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Abstract

Memory models that store new memories by forgetting old ones have memory
lifetimes that are rather short and grow only logarithmically in the number
of synapses. Attempts to overcome these deficits include “complex” models
of synaptic plasticity in which synapses possess internal states governing the
expression of synaptic plasticity. Integrate-and-express, filter-based models of
synaptic plasticity propose that synapses act as low-pass filters, integrating
plasticity induction signals before expressing synaptic plasticity. Such mech-
anisms enhance memory lifetimes, leading to an initial rise in the memory
signal that is in radical contrast to other related, but non-integrative memory
models. Because of the complexity of models with internal synaptic states,
however, their dynamics can be more difficult to extract compared to “simple”
models that lack internal states. Here, we show that by focusing only on pro-
cesses that lead to changes in synaptic strength, we can integrate out internal
synaptic states and effectively reduce complex synapses to simple synapses.
For binary-strength synapses, these simplified dynamics then allow us to work
directly in the transitions in perceptron activation induced by memory stor-
age rather than in the underlying transitions in synaptic configurations. This
permits us to write down master and Fokker-Planck equations that may be
simplified under certain, well-defined approximations. These methods allow us
to see that memory based on synaptic filters can be viewed as an initial tran-
sient that leads to memory signal rise, followed by the emergence of Ornstein-
Uhlenbeck-like dynamics that return the system to equilibrium. We may use
this approach to compute mean first passage time-defined memory lifetimes

for complex models of memory storage.



1 Introduction

One approach to circumventing the catastrophic forgetting threshold of the
Hopfield model for associative memory (Hopfield, 1982) is to impose bounds
on synaptic strength (Nadal et al., 1986; Parisi, 1986). Models of associa-
tive memory with bounded strengths learn new memories by forgetting old
ones. Ome particularly appealing approach to bounding synaptic strength is
to suppose that synapses exist in only a limited number of discrete states of
synaptic strength. Experimental evidence for binary, ternary and even larger
numbers of discrete states of synaptic strength exists (Petersen et al., 1998;
Montgomery & Madison, 2002, 2004; O’Connor et al., 2005a,b; Bartol et al.,
2015) although the interpretation of such evidence can be difficult (Elliott,
2010a), and evidence also supports the possibility that changes in synaptic
strength may be discrete, jump-like, all-or-none processes (Yasuda et al., 2003;
Bagal et al., 2005; Sobczyk & Svoboda, 2007). Many such memory models
and analyses based on discrete synapses in feedforward or recurrent network
settings now exist, using a variety of different measures to gauge memory life-
times (see, for example, Tsodyks, 1990; Amit & Fusi, 1994, Fusi et al., 2005,
Leibold & Kempter, 2006, 2008; Rubin & Fusi, 2007; Barrett & van Rossum,
2008; Huang & Amit, 2010, 2011, Lahiri & Ganguli, 2013). Early models
are based on “simple” synapses that lack internal states and change strength
stochastically with fixed probability in response to memory storage (Tsodyks,
1990). We have termed such a synapse a “stochastic updater”. “Complex”
synapses attempt to overcome the problems characteristic of simple synapses
by considering internal synaptic states that govern the expression of synaptic
plasticity through metaplasticity (see, for example, Fusi et al., 2005; Rubin &

Fusi, 2007; Leibold & Kempter, 2008; Lahiri & Ganguli, 2013).



In a developmental setting, we have suggested that synapses may act as
low-pass filters (Elliott, 2008) and have shown that by integrating plasticity
induction signals and expressing synaptic plasticity only when a filter reaches
an upper or lower threshold, fluctuations in large-scale patterns of synaptic
connectivity can be powerfully suppressed (Elliott & Lagogiannis, 2009; Elliott,
2011b). When we extend such integrate-and-express, filter-based models of
synaptic plasticity to consider memory lifetimes in the context of a feedforward,
perceptron-based approach to memory storage with binary-strength synapses,
we found that the fidelity of recall of a memory initially improves over time,
before the memory is slowly forgotten as the system returns to equilibrium
(Elliott & Lagogiannis, 2012). This initial enhancement in the memory signal
is actually driven by the storage of later memories. These dynamics are in
radical contrast to other, non-integrative memory models, in which the memory
signal always decays monotonically. These differences result in integrative,
filter-based models outperforming non-integrative models in most regions of
biologically-relevant parameter space (Elliott, 2016b).

The analysis of complex models of synaptic plasticity can be considerably
harder than that of simple models. For example, with a mean first passage
time (MFPT) definition of memory lifetimes, it is possible to make consider-
able progress in deriving exact expressions for memory lifetimes or very good
approximations to them for fixed probability stochastic updater synapses (El-
liott, 2014). However, an analysis of MFPT-defined memory lifetimes for the
full dynamics of complex synapses is likely extremely hard if not intractable.
The underlying problem is simply the size of the transition matrices describ-
ing changes in the internal states of complex synapses. We have previously
shown that considerable analytical progress and much dynamical insight can

be achieved by integrating out synapses’ internal states and working explicitly



with their changes in strengths (Elliott, 2010b, 2016a). Here, therefore, by
focusing only on processes that lead to changes in synaptic strength, we show
that the dynamics of complex synapses may be effectively reduced to those of
simple synapses for the purposes of studying memory lifetimes. The resulting
simple synapses are not, however, stochastic updaters with a fixed or time-
independent probability for expressing synaptic plasticity. Instead, they have
time- and indeed history-dependent plasticity probabilities. Despite this time-
and history-dependence, the reduction of complex synapses to simple synapses
without internal states offers considerable analytical benefits, which we explore
below.

Our paper is organised as follows. In the next section we summarise our ap-
proach to memory lifetimes with a single perceptron using filter-based, binary-
strength synapses. In section 3, we perform this reduction of complex, filter-
based synapses to simple stochastic updater synapses with time- and history-
dependent conditional strength-change probabilities. Then, in section 4 we
use these reduced dynamics to derive exact probability and moment generat-
ing functions for the activation of the perceptron. Although all these results
are exact, much insight can be gained by considering approximations. We
develop these in section 5 where we consider the exact master equation gov-
erning transitions in perceptron activation, and then consider an approximate
form leading to a derivation of a Fokker-Planck equation governing the prob-
ability distribution of perceptron activation. In section 6, we use the reduced
and approximated dynamics to examine memory lifetimes defined by MFPTs.

Finally, in section 7, we discuss our approach and consider future possible work



Parameter or | Description

quantity

N Number of synapses.

S;(t) Strength of synapse ¢ at time ¢.

e Filter size.

h(t), h, Tracked memory signal at time t or at memory storage step n.

w(t), pn Mean of h(t) or h,,.

©o(t), on Second moment of h(t) or h,,.

o(t) Standard deviation in h(t).

M=, M 2(26—1) x2(26 —1) matrices implementing transitions in the joint
distribution of a synapse’s filter and strength states.

A 2(2 © — 1)-dimensional vector describing the equilibrium joint distri-
bution of a synapse’s filter and strength states.

W+, W 2 x 2 matrices implementing transitions in a simple synapse’s distri-
bution of strength states.

pE(t), pt Conditional strength change probabilities for a complex synapse at
time ¢ or at memory storage step n + 1.

D, 2 X 2 matrix describing n-step transitions in a single synapse’s
strength.

X, Yy Elements of D,,, defined in Eq. (3.11).

g, M Various symbols representing probability and moment generating
functions for perceptron activation.

H,, (N +1) x (N + 1) matrix describing n-step transitions in perceptron
activation.

H(t) Poisson summed form of H,, relevant to continuous time.




Hy (N + 1) x (N + 1) matrix describing transitions in perceptron acti-

vation between h,, and h,,, with n > m.

\ (N + 1) x (N + 1) matrix describing transitions in perceptron acti-

vation between h,,_; and h,,.

V(t) (N +1) x (N + 1) matrix generated from p*(t) via Eq. (5.13).
P(t), P, Probability distribution of h(t) or h,.

P(h,t) Probability distribution of h at time ¢ in Fokker-Planck equation.
A(h,t), B(h,t) | Jump moments in Fokker-Planck equation.

Table 1: Summary of main parameters and quantities used throughout.

2 General Approach to Memory Lifetimes with
Filter-Based Synaptic Plasticity

We first provide a general recapitulation of our approach to studying memory
lifetimes in the context of filter-based synaptic plasticity. Further details may
be found elsewhere (Elliott & Lagogiannis, 2012; Elliott, 2014). In Table 1 we
provide a summary of the key mathematical symbols introduced in this and

later sections.

2.1 Perceptron Formulation in Continuous Time

We consider memory storage for simplicity in the context of a simple, feedfor-
ward, perceptron-based approach. Avoiding the use of recurrently-connected,
Hopfield-like (Hopfield, 1982) networks of neurons allows many results to be
derived exactly. We consider a single perceptron with N synapses of binary
strengths S;(t) € {—1,+1}, where ¢« = 1,..., N indexes the synapses and ¢

denotes continuous time. We will use the notation S;(n) with n a non-negative



integer when we refer to synaptic strengths at discrete time points. We refer to
synapses with S;(t) = +1 as “strong” synapses and those with S;(¢) = —1 as
“weak” synapses. This interpretation is legitimate because we can always add
an overall constant to these strengths to make them non-negative. To com-
pensate for any induced changes in the perceptron’s firing, we would merely
have to change the perceptron’s firing threshold.

The perceptron is required to store a sequence of synaptic memories €%, a =
0,1,2,.... The components £ take values of £1 with probabilities Prob[¢f =
+1] = g4, with g, + g = 1. Below we will consider only the balanced case
gy = %, but initially we keep g+ general. For simplicity we take the components
& to be uncorrelated across synapses and between memories. Memory €Y is
always stored at time t = 0~ s. We use this formal convenience of t = 0~ s
so that we may refer to the time immediately after the storage of memory &°
as t = 0 s. We refer to memory £&° as the “tracked” memory because we are
interested in the fidelity of recall of this particular memory by the perceptron
at later times. The recall of this memory will be affected by the subsequent
storage of the later memories £%, o > 1, as their storage will induce changes
in the synaptic strengths S;(¢) through synaptic plasticity. In a discrete time
formalism, these subsequent memories are stored at the discrete time steps
t = a s. Biologically speaking, however, a discrete time approach is somewhat
unnatural and memories are more realistically stored as a continuous time
process. The simplest continuous time process to consider is a Poisson process
of rate r. We will therefore consider memory storage to occur as a Poisson
process, with the later memories €%, o > 1, stored at rate r at times ¢t > 0 s
governed by this stochastic process. We may of course convert a discrete time
process into a Poisson process by weighting and summing over discrete time

events according to the relevant Poisson weighting factors, as employed below.



For the model of synaptic plasticity that we consider here, we may without loss
of generality set r = 1 Hz because r simply acts as an overall factor multiplying
time. We retain r for clarity where necessary, but in simulations we always set
r =1 Hz.

The fidelity of recall of the tracked memory is gauged by measuring the
perceptron’s activation in response to £°. If the perceptron has inputs z; €

{—1,41} to its N synapses, then the activation takes the standard form

halt) = 3 2 Si(0), 2.1)

and we define h(t) = heo(t) as the tracked memory signal or just the memory
signal. Depending on how we define memory lifetimes, we are only concerned
with whether or not this memory signal is above or below the perceptron’s
firing threshold or its equilibrium, large time value. We therefore do not need to
consider the conversion of this activation to the perceptron’s two-level output:
if h(t) is above threshold, then memory & is still stored by the perceptron at
time ¢, otherwise it is not.

We are not interested in the dynamics of h(t) for any given realisation of
the memories £€* but only in the statistics of h(t) averaged over all possible

realisations of these memories. Defining

where E[-] and Var[-] denote the mean and variance, respectively, the signal-to-
noise ratio (SNR) of the perceptron’s activation is SNR () = [u(t)—u(o0)] /o (1),

or just SNR(t) = pu(t)/o(t) when pu(t) — 0 as t — oo. We may then define the



lifetime of the tracked memory as the solution of SNR (7, ) = 1, i.e. the time
at which p(¢) is indistinguishable from its equilibrium value u(o0) at the level
of one standard deviation (Tsodyks, 1990). Alternatively, we may define the
memory lifetime by considering the first passage time for the tracked memory
signal h(t) to drop (to or) below some (perhaps perceptron firing) threshold
9, and average this first passage time over all possible realisations to obtain
the MFPT memory lifetime 7., (Elliott, 2014). We shall almost exclusively
consider MFPT memory lifetimes here.

The input &' to a particular synapse determines how that synapse’s strength
should change. As we consider only an isolated perceptron rather than a
recurrently-connected network of neurons, we require only that the percep-
tron’s activation is above firing threshold, so that the perceptron’s output is
+1 rather than —1. The input & to synapse ¢ upon presentation of memory
a is therefore just the plasticity induction signal to this synapse. If £ = +1,
then the synapse receives a strengthening or potentiating plasticity induction
signal, while if £ = —1, then it receives a weakening or depressing plasticity
induction. We now discuss how synapses respond to these plasticity induction

signals in our filter-based approach to synaptic plasticity.

2.2 Filter-Based Synaptic Plasticity

In order to control fluctuations in synaptic strengths, we have argued that
synapses should integrate plasticity induction signals in order to discern any
trends in these signals before expressing synaptic plasticity (Elliott, 2008).
Such integration can be achieved by a low-pass filter, with synaptic plasticity
being expressed only when the filter reaches threshold. A simple implementa-

tion of a low-pass filter in a synapse can be achieved by considering an internal

10



filter state, labelled by letters such as I and J, instantiated on a small col-
lection of macromolecules. We have previously discussed the possibility that
the filter state could be encoded in the phosphorylation states of kinases and
phosphatases at single synapses, such as the CaMKII and PP1 enzymes (see
Elliott (2011a) for a fuller discussion). In the context of the storage of mem-
ories, we consider a filter with an upper threshold +0, and a lower threshold
—0_, with ©1 > 0 (Elliott & Lagogiannis, 2012). Potentiating induction sig-
nals increment the filter state while depressing induction signals decrement the
filter state. The allowed filter states are I € {—(O_ —1),...,+(0L — 1)}. If
the filter reaches +0,, then it is reset to the I = 0 state and potentiation is
expressed if the synapse is weak (i.e. the synapse becomes strong); conversely,
if the filter reaches —©_, then it is reset to the I = 0 state and depression is
expressed if the synapse is strong (i.e. the synapse becomes weak). We do not
consider 04 to be allowed states because they are thresholds at which the
synapse is immediately reset to I = 0.

