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Abstract

Memory models that store new memories by forgetting old ones have memory

lifetimes that are rather short and grow only logarithmically in the number

of synapses. Attempts to overcome these deficits include “complex” models

of synaptic plasticity in which synapses possess internal states governing the

expression of synaptic plasticity. Integrate-and-express, filter-based models of

synaptic plasticity propose that synapses act as low-pass filters, integrating

plasticity induction signals before expressing synaptic plasticity. Such mech-

anisms enhance memory lifetimes, leading to an initial rise in the memory

signal that is in radical contrast to other related, but non-integrative memory

models. Because of the complexity of models with internal synaptic states,

however, their dynamics can be more difficult to extract compared to “simple”

models that lack internal states. Here, we show that by focusing only on pro-

cesses that lead to changes in synaptic strength, we can integrate out internal

synaptic states and effectively reduce complex synapses to simple synapses.

For binary-strength synapses, these simplified dynamics then allow us to work

directly in the transitions in perceptron activation induced by memory stor-

age rather than in the underlying transitions in synaptic configurations. This

permits us to write down master and Fokker-Planck equations that may be

simplified under certain, well-defined approximations. These methods allow us

to see that memory based on synaptic filters can be viewed as an initial tran-

sient that leads to memory signal rise, followed by the emergence of Ornstein-

Uhlenbeck-like dynamics that return the system to equilibrium. We may use

this approach to compute mean first passage time-defined memory lifetimes

for complex models of memory storage.
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1 Introduction

One approach to circumventing the catastrophic forgetting threshold of the

Hopfield model for associative memory (Hopfield, 1982) is to impose bounds

on synaptic strength (Nadal et al., 1986; Parisi, 1986). Models of associa-

tive memory with bounded strengths learn new memories by forgetting old

ones. One particularly appealing approach to bounding synaptic strength is

to suppose that synapses exist in only a limited number of discrete states of

synaptic strength. Experimental evidence for binary, ternary and even larger

numbers of discrete states of synaptic strength exists (Petersen et al., 1998;

Montgomery & Madison, 2002, 2004; O’Connor et al., 2005a,b; Bartol et al.,

2015) although the interpretation of such evidence can be difficult (Elliott,

2010a), and evidence also supports the possibility that changes in synaptic

strength may be discrete, jump-like, all-or-none processes (Yasuda et al., 2003;

Bagal et al., 2005; Sobczyk & Svoboda, 2007). Many such memory models

and analyses based on discrete synapses in feedforward or recurrent network

settings now exist, using a variety of different measures to gauge memory life-

times (see, for example, Tsodyks, 1990; Amit & Fusi, 1994, Fusi et al., 2005,

Leibold & Kempter, 2006, 2008; Rubin & Fusi, 2007; Barrett & van Rossum,

2008; Huang & Amit, 2010, 2011, Lahiri & Ganguli, 2013). Early models

are based on “simple” synapses that lack internal states and change strength

stochastically with fixed probability in response to memory storage (Tsodyks,

1990). We have termed such a synapse a “stochastic updater”. “Complex”

synapses attempt to overcome the problems characteristic of simple synapses

by considering internal synaptic states that govern the expression of synaptic

plasticity through metaplasticity (see, for example, Fusi et al., 2005; Rubin &

Fusi, 2007; Leibold & Kempter, 2008; Lahiri & Ganguli, 2013).
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In a developmental setting, we have suggested that synapses may act as

low-pass filters (Elliott, 2008) and have shown that by integrating plasticity

induction signals and expressing synaptic plasticity only when a filter reaches

an upper or lower threshold, fluctuations in large-scale patterns of synaptic

connectivity can be powerfully suppressed (Elliott & Lagogiannis, 2009; Elliott,

2011b). When we extend such integrate-and-express, filter-based models of

synaptic plasticity to consider memory lifetimes in the context of a feedforward,

perceptron-based approach to memory storage with binary-strength synapses,

we found that the fidelity of recall of a memory initially improves over time,

before the memory is slowly forgotten as the system returns to equilibrium

(Elliott & Lagogiannis, 2012). This initial enhancement in the memory signal

is actually driven by the storage of later memories. These dynamics are in

radical contrast to other, non-integrative memory models, in which the memory

signal always decays monotonically. These differences result in integrative,

filter-based models outperforming non-integrative models in most regions of

biologically-relevant parameter space (Elliott, 2016b).

The analysis of complex models of synaptic plasticity can be considerably

harder than that of simple models. For example, with a mean first passage

time (MFPT) definition of memory lifetimes, it is possible to make consider-

able progress in deriving exact expressions for memory lifetimes or very good

approximations to them for fixed probability stochastic updater synapses (El-

liott, 2014). However, an analysis of MFPT-defined memory lifetimes for the

full dynamics of complex synapses is likely extremely hard if not intractable.

