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Abstract

Controlling the flow and routing of data is a fundamental problem in many dis-

tributed networks, including transportation systems, integrated circuits, and the Internet.

In the brain, synaptic plasticity rules have been discovered that regulate network activ-

ity in response to environmental inputs, which enable circuits to be stable yet flexible.
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Here, we develop a new neuro-inspired model for network flow control that only de-

pends on modifying edge weights in an activity-dependent manner. We show how two

fundamental plasticity rules (long-term potentiation and long-term depression) can be

cast as a distributed gradient descent algorithm for regulating traffic flow in engineered

networks. We then characterize, both via simulation and analytically, how different

forms of edge-weight update rules affect network routing efficiency and robustness. We

find a close correspondence between certain classes of synaptic weight update rules de-

rived experimentally in the brain and rules commonly used in engineering, suggesting

common principles to both.

1. Introduction

In many engineered networks, a payload needs to be transported between nodes without

central control. These systems are often represented as weighted, directed graphs. Each

edge has a fixed capacity, which represents the maximum amount of traffic the edge can

carry at any time. Traffic in these networks consist of a series of flows, each of which

contains some amount of data that originates at a source node and attempts to reach a

target node via a path in the network. For example, in vehicular transportation systems

(nodes are intersections, edges are roads), cars travel from one location to another,

and each road has a capacity that limits the number of cars that can traverse the road at

once. In network-on-a-chip circuits (nodes are components such as CPU and GPU cores

equipped with extremely basic routers, and edges are circuit wiring between cores),

tiny units of data called flits flow through the circuit, and each link can only transport
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a limited number of flits at a time (Cota et al., 2012). On the Internet, packets navigate

from one host to another, and each communication link has a capacity that constrains the

rate of data flow through the link. In all these cases, the goal is to optimize performance

metrics, including how long it takes for data to reach the target and how long data is

queued or lost along the way due to exceeding capacities.

There are two primary services required in these networks: routing and flow control.

Network routing refers to moving a payload from a source node in the network to a tar-

get node through some path (Royer and Toh, 1999), often maintained using a distributed

routing table (Gavoille, 2001). The majority of networks always send traffic along the

shortest path from source to target, where shortest refers to physical distance or transit

time. In this paper, we also assume routing occurs via the shortest source-target path

and focus on algorithms for flow control.

Flow control determines when and how much data can be sent through the network.

Engineered networks are often designed based on the concept of oversubscription or

blocking, where there is not enough capacity to simultaneously service every possible

flow at maximum capacity due to bottlenecks in the network. Bottlenecks can cause

congestion, which results in data loss and reduction in useful throughput since when

demand for a certain link exceeds capacity, the excess data must be queued or dropped.

Effective flow control simultaneously maximizes the utilization of link capacity while

maintaining low loss and delay. In general, flow control is an NP-hard problem (Wang

et al., 2003; Fortz and Thorup, 2000). It is even more challenging in online systems

that serve many flows concurrently, where traffic can change unpredictably, and where

optimization must happen in real-time. Further, control logic must be implemented
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distributedly, with minimal communication between nodes.

To address these challenges, we developed a new neuro-inspired distributed com-

puting model where flow control occurs by modulating (increasing or decreasing) edge

weights using only 1-bit (binary) local feedback. Edge weights represent a control vari-

able that denotes how much data should flow along the edge at the current time. For

example, if there are 10 units of data that want to travel from node u to v, and if the

weight of edge (u, v) is 6, then 6 units can be successfully transmitted, and the other

4 units are either queued or dropped. There exists an optimal global weight distribu-

tion at every time step, which is dependent on the trade-off between maximizing data

flow rates versus minimizing data drops and queueing. To inform the direction of how

weights should change to approach this distribution, the network relies on 1-bit local

feedback between neighboring nodes, which indicates whether the data was success-

fully transmitted (without being queued or dropped). This feedback is used to increase

or decrease edge weights to ensure that links are not under-utilized or overloaded, re-

spectively.

How does this relate to synaptic plasticity in the brain? Building off prior work,

we will argue that synaptic weight-update rules can be viewed as a distributed gradi-

ent descent process that attempts to find a weight distribution that optimizes a global

objective (Bengio et al., 2015a,b). While the computational models and feedback mech-

anisms used to trigger weight changes in engineered networks are clearly different than

those used in the brain, the questions we consider here are: 1) The direction and magni-

tude of weight updates; i.e. when and how much to increase and decrease; 2) How these

local decisions affect global performance objectives in engineering (bandwidth, drops,
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queueing delay); and 3) Whether general principles for modulating edge weights may

be found across engineered and neural systems.

Overall, this paper makes four contributions: 1) A new neuro-inspired distributed

computing model to optimize traffic flow based only on edge weight updates and 1-bit

feedback between adjacent nodes; 2) A casting of long-term potentiation (LTP) and

long-term depression (LTD) in terms of distributed gradient descent dynamics; 3) Sim-

ulations, using simulated and real networks, and theoretical analysis of five classes of

weight-update rules; and 4) Comparisons of the best performing classes with experi-

mental data detailing the functional forms of LTP and LTD in the brain.

