe-
cific forms of phase-precession in the nodes representing
the memory as well as the nodes representing future pre-
diction. Section III compares these forms to neurophysio-
logical phase precession observed in the hippocampus and
ventral striatum. Section III also makes explicit neuro-
physiological predictions that could verify our hypothesis
that theta oscillations implement the translation opera-
tion to construct a timeline of future predictions.

II. MATHEMATICAL MODEL

In this section we start with a basic overview of the two
layer memory model and summarize the relevant details
from previous work [14, 15, 22] to serve as a background.
Following that, we derive the equations that allow the
memory nodes to be coherently time-translated to var-
ious future moments in synchrony with the theta oscil-
lations. Finally we derive the predictions generated for
various future moments from the time-translated mem-
ory states.

A. Theoretical background

The memory model is implemented as a two-layer feed-
forward network (fig. 1b) where the t layer holds the
Laplace transform of the recent past and the T layer
reconstructs a temporally fuzzy estimate of past events
[14, 22]. Let the stimulus at any time τ be denoted
as f(τ). The nodes in the t layer are leaky integrators
parametrized by their decay rate s, and are all indepen-
dently activated by the stimulus. The nodes are assumed
to be arranged w.r.t. their s values. The nodes in the T
layer are in one to one correspondence with the nodes in



3

the t layer and hence can also be parametrized by the
same s. The feedforward connections from the t layer
into the T layer are prescribed to satisfy certain math-
ematical properties which are described below. The ac-
tivity of the two layers is given by

d

dτ
t(τ, s) = −st(τ, s) + f(τ) (1)

T(τ, s) = [L-1
k ] t(τ, s) (2)

By integrating eq. 1, note that the t layer encodes the
Laplace transform of the entire past of the stimulus func-
tion leading up to the present. The s values distributed
over the t layer represent the (real) Laplace domain vari-
able. The fixed connections between the t layer and
T layer denoted by the operator L-1

k (in eq. 2), is con-
structed to reflect an approximation to inverse Laplace
transform. In effect, the Laplace transformed stimulus
history which is distributed over the t layer nodes is in-
verted by L-1

k such that a fuzzy (or coarse grained) esti-
mate of the actual stimulus value from various past mo-
ments is represented along the different T layer nodes.

More precisely, treating the s values nodes as continu-
ous, the L-1

k operator can be succinctly expressed as

T(τ, s) =
(−1)k

k!
sk+1t(k)(τ, s) ≡ [L-1

k ] t(τ, s) (3)

Here t(k)(τ, s) corresponds to the k-th derivative of t(τ, s)
w.r.t. s. It can be proven that L-1

k operator executes
an approximation to the inverse Laplace transformation
and the approximation grows more and more accurate
for larger and larger values of k [23]. Further details of
L-1

k depends on the s values chosen for the nodes [22], but
these details are not relevant for this paper as the s values
of neighboring nodes are assumed to be close enough that
the analytic expression for L-1

k given by eq. 3 would be
accurate.

To emphasize the properties of this memory represen-
tation, consider the stimulus f(τ) to be a Dirac delta
function at τ = 0. From eq. 1 and 3, the T layer activity
following the stimulus presentation (τ > 0) turns out to
be

T(τ, s) =
s

k!
[sτ ]

k
e−[sτ ] (4)

Note that nodes with different s values in the T layer
peak in activity after different delays following the stim-
ulus; hence the T layer nodes behave like time cells. In
particular, a node with a given s peaks in activity at a
time τ = k/s following the stimulus. Moreover, viewing
the activity of any node as a distribution around its ap-
propriate peak-time (k/s), we see that the shape of this
distribution is exactly the same for all nodes to the extent
τ is rescaled to align the peaks of all the nodes. In other
words, the activity of different nodes of the T layer rep-
resent a fuzzy estimate of the past information from dif-
ferent timescales and the fuzziness associated with them
is directly proportional to the timescale they represent,

while maintaining the exact same shape of fuzziness. For
this reason, the T layer represents the past information
in a scale-invariant fashion.

This two-layer memory architecture is also amenable
to represent one-dimensional spatial memory analogous
to the representation of temporal memory in the T layer
[15]. If the stimulus f is interpreted as a landmark en-
countered at a particular location in a one-dimensional
spatial arena, then the t layer nodes can be made to rep-
resent the Laplace transform of the landmark treated as
a spatial function with respect to the current location.
By modifying eq. 1 to

d

dτ
t(τ, s) = v [−st(τ, s) + f(τ)] , (5)

where v is the velocity of motion, the temporal depen-
dence of the t layer activity can be converted to spa-
tial dependence.1 By employing the L-1

k operator on this
modified t layer activity (eq. 5), it is straightforward to
construct a layer of nodes (analogous to T) that exhibit
peak activity at different distances from the landmark.
Thus the two-layer memory architecture can be trivially
extended to yield place-cells in one dimension.

In what follows, rather than referring to translation
operations separately on spatial and temporal memory,
we shall simply consider time-translations with an im-
plicit understanding that all the results derived can be
trivially extended to 1-d spatial memory representations.

