
Variational Latent Gaussian Process for
Recovering Single-Trial Dynamics from

Population Spike Trains

Yuan Zhao∗1,2 and Il Memming Park†1,2,3

1Department of Neurobiology and Behavior
2Department of Applied Mathematics and Statistics

3Institute for Advanced Computational Sciences
Stony Brook University, Stony Brook, NY, USA

Abstract

When governed by underlying low-dimensional dynamics, the interde-
pendence of simultaneously recorded population of neurons can be explained
by a small number of shared factors, or a low-dimensional trajectory. Re-
covering these latent trajectories, particularly from single-trial population
recordings, may help us understand the dynamics that drive neural compu-
tation. However, due to the biophysical constraints and noise in the spike
trains, inferring trajectories from data is a challenging statistical problem
in general. Here, we propose a practical and efficient inference method,
called the variational latent Gaussian process (vLGP). The vLGP com-
bines a generative model with a history-dependent point process observa-
tion together with a smoothness prior on the latent trajectories. The vLGP
improves upon earlier methods for recovering latent trajectories, which as-
sume either observation models inappropriate for point processes or linear
dynamics. We compare and validate vLGP on both simulated datasets and
population recordings from the primary visual cortex. In the V1 dataset,
we find that vLGP achieves substantially higher performance than previous
methods for predicting omitted spike trains, as well as capturing both the
toroidal topology of visual stimuli space, and the noise-correlation. These
results show that vLGP is a robust method with a potential to reveal hidden
neural dynamics from large-scale neural recordings.

∗yuan.zhao@stonybrook.edu
†memming.park@stonybrook.edu

1

ar
X

iv
:1

60
4.

03
05

3v
5

 [
st

at
.M

L
]

 2
3

D
ec

 2
01

6

1 Introduction

Neural populations implement dynamics that produce robust behavior; however,
our current experimental observations of these dynamics are invariably indirect
and partial. In classical analyses of neural spike trains, noisy responses are av-
eraged over repeated trials that are presumably time-locked to a stereotypical
computation process. However, neural dynamics are not necessarily time-locked
nor precisely repeated from trial to trial; rather, many cognitive processes gen-
erate observable variations in the internal processes that sometimes manifest in
behavior such as error trials, broad reaction time distributions, and change of
mind [16, 21, 31]. In addition, it is difficult to disambiguate different possible
neural implementations of computation from the average trajectory since they
may only differ in their trial-to-trial variability [6, 21]. Therefore, if we wish to
understand how neural computation is implemented in neural populations, it is
imperative that we recover these hidden dynamics from individual trials [17, 26].

Advances in techniques for recording from larger subpopulations facilitate
single-trial analysis, especially the inference of single-trial latent dynamical tra-
jectories. Several statistical approaches have been developed for extracting latent
trajectories that describe the activity observed populations [1, 12, 19, 23, 28, 36].
For example, latent trajectories recovered from motor cortex suggest that these
methods can provide insight to the coding and preparation of planned reaching
behavior [7, 8, 32]. Latent trajectories also elucidate the low-dimensional noise
structure of neural codes and computations [10, 15, 24, 32].

Inference of latent dynamical trajectories is a dimensionality-reduction method
for multi-variate time series, akin to Kalman smoothing or factor analysis [17].
Given a high-dimensional observation sequence, we aim to infer a shared, low-
dimensional latent process that explains the much of the variation in high-dimensional
observations. A large class of methods assume an autoregressive linear dynamics
model in the latent process due to its computational tractability [5, 17, 23, 26],
we refer to these as PLDS (Poisson Linear Dynamical System). Although the
assumption of linear dynamics can help in smoothing, it can also be overly sim-
plistic: interesting neural computations are naturally implemented as nonlinear
dynamics, and evidence points to nonlinear dynamics in the brain in general.
Therefore, we propose to relax this modeling assumption and impose a general
Gaussian process prior to nonparametrically infer the latent dynamics, similar to
the Gaussian process factor analysis (GPFA) method [20, 36]. However, we differ
from GPFA in that we use a point process observation model with self-history
dependence rather than an instantaneous Gaussian observation model. A Gaus-
sian observation model is inappropriate for inference in the millisecond-range time
scale since it cannot generate spike counts. The price we pay is a non-conjugate
prior and, consequently, an approximate posterior inference [26]. We use a varia-

2

tional approximation [3] where we assume a Gaussian process posterior over the
latents, and optimize a lower bound of the marginal likelihood for the inference.
Our algorithm, we call variational latent Gaussian process (vLGP), is fast and
has better predictability compared to both GPFA and PLDS at a fine timescale
(1 ms bins). We compare these algorithms on simulated systems with known
latent processes. We apply it to high-dimensional V1 data from anesthetized
monkey to recover both the noise correlation structure and topological structure
of population encoding of drifting orientation grating stimuli.

2 Generative model

Suppose we simultaneously observe spike trains from N neurons. Let (yt,n)t=1,...,T

denote the spike count time-series from the n-th neuron for a small time bin. We
model noisy neural spike trains mathematically as a simple point process which is
fully described by its conditional intensity function [9]. We assume the following
parametric form of the conditional intensity function λ∗(·) for the point process
log-likelihood [9, 23]:

log p(yt,n |xt,ht,n,αn,βn) = yt,n log λ∗(t, n |ht,n)− λ∗(t, n |ht,n),

λ∗(t, n |ht,n) = exp
(
α>n xt + β>n ht,n

)
,

(1)

where xt is a latent process and ht,n = [1, yt−p,n, yt−p+1,n, . . . , yt−1,n]> denotes the
spike history vector [29, 34]. Each neuron is directly influenced by the observed
self-history1 with weight βn and also driven by the common latent process with
weight αn (Fig. 1). Neurons are conditionally independent otherwise: all trial-
to-trial variability is attributed either to the latent process or individual point
process noise (c.f., Ecker et al. [10], Goris et al. [13], Lin et al. [22]).

The vector xt denotes the L-dimensional latent process at time t. We assume
that L� N , since we are looking for a small number of latent processes that ex-
plain the structure of a large number of observed neurons. The vector βn consists
of the weights of the spike history and a time-independent bias term of the log
firing rate for each neuron, and ht,n is a vector of length (1 + p) containing the
dummy value 1 for the bias and p time-step spike self-history. This parametriza-
tion assumes that at most p bins in the past influence the current intensity.