The underlying problem is simply the size of the transition matrices describ-

ing changes in the internal states of complex synapses. We have previously

shown that considerable analytical progress and much dynamical insight can

be achieved by integrating out synapses’ internal states and working explicitly
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with their changes in strengths (Elliott, 2010b, 2016a). Here, therefore, by

focusing only on processes that lead to changes in synaptic strength, we show

that the dynamics of complex synapses may be effectively reduced to those of

simple synapses for the purposes of studying memory lifetimes. The resulting

simple synapses are not, however, stochastic updaters with a fixed or time-

independent probability for expressing synaptic plasticity. Instead, they have

time- and indeed history-dependent plasticity probabilities. Despite this time-

and history-dependence, the reduction of complex synapses to simple synapses

without internal states offers considerable analytical benefits, which we explore

below.

Our paper is organised as follows. In the next section we summarise our ap-

proach to memory lifetimes with a single perceptron using filter-based, binary-

strength synapses. In section 3, we perform this reduction of complex, filter-

based synapses to simple stochastic updater synapses with time- and history-

dependent conditional strength-change probabilities. Then, in section 4 we

use these reduced dynamics to derive exact probability and moment generat-

ing functions for the activation of the perceptron. Although all these results

are exact, much insight can be gained by considering approximations. We

develop these in section 5 where we consider the exact master equation gov-

erning transitions in perceptron activation, and then consider an approximate

form leading to a derivation of a Fokker-Planck equation governing the prob-

ability distribution of perceptron activation. In section 6, we use the reduced

and approximated dynamics to examine memory lifetimes defined by MFPTs.

Finally, in section 7, we discuss our approach and consider future possible work
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Parameter or

quantity

Description

N Number of synapses.

Si(t) Strength of synapse i at time t.

Θ Filter size.

h(t), hn Tracked memory signal at time t or at memory storage step n.

µ(t), µn Mean of h(t) or hn.

ϕ(t), ϕn Second moment of h(t) or hn.

σ(t) Standard deviation in h(t).

M
±, M 2(2Θ−1)×2(2Θ−1) matrices implementing transitions in the joint

distribution of a synapse’s filter and strength states.

A 2(2Θ− 1)-dimensional vector describing the equilibrium joint distri-

bution of a synapse’s filter and strength states.

W
±, W 2× 2 matrices implementing transitions in a simple synapse’s distri-

bution of strength states.

p±(t), p±n Conditional strength change probabilities for a complex synapse at

time t or at memory storage step n+ 1.

Dn 2 × 2 matrix describing n-step transitions in a single synapse’s

strength.

Xn, Yn Elements of Dn, defined in Eq. (3.11).

G, M Various symbols representing probability and moment generating

functions for perceptron activation.

Hn (N +1)× (N +1) matrix describing n-step transitions in perceptron

activation.

H(t) Poisson summed form of Hn relevant to continuous time.
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Hn|m (N + 1) × (N + 1) matrix describing transitions in perceptron acti-

vation between hm and hn, with n ≥ m.

Vn (N + 1) × (N + 1) matrix describing transitions in perceptron acti-

vation between hn−1 and hn.

V(t) (N + 1)× (N + 1) matrix generated from p±(t) via Eq. (5.13).

P (t), P n Probability distribution of h(t) or hn.

P (h, t) Probability distribution of h at time t in Fokker-Planck equation.

A(h, t), B(h, t) Jump moments in Fokker-Planck equation.

Table 1: Summary of main parameters and quantities used throughout.

2 General Approach to Memory Lifetimes with

Filter-Based Synaptic Plasticity

We first provide a general recapitulation of our approach to studying memory

lifetimes in the context of filter-based synaptic plasticity. Further details may

be found elsewhere (Elliott & Lagogiannis, 2012; Elliott, 2014). In Table 1 we

provide a summary of the key mathematical symbols introduced in this and

later sections.

2.1 Perceptron Formulation in Continuous Time

We consider memory storage for simplicity in the context of a simple, feedfor-

ward, perceptron-based approach. Avoiding the use of recurrently-connected,

Hopfield-like (Hopfield, 1982) networks of neurons allows many results to be

derived exactly. We consider a single perceptron with N synapses of binary

strengths Si(t) ∈ {−1,+1}, where i = 1, . . . , N indexes the synapses and t

denotes continuous time. We will use the notation Si(n) with n a non-negative
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integer when we refer to synaptic strengths at discrete time points. We refer to

synapses with Si(t) = +1 as “strong” synapses and those with Si(t) = −1 as

“weak” synapses. This interpretation is legitimate because we can always add

an overall constant to these strengths to make them non-negative. To com-

pensate for any induced changes in the perceptron’s firing, we would merely

have to change the perceptron’s firing threshold.