B. Time-translating the Memory state

The two-layer architecture naturally lends itself for
time-translations of the memory state in the T layer,
which we shall later exploit to construct a timeline of
future predictions. The basic idea is that if the current
state of memory represented in the T layer is used to
anticipate the present (via some prediction mechanism),
then a time-translated state of T layer can be used to pre-
dict events that will occur at a distant future via the same
prediction mechanism. Time-translation means to mimic
the T layer activity at a distant future based on its cur-
rent state. Ideally translation should be non-destructive,
not overwriting the current activity in the t layer.

Let δ be the amount by which we intend to time-
translate the state of T layer. So, at any time τ , the
aim is to access T(τ + δ, s) while still preserving the cur-
rent t layer activity, t(τ, s). This is can be easily achieved
because the t layer represents the stimulus history in the
Laplace domain. Noting that the Laplace transform of a
δ-translated function is simply the product of e−sδ and

1 Theoretically, the velocity here could be an animal’s running
velocity in the lab maze or a mentally simulated human motion
while playing video games.
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FIG. 2. Traveling theta wave along the s axis. The x-axis is
real time. Each point along the dorsoventral axis corresponds
to a different value of sn. The curvy blue lines show the
theta oscillation for several different values of s. Lines 1 and 2
connect the positions where the local phases θs are 0 and π
respectively.

the Laplace transform of the un-translated function, we
see that

t(τ + δ, s) = e−sδt(τ, s) (6)

Now noting that T(τ+δ, s) can be obtained by employing
the L-1

k operator on t(τ + δ, s) analogous to eq. 3, we
obtain the δ-translated T activity as

Tδ(τ, s) ≡ T(τ + δ, s) = [L-1
k ] t(τ + δ, s)

=
[
L-1

k ·Rδ

]
t(τ, s) (7)

where Rδ is just a diagonal operator whose rows and
columns are indexed by s and the diagonal entries are
e−sδ. The δ-translated activity of the T layer is now
subscripted by δ as Tδ so as to distinguish it from the
un-translated T layer activity given by eq. 3 without
a subscript. In this notation the un-translated state
T(τ, s) from eq. 3 can be expressed as T0(τ, s). The time-
translated T activity can be obtained from the current t
layer activity if the connection weights between the two
layers given by L-1

k is modulated by Rδ. This computa-
tional mechanism of time-translation can be implemented
as a neural mechanism in the brain, by imposing certain
phenomenological constraints and physical principles.

Observation 1: Anatomically, along the dorsoventral
axis of the hippocampus, the width of place fields system-
atically increases from the dorsal end to the ventral end
[16, 17]. Fig. 2 schematically illustrates this observation
by identifying the s-axis of the two-layer memory archi-
tecture with the dorso-ventral axis of the hippocampus,
such that the scales represented by the nodes are mono-
tonically arranged. Let there be N +1 nodes with mono-
tonically decreasing s values given by so, s1, . . . sN .
Observation 2: The phase of the theta oscillations

along the axis is non-uniform, representing a traveling
wave from the dorsal to ventral part of the hippocampus
with a net phase shift of π [18, 19]. The oscillations

in fig. 2 symbolize the local field potentials at different
locations of the s-axis. The local phase of the oscillation
at any position on the s-axis is denoted by θs, which
ranges from −π to +π by convention. However, as a
reference we denote the phase at the top (dorsal) end as
θo ranging from 0 to 2π, with the understanding that
the range (π, 2π) is mapped on to (−π, 0). The x-axis
in fig. 2 is time within a theta oscillation labeled by the
phase θo.

In this convention, the value of θs discontinuously
jumps from +π to −π as we move from one cycle of oscil-
lation to the next. In fig. 2, the diagonal (solid-red) line
labeled ‘2’ denotes all the points where this discontinu-
ous jump happens. The diagonal (dashed) line labeled
‘1’ denotes all the points where θs = 0. It is straight-
forward to infer the relationship between the phase at
any two values of s. Taking the nodes to be uniformly
spaced anatomically, the local phase θs of the n-th node
is related to θo (for 0 < θs < π) by2

θs/π = θo/π − n/N. (8)

Observation 3: Synaptic weights in the hippocam-
pus are modulated periodically in synchrony with the
phase of theta oscillation [20, 21]. Based on this ob-
servation, we impose the constraint that the connection
strengths between the t and T layers at a particular value
of s depend only on the local phase of the theta oscil-
lations. Thus the diagonal entries in the Rδ operator
should only depend on θs. We take these entries to be
of the form exp (−Φs(θs)), where Φs is any continuous
function of θs ∈ (−π,+π). Heuristically, at any moment
within a theta cycle, a T node with a given s value will
be roughly translated by an amount δ = Φs(θs)/s.
Principle 1: Preserve Scale-Invariance
Scale-invariance is an extremely adaptive property for

a memory to have; in many cases biological memories
seem to exhibit scale-invariance [24]. As the untrans-
lated T layer activity already exhibits scale-invariance,
we impose the constraint that the time-translated states
of T should also exhibit scale-invariance. This consid-
eration requires the behavior of every node to follow the
same pattern with respect to their local theta phase. This
amounts to choosing the functions Φs to be the same for
all s, which we shall refer to as Φ.