1.1 Related work

Congestion control in many distributed networks, such as the Internet, is performed on

a global end-to-end basis per-flow, meaning that the source of each flow regulates the

rate at which it sends data into the network based on a binary feedback signal from the

target node (Corless et al., 2016). Our neuro-inspired per-link model described below

is stricter in its feedback constraints; each node can regulate traffic but based only on

the congestion it observes on its incoming and outgoing links, independently of the

source and target of the data. This model is more relevant to vehicular traffic networks

(where it is impossible for a traffic control device, such as a traffic light, to know the

ultimate destination of a vehicle) and network-on-a-chip circuits (where flits travel in-

dependently through the circuit, like vehicles). Traffic control algorithms have been an-

alyzed in many forms, but largely assume the problem is centralized or offline (Gayme

and Topcu, 2011). Other approaches attempt to emulate a centralized algorithm by
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passing large-sized messages (Mateos-Nunez and Cortes, 2013). Distributed gradient

descent algorithms have been studied in many areas, but they also assume the ability to

pass large and frequent messages, or they require significant data aggregation at indi-

vidual nodes (Li et al., 2014; Zinkevich et al., 2010; Yuan et al., 2014).

2. A distributed network model for traffic flow control

We are given a network G = (V,E,W ). The node set V is partitioned into three

non-overlapping subsets: sources S ⊂ V , targets T ⊂ V , and routers R ⊂ V . Data is

transmitted from sources to target via the routers (Figure 1A). The edgesE are directed;

for simplicity, we assume each source is connected to exactly one router (i.e. a “feeder

road”), and each target has an incoming edge from exactly one router (i.e. a “highway

exit”). The routers are connected with a uniform or scale-free degree topology.

The weight Wuv(t) of each edge corresponds to the maximum amount of traffic the

flow control algorithm allows to travel from u → v at time t. Each weight Wuv(t) ∈

[1, C] for all (u, v) ∈ E and for all t, where C is defined as a fixed maximum capacity

for each edge. Edge weights from routers to targets are always set toC because there are

no outgoing edges from the targets, and hence no possibility of downstream congestion.

Weights of all other other edges will vary over time based on traffic flow and congestion.

Each source desires to send L� C units of data to one random target; hence, there

are |S| flows actively competing in the network and sending data. Data for each flow

is routed from the source to the target via the shortest path in the network. In practice,
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this is easily accomplished using a distributed routing algorithm (Gavoille, 2001)1 In

each time step t, each source injects new data into the network, the amount of which

is equal to the outgoing edge weight from the source to the router it is connected to.

Thus, if this weight changes, so does the amount of new data injected into the network

by the source. Data arriving at a router is forwarded to the next node along the shortest

path to the target. If data arrives at router u destined for node v, the amount of data

actually sent is upper-bounded by the edge weightWuv(t), which can change over time.

If multiple flows desire to use edge u→ v in the same time step, we process each flow

in a random order. This means that a random incoming flow is chosen, its data units

are all sent (up to the link weight; the rest are dropped). Then another incoming flow

is chosen at random, and its units are handled similarly. A flow is complete when its

source has successfully transferred L data units to its target.

The only control variables of the algorithm to achieve flow control are the edge

weights W at each time step. Our objective is to:

maximize
∑
t

UF(W (t)) (1)

subject to

Wuv(t) ≤ C for all t and (u, v) ∈ E

Here, UF is an objective function (described later) that measures how well the current

edge weights perform when routing data from the flows F currently in the network.

To enforce the constraint, we propose two application-dependent models for penalizing

1This model of routing is likely different than that occurring in the brain. Our work is not meant to
derive a mapping between the two or suggest that their mechanisms are similar.
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excess traffic on an edge: a drop model and a queue model (Figure 1B). Let Duv(t)

be the total amount of data at router u that desires to be passed to node v at time t. If

Duv(t) > Wuv(t) then the excess data is either dropped (i.e. discarded), or it is queued

at node u until at least the next time step. Loss models are consistent with many data

networks and neural circuits (Branco and Staras, 2009). Queue models are consistent

with transport networks and can help smoothen transient or bursty traffic. In each time

step, data queued at a node is processed before non-queued data (i.e. a first-in first-out

buffer). We assume a queue of infinite length, but we penalize solutions that produce

long queues.

Thus, at every time step, there exists an optimal global weight distribution for a

given objective function. This optimum will change as traffic demand varies over time.

The goal is to track this distribution as closely as possible by applying gradient descent

on the edge weights. We use 1-bit feedback between adjacent nodes, indicating whether

data was successfully sent from one node to the other (i.e. if it resulted in no dropped or

queued data). If the transmission is successful, data rate is increased (to probe whether

higher bandwidth can be achieved). Conversely, if congestion is experienced, the data

rate is decreased. This feedback thus serves as the direction of the local gradient (at

the edge) for the global objective. By modifying the edge weight in accordance with

this local gradient, we attempt to minimize the global objective. The magnitude of the

edge weight change is based on both the direction of change and the current weight.

Therefore, the algorithm seeks the point that locally maximizes traffic flow without

triggering congestion.

Next, we describe how synaptic plasticity rules can serve as inspiration towards
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regulating these edge weights in an online, activity-dependent manner using simple

distributed computation.

2.1 Synaptic plasticity as distributed gradient descent on edge weights

Recent work by Bengio et al. has argued that many forms of Hebbian learning, such as

spike-timing dependent plasticity, may correspond to gradient descent towards neural

activities that optimize a global objective (Bengio et al., 2015a,b; Osogami and Otsuka,

2015). They propose that neurons perform “inference” to try and better predict future

activity, given current and past data. To approach optimal activity levels, feedback

signals between pre-and post-synaptic neurons, such as those used to trigger long-term

potentiation (LTP) and long-term depression (LTD), cause firing rates to increase or

decrease based on the gradient of the objective.