Under conditional independence, the joint distribution (data likelihood) of N
spike trains is given by,

p(y1...T,1...N |x1...T ,α1...N ,β1...N) =
T∏
t=1

N∏
n=1

p(yt,n |xt,ht,n,αn,βn). (2)

1It is straightforward to add external covariates similar to the self-history in this point process
regression (e.g., see Park et al. [27]).

3

nonlinear
function

loading
weights

latent processesGaussian process prior
(encodes assumptions) spikes

autoregressive filter

Figure 1: Generative model schematic representing (1) for one neuron driven by
two latent processes. Every neuron in the observed population are driven by the
same set of latent processes. The inferred latent processes are more likely to be
smooth, as assumed by the smooth Gaussian process prior. Given xt and αn, the
spike train y is generated as a generalized linear model (GLM) [29, 34]. The point
nonlinearity is fixed to be exponential f(·) = exp(·).

Note that this model is not identifiable since αT
nxt = (αT

nC)(C−1xt) = α′T
nx′

t

where C is an arbitrary L × L invertible matrix (see later sections for further
discussions). Also, the mean of latent process x can be traded off with the bias
term in β.

Our assumptions about the latent process—namely the smoothness over time
in this paper—are encoded in the prior distribution over the latent process. We
use the Gaussian process (GP) framework [30] for flexible prior design of each
dimension xl(t) independently:

xl(t) ∼ GP(µl, κl) (3)

where µl(t), and κl(t, s) are mean and covariance functions, respectively. When
time is discretized, the GP prior reduces to a multi-variate Gaussian distribution
over the latent time series. We use the following form:

p(xl) = N (xl |0,Kl), l = 1, . . . , L. (4)

For the analyses in this manuscript, we choose the squared exponential covariance
function [30] for general smoothness over time,

cov(xt,l, xs,l) = σ2
l exp(−ωl(t− s)2). (5)

where σl and ωl are hyperparameters corresponding to the magnitude and inverse
time scale of the latent process, respectively.

4

3 Variational inference

Our goal is to infer the posterior distribution over the latent process and fit the
model parameters given the observed data. By Bayes’ theorem, the posterior
distribution of the latent process is,

p(x1...L |y1...N) =
p(y1...N |x1...L)p(x1...L)

p(y1...N)
, (6)

However, unlike in GPFA, the posterior under a point process likelihood and
Gaussian process prior does not have an analytical form [26]. Consequently, we
must turn to an approximate inference technique. We employ variational infer-
ence, which aims to find an approximate distribution q(x) of the intractable true
posterior p(x |y). We can introduce this approximate posterior into the likelihood
by re-writing it as,

log p(y1...N) = Eq[log p(y1...N)] = Eq
[
log

p(y1...N ,x1...L)

q(x1...L)
· q(x1...L)

p(x1...L |y1...N)

]
(7)

= Eq
[
log

p(y1...N ,x1...L)

q(x1...L)

]
︸ ︷︷ ︸

L(q)

+ Eq
[
log

q(x1...L)

p(x1...L |y1...N)

]
︸ ︷︷ ︸

DKL(q‖p)

, (8)

where Eq denotes an expectation over q(x), and DKL(q‖p) is the Kullback-Leibler
divergence, which measures the difference in the true posterior and its variational
approximation. Since DKL(q‖p) is non-negative, L(q) is the lower bound for the
marginal likelihood. Finding an approximate posterior q close to the true posterior
by minimizing the Kullback-Leibler divergence is equivalent to maximizing the
lower bound L(q), also known as the Evidence Lower BOund (ELBO).

We further assume that the q distribution factorizes into Gaussian distributions
with respect to each dimension of the latent process, such that

q(x1...L) =
L∏
l=1

N (xl |µl,Σl). (9)

We then obtain the lower bound:

L(q) =
T∑
t=1

N∑
n=1

Eq[log p(yt,n |xt,ht,n,αn,βn)]−
L∑
l=1

Eq
[
log

q(x1...L |µl,Σl)

p(x1...L |Kl)

]

=
T∑
t=1

N∑
n=1

[yt,n(α>nµt + β>n ht,n)− exp(α>nµt + β>n ht,n +
1

2
α>n Σtαn)]

− 1

2

L∑
l=1

[µ>l K−1
l µl + tr(K−1

l Σl)− log det(K−1
l Σl)− T].

(10)

5

where T is the number of total time steps, and each temporal slice µt is a vector
of posterior means of the L latent variables at time t. Each temporal slice Σt is
a diagonal matrix whose diagonal contains the variances of the L latent variables
at time t.

Variational inference for the entire posterior over latents, parameters, and hy-
perparameters can all be formulated in terms of maximizing (10). We sequentially
update all parameters coordinate-wise; each conditional update turns out to be
a convex-optimization problem except for the hyperparameters as explained be-
low. We derive the inference algorithm (vLGP) in the following sections, and it
is summarized in Algorithm 1.

Our algorithm scales linearly in space O(Ts) and time O(Tr2L) per iteration
(for a fixed hyperparameter) where s = max(rL, pN) thanks to the rank-r incom-
plete Cholesky factorization of the prior covariance matrix. For comparison, time
complexity of GPFA is O(T 3L3), and that of PLDS is O(T (L3 + LN)).

3.1 Posterior over the latent process

The variational distribution ql is assumed to be Gaussian and thus determined
only by its mean µl and covariance Σl. The optimal solution is therefore obtained
by

µ?
1...L,Σ

?
1...L = arg max

µ1...L,Σ1...L

L(q), (11)

while holding other parameters and hyperparameters fixed.
Denote the expected firing rate of neuron n at time t by λt,n,

λt,n = Eq [λ∗(t, n |ht,n)] = exp

(
β>n ht,n + α>nµt +

1

2
α>n Σtαn

)
. (12)

The optimal µl can be obtained by the Newton-Raphson method. The gradient
and Hessian are given as

∇µl
L =

∑
t,n

(yt,n − λt,n)an,let −K−1
l µl, (13)

∇2
µl
L =−

∑
t,n

λt,na
2
n,lete

>
t −K−1

l . (14)

where et is a vector of length T with value 1 at t and zero elsewhere. Note that
the Hessian is negative definite, and hence this is a convex optimization given the
other arguments and λt,n. In each iteration, the update is

µnew
l = µold

l − (∇2
µl
L)−1(∇µl

L). (15)