Because we will restrict to balanced potentiation and depression processes,
for which g4 = %, we consider only symmetric filters for which ©. = ©. The
filter state is then represented as a (2 © — 1)-dimensional vector and transitions
in this filter state are implemented by (2© — 1) x (20 — 1) matrices. For con-
venience we index the components and elements of such vectors and matrices
by their corresponding filter states, so that for example vector components run
from —(© — 1) to +(© — 1) rather than from 1 to (20 — 1). Let the matrix
St increment the filter state but without implementing the upper threshold

process, and let the matrix Tt implement only this upper threshold process.
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For © = 3, for example, we have

000O0O 000O0O
1 0000 00 00O
Stf=1 01000 and TF=10 0 0 0 1
001 0O 00 0O0O
0001O0 000O0O

The matrix ST just shifts the components of vectors one entry downwards,
letting the last component disappear, while T sends this last 7 = +(© — 1)
component to I = 0. Similarly, we denote the corresponding matrices for
decrementing filter states and implementing only the lower threshold process

by ST and T~. For © = 3, for example, we have

and T~ =

i

I
o O O O O
o O O O =
o O O = O
o O = O O
o = O O O
o O = O O
o O O o O
o O O o O
o O O o O
o O O o O

We clearly have that S~ = (S*)T, where the superscript T denotes the trans-
pose, and T~ sends the I = —(© — 1) state to I = 0. The joint distribution
of strength and filter states is represented by a 2(2 © — 1)-dimensional vector,
where the first (second) block of (20 — 1) of components represents the filter
state when the synapse is weak (strong). Transitions in the joint distribution
of strength and filter states are then represented by 2(20 —1) x 2(2© — 1) ma-
trices. Let the matrices M* implement changes in synaptic states is response
to potentiating and depressing induction signals, respectively. Schematically

representing the block structure of these matrices, we have

S+

- .
and M™ =

Mt =
ST+T+ O S~

']I‘+

12



where O is an appropriately sized matrix with entries of zero everywhere. The
submatrix T+ in the lower left sub-block of M implements a change in strength
from weak to strong via the upper filter threshold process, while its presence
in the lower right sub-block implements an upper filter threshold process but
without a change in strength because the synapse is already strong. Similarly

for T~ in M. Finally, we also define the matrix

M=g.M"+g_-M", (2.4)

which represents the occurrence of a potentiating induction signal with prob-

ability Prob[¢® = +1] = g, and a depressing induction signal with probability

Prob[(¥ = —1] = g_. In terms of its block structure, we have
g+ST+g S™+¢g T~ g_T~
A (2.5)
g+T* 9+ST+g ST+g, TT

This matrix encodes the transitions illustrated in Fig. 1.

The transition matrix M averages over both potentiating and depressing
induction signals. It is therefore the required matrix for averaging over the
non-tracked memories €%, a > 1. The eigenvector of M with unit eigenvalue
gives the equilibrium or asymptotic joint distribution of strength and filter
states. It is against the background of this equilibrium distribution that the
tracked memory £ is stored. A direct calculation shows that the equilibrium
eigenvector, normalised so that it is a probability distribution, takes the form,

schematically,

T
i BT) , (2.6)
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Figure 1: Transitions between synaptic strength and filter states in response

to synaptic plasticity induction signals. The circles represent allowed filter
states, with the state indicated by the number enclosed by the circle. Strength
states are indicated by the two gray boxes labelled —1 and +1. Filter states are
duplicated between these boxes so that both strength and filter states can be
represented, but we stress that each synapse has only a single filter. Transitions
between strength and filter states caused by plasticity induction signals are
indicated by the lines carrying arrows. Potentiating (depressing) plasticity
induction signals occur at a rate g,r (¢g_r) and increment (decrement) the
filter state. If the filter is in state (04 — 1) (—(©_ — 1)), then a potentiating
(depressing) induction signal will return it to the I = 0 state; if the synapse
is weak (strong), potentiation (depression) is expressed (indicated by 1} ({})),

but if the synapse is strong (weak), it can only remain strong (weak).
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where the (20 — 1)-dimensional vector B has components

eo+1 —1I e
19 g_ —g9=
@W fOI' I <0
(S I,.0-—
19¥5—949_
S for >0

For the particular case g+ = %, this reduces to

e—|I
By = @2‘ J (2.8)

In equilibrium, the probabilities of a synapse being weak or strong are then

just
95

7+ = Prob[S;(c0) = £1| = ——,
+ [ ( ) ] g$+99

(2.9)

while the conditional filter distribution, conditioned on a particular value of
synaptic strength, is just B, regardless of the strength. For g, = %, we of
course have 74 = %

The tracked memory £€° is stored against the background of this equilib-
rium distribution. If €2 = +1, then the joint strength and filter probability
distribution of synapse i immediately after the storage of €° is M*A, while if
£ = —1, then it is M—A. The initial state of any particular synapse at time
t = 0 s is therefore in general a mixture of these two distributions, with prob-
abilities g, and ¢g_. To determine the initial mean perceptron activation, we
definen = (1,...,1)T and 0 = (0,...,0)" to be (2O — 1)-dimensional vectors

all of whose components are unity and zero, respectively, and then we define
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the 2(2© — 1)-dimensional vectors

Q= (0" |n")", (2.10a)

Q = (n"|0")", (2.10b)

which pick out, respectively, the strong and weak strength states from joint

strength and filter probability distributions. We also define
Q=0,-Q =(-n"| +n")", (2.11)

which weights weak synapses negatively and strong synapses positively, i.e.

according to their strengths. We then have
1(0) = Q" (g M — g_M") A, (2.12)

At discrete time step n, the mean perceptron activation, denoted by p, in

discrete time, is just
fn = QM (g M — g_M") A, (2.13)

where the matrix power M" represents n storage events for the (averaged)
memories £',...,€", and in continuous time, we just perform a Poisson sum

over these discrete time values to obtain

u(t) = Q*

Z —(Tt‘)ne” M"] (9+M* —g-M")A,
0 n'

= Q" [exp(rtG)] (g-M" — g_M") A, (2.14)

16



where G = M — I and I is the identity matrix.? These expressions for p,
and p(t) of course correspond to just the mean strength of any single synapse,
as the average perceptron activation in response to the tracked memory just
reduces to an average over any single synapse.

We have kept g4 general above, but we now restrict exclusively to bal-
anced potentiation and depression processes, for which g4 = % This balanced
scenario is the case of greatest interest to us and one that we have studied
extensively before. Although we may proceed in general with g, # %, the
advantage of setting g+ = % is that the mixed initial state at ¢t = 0 s effectively
collapses down to a single state, at least in terms of the contribution to h(t).
We may see this explicitly by writing out the two distributions corresponding

to M*A. For example, for © = 3 we have

M*A =1L(0,1,2,3,2]0,1,4,3,2)", (2.15a)

M~A=1(2,3,4,1,02,3,2,1,0)" . (2.15b)

We can see that these two distributions are exact mirror images of each other,
i.,e. Mt A read top to bottom is identical to M~ A read bottom to top. For
general O, we obtain

(14 po) for €0 = +1
Prob[S;(0) = +1] = s (1£p0) for &=+ : (2.16)

3 (1 F po) for & =1

where po = p(0) = 1/6? is the initial mean memory signal immediately after

2For the identity and zero matrices I and O and the unity and zero vectors n
and 0, rather than using different symbols for matrices and vectors of different

sizes, we use the same symbols. Their sizes are always clear from the context.
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the storage of £°. Defining S;(t) = £95;(t), we may write
Prob[S;(0) = +1] = 1 (1 + p). (2.17)
The probability distribution for §Z(0) is therefore independent of the sign of &7,
unlike the probability distribution for S;(0). Furthermore, by examining the
action of Ml = § (M" 4+ M™) on the two distributions M* A, we find that in gen-
eral M" M* A are always mirror images for any n > 0, so that exp(rt G) M* A
are therefore also mirror images for any ¢t > 0 s. Hence, the probability distri-
bution for S;(t) is therefore independent of the sign of £ for any ¢ > 0 s so that
all N variables §Z(t) are for all time identically distributed random variables.
This behaviour is specific to scenarios in which potentiation and depression
processes are treated symmetrically and identically and is discussed in detail
and derived fully elsewhere (Elliott, 2016b).
With the tilded strength variables S;(¢) defined by S;(t) = €95;(t), the

tracked memory signal h(t) can be written directly as

At = 5 2850 = 1 DB (2.18)

For discrete time steps we will write h,, instead of h(n). For processes that
treat potentiation and depression in a symmetrical and balanced manner, the
perceptron activation in response to the tracked memory is therefore just an

average over the N identically distributed tilded strength random variables.
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The mean and variance then following immediately, as

u(t) = E[S(1)] (2.19)

[1—p()’] + (1 - %) Cov(t), (2.20)

where E[g (t)] and Var[§ (t)] are the mean and variance, respectively, of any
one of the synapse’s tilded strengths, and Cov(t) = Cov[S;(t), gj(t)] is the co-
variance between any pair of them. Working with the tilded strength variables
for balanced processes therefore dramatically simplifies the dynamics of h(t),
because the mixed initial state with the two distributions M* A for &) = +1
effectively collapses down to a single distribution, in terms of the contribution
to h(t). For balanced processes, then, we can perform calculations by condi-
tioning only on the initial value gz(()) for any given synapse, while for general,
unbalanced processes, we must instead condition on the values of S;(0) and &?
individually rather than through just their product. Although conditioning on
S;(0) and & individually is straightforward, working with balanced processes
simplifies calculations significantly.

We have previously used renewal methods (Cox, 1962) to evaluate u(t) in

this balanced scenario (Elliott & Lagogiannis, 2012). We simply reproduce the

result here:

-1
1 ™ ™
p(t) = o3 Z cot? —(Ql:@l) exp {—rt [1 — Cos —(Ql;@l) ] }
1=0

o cot? % exp {—rt [1 — COS (QHTI)”} } , (2.21)

=0

where |z] is the floor function. Full discussion of the behaviour of y(t) may be
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found elsewhere (Elliott & Lagogiannis, 2012). In brief, starting from the initial
value of p(0) = 1/6?, u(t) initially increases roughly ©-fold to a maximum at
a time that grows as ©2. Following its peak, u(t) then decays back to its
equilibrium value, which for g, = % is u(o00) = 0. The initial rise in the mean
memory signal in our filter-based, integrative model of synaptic plasticity is in
radical contrast to non-integrative models, in which the mean memory signal
always decays monotonically from its initial value. This increase occurs because
the initial storage of £€° biases synapses that experience &) = +1 to remain
or become strong and those that experience £ = —1 to remain or become
weak. This biasing occurs because the filter distribution at each synapse is
either stepped upwards or stepped downwards by the initial storage event (see
Eq. (2.15)). The mean memory signal increases while this bias persists, and
only once it has worked out of the system does the mean memory signal then
start to return to equilibrium. The behaviour of p(t) will be amply illustrated
below.

To compute the variance o (#)? in continuous time using the full transition
matrix M is in general very hard, although its calculation and that of higher-
order cumulants is made considerably easier by the approach that we adopt
here, as we discuss below. In discrete time, because of the assumed indepen-
dence of £ across synapses and between memories, synapses evolve indepen-
dently and thus the discrete-time variance is trivial to compute in terms of the
discrete-time mean. However, by driving memory storage as a continuous-time
process, correlations in synaptic strength are introduced, leading to a non-zero
covariance term Cov(t) between synapses’ strengths in Eq. (2.20) (Elliott &
Lagogiannis, 2012). This occurs in any model of synaptic plasticity and not
just the filter-based model considered here. We compute the variance, and

higher-order cumulants, via a combination of analytical, numerical and simu-
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lation methods, described below.

3 Transition Matrices for Changes in Synaptic

Strength

Memory lifetimes are determined by the dynamics of the tracked memory sig-
nal. The MFPT for the perceptron activation in response to the tracked mem-
ory to fall (to or) below some threshold ¥ can be used to define memory life-
times (Elliott, 2014). Previously we have extensively studied memory lifetimes
defined by MFPTs for a stochastic updater synapse with a fixed probability
for expressing a change in synaptic strength. Although a very simple model,
such a synapse has the virtue that memory lifetimes defined by MFPTs can
be analysed in detail, with exact results available in many instructive limits
(Elliott, 2014). However, synapses with internal states are extremely difficult
to study analytically, in terms of MFPTs. Although exact analytical results
can be derived, they are essentially useless for explicit computations, either
analytical or numerical, unless N is very small (Elliott, 2014). This is because
in order to keep track of the entire synaptic configuration over all N synapses,
we would require the tensor product M ® --- ® M, with N occurrences of
the matrix M. Equivalently, flattening the product space, we would require a
[2(20 — )]V x [2(26 — 1)]¥ matrix, which in general is intractably large.
Even for a simple synapse, such a matrix would be 2V x 2. However, for
binary-strength synapses, the tracked memory signal h(t) in continuous time or
h, in discrete time is a normalised sum over NN tilded strength variables taking
values +1. The perceptron activation is therefore uniquely determined by

the number of these variables taking the value +1, say. For binary-strength,
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simple synapses, we can therefore avoid working with the transitions in the
entire synaptic configuration and can instead work directly with the transitions
in perceptron activation. The matrix governing these transitions for simple,
binary-strength synapses is only (N + 1) x (N + 1), which in generally is
vastly smaller than 2V x 2V (Elliott, 2014). This shift to working directly with
the transitions in perceptron activation is critical to studying MFPT memory
lifetimes. This shift is possible because and only because simple synapses do
not have internal states.