Under a connectionist assumption, where neural activity is a function of the synaptic

weights coupling neurons together, the state of the network can be described by the

edge weights over the population of synapses (along with other presumed constants,

such as activation functions). The evolution of the system can be described by how

these weights change in response to activity. In our case, activity-dependent feedback

signals between adjacent nodes (described in detail below) provides a measurement of

the direction of the local gradient at the edge, which similarly triggers edge weights to

increase or decrease. These weight changes thus correspond to a distributed gradient

descent algorithm for finding a set of edge weights that maximizes a global objective.

The movement towards the global optimal is complicated by the non-independence of

weight changes (network effects) and the uncertainty in future inputs (non-stationarity
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of traffic).

One critical question then is: How much should the weight increase (“LTP”) or

decrease (“LTD”) following feedback? We next describe experimental data detailing

what forms these rules might take in the brain.

2.2 Experimentally-derived weight update rules for LTP and LTD

To inspire our search into different possible weight update rules, we surveyed the re-

cent literature for models based on experimental data (electrophysiology, imaging, etc.)

that provided evidence of the functional forms of LTP and LTD (Table 1). We cate-

gorized rules into four classes: 1) Additive: the change in edge weight is based on an

additive constant; 2) Multiplicative: the change is based on a multiplicative constant;

3) Weight-dependent: the change more generally is based on a function of the existing

edge weight; and 4) Time-dependent: the change also depends on the history of recent

edge-weight changes. In this paper, we focus on the first three classes.

These rules will be used to derive a class of neuro-inspired distributed gradient de-

scent algorithms for update edge weights, as described in the next section. Table 1 is not

meant to exhaustively list all forms of synaptic plasticity rules derived in the literature

(see Discussion) but rather to provide some basic structure into possible, simple-to-

implement rules and their parameters.

2.3 Distributed algorithms for updating edge weights

First, to inform the direction of the weight change (increase or decrease), in each time

step, we allow 1-bit feedback between adjacent nodes. Let Jamvw(t) be an indicator
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variable equal to 1 if data at node v is lost or queued due to congestion on edge (v, w)

at time t, and 0 otherwise. Assume data for a flow is traveling from node u to v to w.

When considering how to modify the weight of edge (u, v), we need to consider what

happens on the adjacent downstream edge (v, w) where traffic is flowing. Intuitively, if

Jamvw(t) == 1, then the incoming edge weight Wuv(t + 1) should LTD since it con-

tributed data to the jam. Further, the edge weight Wvw(t+ 1) should LTP to attempt to

alleviate the congestion. If neither edge (u, v) nor (v, w) are jammed, then both should

LTP (Figure 1C). Thus, the Jam term serves as a 1-bit measurement of the direction of

the local gradient at edge (u, v). Overall, the logic implemented at each edge (u, v) is

shown in Algorithm 1 below:

Algorithm 1 : Logic for applying LTP or LTD, implemented at each edge (u, v)

if Jamuv(t) == 1 then
Apply LTP to Wuv(t+ 1)

else
if Jamvw(t) == 1 and (u, v) contributed data that jammed (v, w), for any w then

Apply LTD to Wuv(t+ 1)
else if Jamvw(t) == 0 for all w that received data from u then

Apply LTP to Wuv(t+ 1)
end if

end if

We assume a node (in this case, v) can modify the edge weight of both its in-

coming and outgoing edges. In synapses, this may be achieved by modulating pre-

synaptic release probability or number of post-synaptic receptors (e.g. Costa et al.

(2015); Markram et al. (2012); Yang and Calakos (2013); Fitzsimonds et al. (1997))

or other gating mechanisms (Vogels and Abbott, 2009); in data networks, a node can

pause incoming data by transmitting a signal and can pause outgoing data by simply

not transmitting. If an edge gets both LTP and LTD signals in a time step, it default to
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LTD. In every time step, the weight of every edge that carries data will either LTP or

LTD.

Second, to determine the magnitude of the weight change, we consider the following

weight-update rules for LTP and LTD:

Wuv(t+ 1) =



Wuv(t) + ki, ki > 0 LTP: Additive Increase (AI)

Wuv(t)× ki, ki > 1 LTP: Multiplicative Increase (MI)

Wuv(t)− kd, kd > 0 LTD: Subtract Decrease (SD)

Wuv(t)× kd, 0 < kd < 1 LTD: Multiplicative Decrease (MD)

We consider four combinations of LTP and LTD: AIMD, AISD, MIMD, and MISD.

Each of these algorithms has some theoretical or experimental basis, or both (Table 1).

For example, AISD was proposed by Kopec et al. (2006) and Song et al. (2000). AIMD

was proposed by van Rossum et al. (2000) and Delgado et al. (2010). Multiplicative

decrease rules have been proposed by Zhou et al. (2004), amongst others.

We also compare to an algorithm based on the classic Oja learning rule (Oja, 1982):

Wuv(t+ 1) =


Wuv(t) + ki

(
1− Duv(t)2

Wuv(t)C

)
, ki > 0 LTP: Oja

Wuv(t)− kd
(

1 + Duv(t)2

Wuv(t)C

)
, kd > 0 LTD: Oja

Unlike the previous rules, Oja uses the activity (traffic) of the edge as a variable, where

Duv(t) is the amount of data traversing edge (u, v) at time t. This rule is slightly

different from the typical Oja rule where the change in the weight for the ith input,

∆Wi = α(xiy−y2Wi) (learning weight α, synaptic input x and output y). The squared
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term functions as a decay on the weight. We include a similar activity-dependent

squared decay term (Duv(t)
2/Wuv(t)), but we normalize it by C to lie within the re-

quired weight range. Our term decreases the effect of LTP and increases the effect of

LTD as the link approaches capacity. This allows more aggressive ki and kd to quickly

adjust traffic.