Principle 2: Coherence in translation
Since the time-translated memory state is going to be

used to make predictions for various moments in the
distant future, it would be preferable if all the nodes
are time-translated by the same amount at any moment
within a theta cycle. If not, different nodes would con-
tribute to predictions for different future moments lead-
ing to noise in the prediction. However, such a require-
ment of global coherence cannot be imposed consistently

2 Since the s values of the nodes are monotonically arranged, we
can interchangeably use s or n as subscritpts to θ.
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along with the principle 1 of preserving scale-invariance.3

But in the light of prior work [25, 26] which suggest that
retrieval of memory or prediction happens only in one
half of the theta cycle,4 we impose the requirement of
coherence only to those nodes that are all in the positive
half of the cycle at any moment. That is, δ = Φ(θs)/s is
a constant along any vertical line in the region bounded
between the diagonal lines 1 and 2 shown in fig. 2. Hence
for all nodes with 0 < θs < π, we require

∆ (Φ (θs) /s) = ∆ (Φ (θo − πn/N) /sn) = 0. (9)

For coherence as expressed in eq. 9 to hold at all val-
ues of θo between 0 and 2π, Φ(θs) must be an exponential
function so that θo can be functionally decoupled from
n; consequently sn should also have an exponential de-
pendence on n. So the general solution to eq. 9 when
0 < θs < π can be written as

Φ(θs) = Φo exp [bθs] (10)

sn = so(1 + c)−n (11)

where c is a positive number. In this paper, we shall take
c � 1, so that the analytic approximation for the L-1

k
operator given in terms of the k-th derivative along the
s axis in eq. 3 is valid.

Thus the requirement of coherence in time-translation
implies that the s values of the nodes—the timescales
represented by the nodes—are spaced out exponentially,
which can be referred to as a Weber-Fechner scale, a com-
monly used terminology in cognitive science. Remark-
ably, this result strongly resonates with a requirement
of the exact same scaling when the predictive informa-
tion contained in the memory system is maximized in re-
sponse to long-range correlated signals [22]. This feature
allows this memory system to represent scale-invariantly
coarse grained past information from timescales exponen-
tially related to the number of nodes.

The maximum value attained by the function Φ(θs)
is at θs = π, and the maximum value is Φmax =
Φo exp [bπ], such that Φmax/Φo = so/sN and b =
(1/π) log (Φmax/Φo). To ensure continuity around θs =
0, we take the eq. 10 to hold true even for θs ∈ (−π, 0).
However, since notationally θs makes a jump from +π to
−π, Φ(θs) would exhibit a discontinuity at the diagonal
line 2 in fig. 2 from Φmax (corresponding to θs = π) to
Φmin = Φ2

o/Φmax (corresponding to θs = −π).

3 This is easily seen by noting that each node will have a maxi-
mum translation inversely proportional to its s-value to satisfy
principle 1.

4 This hypothesis follows from the observation that while both
synaptic transmission and synaptic plasticity are modulated by
theta phase, they are out of phase with one another. That is,
while certain synapses are learning, they are not communicating
information and vice versa. This led to the hypothesis that the
phases where plasticity is optimal are specialized for encoding
whereas the phases where transmission is optimal are specialized
for retrieval.

Given these considerations, at any instant within a
theta cycle, referenced by the phase θo, the amount δ
by which the memory state is time-translated can be de-
rived from eq. 8 and 10 as

δ(θo) = (Φo/so) exp [bθo]. (12)

Analogous to having the past represented on a Weber-
Fechner scale, the translation distance δ into the future
also falls on a Weber-Fechner scale as the theta phase
is swept from 0 to 2π. In other words, the amount of
time spent within a theta cycle for larger translations is
exponentially smaller.

To emphasize the properties of the time-translated T
state, consider the stimulus to be a Dirac delta function
at τ = 0. From eq. 7, we can express the T layer activity
analogous to eq. 4.

Tδ(τ, s) '
s

k!
[sτ + Φ (θs)]

k
e−[sτ+Φ(θs)] (13)

Notice that eqs. 8 and 12 specify a unique relationship
between δ and θs for any given s. The r.h.s. above is
expressed in terms of θs rather than δ so as to shed light
on the phenomenon of phase precession.

Since Tδ(τ, s) depends on both τ and θs only via the
sum [sτ + Φ (θs)], a given node will show identical activ-
ity for various combinations of τ and θs.

5 For instance,
a node would achieve its peak activity when τ is signifi-
cantly smaller than its timescale (k/s) only when Φ(θs)
is large—meaning θs ' +π. And as τ increases towards
the timescale of the node, the peak activity gradually
shifts to earlier phases all the way to θs ' −π. An im-
portant consequence of imposing principle 1 is that the
relationship between θs and τ on any iso-activity contour
is scale-invariant. That is, every node behaves similarly
when τ is rescaled by the timescale of the node. We shall
further pursue the analogy of this phenomenon of phase
precession with neurophysiological findings in the next
section (fig. 4).