The perceptron is required to store a sequence of synaptic memories ξα, α =

0, 1, 2, . . .. The components ξαi take values of ±1 with probabilities Prob[ξαi =

±1] = g±, with g+ + g− = 1. Below we will consider only the balanced case

g± = 1
2
, but initially we keep g± general. For simplicity we take the components

ξαi to be uncorrelated across synapses and between memories. Memory ξ0 is

always stored at time t = 0− s. We use this formal convenience of t = 0− s

so that we may refer to the time immediately after the storage of memory ξ0

as t = 0 s. We refer to memory ξ0 as the “tracked” memory because we are

interested in the fidelity of recall of this particular memory by the perceptron

at later times. The recall of this memory will be affected by the subsequent

storage of the later memories ξα, α ≥ 1, as their storage will induce changes

in the synaptic strengths Si(t) through synaptic plasticity. In a discrete time

formalism, these subsequent memories are stored at the discrete time steps

t = α s. Biologically speaking, however, a discrete time approach is somewhat

unnatural and memories are more realistically stored as a continuous time

process. The simplest continuous time process to consider is a Poisson process

of rate r. We will therefore consider memory storage to occur as a Poisson

process, with the later memories ξα, α ≥ 1, stored at rate r at times t > 0 s

governed by this stochastic process. We may of course convert a discrete time

process into a Poisson process by weighting and summing over discrete time

events according to the relevant Poisson weighting factors, as employed below.
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For the model of synaptic plasticity that we consider here, we may without loss

of generality set r = 1 Hz because r simply acts as an overall factor multiplying

time. We retain r for clarity where necessary, but in simulations we always set

r = 1 Hz.

The fidelity of recall of the tracked memory is gauged by measuring the

perceptron’s activation in response to ξ0. If the perceptron has inputs xi ∈

{−1,+1} to its N synapses, then the activation takes the standard form

hx(t) =
1

N

N∑

i=1

xiSi(t), (2.1)

and we define h(t) = hξ0(t) as the tracked memory signal or just the memory

signal. Depending on how we define memory lifetimes, we are only concerned

with whether or not this memory signal is above or below the perceptron’s

firing threshold or its equilibrium, large time value. We therefore do not need to

consider the conversion of this activation to the perceptron’s two-level output:

if h(t) is above threshold, then memory ξ0 is still stored by the perceptron at

time t, otherwise it is not.

We are not interested in the dynamics of h(t) for any given realisation of

the memories ξα but only in the statistics of h(t) averaged over all possible

realisations of these memories. Defining

µ(t) = E[h(t)], (2.2a)

σ(t)2 = Var[h(t)], (2.2b)

where E[·] and Var[·] denote the mean and variance, respectively, the signal-to-

noise ratio (SNR) of the perceptron’s activation is SNR(t) = [µ(t)−µ(∞)]/σ(t),

or just SNR(t) = µ(t)/σ(t) when µ(t) → 0 as t→ ∞. We may then define the
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lifetime of the tracked memory as the solution of SNR(τsnr) = 1, i.e. the time

at which µ(t) is indistinguishable from its equilibrium value µ(∞) at the level

of one standard deviation (Tsodyks, 1990). Alternatively, we may define the

memory lifetime by considering the first passage time for the tracked memory

signal h(t) to drop (to or) below some (perhaps perceptron firing) threshold

ϑ, and average this first passage time over all possible realisations to obtain

the MFPT memory lifetime τmfpt (Elliott, 2014). We shall almost exclusively

consider MFPT memory lifetimes here.

The input ξαi to a particular synapse determines how that synapse’s strength

should change. As we consider only an isolated perceptron rather than a

recurrently-connected network of neurons, we require only that the percep-

tron’s activation is above firing threshold, so that the perceptron’s output is

+1 rather than −1. The input ξαi to synapse i upon presentation of memory

α is therefore just the plasticity induction signal to this synapse. If ξαi = +1,

then the synapse receives a strengthening or potentiating plasticity induction

signal, while if ξαi = −1, then it receives a weakening or depressing plasticity

induction. We now discuss how synapses respond to these plasticity induction

signals in our filter-based approach to synaptic plasticity.

2.2 Filter-Based Synaptic Plasticity

In order to control fluctuations in synaptic strengths, we have argued that

synapses should integrate plasticity induction signals in order to discern any

trends in these signals before expressing synaptic plasticity (Elliott, 2008).