Another algorithm we compare is called Bang-Bang control. This rule is often used

in neural circuit design (Feng and Tuckwell, 2003; Zanutto and Staddon, 2007) and in

engineering (Lazar, 1983) to control and stabilize activity:

Wuv(t+ 1) =


C LTP: Bang-Bang

1 LTD: Bang-Bang

Finally, we compare to a baseline rule, Max Send, which keeps all edge weights fixed

at C in every time step. For all algorithms, if a weight equals C and is triggered to LTP,

it stays at C. Likewise, if a weight equals 1 and is triggered to LTD, it stays at 1.

We only consider integer units of data, thus for all update rules, W is rounded to

an integer. To prevent a link from getting stuck at 0 weight (e.g. for MISD), it was

required that every weight have a minimum of 1. The link capacity C � 1, so the

integer rounding and minimum value were negligible in terms of overall performance.

2.4 Objective functions, simulations, and data

Next, we describe network performance measures to quantify how well these rules be-

have towards optimizing global objectives (UF ). The objective functions we selected
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are typically used to evaluate performance in engineered networks (Pande et al., 2005;

Ahn et al., 1995).

Let F define the set of |S| competing flows, and L be the load of each flow. The

three objective functions are:

• Bandwidth: Amount of data successfully transferred per time step, averaged over

all flows: |F|−1
∑

i L/time(Fi), where time(Fi) is the number of time steps for

flow i to complete.

• Drop Penalty: Percentage of data lost, averaged over all flows: |F|−1
∑

i lost(Fi)/L,

where lost(Fi) is the amount of data lost by flow i over all time steps until com-

pletion. The drop penalty may go above 100% if more data sent by the source is

lost than delivered.

• Queue Penalty: The percentage of data that is queued per hop, averaged over

all flows: |F|−1
∑

i queued(Fi)/(L × Path(Fi)), where queued(Fi) is the total

amount of data inserted into queues and Path(Fi) is the path length of flow i.

• Parameter robustness: One critical component of these algorithms is that they

must work well in general. Traffic is highly dynamic, and thus optimizing param-

eters for one particular traffic regime or network topology will not be sufficient for

real-world use. We thus focus on the robustness or sensitivity of each algorithm

by testing the variability in their performance across a broad range of parameters.

Simulation framework. We created a directed network with N sources, N targets, and

N routers, where N = 100 or 1000. Each source is connected to exactly one random

router (the same router can have an edge from multiple different sources), and each
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target has an incoming edge from one random router. The router-router network was

defined using a uniform or scale-free degree topology with each router connected to

six other routers (Corless et al., 2016). We defined N concurrent flows, one starting

from each source, and each selecting a random target (the same target may be selected

twice across flows). Each flow contained L = 100 × C data units, as 100 is roughly

the average number of round-trip times taken for a data transfer on the Internet (Corless

et al., 2016). The weight of each edge was initialized to the maximum capacity, C,

in order to immediately experience contention. The mean path length of the artificial

network was 4.7; this is large enough to provide several links of potential contention.

Each performance measure was averaged over 25 repeat simulations.

Parameter variation. For the weight-update rules, we varied: AI (ki ∈ [1.0, 9.0]),

SD (kd ∈ [1.0, 9.0]), MI (ki ∈ [1.1, 1.9]), MD (kd ∈ [0.1, 0.9]).

Real-world data. We used the CAIDA Autonomous System (AS) relationship data

to generate a graph based on the Internet routing network (Cai, 2016). Each AS repre-

sents the highest-level routing subnetwork on the Internet. The CAIDA data contained

connectivity between 53,195 AS subnetworks. We treat each AS as a single routing

node in our model. We created the same number of sources and targets (53,195 each);

each source was connected to one random AS and each target had one incoming edge

from a random AS. The network contained 537,582 total directed edges. To simulate

flows, we selected ∼ 1% of the sources (500) and paired each source with a random

target. Each performance measure was averaged over 10 repeat simulations. As before,
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we set the capacity, C = 1000.

3. Results

First, we describe the performance of each weight-update algorithm against the global

objectives (bandwidth, drops, and queueing) using both simulated and real-world net-

works. Second, we support these results by analytically deriving the performance of

each algorithm as it adapts to changing traffic demands. Third, we describe how the

best performing rules compare to those commonly used in engineering.

3.1 Observations from simulations and real-world network flows

We first compared the performance of the seven edge-weight update algorithms (Sec-

tion 2.3) via simulation. Each algorithm was evaluated according to the bandwidth

offered and the amount of data that was dropped or queued.