If it were possible, mathematically-speaking, to reduce a complex synapse
with internal states to a simple synapse without internal states, then study-
ing MFPT memory lifetimes for complex synapses could therefore in princi-
ple be made more tractable. In order to examine the dynamics of h(t) that
govern memory lifetimes, we are not in fact interested in synapses’ internal
filter states but only in synapses’ strengths, and specifically only in synapses’
changes in strength, because only these lead to changes in perceptron activa-
tion. Although changes in synapses’ internal filter states drive changes in their
strengths, only synapses’ strengths and not their internal filter states determine
perceptron activation and therefore memory lifetimes. Thus, the first step in
examining MFPT memory lifetimes is to integrate out synapses’ internal filter
states and instead work directly with changes in synapses’ strengths, ignor-
ing the underlying filter states and the transitions between them. This then
permits us to work directly with the dynamics of the perceptron activation.

A simple stochastic updater synapse with fixed probabilities for expressing

potentiation and depression can be defined by the two transition matrices

1—p" 0 1 1-p
w=| P and W~ = P, (3.1)
pt 1 0 p-
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where W™ is the potentiation matrix that expresses potentiation with prob-
ability p* and W~ is the depression matrix that expresses depression with

probability p~. The transition matrix

1 1_lp+ lp*
W=-(WH+w) = 2 2 (3.2)
3¢ ) ( TR 7

then represents the occurrence of potentiating and depressing induction signals
with probabilities Prob[(¥ = +1] = % for any given (non-tracked) memory
storage step. For a given memory storage step with filter-based synapses, we
must determine these strength-change probabilities p* if we are to integrate out
the synapses’ internal states and work instead with simplified synapses. These
probabilities must of course depend on the current full state of the synapse
(and therefore on its history of induction signals) and on the current induction
signal. They are therefore contingent on a given history of memory storage
events and on the initial filter and strength states of the synapse. We stress
that in working with such a reduced, simple synapse, we are not arguing that
complex synapses are fully equivalent to simple synapses or vice versa. We
merely use this reduction as a mathematical device to simplify the analysis of
the dynamics of the tracked memory signal by essentially throwing away the
internal synaptic states.

To determine p*, let the state vector for a single synapse at any given
memory storage step be given schematically by (wT|3T)T, where w and s are
(20 — 1)-dimensional vectors corresponding to the weak and strong synaptic

strength states, respectively, and with n - (w + s) = 1. Under the actions of
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M*, we have

( w ) M+ ( Stw ) 7 (3.3a)
S Ttw+ (ST +TH)s

( w ) M~ ( T s+ (:: + T )w ) . (3.3b)

For a general vector v, however, n - (S* + T*) v = n - v, so we see that under

the action of M™ the strong states gain probability n - Ttw while the weak
states lose this probability because n-STw = n-w —n-Ttw. Similarly, under
M~ the weak states gain probability n - T~ s while the strong states must lose
this probability. The probability of potentiation, conditional on the synapse
being weak, is therefore

n-TTw

pr=— (3.4)

n-w

and the probability of depression, conditional on the synapse being strong, is

p=— (3.5)

We define pt = 0orp” =0ifn-w = 0 or n-s = 0, respectively. The
probability p* is just the probability that a synapses is in filter state I =
+(©—1) relative to the total probability that the synapse is weak; similarly, p~
is the probability of being in filter state I = —(©—1) relative to its being strong.
Defining the 2-dimensional vector of the synapse’s strength probabilities with

components n - w and n - s, we have that

_ L1+ - . cw—Ltn. Tt L. T
(1 1 2+p p1 _) (n w) _ (n w 12n ’]I‘+w+12n ’]I‘_s). (3.6)
3D I1—35p n-s n-s+;n-TTw—-—5n-T s

By construction, the strength probabilities in the vector on the right-hand side

N[ =
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(RHS) agree with those from the action of the full 2(20 — 1) x 2(20 — 1)
transition matrix M = 1 (M~ + M) on the full 2(26 — 1)-dimensional state
vector ('wT|sT)T. That is, the 2 x 2 strength transition matrix W on the left-
hand side of this equation correctly captures that changes in strength induced
by the full filter dynamics. Of course, to compute the conditional strength-
change probabilities p*, we have required the full filter dynamics, but the key
feature is that we have a simple synapse with no internal states and with
identical strength-change probabilities, at least for one memory storage step.
For multiple memory storage steps, suppose that we start from some initial

state vector (wOT’sOT)T. Then we write

() ) o« (2)(3) o

and we define the conditional strength-change probabilities p= by

n-Ttw, n-T s,
py=——" and p, = ——, (3.8)
n-w, n-s,

and the corresponding 2 X 2 step-dependent strength-change transition matrices

1 1, -
n+1 — l 4 1_1 _ : :
2pn Qpn

are

If (wy| sOT)T is the full state vector immediately after the storage of the tracked
memory £°, then the storage of £° induces the conditional strength-change
probabilities pOjE that are relevant to the storage of the next memory &' as-
sociated with the application of the 2 x 2 matrix W;. Similarly, the storage
of &' then changes the distribution of strength and filter states and thus in-
duces new conditional strength-change probabilities pf that will govern the

subsequent storage of memory &2 via the 2 x 2 matrix W,. And so on. Thus,
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the conditional strength-change probabilities pt are calculated from the full
2(2© — 1)-dimensional state vector after the storage of memory £" and there-
fore from the vector M" ('wﬂsg)T, and these conditional probabilities govern

n+1

the storage of the next memory £""" via the matrix W,, ;. The product

D, = W, W,_; - -- W,W, (3.10)

then represents n applications of M to the initial state ('wOT{sOT)T, giving the
probabilities of the synapse being weak or strong after the storage of the se-
quence of memories £°, ..., &". Because we obtain the correct probabilities for
a synapse being weak or strong for any single memory storage step from any
state, we must therefore also obtain the correct probabilities for any number
of memory storage steps from any initial states. Thus, D, (n S W, M- SO)T
gives the same probabilities of the synapse being weak or strong as those com-
puted directly from Q- M" (wOT‘soT)T or QL M" (w0T|sg)T, respectively. Again,
we stress that we require the full internal synaptic dynamics to compute the
probabilities p, and we stress that these probabilities depend on the full initial
synaptic state and on the particular sequence of (superposed) induction signals
experienced by the synapse. However, they allow us to work with an effective
simple synapse and only a 2 x 2 strength transition matrix without internal
dynamics. This allows us to focus purely on changes in synapses’ strengths,
and therefore on the dynamics of the perceptron activation, without having
to keep track of all synapses’ internal states. The 2 x 2 transition matrices
W,, depend on the memory storage step, so we refer to this simplified, reduced

synapse as a time-dependent stochastic updater (TDSU).
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We write the matrix D,, in the form
li+Xx,) ifa-v,
D, = <2( + Xn) §< )>, (3.11)
3( )

which defines the quantities X,, and Y,,. As n — oo, we must asymptote to

the correct equilibrium distribution of synaptic strengths governed by the filter

D, — ( ) (3.12)

since my = % for g4+ = % Thus, we have isolated this equilibrium distribution

dynamics, so

NI—= N
NI N

in the definition in Eq. (3.11) so that X,, and Y,, are defined relative to equi-
librium. We must then have that X,, — 0 and Y,, — 0 as n — oco. Writing

D1 =W, 1D, we obtain simple recurrence relations for X,, and Y,,,

Xop1 = [1 =5 (o +92)] Xo = 5 (0 —12) (3.13a)

Vo= [1—35(pF+p,)]Ya+3 0 —p,). (3.13b)

with Xg = 1 and Yy = 1 giving the correct form for D; = W;. For X,, — 0
and Y,, — 0 as n — oo, we must have that p;/p. — 1, so that over time, the
potentiation and depression probabilities must become equal. The recurrence
relations in Eq. (3.13) will be used extensively below.

As we have indicated, the probabilities p= depend on the initial state vector
(w] | sOT)T, and this can be either M A or M~ A depending on the sign of &0.
For M* A, a direct calculation shows that pj = 2/(©% — 1) and p, = 0 for
© > 1, while for M~ A, pi = 0 and p, = 2/(60? — 1). These probabilities are
merely interchanged, reflecting the equivalence of the §Z(t) distributions for
balanced processes with g, = % We note, furthermore, that in the recurrence

relations in Eq. (3.13), under p; <> p;, we have X,, <+ Y, which again reflects
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this equivalence. Thus, we take the probabilities p to be the transition prob-
abilities in the tilded strength variables, as the initial mixed state collapses to
a single distribution for balanced processes. To compute them, then, we need
only consider the initial distribution associated with M*™A. With this under-
standing, the elements of the matrix ID,, give the transition probabilities for
tilded strength states after n memory storage step. For example, the element
$(1 — X,,) is just the transition probability Prob[gi(n) = +11]5;(0) = — ]
Although we may use the renewal methods described elsewhere (Elliott &
Lagogiannis, 2012) to obtain explicit formulae for arbitrary © for the condi-
tional strength-change probabilities p, the resulting expressions are in general

very messy. For example, for © = 3, we obtain

L 62nx2)F (V)" [2+ V34 (-1)"(2 - V3)]
P =592 + 1) F2(V3)" [T+ 43+ (—1)M(T7 — 4V/3)]

for n > 0, with pj = i and p, = 0. Numerically, it is more efficient simply to
construct one-time tables of these conditional probabilities rather than repeat-
edly use explicit formulae with the associated computational overheads. These
tables may be constructed, if necessary, by explicit numerical evaluation of the
matrix powers M" when analytical results are not available for any particular
form of M. To illustrate the behaviour of p, in Fig. 2 we plot them against n
for © = 4. We see that initially p;” > p, , but that they approach each other,
overshoot somewhat, and then both asymptote to 1/6% as n — oo.

We have discussed the construction of an effective, simple synapse with
identical strength-change probabilities only for our filter-based model of synap-
tic plasticity. It is clear, however, that this construction will in fact go through
for any model of synaptic plasticity with internal synaptic states and not just

a filter-based model. For any given model, we merely have to identify the
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Figure 2: Conditional strength-change probabilities p= as functions of n for

0 =4

equivalents of the two matrices T* that lead directly to strength-change pro-
cesses, which are the equivalents of threshold processes in a filter-based model.
Also, this construction works for general, multi-level discrete synapses and not
just for the binary-strength, two-level synapses considered here. Finally, this
construction will also work for unbalanced processes with g # %, but then
we will have two sets of probabilities p corresponding to the two different

distributions in the mixed initial state.

4 Dynamics of Perceptron Activation

Now that we have synaptic dynamics purely in terms of conditional strength-
change probabilities, we may determine exactly the probability distribution of

the perceptron activation h,, in discrete time and thus via Poisson summation
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the continuous time form h(t). In discrete time, with random, uncorrelated
memories, synapses are completely independent of each other. Dependence is
introduced in continuous time but is entirely due to driving synaptic updates
as a continuous-time process: performing Poisson summation fully accounts
for the induced dependence. The independence of synapses in discrete time
allows us to compute exactly the probability generating function (PGF) or the

moment generating function (MGF) for h,,.

4.1 Generating Functions for Perceptron Activation

The scaled perceptron activation Nh,, is a sum over N random variables taking
values of +1. The value of h,, is therefore completely determined by the number
of synapses with S;(n) = +1, so we may construct generating functions for h,,
or its moments by conditioning on this number. Specifically, we condition on
the initial value, hy, immediately after the storage of memory £€°. If hy =
2j/N — 1, then precisely j synapses have S;(0) = +1 and the remaining N — j

synapses have ;(0) = —1. We define the two PGFs
Gi(x)= Y Prob[Si(n) =20 —1]5;(0) = +1] 2, (4.1)
0€{0,1}

where we have used the powers 0 and 1 rather than —1 and +1 because to
determine the distribution of h,, we count only the synapses with S;(n) = +1.
Just by reading off the elements of the matrix D,,, we may immediately write

down these PGF's as

G, (z) =31+ X,)2" + 1(1 - X,))2", (4.2a)

Gh(x) =11 =Y,)a" + (1 +Y,)z". (4.2b)
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We note that Gy () = 1 and G () = x since Xy = 1 and Yy = 1. In discrete
time, all N synapses are independent, so the PGF for the number of synapses
with §Z(n) = +1 immediately after the storage of memory £", conditional on

ho = 2j/N — 1, is given simply by

N
Go(x|ho =3 —1)=> Problh, =% —1|hy =3 —1]2'
=0

=[G, ()]G (@) (4.3)

The coefficients Prob[hn = % -1 ‘ ho = % — 1] in this conditional PGF en-
code the entire n-step (N + 1) x (N + 1) transition matrix for the perceptron
activation. We denote this matrix by H,,. For convenience we index its entries

from 0 to N rather than 1 to N + 1 so that we may explicitly write
[H;; = Prob[h, = % —1|ho = F —1]. (4.4)

The generating function G,, (x ‘ ho = %] — ) therefore generates the jth column

of the matrix H,. We have that Go(z ’ ho = & — ) = @7, so that Hy = I as

required. From Eq. (2.17), we know that Prob[gi(O) = +1] = 1 (1 % po). Thus,
the initial distribution of j in hg = 2j/N — 1 is binomial with parameter N
and probability 3 (1 + ). The unconditional PGF for the number of synapses

with S;(n) = +1 at step n is then just

N
Gu(x) =) Prob[h, = 2 — 1] 2
=0
= {% [1 +5(1 = po) X — 5(1 + Mo)Yn} 2’

+§[1— %(1—uo)Xn+%(1+uo)Yn]xl}N- (4.5)
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This PGF encodes the entire probability distribution of h,, via its coefficients