Such integration can be achieved by a low-pass filter, with synaptic plasticity

being expressed only when the filter reaches threshold. A simple implementa-

tion of a low-pass filter in a synapse can be achieved by considering an internal
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filter state, labelled by letters such as I and J , instantiated on a small col-

lection of macromolecules. We have previously discussed the possibility that

the filter state could be encoded in the phosphorylation states of kinases and

phosphatases at single synapses, such as the CaMKII and PP1 enzymes (see

Elliott (2011a) for a fuller discussion). In the context of the storage of mem-

ories, we consider a filter with an upper threshold +Θ+ and a lower threshold

−Θ−, with Θ± > 0 (Elliott & Lagogiannis, 2012). Potentiating induction sig-

nals increment the filter state while depressing induction signals decrement the

filter state. The allowed filter states are I ∈ {−(Θ− − 1), . . . ,+(Θ+ − 1)}. If

the filter reaches +Θ+, then it is reset to the I = 0 state and potentiation is

expressed if the synapse is weak (i.e. the synapse becomes strong); conversely,

if the filter reaches −Θ−, then it is reset to the I = 0 state and depression is

expressed if the synapse is strong (i.e. the synapse becomes weak). We do not

consider ±Θ± to be allowed states because they are thresholds at which the

synapse is immediately reset to I = 0.

Because we will restrict to balanced potentiation and depression processes,

for which g± = 1
2
, we consider only symmetric filters for which Θ± = Θ. The

filter state is then represented as a (2Θ−1)-dimensional vector and transitions

in this filter state are implemented by (2Θ− 1)× (2Θ− 1) matrices. For con-

venience we index the components and elements of such vectors and matrices

by their corresponding filter states, so that for example vector components run

from −(Θ − 1) to +(Θ − 1) rather than from 1 to (2Θ − 1). Let the matrix

S
+ increment the filter state but without implementing the upper threshold

process, and let the matrix T
+ implement only this upper threshold process.
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For Θ = 3, for example, we have

S
+ =




0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0




and T
+ =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0



.

The matrix S
+ just shifts the components of vectors one entry downwards,

letting the last component disappear, while T
+ sends this last I = +(Θ − 1)

component to I = 0. Similarly, we denote the corresponding matrices for

decrementing filter states and implementing only the lower threshold process

by S
− and T

−. For Θ = 3, for example, we have

S
− =




0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0




and T
− =




0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0



.

We clearly have that S− = (S+)
T
, where the superscript T denotes the trans-

pose, and T
− sends the I = −(Θ − 1) state to I = 0. The joint distribution

of strength and filter states is represented by a 2(2Θ− 1)-dimensional vector,

where the first (second) block of (2Θ− 1) of components represents the filter

state when the synapse is weak (strong). Transitions in the joint distribution

of strength and filter states are then represented by 2(2Θ−1)×2(2Θ−1) ma-

trices. Let the matrices M± implement changes in synaptic states is response

to potentiating and depressing induction signals, respectively. Schematically

representing the block structure of these matrices, we have

M
+ =




S
+

O

T
+

S
++T

+


 and M

− =




S
−+T

−
T

−

O S
−


 , (2.3)
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where O is an appropriately sized matrix with entries of zero everywhere. The

submatrix T+ in the lower left sub-block ofM+ implements a change in strength

from weak to strong via the upper filter threshold process, while its presence

in the lower right sub-block implements an upper filter threshold process but

without a change in strength because the synapse is already strong. Similarly

for T− in M
−. Finally, we also define the matrix

M = g+M
+ + g−M

−, (2.4)

which represents the occurrence of a potentiating induction signal with prob-

ability Prob[ξαi = +1] = g+ and a depressing induction signal with probability

Prob[ξαi = −1] = g−. In terms of its block structure, we have

M =




g+S
++g−S

−+g−T
− g−T

−

g+T
+ g+S

++g−S
−+g+T

+


 . (2.5)

This matrix encodes the transitions illustrated in Fig. 1.

The transition matrix M averages over both potentiating and depressing

induction signals. It is therefore the required matrix for averaging over the

non-tracked memories ξα, α ≥ 1. The eigenvector of M with unit eigenvalue

gives the equilibrium or asymptotic joint distribution of strength and filter

states. It is against the background of this equilibrium distribution that the

tracked memory ξ0 is stored. A direct calculation shows that the equilibrium

eigenvector, normalised so that it is a probability distribution, takes the form,