The two strongest performing algorithms were AIMD and MIMD, with Oja lying

in between (Figure 2). AIMD, for some parameters, achieved a bandwidth comparable

to other algorithms, but its main strength was in reducing the drop penalty by at least

one order of magnitude (averages: AIMD = 6.4%, OJA = 69.2%, MIMD = 69.3%,

AISD = 124.4%, MISD = 145.2%; Figure 2A). The former as due to its conserva-

tive rule for increasing edge weights for LTP (additive), and the latter was due to its

aggressive edge weight decrease for LTD (multiplicative). AISD and MISD showed

very high drop penalty primarily because upon contention, edge weights were only de-

creased subtractively; this led to slow adaptation, though higher bandwidth because few
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links were ever under-utilized. In general, the Oja rule (a variant of AISD) improved

over AISD but still achieved a much higher drop penalty compared to AIMD also due

to its conservative decrease. MIMD showed great sensitivity to algorithm parameters,

some of which performed well. While keeping all edge weights at maximum capacity

may be intuitively appealing (Max Send), this is in general not a good solution because

any downstream bottleneck will result in massive data drops. We also observed similar

trends for all algorithms using the queue model (Figure 2B).

Overall, for both models, the multiplicative decrease algorithms (AIMD, MIMD)

and the Oja algorithm demonstrated a better trade-off between bandwidth and drop/queue

penalties than other algorithms, indicating their ability to more closely approach the

optimal edge weights. We also tested these observations for larger networks with dif-

ferent router connectivity topologies and observed similar overall trends (Appendix,

Figure S1).

Next, we tested how well and how quickly each algorithm could adapt to new traffic,

simulated on a real Internet backbone routing network. The simulation was for 3000

time steps: During t < 1000 and t > 2000, 500 flows concurrently competed. During

1000 ≤ t ≤ 2000, 500 additional flows were temporarily added (“rush hour”). All

algorithms demonstrated some reduction in bandwidth when rush hour begins due to

the additional number of competing flows. However, AIMD and MIMD incurred the

least transient drop penalty (i.e., the drop penalty incurred immediately after rush hour

starts; Figure 3B). Overall, AIMD yielding significantly lower transient drop penalty

than all other algorithms (P < 0.01; 2-sample t-tests), and significantly lower overall

drop penalty than MIMD. AIMD and MIMD also produced only a 4–5% difference
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in bandwidth compared to the other algorithms (average data per timestep: AIMD =

776± 6.82, MIMD = 786± 6.94, OJA = 814± 19.38, AISD = 819± 6.11, MISD =

820± 5.93 at t = 1500, Figure 3A). These results suggest that AIMD and MIMD adapt

faster to changing traffic, yielding fewer transient drops with comparable bandwidth.

Next, to support these observations, we formally analyze the adaptive behavior of

each algorithm.

3.2 Analyzing transient response times for AIMD, MIMD, AISD,

MISD, and Oja

An important aspect of algorithm performance is its non-stationary or transient behav-

ior; i.e. how well it adapts when traffic suddenly increases and the available bandwidth

per flow decreases (Figure 3). Real networks are never static; all flows experience some

level of perturbation due to varying traffic. Thus, as opposed to analyzing convergence

properties (as is typically done for gradient descent algorithms), we analyzed a simple

but informative scenario: the performance of each algorithm when a second flow is

added to a link that is initially serving only a single flow at maximum capacity.

Assume the link (u, v) under consideration has fixed weight C, and that there are

two flows starting from s1 and s2 that both need to use (u, v) to reach their downstream

target (and no other link in the network is limiting). Let Ws1u(t) = C and then when

the second flow begins, assume Ws2u(t) = 1, where C � 1. Assume a single LTD

operation on (u, v) will lower the total traffic sent by both flows along (u, v) to be

below C, hence alleviating the congestion. After the initial congestion event there will

be≥ 1 time steps of LTP before congestion re-occurs. Let n be the number of time steps
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before congestion re-occurs. We wish to find the amount of data dropped/queued (called

overshoot) at time n, defined as the difference between the amount of data desired by

both flows along edge (u, v) and C at the moment LTD is re-activated.

Theorem 1 (Overshoot of AIMD). The two-flow transient response of AIMD has an

overshoot that increases linearly with n, but is reduced by a term proportional to the

capacity, C.

Proof. At the first time step (−1 to simplify notation), the amount desired by both flows

on (u, v) is:

Time t Flow 1 Flow 2 Jamuv(t)

−1 C 1 True

Since the sum of the flows is greater than C, congestion occurs and the jam indicator

variable Jamuv(t) is true. In the next step, LTD via multiplicative decrease is applied:

Time t Flow 1 Flow 2 Jamuv(t)

0 Ckd kd False

This brings the total desired traffic along (u, v) under C. Additive increase then occurs

for n steps:

Time t Flow 1 Flow 2 Jamuv(t)

1 Ckd + ki kd + ki False

2 Ckd + 2ki kd + 2ki False

...
...

...
...

n Ckd + nki kd + nki True
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At time step n, the overshoot along (u, v), which is the excess traffic over C, is:

(Flow 1 + Flow 2)− C = (Ckd + nki + kd + nki)− C,

≈ 2nki + C (kd − 1) , (2)

assuming the single kd term is negligibly small. Note that since kd ∈ (0, 1), the second

term is negative.

We similarly derived the overshoot of MIMD, AISD, and MISD (Appendix; sum-

mary in Table 2). The theoretical performance of the algorithms on the two-flow case

correlate well with the simulated performance using hundreds of concurrent flows in a

larger network. Both AI algorithms have an overshoot that has a 2nki term. For AIMD,

this term is reduced by C(kd−1). AISD, on the other hand, is hurt by a slow subtractive

decrease, and hence only reduces the 2nki term by 2kd. Since |C(kd − 1)| > |2kd| for

large values of C, AIMD typically performs better (compare blue dots vs. yellow dots

in Figure 2).