Prob[h, = 2 — 1]. The state vector for h, is an (N + 1)-dimensional vector,

again indexed from 0 to NN, with entries Prob[hn = % — ] fort=0,...,N.
We see that h,, is itself essentially binomially-distributed (up to a scaling of
its range) with parameter N and probability given by the coefficient of the '

term inside the curly brackets in Eq. (4.5). In the limit n — oo, we obtain
Gn(z) = (327 + %xl)N, (4.6)

which of course agrees with the equilibrium distribution of S;(n), since 7, = 3
These conditional and unconditional PGF's for h, translate directly into

the corresponding MGF's for h,,. We write

ME@)= > Prob[Si(n) =0 |S5;(0) = £1] e”*/", (4.7)

oce{-1,+1}

where we use o /N in the exponent because the divisor automatically accounts

for the scaling of 3N S;(n) by N in the definition of h,. We then obtain

M (x) = cosh % — X, sinh %, (4.8a)
M (z) = cosh % + Y, sinh %, (4.8b)

and the conditional MGF for h,,, given hyg, is simply
5 (1=ho)
M, (x| ho) :<cosh % — X, sinh ﬁ) o

N
2 (1+ho)
X <cosh% +Y,, sinh £> ’

N (4.9)

From this conditional MGF we then obtain the conditional first- and second-
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order moments and thus variance,

Var|h, | ho] = — [1— 1(1 — ho)X2 — 1(1 + hO)Yf]. (4.10b)

1
N
The unconditional MGF for h,, is

M, (z) = E[e""] = (cosh % + 4, sinh %)N, (4.11)

where p,, = E[h,,] is given by
fn = —2(1 = p10) X + 3(1 4 o) Yn. (4.12)

The second- (variance), third- (skewness) and fourth-order (kurtosis) cumu-
lants of h,, follow directly from the cumulant generating function log, M, (x)

and are

1
o2 = Varlh,] = N(l — 1), (4.13a)
Skew*[hy] = ===, (4.13Db)

. 2
Kurt*[h,] = ﬁ(l —p2)(Buz — 1), (4.13¢)

where we use the asterisk to indicate that these cumulants are not normalised
by appropriate powers of the variance. Because h,, is essentially binomially-
distributed (up to a scaling of its range), we would expect it to become

normally-distributed in the large N limit. Defining h, = (hy — pn)/op, its
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MGF is /\//\ln(x) = M, (z/0,) e /7" and we find that

2 NO’n 2 Ngn
a? —3/2 N 1.2

which is the MGF of a normal distribution with zero mean and unit variance.
Thus, h,, is approximately normally-distributed for N large enough, with mean

i, and variance o2 = (1 — pu2)/N.

4.2 Continuous-Time Generating Functions

The PGFs and MGFs in discrete time may be converted into PGFs and MGFs
in continuous time by performing Poisson summation. For a sequence of quan-

tities w, in discrete time, we use the convenient notation,
o0
()"
Plw,;t} = Z e rtTw"’ (4.15)
n=0
to define the Poisson sum, so that the continuous time quantity w(t) is simply
w(t) = P{w,; t}. (4.16)
With this notation, the continuous time PGFs are

Gt |h(0) = % =1) = P{Gu(w| ho = % — 1);t}. (4.172)

G(t; ) = P{Gn(2); 1}, (4.17D)

34



with the conditional PGF inducing the time-dependent transition matrix
H(t) = P{H,;t}. (4.18)
The continuous time MGF's are

/\/l(t; T | h(O)) = ‘P{Mn (a: | ho);t}, (4.19a)

M(t;z) = P{M,,(z); t}. (4.19D)

In the above we have replaced hqy by h(0) for notational consistency, but they
both refer to the perceptron activation immediately after the storage of mem-
ory £€°. In general the Poisson sums cannot be evaluated in closed form, but
when the probabilities p= are especially simple, or even constants, the first few
moments may be calculated exactly.

We may determine the moments E[h(¢)™] of h(t) from Eq. (4.19b). The
(un-normalised) cumulants of h(t) can then be computed from them or directly
from log M(t; z). With the continuous-time mean y(t) = E[h(t)], the variance
o(t)? = E[h(t)*] — u(t)? is standard, and the skewness and kurtosis are given
by

Skew*(t) = E[h(t)*] — 3u(t) E[h(t)*] + 2u(t)?, (4.20a)

2

Kurt*(t) = E[h(t)*] — 4u(t) E[A(t)*] — 3E[h(t)?]

+ 12p(t)* E[A(t)?*] — 6pu(t)*. (4.20b)

These are general forms independent of the particular, perceptron-based model

for h(t) considered here. For completeness, we write out E[h(t)™] for m = 2, 3
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and 4 in terms of the underlying synaptic correlation functions:

Eln(1)?) = + + O EGm ). (1.21a)
E[h(t)] = (&]\]fv—;z)u(t) Sl %‘N L) E[Si(t)S;(t)Sk(t)],  (4.21b)
en(ny] = B2 2T HON D 15,0

¢ WD N9 g5 05, 05.030). (1210

where the expectation values are over distinct doublets, triplets and quadru-

plets of synapses.

4.3 Conditioning on Step m > 0

By conditioning on the number of synapses with S;(0) = 41, we have computed
transition probabilities for the evolution of h,, and thus obtained the transition
matrix H,. We can use this matrix instead to condition on a different step.

Specifically, we write

Hpp = H,H,,', (4.22)

for n > m. The inverse matrix H,,' evolves the state at step m backwards to
the state at step 0, and the matrix H,, then evolves this state at step 0 forwards
to the state at step n. The matrix IH,,, is therefore the evolution matrix for the
perceptron activation conditioned on step m rather than step 0. We note that
H,) ;. = H,p, so that the Markovian property is automatically satisfied;

that H,, = I; and that H, o = H,. The matrices defined by

Vn - Hn\n—l (423)
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then correspond to the 1-step matrices for the transition from h,_; to h,, with
H,=V,V, 4---VyV,. (4.24)

This equation is analogous to Eq. (3.10) for single-synapse transitions but
applies to transitions in perceptron activation, so to the entire population of

synapses. We then have

Vo Vi forn>m
H,}m = , (4.25)

I forn =m
so that the transition matrix conditioned on step m is a product of the V
matrices starting at V,,, ;1.

We may explicitly compute the elements of H,,,,. We know that the PGF
G, (2)] NI (G ()] 7 is the generating function for the jth column of H,, where
the coefficients of the two PGFs G (z) are just the elements of the matrix D,,.
We may confirm by direct calculation that the elements of the matrix D, D!

are the coefficients of the two PGFs, call them gj‘m(x), that are required to

construct the generating function for the jth column of H,),,,
, - N :
The corresponding MGFs are /\/lijm(x), with
N N
Mo (| h) = [M ()] 20 (M ()] 20, (4.27)

We are especially interested in the particular case n = m+ 1, giving the 1-step

transition matrix V,,,; for transitions in perceptron activation between suc-
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cessive memory storage steps. In this case, we may use the recurrence relations

in Eq. (3.13) to simplify the expressions for folﬂ‘m(x) and M= (). We

m+1lm
obtain
g7:z+1|m(x) = (1 - %P;) 2% + %p;xl, (4.28a)
Griim (@) = 302° + (1= 5p,) 2, (4.28b)
and
M — cosh = 1 — p*)sinh — 4.29
m+1|m(x) = Cos N - ( _pm) s N) ( . a)
xr _ . x
M:;Jr”m(x) = cosh N + (1 — p,,) sinh N’ (4.29b)
which lead to
E[hm-‘rl | hm] = _%<1 - hm)(l _pT-tL> + %(1 + hm)<1 - pr_n)7 (430&)

Varlfst [ ] = [1= 30 = B (1 = p)* = 514 ) (1= 9,)?]. (4.300)

Notice that the two generating functions G, ., () and gr 4 1jm (@), which gen-
erate the 1-step transition matrix V,,,; for transitions in the perceptron ac-
tivation via Gpip1jm (;E ‘ hy, = %J — 1), also generate the two columns of the
1-step transition matrix W,,,; in Eq. (3.9) for transitions in a single synapse’s
strength. In this balanced scenario, therefore, the PGF G,y 1)m (m ’ hy, = QN] — 1)
generates both the 1-step transitions for single synapses (with NV = 1) and the

1-step transitions in perceptron activation. This equivalence between the two

processes only occurs for balanced processes.
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4.4 Comparison Between Analytical and Simulation

Results

With these analytical expressions for the generating functions for h(t), we
may compare the statistics of h(t) obtained analytically to those obtained
from simulations of full, filter-based synapses. Full details of our simulation
protocols may be found elsewhere (Elliott & Lagogiannis, 2012; Elliott, 2014).
Simulation results are averaged over 10° separate simulations in order to obtain
good statistics.

In Fig. 3 (for © = 2) and Fig. 4 (for © = 5) we plot analytical results
for the statistics of h(t) based on the continuous-time MGF in Eq. (4.19b)
and simulation results in which synapses undergo full, filter-based transitions
rather than the simplified, purely strength-based transitions associated with
conditional strength-change probabilities. We see essentially exact agreement
between our analytical results and simulation results averaged over a large
enough ensemble. There is a little more noise in the simulation results for
© = 5 for the skewness and kurtosis compared to those for © = 2. This is to
be expected as there are more internal states in the former case, so for larger
© larger numbers of individual trials are necessary, especially for higher-order
statistics. The essentially exact agreement confirms that simplified synapses
with step-dependent strength-change probabilities are completely equivalent
to full, filter-based synapses. It also serves to verify our analytical results and
validate our simulations protocols.

In computing the moments in Figs. 3 and 4, we have truncated the Poisson
sums at a point beyond which further contributions are negligible. Because the
Poisson sums cannot in general be evaluated exactly, this procedure constitutes

a good numerical approximation scheme. With this numerical approximation
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Figure 3: Analytical and simulation results for the statistics of h(t) in con-
tinuous time. Analytical results (solid lines) for (A) u(t), (B) o(t)? and the
normalised (C) skewness and (D) kurtosis are obtained from the MGF for h(t).
We have set N = 10® and used a filter size of © = 2. Simulation results (in-
dicated by circles) are obtained by running full simulations of synapses with
internal filter-based transitions and averaging over 10° separate simulations in

order to obtain good statistics.

40



5
o
o
— —
= X
= =
N/'\
I
05 | ]
0 1 ‘ ‘l 2
10 10° 10 10

rt rt

O

Kurt(t)

Skew(t)

rt rt
Figure 4: Analytical and simulation results for the statistics of h(t). The

format of this figure is identical to Fig. 3 except that we have used a filter size

of ® = 5.
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understood, we are able to compute any moment to any desired accuracy us-
ing Eq. (4.19b). This computation relies critically on the use of the simplified
synaptic dynamics with conditional strength-change probabilities. Although
we can derive exact expressions for u(t) using the full, filter-based synaptic dy-
namics, the calculation of o ()% and specifically the covariance between pairs of
synapses’ strengths is extremely hard in general (Elliott & Lagogiannis, 2012)
and has been possible only for small enough © (up to around 6, depending
on the amount of memory available to computer algebra packages). In gen-
eral, in order to compute the mth-order moment, we would need to compute
the mth-order correlation function over m synapses’ (tilded) strengths (see
Eq. (4.21). For the full, filter-based synaptic dynamics, this means considering
the tensor product M ® --- ® M with m occurrences of M. Unfortunately,
for our filter-based model of synaptic plasticity, the matrix M is defective (i.e.
it lacks a complete set of eigenvectors), so it is not possible to write down
the spectrum of such tensor products directly from the spectrum of M. It is
therefore necessary to flatten tensor products down to a single matrix, and for
m products, we would obtain a matrix of size [2(20 — 1)]™ x [2(20 — 1)]™.
Even for ©® = 2, computing the kurtosis, which requires m = 4, results in a
1296 x 1296 matrix; for © = 3, this becomes 10* x 10*. For anything but very
small © and very small m, such matrices become unmanageably large. Even
when a general transition matrix M is not defective, the resulting m-fold sums
over eigenvectors and eigenvalues become time consuming. The use of the
equivalent TDSU formulation with conditional strength-change probabilities
and no internal synaptic states considerably ameliorates these computational
problems and permits moments to be calculated to any desired accuracy where
otherwise such calculations would be intractable or numerically very intensive.

The PGF for h(t) in Eq. (4.17b) encodes the entire probability distribution,
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call it P(h,t), for the perceptron activation or tracked memory signal h over
time t. Using the same truncation procedure for Poisson sums as above, we
may determine P(h,t) essentially exactly. In Fig. 5 we show superimposed heat
and contour maps for P(h,t) in the rt—h plane for different choices of ©. Of
course, h takes discrete values in the interval [—1, 4+1] with spacing 2/N, but for
N large enough, it appears essentially continuous. We have selected N = 10?
in this figure. We see clearly for early times the contributions from separate
memory storage steps coming in with weightings determined by the relevant
factors in the Poisson sums. These contributions are particularly clear for © =
2. The two isolated “islands” of probability for © = 2 are concentrated around
rt = 1 and rt = 2, which correspond precisely to the locations of the maxima
of e " (rt)"/n! for n = 1 and n = 2. These early-time contributions serve
to increase the mean p(t) by pulling the distribution P(h,t) towards larger
values of h. They arise because of the imbalance between the probabilities
p; and p;, seen in Fig. 2. This imbalance itself reflects the biasing of filter
states by the storage of memory &°, so that synapses experiencing &) = +1
are initially biased to become or remain strong while those experiencing & =
—1 are initially biased to become or remain weak. When this biasing works
out of the system, the distribution of A relaxes back to being symmetrically

distributed around h = 0, as can be seen for larger times in this figure.