6

Algorithm 1 Pseudocode for vLGP inference

1: procedure vLGP(y1...T , h1...T,1...N , σ2
1...L, ω1...L, tol, k)

2: Gl = ichol(σ2
l , ωl), l = 1 . . . L . construct incomplete Cholesky

decomposition [2]
3: Initialize αn and µl by factor analysis
4: βn ← (h>1...T,nh1...T,n)−1h>1...T,ny1...T , n = 1 . . . N . linear regression
5: while true do
6: for l← 1, . . . , L do
7: λt,n ← α>nµt + β>n ht,n + 1

2
α>n Σtαn, t = 1 . . . T, n = 1 . . . N

8: ul ← GlG
>
l (y − λ)αl − µold

l

9: Bl ← G>l diag(Wl)Gl

10: µnew
l ← µold

l + [IT −GlG
>
l Wl + GlBl(Ir + Bl)

−1G>l Wl]ul .
Newton-step for µ

11: µnew
l ← (µnew

l − µ̄new
l) . constrain µ

12: end for
13: for n← 1, . . . , N do
14: λt,n ← α>nµt + β>n ht,n + 1

2
α>n Σtαn, t = 1 . . . T, n = 1 . . . N

15: αnew
n ← αold

n + [(µ + V ◦ αold
n)>diag(λn)(µ + V ◦ αold

n) +
diag(V>λn)]−1[µ>yn − (µ + V ◦αold

n)>λn] . Newton-step for α
16: βnew

n ← βold
n + [h>n diag(λn)hn]−1h>n (yn − λn) . Newton-step for β

17: end for
18: αnew

l ← αnew
l /‖αnew

l ‖, l = 1 . . . L . constrain α
19: W ← λα2> . update diagonals of W
20: Bl ← G>l diag(Wl)Gl, l = 1 . . . L
21: V1...T,l ← [Gl ◦ (Gl −GlBl + GlBl(Ik + Bl)

−1Bl)]1, l = 1 . . . L
22: Optimize hyperparameters with the gradient in (32) and update G1...L

every k iterations
23: if ‖(µnew

1...L,α
new
1...N ,β

new
1...N)− (µold

1...L,α
old
1...N ,β

old
1...N)‖ < tol then

24: break
25: end if
26: µold

1...L ← µnew
1...L, α

old
1...N ← αnew

1...N , β
old
1...N ← βnew

1...N
27: end while
28: end procedure

7

If we set the derivative w.r.t. Σl to 0,

∇Σl
L = −1

2

∑
t,n

λn,ta
2
n,lete

>
t −

1

2
K−1

l +
1

2
Σ−1

l = 0, (16)

we obtain the optimal covariance,

Σl =

(
K−1

l +
∑
t,n

λt,na
2
n,lete

>
t

)−1

(17)

=
(
K−1

l + Wl

)−1
. (18)

where Wl =
∑

t,n λt,na
2
n,lete

>
t is a diagonal matrix. Therefore, there is no need

for optimization of the covariance. This simple form of variational posterior co-
variance has been noted before [25]. Also note that ∇2

µl
L = −Σ−1

l .
There is a redundancy between the bias term in β and the mean µ. During

optimization, we constrain the latent mean µ by zero-centering, and normalize
the loading α by its max-norm latent-wise.

The prior covariance matrix Kl is large (T × T) and is often severely ill-
conditioned. We only keep a truncated incomplete Cholesky factor G [2] of size
T × r where r is the rank of the resulting approximation,

Kl ≈ GlG
>
l , (19)

which provides both a compact representation and numerical stability. Now, we
derive key quantities that are necessary for a memory-efficient and numerically
stable implementation. For convenience and without ambiguity, we omit the sub-
script l of all vectors and matrices below. By the matrix inversion lemma [30], we
have

Σ = (K−1 + W)−1 = K−K(W−1 + K)−1K. (20)

and applying the lemma again

(W−1 + K)−1 = W −WG(I + B)−1G>W, (21)

where B = G>WG. We obtain two useful identities as a result:

Σ = GG> −GBG> + GB(I + B)−1BG>, (22)

K−1Σ = I−WGG> + WG(Ik + B)−1BG>. (23)

With (22) and (23), we can avoid large matrices in above equations such as,

tr[K−1Σ] = T − tr[B] + tr[B(I + B)−1B], (24)

8

log det[K−1Σ] = log det[I−B + B(I + B)−1B], (25)

diag(Σ) = [G ◦ (G−GB + GB(Ik + B)−1B)]1, (26)

Σ∇µL = (I−GG>W + GB(Ik + B)−1G>W)u, (27)

where 1 is the all-ones vector, and u = GG>(y − λ)αl − µ. In addition, by the
one-to-one correspondence between W and Σ, we use the diagonal of W as a
representation of Σ in the algorithm.

3.2 Weights

Denote the temporal slices of Σl’s by T×L matrix V. The optimal weights αn and
βn given the posterior over the latents can be obtained by the Newton-Raphson
method with the following derivatives and Hessians,

∇anL =µ>(yn − λn)− diag(V>λn)an, (28)

∇2
an
L =− (µ + V ◦ 1a>n)> diag(λn)(µ + V ◦ 1a>n)− diag(V>λn), (29)

and

∇βn
L =h>n (yn − λn), (30)

∇2
βn
L =− h>n diag(λn)hn. (31)

The updating rules are

αnew
n =αold

n − (∇2
αn
L)−1∇αnL, (32)

βnew
n =βold

n − (∇2
βn
L)−1∇βn

L. (33)

Once again, both Hessians are negative definite, and hence in the territory of
convex optimization.

3.3 Hyperparameters

One way to choose hyperparameters is to maximize the marginal likelihood w.r.t.
the hyperparameters. Since the marginal likelihood is intractable in the vLGP
model, we instead maximize (10) once again given the parameters and poste-
rior. Interestingly, this objective function takes the same form as the one that is
maximized in the GPFA’s hyperparameters updates.

We write the squared-exponential covariance kernel as,

Kl = σ2
l exp(−ωlD), (34)

where D is the matrix of squared distances of each time pair. Hyperparameters
σ2 and ω corresponds to prior variance and inverse (squared) time scale. We

9

optimize the log-transformed hyperparameter for those are positive. To the j-th
transformed hyperparameter of the l-th latent dimension, θlj, the derivative is
given as

∂L
∂θlj

= tr

(
∂L
∂Kl

∂Kl

∂θlj

)
, (35)

∂L
∂Kl

=
1

2

(
K−1

l µlµ
>
l K−1

l + K−1
l ΣlK

−1
l −K−1

l

)
. (36)

The optimal value can be found by common gradient algorithms for each latent
dimension independently.