C. Timeline of Future Prediction

At any moment, Tδ (eq. 13) can be used to predict the
stimuli expected at a future moment. Consequently, as δ
is swept through within a theta cycle, a timeline of future
predictions can be simulated in an orderly fashion, such
that predictions for closer events occur at earlier phases
(smaller θo) and predictions of distant events occur at
later phases. In order to predict from a time-translated
state Tδ, we need a prediction mechanism. For our pur-
poses, we consider here a very simple form of learning and

5 While representing timescales much larger than the period of a
theta cycle, τ can essentially be treated as a constant within a
single cycle. In other words, θs and τ in eq. 7 can be treated as
independent, although in reality the phases evolve in real time.
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prediction, Hebbian association. In this view, an event is
learned (or an association formed in long term memory)
by increasing the connection strengths between the neu-
rons representing the currently-experienced stimulus and
the neurons representing the recent past events (T0). Be-
cause the T layer activity contains temporal information
about the preceding stimuli, simple associations between
T0 and the current stimulus are sufficient to encode and
express well-timed predictions [14]. In particular, the
term Hebbian implies that the change in each connection
strength is proportional to the product of pre-synaptic
activity—in this case the activity of the corresponding
node in the T layer—and post-synaptic activity corre-
sponding to the current stimulus. Given that the associ-
ations are learned in this way, we define the prediction of
a particular stimulus to be the scalar product of its asso-
ciation strengths with the current state of T. In this way,
the scalar product of association strengths and a trans-
lated state Tδ can be understood as the future prediction
of that stimulus.

Consider the thought experiment where a conditioned
stimulus cs is consistently followed by another stimulus,
a or b, after a time τo. Later when cs is repeated (at a
time τ = 0), the subsequent activity in the T nodes can
be used to generate predictions for the future occurrence
of a or b. The connections to the node corresponding
to a will be incremented by the state of T0 when a is
presented; the connections to the node corresponding to
b will be incremented by the state of T0 when b is pre-
sented. In the context of Hebbian learning, the prediction
for the stimulus at a future time as a function of τ and
τo is obtained as the sum of Tδ activity of each node
multiplied by the learned association strength (T0):

pδ(τ, τo) =

N∑
n=`

Tδ (τ, sn) T0 (τo, sn) /swn . (14)

The factor swn (for any w) allows for differential associ-
ation strengths for the different s nodes, while still pre-
serving the scale invariance property. Since δ and θo are
monotonically related (eq. 12), the prediction pδ for vari-
ous future moments happens at various phases of a theta
cycle.

Recall that all the nodes in the T layer are coherently
time-translated only in the positive half of the theta cy-
cle. Hence for computing future predictions based on
a time-translated state Tδ, only coherent nodes should
contribute. In fig. 2, the region to the right of diagonal
line 2 does not contribute to the prediction. The lower
limit ` in the summation over the nodes given in eq. 14
is the position of the diagonal line 2 in fig. 2 marking the
position of discontinuity where θs jumps from +π to −π.

In the limit when c → 0, the s values of neighboring
nodes are very close and the summation can be approx-
imated by an integral. Defining x = sτo and y = τ/τo

FIG. 3. Future timeline. Eq. 16 is plotted as a function of δ.
During training, the cs was presented at τo = 3 before a and
τo = 7 before b. Left: Immediately after presentation of the
cs, the predictions for a and b are ordered on the δ axis. Note
that the prediction for b approximates a rescaled version of
that for a. Right: The prediction for b is shown for varying
times after presentation of cs. With the passage of time, the
prediction of b becomes stronger and more imminent. In this
figure, Φmax = 10, Φo = 1, k = 10, so = 10, sN = 1, and
w = 1.

and v = δ/τo, the above summation can be rewritten as

pδ(τ, τo) '
τw−2
o

k!2

∫ xu

xmin

x2k+1−w(y + v)ke−x(1+y+v) dx

(15)
Here xmin = sNτo, and xu = soτo for 0 < θo < π and
xu = Φmaxτo/δ for π < θo < 2π. The integral can be
evaluated in terms of lower incomplete gamma functions
to be

pδ(τ, τo) '
τw−2
o

k!2
[(τ + δ)/τo]

k

[1 + (τ + δ)/τo]C
×

(Γ [C, (τo + τ + δ)U ]− Γ [C, (τo + τ + δ)sN ]) ,(16)

where C = 2k + 2− w and Γ[., .] is the lower incomplete
gamma function. For θo < π (i.e., when δ < Φmax/so),
U = so and for θo > π (i.e., when δ > Φmax/so), U =
Φmax/δ.

Figure 3 provides a graphical representation of some
key properties of eq. 16. The figure assumes that the
cs is followed by a after τo = 3 and followed by b after
τo = 7. The left panel shows the predictions for both a
and b as a function of δ immediately after presentation
of cs. The prediction for a appears at smaller δ and with
a higher peak than the prediction for b. The value of w
affects the relative sizes of the peaks. The right panel
shows how the prediction for b changes with the passage
of time after presentation of the cs. As τ increases from
zero and the cs recedes into the past, the prediction of
b peaks at smaller values of δ, corresponding to more
imminent future times. In particular when τo is much
smaller than the largest (and larger than the smallest)
timescale represented by the nodes, then the shape of
pδ remains the same when δ and τ are rescaled by τo.
Under these conditions, the timeline of future predictions
generated by pδ is scale-invariant.
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Since δ is in one-to-one relationship with θo, as a pre-
dicted stimulus becomes more imminent, the activity cor-
responding to that predicted stimulus should peak at ear-
lier and earlier phases. Hence a timeline of future pre-
dictions can be constructed from pδ as the phase θo is
swept from 0 to 2π. Moreover the cells representing pδ
should show phase precession with respect to θo. Un-
like cells representing Tδ, which depend directly on their
local theta phase, θs, the phase precession of cells rep-
resenting pδ should depend on the reference phase θo at
the dorsal end of the s-axis. We shall further connect
this neurophysiology in the next section (fig. 6).