5 Fokker-Planck Equation

Although we have determined the evolution of h, and thus h(t) exactly, it is
convenient to consider an approximation based on the Fokker-Planck equation.
The first- and second-order moments obtained from the Fokker-Planck equa-

tion are exact (if the jump moments can be calculated exactly), while higher-
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Figure 5: Superimposed heat and contour maps for the probability distri-
bution P(h,t) of the perceptron activation or tracked memory signal, h, over
time, t. Results are shown for N = 10® synapses for filters of size: (A) © = 2,
(B) © =3, (C) © =4, (D) ©® = 5. Contours are shown for probabilities of
0.005, 0.010, 0.015, 0.020 and 0.025, which can be identified from the heat map

colour box on the right.
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order cumulants in general are not. The higher-order cumulants given by the
Fokker-Planck equation are identically zero. This is because either the underly-
ing stochastic process is normally-distributed and the Fokker-Planck equation
is in fact a formally-derivable limit; or the Fokker-Planck equation is based on
a second-order truncation of the Kramers-Moyal expansion for processes that
are not normally-distributed. As h,, is approximately normally-distributed for
N large enough, it may appear that a Fokker-Planck approach would therefore
become exact in the large N limit. However, the Fokker-Planck equation is also
based on a diffusion approximation, while the dynamics of h, contains jump
processes. Despite the limiting normality of h,,, a Fokker-Planck approach is
thus only ever at best a diffusion-limit approximation to the dynamics of h,,.
It is convenient to consider this diffusion limit because in section 6 we will
implement an absorbing boundary when solving the Fokker-Planck equation.
This allows us to obtain MFPTs for memory lifetimes in the limit in which

jump processes are ignored.

5.1 Evolution of the Moments

Before we derive the jump moments for perceptron activation, we first derive
exact equations for the evolution of the first- and second-order moments of
h(t) and thus for the evolution of its variance. We can of course compute the
moments exactly and directly from the results above, but we obtain equations
for their evolution because they will validate our results for the jump moments.

Consider a sequence of values of some quantity w at each memory storage
step in discrete time, w,, for n = 0,1,2, ..., and thus its continuous-time form

w(t) = T{wn;t}. Computing T{wn+1;t} =3y (rt)" e " w,,1 in which the

n=0 n!
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sequence is offset by one step, we find

1Ldu(t)

Pluniiit) = Plwnit} = Pluns — wnit} = ~S08,

(5.1)

so that performing a Poisson sum over differences between consecutive steps
therefore just returns the time derivative.
To determine du(t)/dt, we therefore need pi,11 — p1,. We have the initial

condition py = p(0) = 1/62. From Eq. (4.12) and Eq. (3.13), we obtain

finir = o = 5(1 = pa)py — 5(1+ 1)y, - (5.2)

The conditional probabilities p were defined in Eq. (3.8), with the denomi-
nators n - w,, and n - s,, being the probabilities of the synapse being weak or
strong, respectively. But these latter probabilities are just %(1 F [in), SO We

can rewrite Eq. (5.2) in the form

g1 — fn = fi = [0, (5.3)

where ff =n -TTw, and f, =n-T"s,. From the structures of the matrices
T#, the quantities f£ are just the probabilities for a synapse being in filter
state I = 4+(© — 1) when it is weak or in filter state I = —(© — 1) when it is
strong, respectively. These probabilities are computed in discrete time directly
from M"™ acting on the initial state immediately after the storage of memory
£°, which for balanced processes we may take to be just Mt A. Thus, they
are given directly by the relevant components of the vector M™ M*™A. When
we perform a Poisson sum over Eq. (5.3) to obtain du(t)/dt, fF will turn
into f*(t) = P{f¥;t}, where equivalently f*(t) may be determined explicitly

from the relevant components of the continuous-time state vector given by
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exp(rt G) M* A, since P{M"; ¢} = exp(rt G) with G = M — I (cf. Eq. (2.14)).
Eq. (5.3) therefore becomes, under Poisson summation,

Lault) _

S = p - ). (54)

We now define the continuous-time conditional strength-change probabilities
via the equation
fE(@)

pr(t) = ma (5.5)

where the two denominators %[1 F ,u(t)] are just the continuous-time proba-
bilities for a synapse to be weak or strong, respectively.> The continuous-time
mean strength p(t) may be computed from the discrete-time mean strengths

fin Via fP{ L t} or, equivalently, directly from Q% exp(rt G) Mt A. With these

definitions, Eq. (5.4) becomes

LD w0l 0 - S+ 00 (5.6)
with ¢(0) = 1/62, which governs the evolution of x(t) in continuous time. Al-
though the RHSs of Egs. (5.2) and (5.6) are structurally identical, it is not the
case that we have effectively moved from Eq. (5.2) to Eq. (5.6) by replacing the
Poisson sum of a product by the product of the Poisson sums: such a replace-
ment would in general be invalid. Rather, the RHSs of Egs. (5.2) and (5.6) are

structurally identical purely because they unpack to the state probabilities f*

3 It is critical to note that p*(¢) are given by P{fE;t}/P{i[1 F p,]} and
are not given by fP{ £/ % [1 F un] }: the continuous-time conditional strength-
change probabilities are the ratios of state probabilities in continuous time to

strength probabilities in continuous time.
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Figure 6: Conditional strength-change probabilities p*(¢) as functions of time

for © = 4.

and f*(t), respectively, which are derived from M" and T{M”; t} = exp(rt G),
respectively. We note that for dynamics with fixed conditional strength-change
probabilities of just p = p* (so essentially just a simple synapse with no inter-
nal states), Poisson summing Eq. (5.2) does indeed lead directly to Eq. (5.6),
with p*(t) = p*, as we should expect.

In Fig. 6 we plot p™(t) against ¢ for the same choices of parameters as for p
in Fig. 2. Although we have stressed the fact that the continuous-time condi-
tional strength-change probabilities are not just the Poisson-summed discrete-
time conditional strength-change probabilities (see footnote 3), we see never-
theless that p*™(t) are very similar in overall profile to p, with the jaggedness
in the latter pair being smoothed out in the former pair.

Because all the higher-order moments of h,, depend only on pu,, the deter-

mination of their evolution in terms of p, is in principle straightforward. The
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2
n

variance o2 is given in Eq. (4.13a) as 02 = (1 — p2)/N. The second-order
moment is just E[h2] = 02 + 2, which we denote for convenience by ¢,. We
have that

1 N-1,

I S 5.7

and so by using Eq. (5.2) we obtain

N -1 _
Pn+l — Pn = T [%(1 - :un)p:z_ - %(1 + ﬂn)pn]

X |20+ 30 = )y = 30+ | (58a)

We would in general expect the RHS to depend only linearly on both the first-
and second-order moments p,, and ¢, (see below), but deriving this equation
by exploiting the identity in Eq. (5.7) has effectively replaced the second-order
moment ¢, by expressions involving 2 on the RHS. We therefore rewrite the

RHS by replacing the p2 term by (Ny, —1)/(N — 1), to obtain

Pnt1 — o0 = 2(0F + ) [0 +p,) — 2]

V- s e
b1 30— g~ 30— )] +4) —pn). (58b)

Poisson summing either Eq. (5.8a) or (5.8b) will give us dp(t)/dt where ¢(t) =
P{on;t}. The two resulting equations for dyp(t)/dt are exact and completely
equivalent, but it does not appear to be possible in general to evaluate the

Poisson sums on the RHSs and express them purely in terms of u(t) and

¢(t), even when we use the state probabilities fF = (1 F p,)pi that allowed
Eq. (5.2) to be summed. For the particular case that p= = p* are constants,

the Poisson sums can be explicitly evaluated.
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In Fig. 7 we show for N = 10? synapses and various choices of © that the
mean 4 (t) determined from Eq. (5.6) and the variance o(t)? determined via
©(t) from the Poisson-summed Eq. (5.8b) agree exactly with p(t) computed
analytically (Elliott & Lagogiannis, 2012) and o (¢)? determined explicitly from
numerical matrix methods. To determine the evolution of ¢(t) from Eq. (5.8b),
we have as above truncated the Poisson sum at a point beyond which further
contributions are negligible. The differential equations are solved by standard
numerical methods.

Because we cannot Poisson sum Eq. (5.8b) explicitly in the general case of
non-constant p=, in order to make progress we perform an approximation in
the following manner. Let the vector P, contain the probability distribution

of h,, so that the ith component of P, is Prob[hn = % — } Then

PTL+1 = Vn+1Pn, (59)

where the elements of V,,,; depend only on p from Eq. (4.28). We may use
this equation to compute the changes in the moments of h,, from step to step.

For example, for N = 2, we may write P,, in the form

-1

1 1 1 1 L(pn — 1tn)
11 0 +1 On Hn + pn)

which gives the required zeroth-, first- and second-order moments of 1, u,, and

©n, Tespectively.? Eq. (5.9), which is then purely linear in the moments, then

1For general N the matrix whose inverse is given on the RHS of Eq. (5.10) has
element ( QNJ —1)" in row i and column j, with the understanding that for i = 0,

these elements are always unity even if 2j/N — 1 = 0. These elements are just
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Figure 7: Mean and variance in perceptron activation computed either di-
rectly or from their associated differential equations. Solid lines show results
computed directly while the circles show results computed from differential
equations. (A) Means pu(t) for © = 2, 3, 4 and 5, moving from top to bottom
in the figure; (B) variances o(t)? for the same values of © as in panel A, again

moving from top to bottom. Results are shown for N = 10® synapses.
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explicitly gives Egs. (5.2) and (5.8b) for N = 2 and in general for arbitrary N
we obtain the correct overall factors in Egs. (5.8b). From Eq. (5.9), we have

Pn+1 _Pn = (Vn+1 _]DPTL’ or

%dlz_fﬂ =P{V,1 Py;t} — P(t), (5.11)

but we also have from Eq. (5.9) that P,, = H,, P, using Eq. (4.24), or
P(t) =P{P,;t} = P{H,;t} P(0) = H(t)P(0). (5.12)

While it appears that this solution of Eq. (5.11) implies that the Poisson sum
on the RHS of Eq. (5.11) can be evaluated, explicitly doing so merely results in
the essentially tautological and completely useless dP(t)/dt = dH(t)/dt P(0).

Except for the case when pf = p*, the Poisson sum on the RHS of
Eq. (5.11) cannot therefore be usefully evaluated. However, the structure of
this equation suggests that a natural approximation is to replace the Poisson
sum P{V, 1 P,;t} with V(t)P(t), where the time-dependent matrix V(t) is
generated from the time-dependent probabilities p*(t), so that column j is

generated by

in [V(t)]ij = {[1 _ %p+(t)]x0 i %p+(t)x1}Nj

< {4 (a4 [1- (0]} (5.13)

We therefore replace the exact distribution P(t) = H(¢)P(0) obtained from

all relevant powers of the possible values of the perceptron’s activation. This
matrix is in fact a transposed Vandermonde matrix. The vector multiplying

this inverse matrix in general has components E[hf].
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the Poisson sum T{Pn; t} by the approximated distribution obtained from the
solution of
1dP(t)

= [V(t) — T P(t), (5.14)

with V(t) depending on p*(t). This approximation is graphically represented
in Fig. 8, in which we replace the single-synapse strength-change transitions in
Fig. 8A by those shown in Fig. 8B. This approximation in effect elevates the
continuous-time probabilities p*(¢) induced by the underlying discrete-time
probabilities pF to the status of fully and completely defining the dynamics.
Of course, when p*(t) = pf = p* are constants, then this approximation
reproduces the exact dynamics, with a Poisson sum over Eq. (5.9) yielding
directly Eq. (5.14) with V(¢) = V, a constant matrix. In this case, the solution
of Eq. (5.14) is P(t) = H(t)P(0) with H(t) = exp [rt(V — I)]. In general,

however, the solution of Eq. (5.14) gives us the approximated evolution matrix

H(t) = T{exp . /O V) -1 } (5.15)

where T{-} denotes the time-ordered product (meta-)operator, although in
practice we must solve the differential equation in Eq. (5.14) numerically.
With this approximation, we may use Eq. (5.14) to compute the evolution
of the moments of h(t). Expanding P(t) out in terms of its continuous-time
moments similarly to Eq. (5.10), we obtain Eq. (5.6) exactly, so that at the

level of the dynamics in the mean p(t), the approximated dynamics reproduce
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A + B pt(t)

P, p (1)
Figure 8: Step- and time-dependent changes in synaptic strength. (A) The
full, unapproximated dynamics consist of step-dependent probabilities p~ for
changes in synaptic strength and thus a master equation for each step for the
change in state probabilities per step. (B) We may instead approximate these
dynamics by time-dependent probabilities p*(#) and a single master equation
with these time-dependent probabilities. These two processes are only equiv-

alent when p = p*(t) = p* are constants, independent of the step or time.

the exact dynamics. For the second-order moment, we obtain

ldp(t)
rodt

+[pt () —p~ ()], (5.16)

whose RHS is of course structurally identical to Eq. (5.8b). The result of
this approximation is that Poisson sums of products have been replaced by
the products of Poisson sums. Further, the approximation has equated p*(¢)
with the Poisson sums P{p;t}, which is incorrect. However, because p*(t)
are defined as ratios of Poisson sums, the approximation has thus essentially
replaced a ratio of Poisson sums with a Poisson sum of ratios. The approxi-
mation therefore consists in the assumption that Poisson sums factorise both

multiplicatively and divisively.
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We may numerically solve Eq. (5.14) governing these approximated dynam-
ics to obtain the entire distribution P(h,t), and compare it to the distribution
for the exact dynamics shown in Fig. 5. From Eq. (5.13), the elements of
the matrix V(¢) are sums of products of binomial coefficients and involve the
probabilities p*(t). We use N = 103, which is large enough to replace these el-
ements with normal distributions, making numerical solutions more tractable
for large N. Fig. 9 shows the resulting distributions for different choices of
©. Comparing these distributions for the approximated dynamics governed by
Eq. (5.14) to those for the exact dynamics in Fig. 5, we see good qualitative
agreement. The approximated dynamics tend to smooth out the isolated is-
lands of probability that arise in Fig. 5 as each separate Poisson mode develops,
but we clearly see in Fig. 9 for © = 2 and © = 3 these concentrated regions of
probability developing at earlier times for larger h and then connecting with
the other regions for smaller h at later times.