The above derivation of the hyperparameter optimization technique assumes
a fixed posterior and parameters. Thus it requires complete prior covariance
matrices and explicit posterior covariance matrices rather than low-rank decom-
positions. In order to avoid numerical singularity, we add a small quantity to
the diagonal of prior covariance matrices. It would be extremely costly to use
these complete covariance matrices for long, consecutive time series. Therefore,
we randomly take many shorter temporal subsamples of the posterior for fast
computation [36]. One hyperparameter iteration is performed every fixed number
of iterations of posterior and parameter optimization.

4 Results

We verified our inference algorithm recover the true parameters and latent vari-
ables when there is no model mismatch and then apply it to two simulated systems
and one real dataset. We compare our method (vLGP) against GPFA and PLDS.

4.1 Convergence

First of all, we demonstrate that vLGP converges to the correct parameters and
latent variables under the assumed generative model. We applied our method to
simulated spike trains driven by 2-dimensional Gaussian process. We fixed the
number of time bins of a trial, GP variance and timescale (T = 200, σ2 = 1, ω =
0.01). The values of parameters were randomly drawn from standard normal
distribution. There are two limits that we need to consider for the convergence;
increasing the duration of observations (more trials), and increasing the number
of observed neurons. The parameters and latent variables are initialized by factor
analysis (FA). To identify the property of the global optima, we also initialize the
parameters and latent variables at the values near the true ones (by adding zero
mean and 0.1 standard deviation Gaussian noises).

10

We calculated the mean squared error (MSE) of posterior mean and weights on
a grid of different numbers of trials and neurons. Figure 2a shows the convergence
in MSE trend. The posterior mean of the latent distribution converges to the
true latent as the number of neurons grows, and the parameters converge to the
true weights as the number of time bins grows. The difference between FA and
near truth initialization shows relative error in FA initialization combined with
the non-convex vLGP inference which is small for latent process estimation.

We also fit the vLGP model to simulated spike trains driven by 1-dimensional
Gaussian process latent at four different timescales while the rest setting was the
same as above simulation. For each timescale, we simulated 10 datasets. We
initialized the timescale at very smooth value (10−5), and parameters and latent
variables by factor analysis. Figure 2b shows the learned values scattered around
the ground truth for a wide range of true time scales. We note that learning
the timescale in general is challenging especially in high-dimensional latent spaces
(data not shown).

4.2 Evaluation

We use a leave-one-neuron-out prediction likelihood to compare models. For each
dataset comprising of several trials, we choose one of the trials as test trial and
the others as training trials. First, the weights and posterior are inferred from the
training trials. Next, we leave one neuron out of the test trial and make inference
on the posterior using the remaining neurons with the weights estimated from
the training trials. Then the spike train of the left-out neuron is predicted by
the model given the weights estimated from the training trials and the posterior
inferred from the test trial. We repeat this procedure on each neuron of the chosen
test trial, and choose each trial of one dataset as test trial. Finally we obtain the
prediction of all spike trains in the dataset.

For simulated datasets, we know the true latent process that generates ob-
servations. Since latent space is only identifiable up to affine transformation, we
can quantify using the angle between subspaces [5, 28]. However, due to possible
mismatch in the point nonlinearity, the subspace can be distorted. To account for
this mismatch, we use the mean Spearman’s rank correlation that allows invertible
monotonic mapping in each direction. The Spearman’s rank correlation between
the posterior and the true latent trajectory gives a measure of the goodness of
the posterior. If the correlation is large, the posterior recovers more information
about the underlying trajectory.

11

0 1000 2000
of neurons

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
M

S
E
(µ̂

)

0 1000 2000 3000
of bins

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
S
E
(α̂

)

0 1000 2000 3000
of bins

0

1

2

3

4

5

6

7

M
S
E
(e

x
p
(β̂

))

1e 5

initialization
near truth

FA

(a)

10-5 10-4 10-3 10-2 10-1

ω

learned

true

initial

(b)

Figure 2: vLGP learning under the assumed model. (a) Convergence of latent
variable and parameters vLGP. Notice that we use exp(β̂) instead of the raw β̂
because a tiny deviation in the base firing rate results in a huge difference in
the bias term β̂0 through the exp / log transform. MSE was computed over a
grid over number of neurons and trials. We plot the median MSE. (b) Learned
timescales ω. Green diamonds denote the initial values, red diamonds denote
the true values, and blue dots denote learned values. For every true value, we
simulated 10 datasets. All initial values were fixed at 10−5.

4.3 Simulation

We simulate two datasets: one with deterministic nonlinear dynamics, and one
with linear dynamics and model-mismatched nonlinear observation. Each dataset
consists of 5 samples (simulated datasets) and each sample contains 10 trials from
50 neurons which last for 1 sec. We choose a bin size of 1 ms.

In the first dataset, the latent trajectories are sampled from the Lorenz dy-
namical system with the time step of 0.0015. This 3-dimensional system is defined
by the following set of equations,

ẋ = 10(y − x),

ẏ = x(28− z)− y,
ż = xy − 2.667z.

(37)

Spike trains are simulated by (1) with 10-step suppressive history filter (from most

12

0 200 400 600 800 1000 ms 0 200 400 600 800 1000 ms

PLDS
GPFA
vLGP
True

(a) Lorenz attractor with refractory period

0 200 400 600 800 1000 ms 0 200 400 600 800 1000 ms

PLDS
GPFA
vLGP
True

(b) Linear dynamical system (LDS) with soft-rectified Poisson observation.

Figure 3: Spike trains from 50 simultaneously observed neurons, and correspond-
ing 3-dimensional latent dynamics. (Left) Simulated spike trains from each cor-
responding system. See (37) and (38) for the exact generative model. (Right)
True and inferred 3-dimensional latent processes. vLGP and GPFA infers smooth
posterior, while noticeable high-frequency noise is present in the PLDS inference.

recent: [−10,−10,−3,−3,−3,−3,−2,−2,−1,−1]) given the latent trajectory.
In the second dataset, Poisson spike trains are simulated from a 3-dimensional

linear dynamical system (LDS) defined as

yt,n |xt ∼ Poisson(log(1 + exp(c>n xt + dn))

x0 ∼ N (µ0,Q0)

xt+1 |xt ∼ N (Axt + bt,Q).