schematically,

A =

(
gΘ
−

gΘ++gΘ
−

BT

∣∣∣∣
gΘ+

gΘ++gΘ
−

BT

)T

, (2.6)
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+1g+r

g−r

1−Θ− · · ·

g+r g+r g+r g+r

g−r g−r g−r g−r

−1 0 +1

g+r

g−r

Θ+−1· · ·

g−r ⇓

g+r

−1g+r

g−r

1−Θ− · · ·

g+r g+r g+r g+r

g−r g−r g−r g−r

−1 0 +1

g+r

g−r

Θ+−1· · ·

g−r

g+r ⇑

Figure 1: Transitions between synaptic strength and filter states in response

to synaptic plasticity induction signals. The circles represent allowed filter

states, with the state indicated by the number enclosed by the circle. Strength

states are indicated by the two gray boxes labelled −1 and +1. Filter states are

duplicated between these boxes so that both strength and filter states can be

represented, but we stress that each synapse has only a single filter. Transitions

between strength and filter states caused by plasticity induction signals are

indicated by the lines carrying arrows. Potentiating (depressing) plasticity

induction signals occur at a rate g+r (g−r) and increment (decrement) the

filter state. If the filter is in state +(Θ+− 1) (−(Θ−− 1)), then a potentiating

(depressing) induction signal will return it to the I = 0 state; if the synapse

is weak (strong), potentiation (depression) is expressed (indicated by ⇑ (⇓)),

but if the synapse is strong (weak), it can only remain strong (weak).
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where the (2Θ− 1)-dimensional vector B has components

BI =





1
Θ

gΘ+I

+ g−I

−

−gΘ
−

gΘ+−gΘ
−

for I < 0

1
Θ

for I = 0

1
Θ

gΘ+−gI+gΘ−I

−

gΘ+−gΘ
−

for I > 0

. (2.7)

For the particular case g± = 1
2
, this reduces to

BI =
Θ− |I|
Θ2

. (2.8)

In equilibrium, the probabilities of a synapse being weak or strong are then

just

π± = Prob[Si(∞) = ±1] =
gΘ±

gΘ+ + gΘ−
, (2.9)

while the conditional filter distribution, conditioned on a particular value of

synaptic strength, is just B, regardless of the strength. For g± = 1
2
, we of

course have π± = 1
2
.

The tracked memory ξ0 is stored against the background of this equilib-

rium distribution. If ξ0i = +1, then the joint strength and filter probability

distribution of synapse i immediately after the storage of ξ0 is M+A, while if

ξ0i = −1, then it is M−A. The initial state of any particular synapse at time

t = 0 s is therefore in general a mixture of these two distributions, with prob-

abilities g+ and g−. To determine the initial mean perceptron activation, we

define n = (1, . . . , 1)T and 0 = (0, . . . , 0)T to be (2Θ− 1)-dimensional vectors

all of whose components are unity and zero, respectively, and then we define
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the 2(2Θ− 1)-dimensional vectors

Ω+ =
(
0T
∣∣nT

)T
, (2.10a)

Ω− =
(
nT
∣∣0T

)T
, (2.10b)

which pick out, respectively, the strong and weak strength states from joint

strength and filter probability distributions. We also define

Ω = Ω+ −Ω− =
(
− nT

∣∣ +nT
)T
, (2.11)

which weights weak synapses negatively and strong synapses positively, i.e.

according to their strengths. We then have

µ(0) = ΩT
(
g+M

+ − g−M
−
)
A. (2.12)

At discrete time step n, the mean perceptron activation, denoted by µn in

discrete time, is just

µn = ΩT
M

n
(
g+M

+ − g−M
−
)
A, (2.13)

where the matrix power M
n represents n storage events for the (averaged)

memories ξ1, . . . , ξn, and in continuous time, we just perform a Poisson sum

over these discrete time values to obtain

µ(t) = ΩT

[
∞∑

n=0

(rt)n

n!
e−rt

M
n

]
(
g+M

+ − g−M
−
)
A,

= ΩT
[
exp(rtG)

](
g+M

+ − g−M
−
)
A, (2.14)
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where G = M − I and I is the identity matrix.2 These expressions for µn

and µ(t) of course correspond to just the mean strength of any single synapse,

as the average perceptron activation in response to the tracked memory just

reduces to an average over any single synapse.

We have kept g± general above, but we now restrict exclusively to bal-

anced potentiation and depression processes, for which g± = 1
2
. This balanced

scenario is the case of greatest interest to us and one that we have studied

extensively before. Although we may proceed in general with g± 6= 1
2
, the

advantage of setting g± = 1
2
is that the mixed initial state at t = 0 s effectively

collapses down to a single state, at least in terms of the contribution to h(t).