The approximated dynamics reproduce exactly the exact dynamics at the
level of the mean but the variances differ. We can see this by comparing
Figs. 5 and 9. For example, considering a slice through these maps for rt ~ 5
for © = 4 or © = 5, it is clear that the approximated dynamics have somewhat
broader ranges of non-zero probability than the exact dynamics. By explic-
itly computing the variance in the approximated dynamics via Eq. (5.16), we
directly compare the variances for the exact and approximated dynamics in
Fig. 10. For © = 2, the approximated dynamics underestimate the exact vari-
ance while for © > 2 the approximated dynamics (mostly) overestimate the
exact variance. The small- and large-time behaviours are in agreement, but
the intermediate-time behaviours differ somewhat. Specifically, in the vicinity
of the peak in the mean memory signal, the variance in the exact dynamics

exhibits a minimum, but for © > 2 the variance in the approximated dynamics
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Figure 9: Superimposed heat and contour maps for the probability distri-
bution P(h,t) of the perceptron activation or tracked memory signal, h, over
time, ¢, obtained from the approximated dynamics governed by Eq. (5.14).
The format of this figure is identical to Fig. 5 except that we have added an
additional contour in yellow corresponding to a probability of 0.0025 in panel

A, for © = 2.
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Figure 10: Comparison between the variance in the exact and approximated
dynamics. The variance in the exact dynamics in shown with solid lines while
that in the approximated dynamics is shown with dashed lines. Each panel

shows results for the indicated value of ©. These variances are determined

with N = 10% synapses.

is larger and only exhibits an inflexion or undulation at this same location.

5.2 Jump Moments

Assuming that we have a standard Fokker-Planck equation of the form

10 0 1 02
;aP(h, t) = ~a7 [A(h, t)P(h,t)] + 3508 [B(h,t)P(h,t)], (5.17)
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its solution would determine the entire probability distribution P(h,t) of the
perceptron activation or tracked memory signal h over time ¢t. The use of a
Fokker-Planck equation entails a continuum limit for h, which for large enough
N isvalid. If P(h/,t'| h,t) is the transition probability from h at time ¢ to b at
time ¢’ > t, then the first- and second-order jump moments A(h,t) and B(h,t)

are determined from

_1 : l ! l /
Mi(h,t) = - im 5t/dh (W — B PR £+ 6t| h,t), (5.18)

with A(h,t) = My(h,t) and B(h,t) = My(h,t).> The first- and second-order

moments p(t) and () are then determined from Eq. (5.17) via the equations

%d‘;—f) = E[A(h,1)], (5.19a)
%dz_@ = E[B(h,t)] + 2E[RA(h,1)]. (5.19b)

We must determine whether we do indeed have a standard Fokker-Planck equa-
tion and if so, we must compute the jump moments A(h,t) and B(h,t) for per-
ceptron activation and show that they lead to the required evolution equations
for pu(t) and o(t) derived in section 5.1.

Eq. (5.11) is a master equation in continuous time for the discrete prob-
ability distribution P(¢) for h at time ¢. The Fokker-Planck equation would
be derived from this equation either in certain formal limits or as a truncation

of the Kramers-Moyal expansion. However, Eq. (5.11) is itself derived as a

®Because we prefer to retain an overall factor of 1/r on the left-hand side
of the Fokker-Planck equation so that the rate r manifestly acts as a simple
scale factor for time, we have modified this standard definition of the jump

moments by dividing through by the rate.
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Poisson sum over the discrete-time equation

Py —Py= (Vi —1)P,,. (5.20)

The matrix operator V,, .1 —I on the RHS induces the jumps in the moments
between successive steps, giving the change in the distribution from P,, to
P,, . Heuristically, in order to move to a continuous probability distribution
P,.(h) at step m when h takes continuous rather than discrete values, we
merely have to replace the matrix operator V,,,.; —I with a differential operator
that induces the same jump moments. This differential operator is of course
precisely that which occurs on the RHS of the Fokker-Planck equation. The
matrix V,,, 1 induces the conditional first-order moment and variance given in
Eq. (4.30). The matrix V,,,; — I acting on P,, induces the jump moments
E[(hims1—"Rm)!|h], which can be written down directly from Eq. (4.30). Thus,

defining

Ap(h) =11 = h)p) — (1 + h)p,,, (5.21a)
Bu(h) = :[1 = 50~ W1~ pf)? ~ 31+ 01— p,.Y]
+ (50—t~ 30+ ) (521b)

we replace Eq. (5.20) with

0 1 92

Posi(h) = Pulh) = =5 [An(W) Pa(h)] + 555 [Bu (W) PR, (5.22)

in order to move to the continuum limit. We may explicitly confirm by direct
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calculation that using Eq. (5.22), we obtain

fomir = tim = E[Am(B)], (5.23)

P+t — om = E[Bu(h)] + 2E[hA,(R)], (5.23b)

where the expectation values on the RHSs are evaluated over the probability
distribution P,,(h) with first- and second-order moments p,, and ,,, respec-
tively, and that the RHSs reproduce the results in Eqgs. (5.2) and (5.8b).

The form in Eq. (5.22) is a discrete-time analogue of the Fokker-Planck
equation. While it resembles a one-step forward Euler method for obtaining
numerical solutions, we stress that it is not. It is an equation that governs the
change in distribution of h between successive memory storage steps, which
occur as a Poisson process. In order to move to continuous time, we must of

course Poisson sum this equation, obtaining

10 0
;ap(f% t) = —%[?{Am( h)ity] + _w[ﬂ){B h);t}]. (5.24)

This equation is not a standard Fokker-Planck equation because the presence
of the Poisson sums on the RHS prevents us from pulling out the distribution
P(h,t) from these sums. This failure of factorisation reflects the failure of
factorisation in the original master equation in Eq. (5.11). Only when A,,(h)
and B,,(h) are independent of m and so constant in time do we obtain a
standard Fokker-Planck equation with time-independent jump moments A(h)
and B(h). Nevertheless, Eq. (5.24) does necessarily reproduce the correct
differential equations for u(t) and ¢(t) and so it does generate the correct first-
and second-order moments for the tracked memory signal A(t) in continuous

time.
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Because of this failure of factorisation, we must move to the approximated
dynamics governed by Eq. (5.14). The time-dependent matrix V(¢) — I on the
RHS of Eq. (5.14) induces jump moments that may be computed directly from
the generating function for the columns of V(¢) in Eq. (5.13). These are of
course completely analogous to the jump moments computed from V,,; — L.
Thus, we may immediately write down the jump moments for the approximated

dynamics as

A(h,t) = 31 = h)pt(t) — L1+ h)p (1), (5.25a)
B(h,t) = %{1 =B )~ 2 - (0]
+ L= R)pt () — S+ R)p~ ()] (5.25b)

These jump moments appear in the standard form of the Fokker-Planck equa-
tion stated in Eq. (5.17). Since E[h] = u(t) and E[h?] = (t), we may directly
verify that we obtain the correct equations for du(t)/dt and dp(t)/dt for the
approximated dynamics from Eq. (5.19).

Before considering solutions of this Fokker-Planck equation for the approxi-
mated dynamics, we examine the structure of its jump moments by considering
the asymptotic behaviour of the continuous-time, conditional strength-change
probabilities p*(¢). In the limit ¢ — oo, filter and strength states return to
equilibrium. The probabilities of a filter being in states +(©—1) in equilibrium
for balanced processes are both just 1/(2 ©2), and the strength probabilities are
both % Thus, we have p*(t) — ps where po, = 1/60?% is the equilibrium condi-
tional strength-change probability for both weak and strong synapses. We also

know that p~(0) = 0. Examining Fig. 6, as a qualitatively good approximation
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we see that we can write

P (t) = Poo (1 — e_’\*rt) , (5.26)

where A_ controls the rate at which p~(¢) returns to its equilibrium value.
This form does not capture the finer details of the slight overshooting of p~(¢)
beyond p., at intermediate times, but it is sufficient for our purposes here.
For p*(0), we have that p™(0) = 2/(6% — 1) for © > 1. We write this value
as po for simplicity. Again, then, we may write down a qualitatively good

approximation for p*(t) as

PH(t) = Poo + (0 — Poc)e M, (5.27)

where A, is the analogue of A\_. We set Ay = A since from Fig. 6 both
pE(t) appear to return to equilibrium at the same rate, as we might expect
from the symmetry of processes with balanced plasticity. We now separate

the equilibrium behaviour of the jump moments from the initial transients by

writing
A(h,t) = A (h) + Ar(h)e™, (5.28a)
B(h,t) = By (h) + Bi(h)e " + By(h)e 2, (5.28b)
We obtain
Aso(h) = =push, (5.29a)
1
Boo(h) = p2h? + ¥ [1—(1-px)?], (5.29b)
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and

Ai(h) = 3po(1 = h) + pach, (5.30a)

Bi(h) = %(1 o) [po(1 = 1) — 2p] — poch[po(l — B) + 2pch],  (5.30D)

Bo(h) = - [popse(1 — 1) = (1~ g — 2] + [3po(1 — h) + poch]”
(5.30¢)

In the absence of the transients, we have jump moments that define a fixed
probability stochastic updater with update probability p,, = 1/62%. Since
u(0) = 1/6? = p,., this interpretation is consistent as the mean initial signal
for such a synapse is indeed just the update probability. We have previously
studied MFPTs for memory lifetimes with such dynamics extensively (Elliott,
2014), and obtained precisely these jump moments (see Eq. (7.5) in Elliott
(2014), which is essentially the backward Kolmogorov equation, used for de-
termining passage times). We showed that the dynamics of a fixed probability
stochastic updater are essentially just those of the Ornstein-Uhlenbeck (OU)
process. The transients modify these dynamics. Although A, (h) pulls h
towards zero, Aj(h) increases h: initially, the full jump moment A(h,O0) is
+po(1 — h), which pulls h towards unity. The balance between A (h) and
Aj(h)e™t determines whether h is pulled towards unity or towards zero, with
the equilibrium pull towards zero eventually overcoming the transient pull to-
wards unity as the transient decays. We can see these two competing influences

explicitly by writing A(h,t) as

A(h,t) = %po(l — h)e_)""t — pooh(l — e_’\”).

At t = 0, there is a stable fixed point at h = 1, at the level of the Liouville
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dynamics, while in equilibrium, the stable fixed point is at h = 0. At inter-
mediate times, there is a stable fixed point at an intermediate value of h. A
filter-based synapse therefore modifies the equilibrium OU-like dynamics by

superimposing a transient that pulls h towards unity.

5.3 Solutions of Fokker-Planck Equation

We are primarily concerned with using the Fokker-Planck equation for the
approximated dynamics in the presence of an absorbing boundary in order to
obtain MFPTs for perceptron activation to fall below a defined threshold. Here
we therefore only briefly consider unconstrained solutions of the Fokker-Planck,
i.e. solutions in the absence of an absorbing boundary.

The Fokker-Planck equation with jump moments in Eq. (5.25) almost cer-
tainly cannot be solved analytically. We therefore use standard numerical
methods for solving this partial differential equation. To check the integrity of
a numerical solution for any given choice of parameters, we verify that it is al-
ways non-negative and normalised to an integral of unity. The exact numerical
agreement between the mean and variance of the numerically-obtained prob-
ability distribution and the mean and variance obtained from the differential
equations in Egs. (5.6) and (5.16) also validates the numerical solution.

In Fig. 11 we show superimposed heat and contour maps for numerical
solutions of the Fokker-Planck equation for the approximated dynamics for
different choices of filter size. This figure should be compared to Fig. 9, which
shows results for the approximated dynamics obtained directly from the master
equation in Eq. (5.14), from which the Fokker-Planck equation is obtained as a
continuum (and diffusion) limit. We see that for © = 4 and © = 5 (and in gen-

eral for larger values of ©), the Fokker-Planck and master equation solutions
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Figure 11: Superimposed heat and contour maps for the probability distribu-
tion P(h,t) of the perceptron activation or tracked memory signal, h, over time,
t, obtained from the Fokker-Planck equation for the approximated dynamics.

The format of this figure is identical to Fig. 5.
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are very similar, with only relatively small qualitative differences in the overall
structures of the solutions. For ® = 2 and © = 3, however, we clearly see
the impact of the diffusion approximation. At small times, the solutions from
the master equation remain tightly focused around their initial mean. These
small-time solutions of the master equation are governed by the initial Poisson

~rtarising from the storage of the tracked memory

mode, which decays as e
£°. As time progresses, subsequent Poisson modes corresponding to the stor-
age of subsequent memories arise in the master equation solution, and these
are clearly seen in Fig. 9 (and even more clearly seen in the solutions of the
exact dynamics in Fig. 5). However, in the Fokker-Planck equation solutions
in Fig. 11, we see that at small times, the solution diffuses outwards from its
initial state, and that the entire solution drifts upwards towards higher values
of h rather than developing islands of non-zero probability that then connect
with other regions as time progresses. In the regions where the master equa-
tion solutions exhibit clearly visible distinct Poisson modes, the Fokker-Planck
solutions appear quite diffuse, with probability being spread over a wide range
of h rather than concentrated in distinct, non-overlapping regions. Neverthe-

less, the mean and variance of the distributions from the Fokker-Planck and

master equation solutions must agree, and this is confirmed in Fig. 12.

6 Mean First Passage Times

We now consider memory lifetimes defined by the MFPT for the perceptron
activation h(t) to fall below a defined threshold ¢, which could be the per-
ceptron’s firing threshold. For balanced potentiation and depression processes,
p(t) — 0 as t — oo, so we will typically consider a threshold ¥ = 0 but we will

also consider thresholds 9 > 0.