(38)

Figure 3 shows one trial from each dataset and corresponding inferred posterior
mean latent process. The posterior means are rotated toward the true latent
subspace. The PLDS inference (blue) looks the farthest away from the true Lorenz

13

100 101 102 103

computation time (s)

0.5

0.6

0.7

0.8

0.9

1.0
ρ

PLDS

GPFA

vLGP

(a) Lorenz

100 101 102 103

computation time (s)

0.5

0.6

0.7

0.8

0.9

1.0

ρ

PLDS

GPFA

vLGP

(b) LDS

Figure 4: Performance comparison on simulated datasets. (a,b) Convergence
speed of each algorithm in terms of inferred rank correlation between the true
generative latent time series and the inferred mean posterior. GPFA is the fastest,
and PLDS converges very slowly. vLGP achieves the largest correlation, yet an
order of magnitude faster than PLDS. The origin of time is shifted to 1 for con-
venience. Computer specification: Intel(R) Xeon(R) CPU E5-2680 v3 2.50GHz,
24 cores, 126GB RAM.

latent relatively but much closer to the LDS latent because the true latent meets
its assumption. However, PLDS inferred latents lack smoothness. The GPFA
inference (green) is better than PLDS for Lorenz latent but shows deviations
from the true LDS latent. The smoothness is kept in the inference. The inference
of our method (red) are very close to the true latent in both cases along the time
while being smooth at the same time.

Figure 4 shows the Spearman’s rank correlation between the posterior mean
and true latent versus running time (log scale). The figures show our method
(vLGP) resulted in overall larger correlation than the PLDS and GPFA after
the algorithms terminated. PLDS uses nuclear norm penalized rate estimation as
initialization [28]. The rank correlation from PLDS inference only slowly improved
from the initial value through the optimization. Both the GPFA and vLGP use
factor analysis as initialization [36]. Note that the GPFA divides each trial into
small time segments for estimating the loading matrix and bias which it breaks
the continuity within each trial. Only the final iteration infers each trial as whole.
Thus the correlations of the final iterations jumps up in the figures. It is obvious
that vLGP makes much improvement to the result of factor analysis in terms of
the rank correlation.

To quantify predictive performance on the spike trains, we use the log-likelihood
on the leave-one-neuron-out as described in the evaluations section. We normal-

14

ize the test point process likelihood with respect to that of a baseline model that
assumes a homogeneous Poisson process to obtain, the predictive log-likelihood
(PLL), given as,

PLL =

[∑
t,n(yy,n log(λt,(−n))− λt,(−n))

]
−
[∑

t,n(yy,n log(ȳ)− ȳ)
]

(# of spikes) log(2)
, (39)

where λt,(−n) is the leave-neuron-out prediction to the firing rate of neuron n at
time t, and ȳ is the population mean firing rate. Positive PLL implies the model
predicts better than mean firing rate, and higher PLL implies better prediction.
PLL has a unit of bits per spike, and is widely used to quantify spike train pre-
diction [29].

In Figure 5, we compare the three models for each dataset. Since GPFA
assumes a Gaussian likelihood, it is incompatible to compare directly using a point
process likelihood. We use linear rectifier to convert the GPFA predictions to non-
negative rates, then compute PLL (Fig. 5a). Let us denote the linear predictor by
η omitting the neuron, time and model. Specifically, The rate prediction is given
by,

λ =

{
log(1 + exp(aη))/a GPFA (rectifier link)

exp(η + 1
2
α>Vα) PLDS and vLGP

(40)

where a = 500 was chosen to prevent the prediction from producing invalid PLL
while preserving linearity as much as possible2. We also compare the R2 instead
of PLL of the predictions with respect to the three models (Fig. 5b) where the raw
linear prediction η without the rectifier link was used particularly. PLL and R2

largely agrees despite that R2 assumes a squared error measure GPFA optimizes
for, and inappropriate for PLDS and vLGP.

4.4 V1 population recording

We apply our method to a large scale recording to validate that vLGP picks
up meaningful known signals, and investigate the population-wide trial-to-trial
variability structure. We use the dataset [14] where 72 different equally spaced
directional drifting gratings were presented to an anesthetized monkey for 50 trials
each (array-5, 148 simultaneously recorded single units). We use 63 V1 neurons
by only considering neurons with tuning curves that could be well approximated
(R2 ≥ 0.75) by bimodal circular Gaussian functions (the sum of two von Mises

2We tried square link function for GPFA initially. However, it often produces detrimental
PLL due to large rate predictions from large negative raw (η) predictions. Also note that
straightforward linear rectifier λ = η · I(η > 0) can result in undefined PLL due to predicting
zero rate in a bin with non-zero observation.

15

−0.5

0.0

0.5

1.0

Lo
re

nz
 1

Lo
re

nz
 2

Lo
re

nz
 3

Lo
re

nz
 4

Lo
re

nz
 5

LD
S

1

LD
S

2

LD
S

3

LD
S

4

LD
S

5

V1
 N

=6
3

V1
 N

=1
48

Dataset

PL
L

 PLDS GPFA (rectifier) vLGP

(a) PLL

−0.02

0.00

0.02

0.04

Lo
re

nz
 1

Lo
re

nz
 2

Lo
re

nz
 3

Lo
re

nz
 4

Lo
re

nz
 5

LD
S

 1

LD
S

 2

LD
S

 3

LD
S

 4

LD
S

 5

V
1

N
=

63

V
1

N
=

14
8

Dataset

R
2

PLDS GPFA vLGP

(b) R2

Figure 5: Predictive performance (the larger the better). (a) Predictive log-
likelihood (PLL) (b) Predictive R2 (coefficient of determination) Note that GPFA
can predict negative mean, thus the PLL cannot make a fair comparison even
with a soft rectifier link. We visually added gradient in the GPFA PLL results
to caution the readers. R2, which is GPFA’s natural measure of performance can
also be negative due to overfitting. Note that GPFA performs better than PLDS
on LDS when compared in predictive R2, but vLGP is consistently the best in
both measures.

16

functions with different preferred orientations, amplitudes and bandwidths) ac-
cording to [14]. We do not include the stimulus drive in the model, in hopes that
the inferred latent processes would encode the stimulus. We used bin size of 1 ms.