III. COMPARISONS WITH
NEUROPHYSIOLOGY

The mathematical development focused on two entities
Tδ and pδ that change their value based on the theta
phase (eqs. 13 and 16). In order to compare these to
neurophysiology, we need to have some hypothesis link-
ing them to the activity of neurons from specific brain
regions. We emphasize that although the development
in the preceding section was done with respect to time,
all of the results generalize to one-dimensional position
as well (eq. 5, [15]). The overwhelming majority of ev-
idence for phase precession comes from studies of place
cells (but see [3]). Here we compare the properties of
Tδ to phase precession in hippocampal neurons and the
properties of pδ to a study showing phase precession in
ventral striatum [27].6

Due to various analytic approximations, the activity
of nodes in the T layer as well as the activity of the
nodes representing future prediction (eqs. 13 and 16) are
expressed as smooth functions of time and theta phase.
However, neurophysiologically, discrete spikes (action po-
tentials) are observed. In order to facilitate compari-
son of the model to neurophysiology, we adopt a simple
stochastic spike-generating method. In this simplistic ap-
proach, the activity of the nodes given by eqs. 13 and 16
are taken to be proportional to the instantaneous proba-
bility for generating a spike. The probability of generat-
ing a spike at any instant is taken to be the instantaneous
activity divided by the maximum activity achieved by
the node if the activity is greater than 60% of the maxi-
mum activity. In addition, we add spontaneous stochas-
tic spikes at any moment with a probability of 0.05. For
all of the figures in this section, the parameters of the
model are set as k = 10, Φmax = 10, w = 2, Φo = 1,
sN = 1, so = 10.

This relatively coarse level of realism in spike gener-
ation from the analytic expressions is probably appro-
priate to the resolution of the experimental data. There

6 This is not meant to preclude the possibility that pδ could be
computed at other parts of the brain as well.

a b

FIG. 4. a. Neurophysiological data showing phase preces-
sion. Each spike fired by a place cell is shown as a function of
its position along a linear track (x-axis) and the phase of local
theta (y-axis). After Mehta, et al., 2002. b. Simulated spikes
from a node in the T layer described by eq. 13 as a function
of τ and local phase θs. The curvature is a consequence of
eq. 10. See text for details.

are some experimental challenges associated with exactly
evaluating the model. First, theta phase has to be es-
timated from a noisy signal. Second, phase precession
results are typically shown as averaged across many tri-
als. It is not necessarily the case that the average is
representative of an individual trial (although this is the
case at least for phase-precessing cells in medial entorhi-
nal cortex [28]). Finally, the overwhelming majority of
phase precession experiments utilize extracellular meth-
ods, which cannot perfectly identify spikes from individ-
ual neurons.

A. Hippocampal phase precession

It is clear from eq. 13 that the activity of nodes in the
T layer depends on both θs and τ . Figure 4 shows phase
precession data from a representative cell (Fig. 4a, [29])
and spikes generated from eq. 13 (Fig. 4b). The model
generates a characteristic curvature for phase precession,
a consequence of the exponential form of the function Φ
(eq. 10). The example cell chosen in fig. 4 shows roughly
the same form of curvature as that generated by the
model. While it should be noted that there is some vari-
ability across cells, careful analyses have led computa-
tional neuroscientists to conclude that the canonical form
of phase precession resembles this representative cell. For
instance, a detailed study of hundreds of phase-precessing
neurons [30] constructed averaged phase-precession plots
using a variety of methods and found a distinct curva-
ture that qualitatively resembles this neuron. Because
of the analogy between time and one-dimensional posi-
tion (eq. 5), the model yields the same pattern of phase
precession for time cells and place cells.

The T layer activity represented in fig. 4a is scale-
invariant; note that the x-axis is expressed in units of
the scale of the node (k/s). It is known that the spa-
tial scale of place fields changes systematically along the
dorsoventral axis of the hippocampus. Place cells in the
dorsal hippocampus have place fields of the order of a few
centimeters whereas place cells at the ventral end have
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FIG. 5. Place cells along the dorsoventral axis of the hip-
pocampus have place fields that increase in size. a. The three
panels show the activity of place cells recorded at the dorsal,
intermediate and ventral segments of the hippocampus, when
a rat runs along an 18 m track. After Kjelstrup, et al., (2008).
Each spike the cell fired is shown as a function of position and
the local theta phase at the cell’s location when it fires (recall
that theta phase is not constant across the dorsoventral axis).
Regardless of the width of the place field, neurons at all lo-
cations along the dorsoventral axis phase precess through the
same range of local theta phases. b. According to the model,
phase precession extends over the same range of values of local
theta θs regardless of the value of s, which sets the scale for a
particular node. As a consequence, cells with different values
of s show time/place fields of different size but phase precess
over the same range of local theta. For the three figures, s
values of the nodes are set to .1, .22, and .7 respectively, and
they are assumed to respond to landmarks at location 4, 11,
and 3 meters respectively from one end of the track.

place fields as large as a few meters (fig. 5a) [16, 17].
However, all of them show the same pattern of preces-
sion with respect to their local theta phase—the phase
measured at the same electrode that records a given place
cell (fig. 5). Recall that at any given moment, the local
phase of theta oscillation depends on the position along
the dorsoventral axis [18, 19], denoted as the s-axis in
the model.