66



03t 1

0.2 1

u(®

rt

o(t)?

103
107

rt

Figure 12: Mean and variance in perceptron activation determined either
from numerical solutions of the Fokker-Planck equations or from the differ-
ential equations governing the evolution of the moments of the approximated
dynamics. Solid lines show results from the Fokker-Planck equation while the
circles show results from the differential equations. The format of this figure

is otherwise identical to Fig. 7.
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Previously we gave a general derivation of the lifetime Tmfpt(fo) of memory
¢° defined by the MFPT for h(t) to fall below ) in a general model with internal
synaptic states (see Eq. (3.7) in Elliott (2014)). This result, although exact,
is essentially useless for explicit computations, either analytical or numerical,
unless N is very small. However, if we have a transition matrix for changes in
the perceptron activation at each memory storage step, as here with the step-
dependent matrix V,,, then we can instead work directly with these transitions
in h rather than the underlying transitions in the internal states of all N
synapses. The matrix V,, in general allows transitions from any value of h,,_;
to any value of h,,. However, we wish to consider transitions between states
hp,—1 > Y and h,, > 9 in order to impose the threshold on perceptron activation
and obtain MFPTs: transitions to disallowed states with h,, < ¢ should be

excluded. Defining the (N + 1) x (N + 1) diagonal matrix

]P)h>19:dia’g{07"'70 | 17"'a1}7 (61)

— N

r<vstates r>vstates
the product P,~yV,, then imposes the requirement that only transitions to
states with h > ¢ are allowed, with the states h < 1 being projected out. By

using the projection property P2, = P>y, we observe that, for example,

(Prs9 Vi) Praw V1) - - = (Phow Vil Prss) Prso Vi 1Prss) - -+

so that we may consider the transition matrix between allowed states to be
Pr~9V,Py~y, which is essentially just the relevant sub-block of V,, for transi-
tions between allows states.

We define the vector P(hg) to correspond to an initial state in which hg

takes a definite value, so that P(hg) has an entry of unity at position i =
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(1 + ho) and zeros elsewhere. If hg > o, then P4~y P(ho) = P(ho), but if

ho < 9, then P~y P(hg) = 0. We then have that

Um(ho) = 1 (PhsgVinPrsg) - - (Prso ViPrso) [Phso P (ho)] (6.2)

is the probability that A > 1) during and after the storage of memories &', ..., €™
from the definite initial state hg; we define vg(ho) = n'Pus9P(hg), with
Yo(ho) € {0,1} depending on whether hy < ¥ or hy > ¥. To include &°,
we merely average hg over the initial distribution induced by the storage
of €°. Any states with hy < ¥ are automatically excluded in this averag-
ing. Because P~y # I, ¢, (ho) — 0 as m — 0, so that it is inevitable
that h will eventually fall (to or) below ¥. The sequence of probabilities
o(ho) > 11(hg) > a(hg) > ... is monotonic decreasing, and the difference
Ym(ho) — Ym+1(ho) > 0 is the probability that h falls (to or) below ¢ at step
m+ 1. The MFPT for h to fall (to or) below 9 from some definite initial state

ho is then

Tt (Bo) = Y (m + 1) [t (ho) = Y1 (ho)] Zwm ho).  (6.3)
m=0

In continuous time, we obtain an identical result, up to an overall rate factor
appearing on the left-hand side (Elliott, 2014). For V,, =V, a constant matrix
independent of m, the sum in Eq. (6.3) can be evaluated exactly although a
matrix inverse must be computed. In general, we must evaluate each proba-
bility ¢,,(ho) and sum them numerically, terminating the sum when further
contributions become negligible. The numerical evaluation of Ty (ho) and its
average (T (ho)), averaged over the initial distribution of hg induced by &°,

is feasible for N up to around 10*. When we obtain MFPTs from simulations,
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we automatically obtain (7 (ho)) because we always average over a sufficient
number of trials to obtain good statistics.

We may also obtain Tygt(ho) for the approximated dynamics from the
Fokker-Planck equation. To do so, we erect an absorbing boundary at h =
¥ and solve the Fokker-Planck equation subject to the boundary condition
P(1,t) = 0 and the initial condition P(h,0) = d(h — hg) for hg > ¥, where 0(x)
is the Dirac delta function. For (T (ho)), we may change the initial condition
to P(h,0) = H(h—9)FPy(h), where H(z) is the Heaviside step function, which
cuts off the distribution below the boundary at h = 9, and Fy(h) is the initial
distribution of h induced by the storage of £”. We may take Py(h) to be a
normal distribution with mean pq = 1/0?% and variance o = (1 — p2)/N. The

change in the total probability [;° dhP(h,t) gives the MFPT via

oo d [ee] oo [ee]
Tt (h) = — / drt L / dh P(h,t) = / dt / dh P(ht),  (64)
0 dt Jy 0 9

which is essentially equivalent to Eq. (6.3). Numerically, when the Fokker-
Planck equation is spatially discretised, the probability that moves onto the
boundary at h = ¥ at each discretised time step, before it is set to zero, gives
the change in total probability and may, when weighted by the current time,
be explicitly summed to give Tt (ho).

In Fig. 13, we show results for (Tt (ho)) and for T (ho) for a threshold
¥ = 0 and different filter sizes ©. For (mmei(ho)), in Fig. 13A, we obtain
analytical results using Eq. (6.3) for N = 10®> and N = 10%; results from
the Fokker-Planck equation for N = 10? and only for smaller values of the
filter size ©; and results by running simulations of either the full, filter-based
dynamics without reduction to a simple synapse with step-dependent update

probabilities or the reduced, simple dynamics. For the analytical results, we use
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Figure 13: Comparison of results for memory lifetimes defined by mean first
passage times (MFPTs). (A) The MFPT-defined memory lifetime 7,1 (ho)
averaged over the binomial distribution of the initial memory signal hyg,
(Tmipt (o)), as a function of filter size ©. Results are shown for N = 10,
N = 10* and N = 10° synapses as indicated, for simulations of the time-
dependent stochastic updater (TDSU) (solid lines); analytical results for the
TDSU (circles); full simulations of filter-based dynamics without reduction to
the TDSU form (dash lines); numerical results from the Fokker-Planck equa-
tion with an absorbing boundary at h = 0 (dotted lines). (B) Memory lifetimes
Tmfpt (Po) as a function of the definite initial state hg, so not averaged over the
distribution of hg. Results are shown for N = 103 synapses for the different
choices of © as indicated, either for analytical results from the TDSU (solid
lines) or for numerical results from the Fokker-Planck equation with an ab-

sorbing boundary at A = 0 (dashed lines).
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a normal approximation to the binomial probabilities in the transition matrix.
We have shown previously that this is an extremely good approximation that
allows N to be pushed to higher values numerically (Elliott, 2014). Even so,
for N = 10* we have obtained results only up to © = 13 as convergence of
the sum in Eq. (6.3) takes too long for larger values of ©. For simulations,
we typically average over 10%/N different trials to obtain good statistics. We
see basically exact agreement between the analytical results for the reduced
dynamics and their simulation results. Any disagreement is almost entirely due
to noise in simulations of a stochastic process and can be removed by averaging
over more trials to obtain even better statistics. Any disagreement due to
the normal approximation is essentially negligible. The Fokker-Planck results,
which are based on the approximated dynamics, qualitatively agree with the
other results, but they tend to underestimate (Tt (ho)). This underestimate is
largely due to the increased variance in the approximated dynamics compared
to the exact dynamics (see Fig. 10). We have obtained results for the Fokker-
Planck equation only for N = 103 and smaller © because it is very hard to
obtain stable numerical solutions of the equation for larger parameter choices
as these require pushing the numerical solutions out to larger and larger times,
for which numerical instabilities tend to develop. We see a small discrepancy
between full and reduced simulation results. The discrepancy is larger for
smaller N. This discrepancy is real and not merely due to noisy simulations.
We shall explain it momentarily. In Fig. 13B, we plot T (ho) as a function of
the definite initial value hqy for exact results for the reduced, simple dynamics
and for the Fokker-Planck equation, for different choices of filter size © as
indicated. Despite the noted slight underestimate of 7, by the Fokker-Planck
equation, we see that the quantitative agreement is good and the qualitative

agreement, in terms of following the trend in the exact results, is essentially
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perfect. The quantitative disagreement is larger for smaller hy and smaller O,
for which jump processes, not included in the Fokker-Planck equation because
of the diffusion approximation, are more significant.

We observe that the MFPTs in Fig. 13A increase monotonically with in-
creasing ©. This monotonic increase appears to continue indefinitely. If we
consider an SNR definition of memory lifetimes, then using the slowest decay-
ing mode in Eq. (2.21), a good estimate of SNR memory lifetime, 74, is

2

TTonr = 47Ti210g6 (%%) : (6.5)
Contrary to Tmfpt, Tenr €xhibits a maximum as a function of ©, with the max-
imum occurring at © = %\/g, giving a maximum SNR memory lifetime of
1024N/(ern®), where e is the base of natural logarithms. This difference be-
tween Ty and Tyt has been examined before (Elliott, 2016a). Although Tyt
increases indefinitely as a function of ©, the variance in the first passage times
grows as O increases, so that the MFPT eventually becomes indistinguishable
from zero at the level of one standard deviation in the first passage time (El-
liott, 2016a). Nevertheless, while 74, appears to exhibit what may be termed a
network size effect, this effect may be entirely an artifact of the SNR definition
of memory lifetimes. Similar effects in other models of complex synapses are
likely similarly artifactual.

The discrepancy between results for the MFPTs for the full and reduced
dynamics in Fig. 13A appears to contradict the exact agreement in the statis-
tics of h(t) explicitly demonstrated in Figs. 3 and 4 and thus perhaps to cast
doubt on the claimed complete equivalence between full synaptic dynamics
and synaptic dynamics with internal states integrated out, as discussed in sec-

tion 3. In obtaining these reduced, simple dynamics with the step-dependent
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conditional probabilities pF above, it is implicit that the statistical ensemble
over which the probabilities p¥ are defined does not change as a function of
the time step n. The ensemble is time-independent. For time-independent en-
sembles, the equivalence between the full, complex synaptic dynamics and the
reduced, simple, time-dependent synaptic dynamics is indeed exact. Critically,
however, in the presence of an absorbing boundary, used to determine MFPT's,
the ensemble changes over time. Specifically, when any particular perceptron
in the ensemble crosses the h = ¢ threshold, it is removed from the ensemble
so that it no longer contributes to the determination of memory lifetimes be-
yond that point. Any particular perceptron that crosses the threshold can do
so only by at least one of its synapses changing strength; all of its synapses
change their filter states in response to any memory storage step. The percep-
tron is removed from the ensemble and therefore the subsequent evolution of
its filter states no longer contributes to the determination of p¥ for later time
steps. In the presence of an absorbing boundary that changes the statistical
ensemble over which p¥ are defined, p are therefore dependent on this ensem-
ble. They will therefore also depend on N, which determines the relative size
of the ensemble, since pE are computed as averages over all synapses. In the
limit N — oo, the ensemble remains formally unchanged with absorption at
the boundary, so in the large N limit, we would expect to see the p* defined
over a time-dependent, absorbing ensemble to approach the pF defined over a
time-independent, non-absorbing ensemble. For MFPTs, we would therefore
expect the use of p= defined over a non-absorbing ensemble to constitute a
1/N approximation, becoming exact in the N — oo limit.

We explore these issues in Fig. 14, where we plot p= for a time-dependent,
absorbing ensemble against n for different values of N, and we also show for

reference p= for the time-independent, non-absorbing ensemble. For N =
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Figure 14: Conditional strength-change probabilities p, as a function of
time step n, in the presence of an absorbing boundary. Results for four dif-
ferent values of N are shown, and for comparison results are also shown for
dynamics in the absence of an absorbing boundary so that the ensemble of
states over which p* are determined does not change over time. Lines show
results obtained from simulations while the solid points show analytical results
for N = 3 synapses. As N increases, the results for p* converge on the solid
lines. We have selected a filter size of © = 3. The inset magnifies the region

for 5 <n+41 <20.
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3, this value is small enough to permit an explicit analytical or numerical
calculation of p> for © small enough, but in general we must determine p*
in the presence of an absorbing boundary (here ¥ = 0) via simulations. The
basically exact agreement between the N = 3 analytical or numerical results
and those from simulation validates both methods. We see that the absorbing
ensemble p=’s do indeed differ from the non-absorbing ensemble p’s. We also
see that the absorbing ensemble pr’s do depend on N. The absorbing p’s
approach the non-absorbing pF’s as n increases, but the former asymptote to
values that differ from the latter. Specifically, the absorbing p, ’s asymptote
to larger values than the non-absorbing p.’s, and conversely the absorbing
p’s asymptote to smaller values than the non-absorbing p;’s. For finite N,
the absorbing p=’s do not converge to each other as n increases, but they
remain separated by an amount that depends on N. As N increases, the
absorbing pX’s approach the non-absorbing p’s more and more closely as n
increases before they stabilise on what are essentially their different, asymptotic
values. These dynamics explain why MFPTs determined using p’s from a
non-absorbing ensemble differ slightly from those obtained from full, complex
synapse simulations in the presence of an absorbing boundary, or equivalently,
from an absorbing ensemble of simple synapses. In principle we could employ
the absorbing ensemble definitions of p to obtain exact agreement for MFPTs,
but: first, they depend on N (and on ¥); second, we cannot obtain them simply
except for very small N and ©. The use of the non-absorbing p’s, which are
independent of N are are easy to compute, constitutes a 1/N approximation
for the determination of MFPTs, which imply the presence of an absorbing
boundary. For calculations of the statistics of h in the absence of an absorbing
boundary, the use of the non-absorbing p’s is, as argued, exact.