The MIMD overshoot shows a complex dependence between ki, kd and C, which

makes performance highly parameter-dependent, as we also observe via simulation (see

variability of red dots in Figure 2). MISD has uniformly high overshoot, since kni > 1

is multiplied by a large constant C, and thus performs poorly. Finally, Oja uses an

AISD rule with a weight-dependent squared decay; this decay cancels out the additive

increase term as the traffic of Flow 1 and 2 approachesC. This leads to performance that

always under-shoots for this simple two-flow case, improving drop and queue penalty

over AISD; however, in practice when many flows concurrently compete and overshoot
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does occur (as in Figures 2 and 3), it is limited by the weak decrease term, as the decay

only doubles kd, at best.

We also simulated the transient overshoot under the assumptions of Theorems 1–

4 using different parameter settings (Table 2, right side). These simulations further

validate the theorems, showing that AIMD overshoots the least, while MIMD varies

from the second-best to second-worst, depending on ki and kd. Further analysis of each

algorithm is provided in the Appendix.

3.3 Comparing distributed gradient descent algorithms in the brain

and the Internet

Simulations and theory both suggest that AIMD achieves a robust and well-balanced

trade-off between bandwidth and drop/queue penalties, with MIMD and Oja also per-

forming comparably depending on the parameters selected. This implies that these

algorithms approach the optimal global edge-weight distribution more quickly and ac-

curately than other distributed gradient descent algorithms, including MISD, AISD,

Bang-Bang, and Max-Send.

In the brain, the additive increase and multiplicative decrease rule (AIMD) for LTP

and LTD, respectively, has strong theoretical and experimental support (Table 1), par-

ticularly over MI and SD models. The AIMD algorithm is also very similar to the rule

proposed by van Rossum et al. (2000) and has been commonly referred to as the mixed-

weight update rule (Delgado et al., 2010). This rule, in neural network simulations,

has been shown to produce stable Hebbian learning compared to many other rules (van

Rossum et al., 2000; Billings and van Rossum, 2009).
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While Oja was one type of weight-dependent rule, other rules have also been pro-

posed where a weak (i.e. low-weight) synapse that undergoes LTP is strengthened by a

greater amount than a strong synapse that undergoes LTP, and vice-versa for LTD (Ta-

ble 1). Prior work has also suggested that individual synapses may have a “memory”

that allows for more sophisticated update rules to be implemented, including history-

dependent updates (Lahiri and Ganguli, 2013). One such form of update is called in-

tegral control in engineering, which utilizes the time integral of a variable from t = 0

to the present. We show the general forms of these rules in Table 1 but do not explore

them further here.

Interestingly, in engineering, AIMD also lies at the heart of the most popular con-

gestion control algorithm used on the Internet today: the transmission control protocol

(TCP (Corless et al., 2016)). In contrast to our per-link model, congestion control on

the Internet is performed on a global end-to-end basis per-flow, meaning that the source

of each flow regulates its transmission rate based on a binary feedback signal (called an

ACK or acknowledgment) sent by the target. If there is a long delay before the ACK is

received (or if the ACK is never received at all), congestion is assumed, and the source

decreases its rate of sending data by a multiplicative constant (often 0.5). Otherwise,

the source increases its rate by an additive constant (often 1.0). TCP was also designed

with the goal of converging to steady-state flow rates over time in a gradient-descent

like manner (Shakkottai and Srikant, 2007; Jose et al., 2015). Thus, despite different

models and objectives, both the brain and the Internet may have discovered a similar

distributed algorithm for optimizing network activity using sparse, local feedback.
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4. Discussion

Our work connects distributed traffic flow control algorithms in engineered networks

to synaptic plasticity rules used to regulate activity in neural circuits. While we do not

claim that there is a one-to-one mapping between mechanisms of synaptic plasticity and

flow control problems, we showed how both problems can be viewed abstractly in terms

of gradient descent dynamics on global objectives, with simple local feedback. We per-

formed simulations and theoretical analyses of several edge-weight update rules and

found that the additive-increase multiplicative-decrease (AIMD) algorithm performed

the best in terms minimizing drops/queueing with comparable bandwidth as other algo-

rithms. This algorithm also matched experimental data detailing the functional forms

of LTP and LTD in the brain and on the Internet, suggesting a similar design principle

used in biology and engineering. Further, these weight rules use limited (1-bit) local

communication and hence may be useful for implementing energy-efficient and scal-

able flow control in other applications, including integrated circuits, wireless networks,

or neuromorphic computing.

There are many avenues for future work. First, other plasticity rules may also be

explored within our framework, such as short-term plasticity. Second, in cases where

source and/or receiver rates are fixed, the payload needs to be routed over alternative

paths (i.e. routes may change over time basic on traffic (Isa et al., 2015)). This re-

quires that heavily used edges become down-weighted and unused edges become more

attractive, which effectively performs load balancing over all resources (edges) in the

network. Biologically, similar behavior is observed due to homeostatic plasticity mech-

anisms, which may inspire algorithms for this problem. Third, these distributed gradient
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descent updates rules may be useful in machine learning applications for non-stationary

learning. Fourth, more sophisticated weight-and history-dependent update rules already

explored in engineering may provide insight into their form and function in the brain.