Figure 5a shows the activity of three different place
cells in an experiment where rats ran down a long track
that extended through open doors connecting three test-
ing rooms [17]. The landmarks controlling a particular
place cell’s firing may have been at a variety of locations
along the track. Accordingly, fig. 5b shows the activity of
cells generated from the model with different values of s
and with landmarks at various locations along the track
(described in the caption). From fig. 5 it can be qualita-
tively noted that phase precession of different cells only
depends on the local theta phase and is unaffected by
the spatial scale of firing. This observation is perfectly
consistent with the model.

a b
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FIG. 6. a. A representative ramping cell in the ventral
striatum. On each trial the animal started the maze at S,
made a series of turns (T1, T2, etc) and received reward at
F1 on 75 percent of trials. The total distance between S and
F1 is on the order of a few meters. Position along the track
is represented linearly on the x-axis for convenience. In the
top panel, the spikes are shown as a function of theta phase
at the dorsal hippocampus and position. The bottom panel
shows the firing rate as a function of position, which is seen
to gradually ramp up towards the reward location. b. The
activity of prediction node generated by the model is plotted
w.r.t. the reference phase θo and position in the top panel,
and the the average activity within a theta cycle is plotted
against position in the bottom panel.

B. Prediction of distant rewards via phase
precession in the ventral striatum

We compare the future predictions generated by the
model (eq. 16) to an experiment that recorded simulta-
neously from the hippocampus and nucleus accumbens, a
reward-related structure within the ventral striatum [27].
Here the rat’s task was to learn to make several turns in
sequence on a maze to reach two locations where reward
was available. Striatal neurons fired over long stretches
of the maze, gradually ramping up their firing as a func-
tion of distance along the path and terminating at the
reward locations (bottom fig. 6a). Many striatal neu-
rons showed robust phase precession relative to the theta
phase at the dorsal hippocampus (top fig. 6a). Remark-
ably, the phase of oscillation in the hippocampus con-
trolled firing in the ventral striatum to a greater extent
than the phase recorded from within the ventral stria-
tum. On trials where there was not a reward at the
expected location (F1), there was another ramp up to
the secondary reward location (F2), accompanied again
by phase precession (not shown in fig. 6a).

This experiment corresponds reasonably well to the
conditions assumed in the derivation of eq. 16. In this
analogy, the start of the trial (start location S) plays the
role of the cs and the reward plays the role of the pre-
dicted stimulus. However, there is a discrepancy between
the methods and the assumptions of the derivation. The
ramping cell (fig. 6a) abruptly terminates after the re-
ward is consumed, whereas eq. 16 would gradually decay
back towards zero. This is because of the way the experi-
ment was set up–there were never two rewards presented
consecutively. As a consequence, having just received a
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FIG. 7. Changing τo affects the phase at which prediction
cells start firing. At early times, the magnitude of translation
required to predict the τo = 3 outcome is smaller than that
required to predict the τo = 7 outcome. Consequently, the
cell begins to fire at a larger θo for τo = 7. Parameter values
are the same as the other figures as given in the beginning of
this section, except for clarity the background probability of
spiking has been set to zero.

reward strongly predicts that there will not be a reward
in the next few moments. In light of this consideration,
we force the prediction generated in eq. 16 to be zero
beyond the reward location and let the firing be purely
stochastic. The top panel of fig. 6b shows the spikes
generated by model prediction cells with respect to the
reference theta phase θo, and the bottom panel shows the
ramping activity computed as the average firing activity
within a complete theta cycle around any moment.

The model correctly captures the qualitative pattern
observed in the data. According to the model, the reward
starts being predicted at the beginning of the track. Ini-
tially, the reward is far in the future, corresponding to a
large value of δ. As the animal approaches the location
of the reward, the reward moves closer to the present
along the δ axis, reaching zero near the reward location.
The ramping activity is a consequence of the exponential
mapping between δ and θo in eq. 10. Since the proportion
of the theta cycle devoted to large values of δ is small,
the firing rate averaged across all phases will be small,
leading to an increase in activity closer to the reward.

C. Testable properties of the mathematical model

Although the model aligns reasonably well with known
properties of theta phase precession, there are a number
of features of the model that have, to our knowledge,
not yet been evaluated. At a coarse level, the corre-
spondence between time and one-dimensional space im-
plies that time cells should exhibit phase precession with
the same properties as place cells. While phase preces-
sion has been extensively observed and characterized in
hippocampal place cells, there is much less evidence for
phase precession in hippocampal time cells (but see [3]).

According to the model, the pattern of phase preces-

sion is related to the distribution of s values represented
along the dorsoventral axis. While it is known that a
range of spatial scales are observed along the dorsoventral
axis, their actual distribution is not known. The Weber-
Fechner scale of eq. 10 is a strong prediction of the frame-
work developed here. Moreover, since Φmax/Φo = so/sN ,
the ratio of the largest to smallest scales represented in
the hippocampus places constraints on the form of phase
precession. The larger this ratio, the larger will be the
value of b in eq. 10, and the curvature in the phase preces-
sion plots (as in fig. 4) will only emerge at larger values
of the local phase θs. Neurophysiological observation of
this ratio could help evaluate the model.