We may see this explicitly by writing out the two distributions corresponding

to M
±A. For example, for Θ = 3 we have

M
+A = 1

18
(0, 1, 2, 3, 2 | 0, 1, 4, 3, 2)T , (2.15a)

M
−A = 1

18
(2, 3, 4, 1, 0 | 2, 3, 2, 1, 0)T . (2.15b)

We can see that these two distributions are exact mirror images of each other,

i.e. M+A read top to bottom is identical to M
−A read bottom to top. For

general Θ, we obtain

Prob[Si(0) = ±1] =





1
2
(1± µ0) for ξ0i = +1

1
2
(1∓ µ0) for ξ0i = −1

, (2.16)

where µ0 = µ(0) = 1/Θ2 is the initial mean memory signal immediately after

2For the identity and zero matrices I and O and the unity and zero vectors n

and 0, rather than using different symbols for matrices and vectors of different

sizes, we use the same symbols. Their sizes are always clear from the context.
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the storage of ξ0. Defining S̃i(t) = ξ0i Si(t), we may write

Prob
[
S̃i(0) = ±1

]
= 1

2
(1± µ0) . (2.17)

The probability distribution for S̃i(0) is therefore independent of the sign of ξ0i ,

unlike the probability distribution for Si(0). Furthermore, by examining the

action ofM = 1
2
(M+ +M

−) on the two distributionsM±A, we find that in gen-

eral Mn
M

±A are always mirror images for any n ≥ 0, so that exp(rtG)M±A

are therefore also mirror images for any t ≥ 0 s. Hence, the probability distri-

bution for S̃i(t) is therefore independent of the sign of ξ0i for any t ≥ 0 s so that

all N variables S̃i(t) are for all time identically distributed random variables.

This behaviour is specific to scenarios in which potentiation and depression

processes are treated symmetrically and identically and is discussed in detail

and derived fully elsewhere (Elliott, 2016b).

With the tilded strength variables S̃i(t) defined by S̃i(t) = ξ0i Si(t), the

tracked memory signal h(t) can be written directly as

h(t) =
1

N

N∑

i=1

ξ0i Si(t) ≡
1

N

N∑

i=1

S̃i(t). (2.18)

For discrete time steps we will write hn instead of h(n). For processes that

treat potentiation and depression in a symmetrical and balanced manner, the

perceptron activation in response to the tracked memory is therefore just an

average over the N identically distributed tilded strength random variables.
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The mean and variance then following immediately, as

µ(t) = E
[
S̃(t)

]
(2.19)

σ(t)2 =
1

N
Var
[
S̃(t)

]
+

(
1− 1

N

)
Cov[S̃i(t), S̃j(t)]

=
1

N

[
1− µ(t)2

]
+

(
1− 1

N

)
Cov(t), (2.20)

where E
[
S̃(t)

]
and Var

[
S̃(t)

]
are the mean and variance, respectively, of any

one of the synapse’s tilded strengths, and Cov(t) = Cov[S̃i(t), S̃j(t)] is the co-

variance between any pair of them. Working with the tilded strength variables

for balanced processes therefore dramatically simplifies the dynamics of h(t),

because the mixed initial state with the two distributions M
±A for ξ0i = ±1

effectively collapses down to a single distribution, in terms of the contribution

to h(t). For balanced processes, then, we can perform calculations by condi-

tioning only on the initial value S̃i(0) for any given synapse, while for general,

unbalanced processes, we must instead condition on the values of Si(0) and ξ
0
i

individually rather than through just their product. Although conditioning on

Si(0) and ξ
0
i individually is straightforward, working with balanced processes

simplifies calculations significantly.

We have previously used renewal methods (Cox, 1962) to evaluate µ(t) in

this balanced scenario (Elliott & Lagogiannis, 2012). We simply reproduce the

result here:

µ(t) =
1

Θ3

Θ−1∑

l=0

cot2 (2 l+1)π
4Θ

exp
{
−rt

[
1− cos (2 l+1)π

2Θ

]}

− 4

Θ3

⌊
Θ−1

2

⌋
∑

l=0

cot2 (2 l+1)π
2Θ

exp
{
−rt

[
1− cos (2 l+1)π

Θ

]}
, (2.21)

where ⌊x⌋ is the floor function. Full discussion of the behaviour of µ(t) may be
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found elsewhere (Elliott & Lagogiannis, 2012). In brief, starting from the initial

value of µ(0) = 1/Θ2, µ(t) initially increases roughly Θ-fold to a maximum at

a time that grows as Θ2. Following its peak, µ(t) then decays back to its

equilibrium value, which for g± = 1
2
is µ(∞) = 0. The initial rise in the mean

memory signal in our filter-based, integrative model of synaptic plasticity is in

radical contrast to non-integrative models, in which the mean memory signal

always decays monotonically from its initial value. This increase occurs because

the initial storage of ξ0 biases synapses that experience ξ0i = +1 to remain

or become strong and those that experience ξ0i = −1 to remain or become

weak. This biasing occurs because the filter distribution at each synapse is

either stepped upwards or stepped downwards by the initial storage event (see

Eq. (2.15)). The mean memory signal increases while this bias persists, and

only once it has worked out of the system does the mean memory signal then

start to return to equilibrium. The behaviour of µ(t) will be amply illustrated

below.