Overall, we hope our work inspires closer collaborations between distributed computing

theorists and neuroscientists (Navlakha et al., 2015).
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Table 2: Analysis of overshoot of weight-update algorithms. Analytic (left) and sim-
ulated (right) overshoot values of each algorithm using C = 1000. The Oja-based
algorithm always under-shoots for the simple two-flow case; however, a closed form
solution appears difficult to derive because the algorithm is dependent on edge traffic.
The optimal solution (OPT) has zero overshoot. For simulations of other algorithms, we
selected 3 sets of parameters: Balanced: additive (ki = 1.0, kd = 5.0), multiplicative
(ki = 1.1, kd = 0.5). Aggressive Increase: additive (ki = 100.0, kd = 5.0), multi-
plicative (ki = 1.5, kd = 0.5). Aggressive Decrease: additive (ki = 1.0, kd = 100.0),
multiplicative (ki = 1.1, kd = 0.1). The variable n corresponds to the number of time
steps before congestion re-occurs.

Rule Transient Overshoot Balanced (n) Aggressive Increase (n) Aggressive Decrease (n)

AIMD 2nki + C (kd − 1) 0.5 (250) 101 (3) 0.1 (450)
AISD 2 (nki − kd) 1.0 (5) 196 (1) 1.0 (100)
MIMD C (kdk

n
i − 1) 72.8 (8) 126 (2) 84.6 (25)

MISD C (kni − 1) 95.6 (1) 494 (1) 90.2 (2)
OJA Undershoots -1 (∞) -1 (∞) -1 (∞)
OPT 0 (∞) 0 (∞) 0 (∞) 0 (∞)
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Figures

Sources TargetsRouters

A B

6 of 6 dropped/queued

7 units 2 of 7 dropped/queued
5 of 7 sent

×

5 units sent

6 units
×

Wvw = 5
v w

✔

Case 1: No Jam

3 units

6 units sent

3 units

Wvw = 10
v w

u1

u2

7 units
3 of 7 dropped×

10 units sent

6 units

Wvw = 10
v w

u2

Case 2: Jam on edge (v,w)

v w

u1

u2

LTP
LTP

LTP

v w

u1

u2

LTP
LTD

LTD

C

u1

Figure 1: Model overview. A) Input network, consisting of sources that transmit data
to targets via a routing network. B) Illustration of a congested link (v, w), where the
amount of incoming data to a node exceeds outgoing link weight, leading to dropped or
queued data. Flows incoming to node v are processed in a random order. C) If no jam
occurs (case 1), all links LTP in the next time step. If a jam does occur (case 2), then
the edges contributing data to the jam undergo LTD, and the jammed link LTPs, in an
attempt to alleviate the jam in the next time step.
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Better
Better

A B

Max Send

Max Send

Bang-Bang

Bang-Bang

* *Limit Limit

Figure 2: Comparison of seven activity-dependent weight update rules. Bandwidth
vs A) Drop penalty and B) Queue penalty. The lower right of the plot corresponds to an
empirical upper bound, which occurs when bandwidth is that of the highest observed
algorithm but with zero drop/queue penalty. Each dot corresponds to an algorithm run
using different values of the increase and decrease parameters (ki, kd). AIMD, MIMD,
and Oja perform the best.
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A BRush hour Rush hour

Figure 3: Adaptation to changing traffic demands. Traffic simulated on a real Internet
backbone routing network for 3000 time steps. Performance measures were averaged
every 100 time steps. We selected the parameters for each algorithm that had the highest
bandwidth in Figure 2 while being within 1% of the minimum drop penalty for the
algorithm. AIMD and MIMD showed the least additional penalty (B) due to rush hour,
suggesting quick adaptation, while also yielding a similar bandwidth (A) as MISD,
AISD, and Oja.
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Appendix

Analyzing transient response times for AIMD, MIMD, AISD, MISD,

and Oja

Below, we derive the transient overshoot of AIMD, MIMD, AISD, and MISD.

Theorem 2 (Overshoot of AIMD). The two-flow transient response of AIMD has an

overshoot that increases linearly with n, but is reduced by a term proportional to the

capacity, C.

Proof. See the main text for the derivation. The overshoot is:

(Flow 1 + Flow 2)− C = (Ckd + nki + kd + nki)− C,

≈ C (kd − 1) + 2nki, (3)

assuming the single kd term is negligibly small.

Theorem 3 (Overshoot of MIMD). The two-flow transient response of MIMD is highly

parameter dependent: based on kd and ki, the scaling of overshoot can either be domi-

nated by C or by a power of n.

Proof. Following the proof of Theorem 1 in the main text, the time evolution will be:
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Time t Flow 1 Flow 2 Jamuv(t)

−1 C 1 True

0 Ckd kd False

1 Ckdki kdki False

2 Ckdk
2
i kdk

2
i False

...
...

...
...

n Ckdk
n
i kdk

n
i True

The overshoot for MIMD is:

(Flow 1 + Flow 2)− C = kdk
n
i (C + 1)− C.

≈ C(kdk
n
i − 1), (4)

if C � 1. Thus, the overshoot shows a positive dependence on C (unlike AIMD, which

has a negative dependence on C) and a power dependence on n.

Theorem 4 (Overshoot of AISD). The two-flow transient response of AISD increases

linearly with n, but does not scale relative to the link capacity, C.

Proof. The time evolution will be:
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Time t Flow 1 Flow 2 Jamuv(t)

−1 C 1 True

0 C − kd 1− kd False

1 C − kd + ki 1− kd + ki False

2 C − kd + 2ki 1− kd + 2ki False

...
...