The form of pδ (eq. 16) leads to several distinctive
features in the pattern of phase precession of the nodes
representing future prediction. It should be possible to
observe phase precession for cells that are predicting any
stimulus, not just a reward. In addition, the model’s as-
sumption that a timeline of future predictions is aligned
with global theta phase has interesting measurable con-
sequences. Let’s reconsider the thought experiment from
the previous section (fig. 3), where a stimulus predicts an
outcome after a delay τo. Immediately after the stimulus
is presented, the value of δ at which the prediction peaks
is monotonically related to τo. Since δ is monotonically
related to the reference phase θo, the prediction cells will
begin to fire at later phases when τo is large, and as time
passes, they will fire at earlier and earlier phases all the
way untill θo = 0. In other other words, the entry-phase
(at which the firing activity begins) should depend on
τo, the prediction timescale. This is illustrated in fig. 7
with τo = 3 and τo = 7, superimposed on the same graph
to make visual comparison easy. The magnitude of the
peak activity would in general depend on the value of
τo except when w = 2 (as assumed here for visual clar-
ity). Experimentally manipulating the reward times and
studying the phase precession of prediction cells could
help test this feature.

IV. DISCUSSION

This paper presented a neural hypothesis for imple-
menting translations of temporal and 1-d spatial mem-
ory states so that future events can be quickly antici-
pated without destroying the current state of memory.
The hypothesis assumes that time cells and place cells
observed in the hippocampus represent time or posi-
tion as a result of a two-layer architecture that encodes
and inverts the Laplace transform of external input. It
also assumes that sequential translations to progressively
more distant points in the future occur within each cy-
cle of theta oscillations. Neurophysiological constraints
were imposed as phenomenological rules rather than as
emerging from a detailed circuit model. Further, impos-
ing scale-invariance and coherence in translation across
memory nodes resulted in Weber-Fechner spacing for the
representation of both the past (spacing of sn in the mem-
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ory nodes) and the future (the relationship between δ and
θo). Apart from providing cognitive flexibility in access-
ing a timeline of future predictions at any moment, the
computational mechanism described qualitative features
of phase precession in the hippocampus and in the ventral
striatum. Additionally, we have also pointed out certain
distinctive features of the model that can be tested with
existing technology.

A. Computational Advantages

The property of the T layer that different nodes rep-
resent the stimulus values from various delays (past mo-
ments) is reminiscent of a shift register (or delay-line or
synfire chain). However, the two layer network encod-
ing and inverting the Laplace transform of stimulus has
several significant computational advantages over a shift
register representation.

(i) In the current two-layer network, the spacing of s
values of the nodes can be chosen freely. By choosing ex-
ponentially spaced s-values (Weber-Fechner scaling) as
in eq. 10, the T layer can represent memory from ex-
ponentially long timescales compared to a shift register
with equal number of nodes, thus making it extremely
resource-conserving. Although information from longer
timescales is more coarse-grained, it turns out that this
coarse-graining is optimal to represent and predict long-
range correlated signals [22].

(ii) The memory representation of this two layer net-
work is naturally scale-invariant (eq. 4). To construct
a scale-invariant representation from a shift register, the
shift register would have to be convolved with a scale-
invariant coarse-graining function at each moment, which
would be computationally very expensive. Moreover, it
turns out that any network that can represent such scale-
invariant memory can be identified with linear combina-
tions of multiple such two layer networks [31].

(iii) Because translation can be trivially performed
when we have access to the Laplace domain, the two layer
network enables translations by an amount δ without se-
quentially visiting the intermediate states < δ. This can
be done by directly changing the connection strengths
locally between the two layers as prescribed by diagonal
Rδ operator for any chosen δ.7 Consequently the physical
time taken for the translation can be decoupled from the
magnitude of translation. One could imagine a shift reg-
ister performing a translation operation by an amount δ
either by shifting the values sequentially from one node to
the next for δ time steps or by establishing non-local con-
nections between far away nodes. The latter would make
the computation very cumbersome because it would re-
quire every node in the register to be connected to every

7 In this paper we considered sequential translations of various val-
ues of δ, since the aim was to construct an entire future timeline
rather than to discontinuously jump to a distant future state.

other node (since this should work for any δ), which is
in stark contrast with the local connectivity required by
our two layer network to perform any translation.

Many previous neurobiological models of phase preces-
sion have been proposed [26, 29, 32, 33], and many as-
sume that sequentially activated place cells firing within a
theta cycle result from direct connections between those
cells [34], not unlike a synfire chain. Although taking
advantage of the Laplace domain in the two layer net-
work to perform translations is not the only possibility,
it seems to be computationally powerful compared to the
obvious alternatives.