We use 4-fold cross-validation to determine the number of latents. A 15–
dimensional model is fitted to a subsample composed of the first trial of each
direction at first. In each fold, we use its estimated parameter to infer the latent
process from another subsample composed of the second trial of each direction.
The inference is made by leaving a quarter of neurons out, and we predict the
spike trains of the left-out neurons given the first k (k = 1 . . . 15) orthogonalized
latent process corresponding to k-dimension. This procedure led us to choose 5
as the dimension since the predictive log-likelihood reached its maximum.

We re-fit a 5-dimensional vLGP model using the subsample of the first trials.
To quantify how much the model explains, we report pseudo-R2 defined as

pseudo-R2 = 1− LLsaturated − LLmodel

LLsaturated − LLnull

(41)

where LLnull refers to the log-likelihood of population mean firing rate model
(single parameter), and LLsaturated is the log-likelihood for the saturated model in
which the rate of each bin is estimated by the empirical mean. The pseudo-R2 of
our model (vLGP with 5D latents) is 20.88%. This model explains with shared
variability through the latents, and heterogeneity of baseline firing of individual
neurons. For a baseline model with only per neuron noise component (and no
shared latent), the pseudo-R2 is 6.77%.

Figure 5 shows the predictive performance based on two subsets. The first
one is 4 trials (0◦, 90◦, 180◦, 270◦) of the subset of 63 neurons with 5-dimensional
latent process. The second one is 10 trials (5 trials of 0◦ and 5 trials of 90◦) of all
148 neurons with 4-dimensional latent process.

To evaluate the predictive performance under a longer time scale, we also cross-
validated on the first subset with 20 ms time bins with GPFA and vLGP. GPFA
models were fitted for both raw spike count and its square root. The mean of
square root spike count by vLGP was obtained from simulation using the predicted
firing rate. We report the normalized MSEs (MSE / variance of observation) of
both methods for spike count and its square root respectively, GPFA: 0.713 (spike
count) and 0.699 (square root), and vLGP: 0.709 (spike count) and 0.708 (square
root). We use F-test to compare the MSEs and see if any one of the two methods
results in a significantly larger error. The corresponding p-values are 0.588 (spike
count) and 0.140 (square root). It shows that the MSEs are not significantly
different between GPFA and vLGP with 20 ms time bin.

Although the parameters are estimated from a subsample, we can use them to
infer the latent process of all trials of all 72 directions. Figure 6 shows inferred
latent processes for two trials for two directions. We rotate the inferred latent

17

0 1280 2560 ms 0 1280 2560 ms

0 1280 2560 ms 0 1280 2560 ms

0°

0 1280 2560 ms 0 1280 2560 ms

0 1280 2560 ms 0 1280 2560 ms

90°

Figure 6: Single trial spike trains and inferred latent. The visual stimulus was
only on for the first half of the trial. The left two columns are the spike trains
and respective inferred latent of 2 trials of 0◦. The right ones are 2 trials of 90◦.
The colors indicate the latent dimensions that are rotated to maximize the power
captured by each latent in decreasing order (blue, green, red, purple and yellow).
The solid lines are the posterior means and the light colors are corresponding
uncertainty.

process by the singular value decomposition (SVD; details will be given later.)
Variational posterior distribution over the latents are shown for each trial. During
the second half of the trial when the stimulus was off, and the firing rate was lower,
the uncertainty in the latent processes increases. There are visible trial-to-trial
variability in the spike trains which are reflected in the variations of latents.

First we investigate how the “signal”—defined as visual stimuli—is captured
by the latent processes. We average the inferred latent processes over 50 trials
with identical spatio-temporal stimuli (Fig. 7). Since the stimuli are time-locked,
corresponding average latent trajectory should reveal the time-locked population
fluctuations driven by the visual input. We concatenate the average latent pro-
cesses along the dimension of time. Then we orthogonalize it by SVD. The di-
mensions of orthogonalized one are ordered by the respective singular values. The
latent process of a single trial is also rotated to the same subspace.

Furthermore, we visualized the trajectories in 3D (see supplementary online
video3) that show how signal and noise are dynamically encoded in the state
space. Figure 8 shows the projection of average latent process corresponding to
each orientation to the first 3 principal components. The projection topologically
preserves the orientation tuning in the V1 population. There are two continuous
circular variables in the stimuli space to be encoded: orientation and temporal
phase of oscillation. The simplest topological structure of neural encoding is a

3https://www.youtube.com/watch?v=CrY5AfNH1ik

18

https://www.youtube.com/watch?v=CrY5AfNH1ik

0 1280 2560 ms

0°
1st

2nd

3rd

4th

5th

0 1280 2560 ms

90°
1st

2nd

3rd

4th

5th

Figure 7: Inferred latent processes averaged for two stimulus directions (0° and
90°). Latents are rotated to maximize the power captured by each latent in
decreasing order.

torus, and we observe a toroidal topology (highlighted as rings of cycle averages).
To see if our method captures the noise correlation structure through the

latents as one would predict from recent studies of cortical population activity [10,
13, 22], we calculated pairwise correlations between all neurons. We simulated
spike trains by model-predicted firing rates of all trials with 0◦ and 90◦ stimulus.
The model-predicted firing rates are the fitted values of the time bins that are
calculated in the way of the generative model by using estimated parameters
and latents. For each bin, we simulated the spike by using a Poisson random
number generator with the corresponding firing rate. To remove the signal, we
subtracted the mean over 50 trials for each direction of stimulus. Figure 9 shows
the correlation matrices during the stimulus period (150–1150 ms) and off-stimulus
period (1400–2400 ms). The neurons are sorted by the total correlations during
the stimulus period. The power of model-explained noise correlation is defined as
(1−‖Cmodel −Ctrue‖F)/‖Ctrue‖F where C is the zero-diagonal correlation matrix
w.r.t. its subscript and ‖·‖F is the Frobenius norm. The proposed model explains
more noise correlation in contrast to GPFA and PLDS for both periods.

These results show that vLGP is capable of capturing both the signal—repeated
over multiple trials—and noise—population fluctuation not time locked to other
task variables–present in the cortical spike trains.