To compute the variance σ(t)2 in continuous time using the full transition

matrix M is in general very hard, although its calculation and that of higher-

order cumulants is made considerably easier by the approach that we adopt

here, as we discuss below. In discrete time, because of the assumed indepen-

dence of ξαi across synapses and between memories, synapses evolve indepen-

dently and thus the discrete-time variance is trivial to compute in terms of the

discrete-time mean. However, by driving memory storage as a continuous-time

process, correlations in synaptic strength are introduced, leading to a non-zero

covariance term Cov(t) between synapses’ strengths in Eq. (2.20) (Elliott &

Lagogiannis, 2012). This occurs in any model of synaptic plasticity and not

just the filter-based model considered here. We compute the variance, and

higher-order cumulants, via a combination of analytical, numerical and simu-
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lation methods, described below.

3 Transition Matrices for Changes in Synaptic

Strength

Memory lifetimes are determined by the dynamics of the tracked memory sig-

nal. The MFPT for the perceptron activation in response to the tracked mem-

ory to fall (to or) below some threshold ϑ can be used to define memory life-

times (Elliott, 2014). Previously we have extensively studied memory lifetimes

defined by MFPTs for a stochastic updater synapse with a fixed probability

for expressing a change in synaptic strength. Although a very simple model,

such a synapse has the virtue that memory lifetimes defined by MFPTs can

be analysed in detail, with exact results available in many instructive limits

(Elliott, 2014). However, synapses with internal states are extremely difficult

to study analytically, in terms of MFPTs. Although exact analytical results

can be derived, they are essentially useless for explicit computations, either

analytical or numerical, unless N is very small (Elliott, 2014). This is because

in order to keep track of the entire synaptic configuration over all N synapses,

we would require the tensor product M ⊗ · · · ⊗ M, with N occurrences of

the matrix M. Equivalently, flattening the product space, we would require a

[2(2Θ− 1)]N × [2(2Θ− 1)]N matrix, which in general is intractably large.

Even for a simple synapse, such a matrix would be 2N × 2N . However, for

binary-strength synapses, the tracked memory signal h(t) in continuous time or

hn in discrete time is a normalised sum over N tilded strength variables taking

values ±1. The perceptron activation is therefore uniquely determined by

the number of these variables taking the value +1, say. For binary-strength,
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simple synapses, we can therefore avoid working with the transitions in the

entire synaptic configuration and can instead work directly with the transitions

in perceptron activation. The matrix governing these transitions for simple,

binary-strength synapses is only (N + 1) × (N + 1), which in generally is

vastly smaller than 2N ×2N (Elliott, 2014). This shift to working directly with

the transitions in perceptron activation is critical to studying MFPT memory

lifetimes. This shift is possible because and only because simple synapses do

not have internal states.

If it were possible, mathematically-speaking, to reduce a complex synapse

with internal states to a simple synapse without internal states, then study-

ing MFPT memory lifetimes for complex synapses could therefore in princi-

ple be made more tractable. In order to examine the dynamics of h(t) that

govern memory lifetimes, we are not in fact interested in synapses’ internal

filter states but only in synapses’ strengths, and specifically only in synapses’

changes in strength, because only these lead to changes in perceptron activa-

tion. Although changes in synapses’ internal filter states drive changes in their

strengths, only synapses’ strengths and not their internal filter states determine

perceptron activation and therefore memory lifetimes. Thus, the first step in

examining MFPT memory lifetimes is to integrate out synapses’ internal filter

states and instead work directly with changes in synapses’ strengths, ignor-

ing the underlying filter states and the transitions between them. This then

permits us to work directly with the dynamics of the perceptron activation.

A simple stochastic updater synapse with fixed probabilities for expressing

potentiation and depression can be defined by the two transition matrices

W
+ =

(
1− p+ 0

p+ 1

)
and W

− =

(
1 1− p−

0 p−

)
, (3.1)
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where W
+ is the potentiation matrix that expresses potentiation with prob-

ability p+ and W
− is the depression matrix that expresses depression with

probability p−. The transition matrix

W =
1

2

(
W

+ +W
−
)
=

(
1− 1

2
p+ 1

2
p−

1
2
p+ 1− 1

2
p−

)
(3.2)

then represents the occurrence of potentiating and depressing induction signals

with probabilities Prob [ξαi = ±1] = 1
2
for any given (non-tracked) memory

storage step. For a given memory storage step with filter-based synapses, we

must determine these strength-change probabilities p± if we are to integrate out

the synapses’ internal states and work instead with simplified synapses. These

probabilities must of course depend on the current full state of the synapse

(and therefore on its history of induction signals) and on the current induction

signal. They are therefore contingent on a given history of memory storage

events and on the initial filter and strength states of the synapse. We stress

that in working with such a reduced, simple synapse, we are not arguing that

complex synapses are fully equivalent to simple synapses or vice versa. We

merely use this reduction as a mathematical device to simplify the analysis of

the dynamics of the tracked memory signal by essentially throwing away the

internal synaptic states.