B. Translations without theta oscillations

Although this paper focused on sequential translation
within a theta cycle, translation may also be accom-
plished via other neurophysiological mechanisms. Sharp
wave ripple (SRW) events last for about 100 ms and are
often accompanied by replay events–sequential firing of
place cells corresponding to locations different from the
animal’s current location [35–39]. Notably, experimen-
talists have also observed preplay events during SWRs,
sequential activation of place cells that correspond to tra-
jectories that have never been previously traversed, as
though the animal is planning a future path [36, 40]. Be-
cause untraversed trajectories could not have been used
to learn and build sequential associations between the
place cells along the trajectory, the preplay activity could
potentially be a result of a translation operation on the
overall spatial memory representation.

Sometimes during navigation, a place cell correspond-
ing to a distant goal location gets activated [38], as
though a finite distance translation of the memory state
has occurred. More interestingly, sometimes a reverse-
replay is observed in which place cells are activated in
reverse order spreading back from the present location
[37]. This is suggestive of translation into the past (as
if δ was negative), to implement a memory search. In
parallel, there is behavioral evidence from humans that
under some circumstances memory retrieval consists of
a backward scan through a temporal memory represen-
tation [41–43] (although this is not neurally linked with
SWRs). Mathematically, as long as the appropriate con-
nection strength changes prescribed by the Rδ operator
can be specified, there is no reason translations with neg-
ative δ or discontinuous shift in δ could not be accom-
plished in this framework. Whether these computational
mechanisms are reasonable in light of the neurophysiol-
ogy of sharp wave ripples is an open question.

C. Multi-dimensional translation

This paper focused on translations along one dimen-
sion. However it would be useful to extend the formal-
ism to multi-dimensional translations. When a rat ma-
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neuvers through an open field rather than a linear track,
phase precessing 2-d place cells are observed [44]. Con-
sider the case of an animal approaching a junction along
a maze where it has to either turn left or right. Phase
precessing cells in the hippocampus indeed predict the
direction the animal will choose in the future [45]. In
order to generalize the formalism to 2-d translation, the
nodes in the network model must not be indexed only
by s, which codes their distance from a landmark, but
also by the 2-d orientation along which distance is calcu-
lated. The translation operation must then specify not
just the distance, but also the instantaneous direction as
a function of the theta phase. Moreover, if translations
could be performed on multiple non-overlapping trajecto-
ries simultaneously, multiple paths could be searched in
parallel, which would be very useful for efficient decision
making.

D. Neural representation of predictions

The computational function of pδ (eq. 16) is to rep-
resent an ordered set of events predicted to occur in the

future. Although we focused on ventral striatum here
because of the availability of phase precession data from
that structure, it is probable that many brain regions rep-
resent future events as part of a circuit involving frontal
cortex and basal ganglia, as well as the hippocampus and
striatum [46–52]. There is evidence that theta-like oscil-
lations coordinates the activity in many of these brain re-
gions [53–56]. For instance, 4 Hz oscillations show phase
coherence between the hippocampus, prefrontal cortex
and ventral tegmental area (VTA), a region that signals
the presence of unexpected rewards [56]. A great deal of
experimental work has focused on the brain’s response to
future rewards, and indeed the phase-precessing cells in
fig. 6 appear to be predicting the location of the future
reward. The model suggests that pδ should predict any
future event, not just a reward. Indeed, neurons that ap-
pear to code for predicted stimuli have been observed in
the primate inferotemporal cortex [57] and prefrontal cor-
tex [58]. Moreover, theta phase coherence between pre-
frontal cortex and hippocampus are essential for learning
the temporal relationships between stimuli [59]. So, fu-
ture predictions could be widely distributed throughout
the brain.
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[57] K. Sakai and Y. Miyashita, Nature 354, 152 (1991).
[58] G. Rainer, S. C. Rao, and E. K. Miller, Journal of Neu-

roscience 19, 5493 (1999).
[59] S. L. Brincat and E. K. Miller, Nature Neuroscience 18,

576 (2015).

http://dx.doi.org/10.1016/j.neuron.2009.07.027
http://dx.doi.org/10.1038/nature12112
http://dx.doi.org/10.1126/science.1217230
http://dx.doi.org/ 10.1038/nn1279
http://dx.doi.org/10.1016/j.conb.2009.03.010
http://dx.doi.org/10.1016/j.conb.2009.03.010
http://dx.doi.org/ 10.1038/nn.2957
http://dx.doi.org/ 10.1038/nn.2957
http://dx.doi.org/10.1523/JNEUROSCI.5436-10.2011
http://dx.doi.org/10.1523/JNEUROSCI.5436-10.2011
http://dx.doi.org/10.1371/journal.pbio.0030402
http://dx.doi.org/10.1371/journal.pbio.1000173
http://dx.doi.org/10.1371/journal.pbio.1000173
http://dx.doi.org/10.1016/j.neuron.2011.08.018
http://dx.doi.org/10.1038/nn.3954
http://dx.doi.org/10.1038/nn.3954

	Neural mechanism to simulate a scale-invariant future
	Abstract
	I Introduction
	A Overview

	II Mathematical model
	A Theoretical background
	B Time-translating the Memory state
	C Timeline of Future Prediction

	III Comparisons with Neurophysiology
	A Hippocampal phase precession
	B Prediction of distant rewards via phase precession in the ventral striatum
	C Testable properties of the mathematical model

	IV Discussion
	A Computational Advantages
	B Translations without theta oscillations
	C Multi-dimensional translation
	D Neural representation of predictions

	 References