5 Discussion

We propose vLGP, a method that recovers low-dimensional latent dynamics from
high-dimensional time series. Latent state-space inference methods are different
from methods that only recover the average neural response time-locked to an
external observation [4, 7]. By inferring latent trajectories on each trial, they

19

1st

2nd

3rd

0 ms
1400 ms

0°

45°

90°

135°

1st

2nd

3rd

0 ms
1400 ms

 180°

225°

270°

315°

Figure 8: 3D projection of mean latent trajectories given each orientation. We
plot the first three singular vectors of the inferred latent corresponding to the
signal interval (0–1400 ms) colored by orientation. The colored circles are cycle
averages that visualize the temporal phase of oscillation per direction, and form
an approximate torus. The black circle visualizes the circular orientation that
goes through the center of the torus. The left side shows 0–180◦ and the right
side shows 180–360◦.

1
5
0
 -

 1
1
5
0
m

s

True

44.35%

vLGP

40.37%

GPFA

35.11%

PLDS

1
4
0
0
 -

 2
4
0
0
m

s

53.57% 47.85% 45.18%

0.00

0.15

0.30

0.45

Figure 9: Noise-correlation analysis. The pairwise noise correlations between all
neurons were calculated during the stimulus period (top, 150–1150 ms) and off-
stimulus period (bottom, 1400–2400 ms). The time bin size is 50 ms. Neurons
are sorted by the total noise-correlation defined as the row sum of stimulus-driven
noise correlation matrix (top-left). The model-explained power percentages are
shown on the bottom of each matrix.

20

provide a flexible framework for studying the internal neural processes that are
not time-locked. Higher-order processes such as decision-making, attention, and
memory recall are well suited for latent trajectory analysis due to their intrinsic
low-dimensionality of computation. Our method performs dimensionality reduc-
tion on a single trial basis and allows decomposition of neural signals into a small
number of smooth temporal signals and their relative contribution to the popula-
tion signal.

We compare our method to two widely used latent state space modeling tools in
neuroscience: GPFA [36] and PLDS [23]. Unlike GPFA, vLGP allows a generalized
linear model observation which is more suitable for a broad range of spike train
observations. Moreover, vLGP is significantly faster than PLDS, yet it shows
superior performance in capturing the spatio-temporal structures in the neural
data to both PLDS and GPFA at a fine timescale (1 ms bins).

To test its validity in real electrophysiological recordings, we used V1 popu-
lation recording driven by fixed stimulus as a litmus test. We showed that our
inferred latents contain meaningful information about the external stimuli, encod-
ing both orientation and temporal modulation on a continuous manifold.

We only considered smoothness encoded in the GP prior in this manuscript,
but a plethora of GP kernels are available [30, 33]. For example, to capture prior
assumptions about periodicity in some of the latent processes, we can use spectral
kernels [35]. This can be particularly useful for capturing internal neural oscilla-
tions [11]. In addition, it is straightforward to incorporate additional covariates
such as external stimuli [27] or local field potential [18] to vLGP.

We have not found systematic issues with vLGP, but potential weaknesses
could stem from the variational approximation, inappropriate assumptions on the
latent processes, and particular numerical shortcuts used in the implementation.
It could be challenging for our method to recover very fast-changing latent trajec-
tories, especially when the overall firing rate is very low. Subsampling used while
optimizing the hyperparameters may miss a rare but key spike when the spike
trains are sparse.

The proposed method has potential application in many areas, and it will
be particularly useful in discovering how specific neural computations are imple-
mented as neural dynamics. We are working on applying this method and its
extensions to sensorimotor decision-making process where the normative model
guides what is being computed, but it is unclear as to how the neural system
implements it.

An open-source python implementation of vLGP is available online (https:
//github.com/catniplab/vLGP) under MIT license.

21

https://github.com/catniplab/vLGP
https://github.com/catniplab/vLGP

Acknowledgment

We thank the reviewers for their constructive feedback. We are grateful to Ar-
nulf Graf, Adam Kohn, Tony Movshon, and Mehrdad Jazayeri for providing the
V1 dataset. We also thank Evan Archer, Jakob Macke, Yuanjun Gao, Chethan
Pandarinath, and David Sussillo for helpful feedback. This work was partially
supported by the Thomas Hartman Foundation for Parkinson’s Research.

References

[1] Archer, E. W., Koster, U., Pillow, J. W., and Macke, J. H. (2014). Low-
dimensional models of neural population activity in sensory cortical circuits.
In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D., and Weinberger,
K. Q., editors, Advances in Neural Information Processing Systems 27, pages
343–351. Curran Associates, Inc.

[2] Bach, F. R. and Jordan, M. I. (2002). Kernel independent component analysis.
Journal of Machine Learning Research, 3(1):1–48.

[3] Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2016). Variational inference:
A review for statisticians.

[4] Brendel, W., Romo, R., and Machens, C. K. (2011). Demixed principal compo-
nent analysis. In Shawe-Taylor, J., Zemel, R. S., Bartlett, P., Pereira, F. C. N.,
and Weinberger, K. Q., editors, Advances in Neural Information Processing
Systems 24, pages 2654–2662.

[5] Buesing, L., Macke, J., and Sahani, M. (2012). Spectral learning of linear
dynamics from generalised-linear observations with application to neural pop-
ulation data. In Advances in Neural Information Processing Systems 25, pages
1691–1699.

[6] Churchland, A. K., Kiani, R., Chaudhuri, R., Wang, X.-J. J., Pouget, A., and
Shadlen, M. N. (2011). Variance as a signature of neural computations during
decision making. Neuron, 69(4):818–831.

[7] Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Foster, J. D., Nuyu-
jukian, P., Ryu, S. I., and Shenoy, K. V. (2012). Neural population dynamics
during reaching. Nature, 487(7405):51–56.

[8] Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Ryu, S. I., and
Shenoy, K. V. (2010). Cortical preparatory activity: Representation of move-
ment or first cog in a dynamical machine? Neuron, 68(3):387–400.

22

[9] Daley, D. J. and Vere-Jones, D. (1988). An Introduction to the Theory of Point
Processes. Springer.

[10] Ecker, A. S., Berens, P., Cotton, R. J., Subramaniyan, M., Denfield, G. H.,
Cadwell, C. R., Smirnakis, S. M., Bethge, M., and Tolias, A. S. (2014). State
dependence of noise correlations in macaque primary visual cortex. Neuron,
82(1):235–248.

[11] Fries, P., Reynolds, J. H., Rorie, A. E., and Desimone, R. (2001). Modulation
of oscillatory neuronal synchronization by selective visual attention. Science,
291(5508):1560–1563.