...
...

n C − kd + nki 1− kd + nki True

The overshoot for AISD is thus:

(Flow 1 + Flow 2)− C = 2(nki − kd). (5)

In our theorems, we ignore the constraint that W ≥ 1. This limit in our implemen-

tation was due to integer rounding to ensure MISD links do not get stuck at 0 weight;

hence, the theorems we present here are more general. If we apply this limit, it affects

the weight of flow 2 at t = 0, which should equal 1. In all cases except AISD, the

difference is removed by the approximation at the end. For AISD, Eqn. (5) becomes

2nki − kd, a negligible change when n� 1.

Theorem 5 (Overshoot of MISD). The two-flow transient response of MISD increases

to the power of n and as a product with C.

Proof. The time evolution will be:
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Time t Flow 1 Flow 2 Jamuv(t)

−1 C 1 True

0 C − kd 1− kd False

1 (C − kd)ki (1− kd)ki False

2 (C − kd)k2i (1− kd)k2i False

...
...

...
...

n (C − kd)kni (1− kd)kni True

The overshoot for MISD is thus:

(Flow 1 + Flow 2)− C = kni (C − 2kd + 1)− C

≈ C (kni − 1) , (6)

since C is large relative to 2kd + 1.

General conclusions can be drawn from these relations that correlate well with the

simulation results. We can bound the overshoot of both AI algorithms (AIMD and

AISD) by |F|ki, where |F| is the number of flows that must share a link, because each

individual flow will not overshoot more than one ki. The more precise overshoot of

AIMD,C(kd−1)+2nki (Theorem 1 main text), shows a significant capacity-dependent

stabilizing factor, as C (kd − 1), which is negative, counteracts the factor of n. When

we repeated the AIMD flow simulation (Table 1 main text) with C = 50 (as opposed to

C = 1000), the overshoot of AIMD increased, as expected.

AISD has a conservative increase similar to AIMD but suffers because subtractive

decrease slowly adjusts when available bandwidth decreases. While some parameter
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settings may overcome this, it is difficult in practice to tune the SD constant to be

effective in all scenarios. Simulation results supports this observation, showing a large

drop penalty during rush hour and a slow recovery after traffic subsides (Figure 3 main

text). For AISD, if multiple flows share a link, transient overshoot is approximately

|F| (nki). When a large number of flows share a link, e.g. millions of flows on an

Internet backbone, overshoot will be very large.

The Oja-inspired algorithm is based on AISD, but subtracts a normalized traffic-

dependent quadratic term. This attempts to correct for the slow LTD decrease of AISD,

especially at high weights, and we do observe improvement over AISD in our network

simulations. However, we also observe larger drop and queue penalties for Oja com-

pared to AIMD due to its still rather conservative decrease following congestion. The

decay term can also completely counteract the AI contribution when Duv →
√
WC

(i.e. when edge utilization is high), thus potentially leading to edge under-utilization.

This convergence to a weight less than C causes LTD never to be triggered (hence, the

∞ term in Table 2 in the main text, for this simple two-flow case). The lack of peri-

odic overshooting appears to be key for the drop and queue penalty improvements over

AISD.

The overshoot and performance of MIMD are highly dependent on C relative to

the ki and kd parameters, explaining the scattered performance of MIMD in Figure 2

(main text). With optimal parameter tuning, MIMD can be made to operate well under

transient behavior, which is seen when certain MIMD points reach the AIMD region

(Figure 3 main text).

MISD can easily be seen as worse than AISD in terms of drop/queue penalties in
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our simulations (Figures 2 and 3 main text). Intuitively, this is because MISD reduces

slowly (subtractively) but increases aggressively (multiplicatively). The transient over-

shoot analysis for MISD shows that it increases as a product of C and a constant to

the power of n. Since the decrease term is weak, n will be small, meaning that poor

performance will be especially seen for high capacity links.

Algorithm performance with additional topologies

We performed simulations with 10-fold larger networks (n = 1000), with both uni-

form and scale-free degree distributions. The scale-free topology was derived using

the Barabasi-Albert preferential attachment model (Barabasi and Albert, 1999). When

generating graphs using this model, new nodes are connected to existing nodes with

probability proportional to their existing degree. This mechanism has been shown to

produce a power-law degree distribution. We found no qualitative change in our con-

clusions here (Figure 4 below) compared to the results discussed in the main text. Thus,

our results are applicable to at least two classes of network topologies: uniform (in-

spired by grid-like road networks) and power-law (Internet). This invariance is likely

due to the distributed nature of the flow control algorithms. The overshoot theorems

exemplify this, having no assumptions on network size and topology.

Changes in edge weights (W) under dynamic traffic

To study how W (edge weights) changed under the rush hour protocol of Figure 3, we

plotted the average W (computed in 10 time-step bins) for all used source-to-router

links in the network. We focused on source-router links as these primarily control the
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Better

Max SendBang-Bang

A) Scale-free network with n=1000 B) Uniform network with n=1000

Max SendBand-Bang

Better

Figure 4: Performance using additional topologies. Comparison of all the algorithms
using a scale-free degree distribution (A) and a uniform degree distribution (B) with
1000 nodes.

amount of new data injected into the network in each time step. Error bars in this figure

correspond to the standard error of the average over 10 trials. Both MIMD and AIMD

reduce edge weights in response to rush-hour, showing that they handle excess traffic

by reducing bandwidth instead of dropping data. The characteristic oscillatory probing

nature of both algorithms is also apparent. In both cases, the range of W in each time

step is narrowly bounded, indicating network stability.
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Rush hour

Figure 5: Changes in the edge weight under the dynamic traffic protocol. Error bars
correspond to the standard error of the average over 10 trials.
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