Finally, in Fig. 15 we consider how a non-zero threshold ¢ affects (Tt (ho))-
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Figure 15: Memory lifetimes (Tt (ho)), defined by mean first passage times
for perceptron activation to fall below a firing threshold, as a function of
the number of synapses, V. Results are shown for simulations of the time-
dependent stochastic updater (TDSU) (solid lines; data points correspond to
the circles) and for full, filter-based simulations without reduction to the TDSU
(dashed lines; data points correspond to the circles). Results are shown for six
different choices of firing threshold ¢ as indicated. We have selected a filter

size of © = 4.

7



Previously, for a fixed probability simple stochastic updater synapse, we found
that for any threshold ¥ > 0 (for balanced processes for which p(t) — 0 as
t — 00) the logarithmic growth of (7t (ho)) as a function of N is cut off, with
(Tmipt (ho)) asymptoting to a finite, J-dependent constant as N — oo (Elliott,
2014). We observe identical behaviour in Fig. 15 and indeed we find identical
behaviour for other models based on synaptic dynamics with internal states.
A threshold ¥ > 0 cuts off the logarithmic growth because the dynamics of h
below 9 become inaccessible, as we have argued before (Elliott, 2014). This
behaviour is independent of whether a synapse is simple or complex, or whether
it is time-dependent or time-independent: once h falls below threshold, the
exponential relaxation of h back to an average of zero that would otherwise
result in the logarithmic growth of memory lifetimes with N ceases to be visible,
in terms of the output of the perceptron.

Based on an OU limit for a simple stochastic updater synapse with update
probability p, we showed that 7y (ho) ~ p~*log, (ho/¥) in the limit N — oo
(Elliott, 2014). By imposing an accessibility criterion on the SNR, requiring
that the memory signal is one standard deviation above 1 > 0, we also showed
that 77 (ho) ~ p~'log, (ho/9¥) —1/(9pV/'N), which agrees with the asymptotic
form for 77, (ho) but also contains a large N correction going like 1/v/N
(Elliott, 2014). For filter-based dynamics, we do not have a fixed p, but rather
the step-dependent conditional probabilities p. However, we saw in section 5.2
that the filter-based dynamics become OU-like after an initial transient that
differs from OU dynamics. This initial transient increases the mean memory
signal p(t). Viewing filter-based dynamics as OU-like beyond the peak in the
mean memory signal, we can in fact obtain reasonable quantitative agreement
between the asymptotic, large N values of (Tt (ho)) in Fig. 15 and the OU-

limit result 77t (o) ~ p~! log, (ho/1). Previously we showed that the peak in
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the mean memory signal occurs at rtpea & 0.375 ©2 with amplitude p(tpear) ~
0.766/0 (Elliott & Lagogiannis, 2012). If we set hy = 0.766/0 for simplicity
and take p = ps, = 1/0? beyond the memory signal peak, then we obtain an

asymptotic, large N estimate for MFPTs, including the pre-peak period, of
0.766
rTmfpt(hO) ~ @2 <0375 + 1Oge W) . (66)

Ignoring the inclusion of the pre-peak period, the requirement that 7 (ho) >
0 is just the condition that the peak mean memory signal must at least exceed
9. Plugging © = 4, used in Fig. 15, into this expression, and using the various
non-zero values of the threshold ¥ shown in that figure, we obtain values,
for increasing ¥, of r7mgy ~ 64,53,42,36 and 31. These values, especially
for larger values of ¥, are in remarkably good agreement with the large N
values of (Tmspt(ho)) that can be read off from Fig. 15. The agreement is all
the more remarkable because of the rather crude estimates involved. These
arguments show that we can, to a reasonable approximation, view filter-based
dynamics as consisting of an initial, non-OU transient that takes the mean
memory signal up to its peak value, following by OU-like dynamics that return
the mean memory signal to its equilibrium value. Of course, the transition
between these dynamics is not sharp, but viewing it in this way does allow an
understanding of the dependence of MFPT memory lifetimes on the perceptron

threshold 9.

7 Discussion

Complex models of synaptic plasticity in which synapses possess internal states

that control or regulate the expression of synaptic plasticity can in general
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be quite difficult to analyse exactly. Conversely, simple stochastic updater
synapses that lack internal states are relatively easy to study. By integrat-
ing out internal synaptic states and working purely in terms of transitions in
synaptic strength, we have shown in earlier work that we can often derive exact
results that would otherwise be quite difficult, if not impossible, to obtain by
other means (Elliott, 2010b, 2016a). Furthermore, this change of perspective
often affords far greater theoretical insight by stripping away the microscopic
details and bringing into sharp focus the macroscopic dynamics.

Motivated by the desire to understand MFPT memory lifetimes in models
of synaptic plasticity with complex synapses (Elliott, 2014), we have carried
through this program of reducing complex, filter-based synapses to simple,
stochastic updater synapses, at least for binary-strength synapses. Although
we have focused on filter-based synaptic plasticity here, we can perform a
similar reduction for any complex model of synaptic plasticity. The price
paid for this reduction is that the conditional strength-change probabilities for
the resulting stochastic updater synapse are time-dependent rather than time-
independent and of course they depend on the history of induction signals and
a synapse’s initial state. The conditional probabilities p must be known in
order to use the methods developed here. However, even when analytical re-
sults for p= are not available, we need simply construct once and only once an
explicit table of these probabilities by extracting pF from the matrix powers
M", which may be determined numerically if necessary. In return for pay-
ing the price of time- and history-dependent probabilities, we buy the ability
to work directly in the transitions in the perceptron’s activation from memory
storage step to memory storage step, ignoring entirely the internal states of the
N synapses that contribute to the perceptron’s activation. This trade brings

with it considerable computational, numerical and theoretical benefits.
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Computationally, we need run simulations of only stochastic updater syn-
apses using the probabilities pf. When we run full simulations of synapses
with internal states, averaging in order to obtain good statistics is achieved
by running many (typically millions of) individual trials and then averaging
results over all the trials. Each individual trial is a particular realisation of
the stochastic dynamics. However, when we run simulations of the reduced,
simple dynamics, although we still work with particular realisations of synaptic
strengths and memories, some degree of averaging is already present in single
trials by the use of the conditional probabilities pF in determining whether
synapses should change strength. Single trials are therefore hybrids, combining
individual realisations with some element of ensemble averaging. The result is
that typically we can run fewer simulations of the reduced dynamics compared
to the full dynamics in order to obtain good statistical averaging, and this
effect is comparatively more significant for complex synapses with more internal
states (e.g. a larger value of ©) because complex synapses with more internal
states require more averaging than complex synapses with fewer internal states
in order to obtain good statistics.

Numerically, we have seen that it is much easier to compute, for example,
higher-order cumulants with the reduced dynamics compared to the full dy-
namics. We have exact results for the MGFs of the perceptron activation for
the reduced dynamics, and these reproduce the moments (and therefore cumu-
lants) of the full dynamics exactly for non-absorbing ensembles. Although the
moments obtained from the MGF for the continuous-time process are Poisson
sums that in general cannot be expressed in closed form, we may nevertheless
evaluate them numerically to any desired accuracy because the contributions
to the sums asymptote to zero. In contrast, for the full dynamics, in order

to compute the mth-order moment we must work with a tensor product of m
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matrices, or flatten such products down to single, very large matrices. For non-
defective transition matrices, the eigen-structure of the tensor products can be
written down immediately, but for defective transitions matrices, this is not
possible. In these cases, the reduced dynamics provide a numerically much
simpler approach to computing higher-order statistics than working with very
large matrices.

The greatest benefits of the reduction of complex synapses to simple syn-
apses are, however, theoretical. First, by allowing us to work directly in the
transitions in the perceptron’s activation, we are able to derive PGFs and
MGFs for the perceptron’s activation, with these generating functions being
exact. We are able in principle to compute the entire probability distribution
for h(t), P(h,t). Second, we can write down a master equation for the evolution
of the probability distribution of the perceptron activation, either in discrete
time or in continuous time. This provides an alternative way of determining
the evolution of the moments, from a set of ordinary differential equations.
The jump moments derived from the master equation then permit us to move
to a Fokker-Planck equation. Because the underlying process is one of memory
storage as discrete, punctate events, the continuous-time master and Fokker-
Planck equations are expressed as Poisson sums that, unfortunately, do not
factorise. However, third, in order to circumvent this non-factorisation, it is
necessary to develop an approximation that replaces the discrete-time prob-
abilities p~ with the continuous-time probabilities p*(t), with the latter not
being Poisson sums over the former. While only an approximation, it never-
theless provides considerable theoretical insight into the dynamics of h(t). For
example, we found that these dynamics can be considered to be composed of
an initial transient that leads to an increasing mean memory signal followed

by an OU-like process that returns the memory signal to its equilibrium dis-
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tribution. This separation of the dynamics into pre- and post-peak phases
permitted some degree of quantitative understanding of MFPTs in the pres-
ence of a non-zero perceptron firing threshold. Critical to this was viewing the
post-peak dynamics as those governed by stochastic updater synapses with a
fized strength-change probability p.., allowing us to use our earlier results for
MFPTs for such synapses (Elliott, 2014).

The reduction of complex synapses to simple synapses with time-dependent
strength-change probabilities is necessarily exact for non-absorbing ensembles.
However, for absorbing ensembles, such as those required for determining MF-
PTs, the reduction entails what is essentially a 1/N approximation if we use
the probabilities pF extracted from a non-absorbing ensemble. For larger and
larger NV, we obtain MFPTs for the full and reduced dynamics that agree more
and more closely. For absorbing dynamics, the conditional strength-change
probabilities p£ become ensemble-dependent, but the dependence on the en-
semble drops out in the formal limit, N — oo. Because of the difficulty in
determining p= for absorbing dynamics except for extremely small N, it ap-
pears very hard, analytically speaking, to examine precisely how the large N
limit is achieved. Whether any progress can be made in understanding this
limit is something that we shall investigate in future work.

An examination of MFPT-defined memory lifetimes with complex synapses
reveals that network-size effects or optimality conditions are absent, in contrast
to memory lifetimes defined by SNRs (Elliott, 2016a). Although we have only
examined this issue with filter-based synapses here, this difference between
MFPT and SNR memory lifetimes appears to be present in other models of
complex synapses (unpublished observations). Previously, we also showed that
for MFPT memory lifetimes for fixed probability stochastic updater synapses,

a non-zero firing threshold (for balanced potentiation and depression dynam-
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ics) leads to a catastrophic truncation of the dependence of memory lifetimes
on the number of synapses, N (Elliott, 2014). Specifically, T,¢,¢ asymptotes to
a U-dependent constant independent of N for any value of ¥ > 0 or, in gen-
eral, any value ¢ > u(o0). This truncation happens because the memory signal
dynamics below threshold become inaccessible, while the growth of memory
lifetimes with N for a firing threshold ¥ = 0 or ¥ = p(oo) depends critically
on the accessibility of this signal (Elliott, 2014). Here, we observe identical
behaviour for complex synapses, too. Again, this behaviour must occur quite
generally in any complex model of synaptic plasticity for precisely the same
reason that it occurs for the fixed probability stochastic updater synapses that
we analysed in detail earlier (Elliott, 2014). This truncation of memory life-
times appears to be disastrous for any such model of real, biological memory
because real neurons in real memory systems cannot set their firing thresholds
to coincide precisely with their asymptotic, mean membrane potential: the
latter cannot be known a priori since it depends on the details of the input
statistics to which a neuron cannot have prior access. It may be argued that
asymptotically, the neuron could achieve such a matching. However, first, the
lifetimes of memories stored while the matching of threshold to input statis-
tics is still incomplete would be compromised. Second, the input statistics in
real systems are almost certainly not stationary, so the matching can never
be complete. Thus, it is unlikely that even an ongoing, dynamic adjustment
of threshold to non-stationary input statistics could prevent the truncation of
memory lifetimes.

We have performed this reduction of complex synapses to simple synapses
for binary-strength, two-state synapses, but as we have indicated, this reduc-
tion can be achieved for any number of discrete states of synaptic strength. If

there are v states of strength, then the full transition matrices are reduced in
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general to v X v matrices rather than 2 x 2 matrices, and the two probabilities
pE would generalise to 2(v—1) probabilities. The W and D matrices would gen-
eralise immediately, and we would be able to write down generating functions
for the transition from the initial synaptic configuration, determined by v — 1
parameters, to any future synaptic configuration. Such generating functions
would be expressed as products over v rather than 2 distinct factors raised to
various powers, and each factor could be expressed in terms of a degree v — 1
polynomial. As a definite synaptic configuration uniquely determines h(t), we
would still be able to write down the exact distribution of perceptron activa-
tion for general, multistate synapses. However, the ability to work directly
in the transitions in perceptron activation depends critically on the fact that
for binary-strength synapses, any particular value of h = 2j/N — 1 uniquely
determines, up to an irrelevant permutation symmetry, the underlying config-
uration of (tilded) synaptic strengths: j synapses have (tilded) strength of +1
and N — j have (tilded) strength of —1. This isomorphism between perceptron
activation and the underlying configuration of (tilded) synaptic strengths is
unique to binary synapses. For v = 3, ternary-strength synapses, for exam-
ple, for strengths S; € {—1,0,41}, a pair of synapses may have a combined
strength of 0 either by each having 0 strength or their having strengths of +1
and —1 in any order. The ordering is an irrelevant permutation symmetry,
but for non-binary synapses, the mapping from perceptron activation to the
underlying synaptic strength configuration is not unique (factoring out permu-
tations). This non-permutation degeneracy in mapping definite values of A to
synaptic strength configurations means that it is possible that for non-binary
synapses, we cannot work directly in the transitions in h(t). Nevertheless, if
we have the exact distribution of h(t) available, it is possible that we may still

be able to derive jump moments for h(t) and thus obtain approximations ulti-
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mately leading to a Fokker-Planck equation. It will be interesting to determine
whether we can carry through this program leading to insightful, approximate

dynamics for general, multistate synapses in future work.
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