[12] Frigola, R., Chen, Y., and Rasmussen, C. (2014). Variational gaussian pro-
cess State-Space models. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence,
N. D., and Weinberger, K. Q., editors, Advances in Neural Information Pro-
cessing Systems 27, pages 3680–3688. Curran Associates, Inc.

[13] Goris, R. L. T., Movshon, J. A., and Simoncelli, E. P. (2014). Partitioning
neuronal variability. Nature Neuroscience, 17(6):858–865.

[14] Graf, A. B., Kohn, A., Jazayeri, M., and Movshon, J. A. (2011). Decoding
the activity of neuronal populations in macaque primary visual cortex. Nature
neuroscience, 14(2):239–245.

[15] Haefner, R. M., Gerwinn, S., Macke, J. H., and Bethge, M. (2013). Infer-
ring decoding strategies from choice probabilities in the presence of correlated
variability. Nature neuroscience, 16(2):235–242.

[16] Jazayeri, M. and Shadlen, M. N. (2010). Temporal context calibrates interval
timing. Nature Neuroscience, 13(8):1020–1026.

[17] Kao, J. C., Nuyujukian, P., Ryu, S. I., Churchland, M. M., Cunningham,
J. P., and Shenoy, K. V. (2015). Single-trial dynamics of motor cortex and their
applications to brain-machine interfaces. Nature Communications, 6:7759+.

[18] Kelly, R. C., Smith, M. A., Kass, R. E., and Lee, T. S. (2010). Local field
potentials indicate network state and account for neuronal response variability.
Journal of Computational Neuroscience, 29(3):567–579.

[19] Koyama, S., Pérez-Bolde, L. C. C., Shalizi, C. R. R., and Kass, R. E. (2010).
Approximate methods for State-Space models. Journal of the American Statis-
tical Association, 105(489):170–180.

23

[20] Lakshmanan, K. C., Sadtler, P. T., Tyler-Kabara, E. C., Batista, A. P., and
Yu, B. M. (2015). Extracting Low-Dimensional latent structure from time series
in the presence of delays. Neural computation, 27(9):1825–1856.

[21] Latimer, K. W., Yates, J. L., Meister, M. L. R., Huk, A. C., and Pillow,
J. W. (2015). Single-trial spike trains in parietal cortex reveal discrete steps
during decision-making. Science, 349(6244):184–187.

[22] Lin, I.-C., Okun, M., Carandini, M., and Harris, K. D. (2015). The nature
of shared cortical variability. Neuron, 87(3):644–656.

[23] Macke, J. H., Buesing, L., Cunningham, J. P., Yu, B. M., Shenoy, K. V.,
and Sahani, M. (2011). Empirical models of spiking in neural populations. In
Shawe-Taylor, J., Zemel, R. S., Bartlett, P. L., Pereira, F., and Weinberger,
K. Q., editors, Advances in Neural Information Processing Systems 24, pages
1350–1358. Curran Associates, Inc.

[24] Moreno-Bote, R., Beck, J., Kanitscheider, I., Pitkow, X., Latham, P., and
Pouget, A. (2014). Information-limiting correlations. Nature Neuroscience,
17(10):1410–1417.

[25] Opper, M. and Archambeau, C. (2008). The variational Gaussian approxi-
mation revisited. Neural Computation, 21(3):786–792.

[26] Paninski, L., Ahmadian, Y., Ferreira, D. G. G., Koyama, S., Rahnama Rad,
K., Vidne, M., Vogelstein, J., and Wu, W. (2010). A new look at state-space
models for neural data. Journal of Computational Neuroscience, 29(1-2):107–
126.

[27] Park, I. M., Meister, M. L. R., Huk, A. C., and Pillow, J. W. (2014). Encoding
and decoding in parietal cortex during sensorimotor decision-making. Nature
Neuroscience, 17(10):1395–1403.

[28] Pfau, D., Pnevmatikakis, E. A., and Paninski, L. (2013). Robust learning
of low-dimensional dynamics from large neural ensembles. In Burges, C. J. C.,
Bottou, L., Welling, M., Ghahramani, Z., and Weinberger, K. Q., editors, Ad-
vances in Neural Information Processing Systems 26, pages 2391–2399.

[29] Pillow, J. W., Shlens, J., Paninski, L., Sher, A., Litke, A. M., and
Chichilnisky, E. J. Simoncelli, E. P. (2008). Spatio-temporal correlations and
visual signaling in a complete neuronal population. Nature, 454:995–999.

[30] Rasmussen, C. E. and Williams, C. K. I. (2005). Gaussian Processes for
Machine Learning (Adaptive Computation and Machine Learning series). The
MIT Press.

24

[31] Resulaj, A., Kiani, R., Wolpert, D. M., and Shadlen, M. N. (2009). Changes
of mind in decision-making. Nature, 461(7261):263–266.

[32] Sadtler, P. T., Quick, K. M., Golub, M. D., Chase, S. M., Ryu, S. I., Tyler-
Kabara, E. C., Yu, B. M., and Batista, A. P. (2014). Neural constraints on
learning. Nature, 512(7515):423–426.

[33] Schölkopf, B. and Smola, A. J. (2002). Learning with kernels : support vector
machines, regularization, optimization, and beyond. Adaptive computation and
machine learning. MIT Press.

[34] Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P., and Brown,
E. N. (2005). A point process framework for relating neural spiking activity to
spiking history, neural ensemble and extrinsic covariate effects. J. Neurophysiol,
93(2):1074–1089.

[35] Ulrich, K. R., Carlson, D. E., Dzirasa, K., and Carin, L. (2015). GP ker-
nels for Cross-Spectrum analysis. In Cortes, C., Lawrence, N. D., Lee, D. D.,
Sugiyama, M., Garnett, R., and Garnett, R., editors, Advances in Neural In-
formation Processing Systems 28, pages 1990–1998. Curran Associates, Inc.

[36] Yu, B. M., Cunningham, J. P., Santhanam, G., Ryu, S. I., Shenoy, K. V.,
and Sahani, M. (2009). Gaussian-process factor analysis for low-dimensional
single-trial analysis of neural population activity. Journal of neurophysiology,
102(1):614–635.

25

	1 Introduction
	2 Generative model
	3 Variational inference
	3.1 Posterior over the latent process
	3.2 Weights
	3.3 Hyperparameters

	4 Results
	4.1 Convergence
	4.2 Evaluation
	4.3 Simulation
	4.4 V1 population recording

	5 Discussion