To determine p±, let the state vector for a single synapse at any given

memory storage step be given schematically by
(
wT
∣∣sT
)T

, where w and s are

(2Θ − 1)-dimensional vectors corresponding to the weak and strong synaptic

strength states, respectively, and with n · (w + s) = 1. Under the actions of
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M
±, we have

(
w

s

)
M

+

−−−→
(

S
+w

T
+w + (S+ + T

+) s

)
, (3.3a)

(
w

s

)
M

−

−−−→
(

T
−s+ (S− + T

−)w

S
−s

)
. (3.3b)

For a general vector v, however, n · (S± + T
±)v = n · v, so we see that under

the action of M+ the strong states gain probability n · T+w while the weak

states lose this probability because n ·S+w = n ·w−n ·T+w. Similarly, under

M
− the weak states gain probability n ·T−s while the strong states must lose

this probability. The probability of potentiation, conditional on the synapse

being weak, is therefore

p+ =
n · T+w

n ·w (3.4)

and the probability of depression, conditional on the synapse being strong, is

p− =
n · T−s

n · s . (3.5)

We define p+ = 0 or p− = 0 if n · w = 0 or n · s = 0, respectively. The

probability p+ is just the probability that a synapses is in filter state I =

+(Θ−1) relative to the total probability that the synapse is weak; similarly, p−

is the probability of being in filter state I = −(Θ−1) relative to its being strong.

Defining the 2-dimensional vector of the synapse’s strength probabilities with

components n ·w and n · s, we have that

(
1− 1

2
p+ 1

2
p−

1
2
p+ 1− 1

2
p−

)(
n ·w
n · s

)
=

(
n ·w − 1

2
n · T+w + 1

2
n · T−s

n · s+ 1
2
n · T+w − 1

2
n · T−s

)
. (3.6)

By construction, the strength probabilities in the vector on the right-hand side
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(RHS) agree with those from the action of the full 2(2Θ − 1) × 2(2Θ − 1)

transition matrix M = 1
2
(M− +M

+) on the full 2(2Θ − 1)-dimensional state

vector
(
wT
∣∣sT
)T

. That is, the 2× 2 strength transition matrix W on the left-

hand side of this equation correctly captures that changes in strength induced

by the full filter dynamics. Of course, to compute the conditional strength-

change probabilities p±, we have required the full filter dynamics, but the key

feature is that we have a simple synapse with no internal states and with

identical strength-change probabilities, at least for one memory storage step.

For multiple memory storage steps, suppose that we start from some initial

state vector
(
wT

0

∣∣sT0
)T

. Then we write

(
wn+1

sn+1

)
= M

(
wn

sn

)
or

(
wn

sn

)
= M

n

(
w0

s0

)
(3.7)

and we define the conditional strength-change probabilities p±n by

p+n =
n · T+wn

n ·wn

and p−n =
n · T−sn

n · sn
, (3.8)

and the corresponding 2×2 step-dependent strength-change transition matrices

are

Wn+1 =

(
1− 1

2
p+n

1
2
p−n

1
2
p+n 1− 1

2
p−n

)
. (3.9)

If
(
wT

0

∣∣sT0
)T

is the full state vector immediately after the storage of the tracked

memory ξ0, then the storage of ξ0 induces the conditional strength-change

probabilities p±0 that are relevant to the storage of the next memory ξ1 as-

sociated with the application of the 2 × 2 matrix W1. Similarly, the storage

of ξ1 then changes the distribution of strength and filter states and thus in-

duces new conditional strength-change probabilities p±1 that will govern the

subsequent storage of memory ξ2 via the 2× 2 matrix W2. And so on. Thus,
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the conditional strength-change probabilities p±n are calculated from the full

2(2Θ− 1)-dimensional state vector after the storage of memory ξn and there-

fore from the vector Mn
(
wT

0

∣∣sT0
)T

, and these conditional probabilities govern

the storage of the next memory ξn+1 via the matrix Wn+1. The product

Dn = WnWn−1 · · ·W2W1 (3.10)

then represents n applications of M to the initial state
(
wT

0

∣∣sT0
)T

, giving the

probabilities of the synapse being weak or strong after the storage of the se-

quence of memories ξ0, . . . , ξn. Because we obtain the correct probabilities for

a synapse being weak or strong for any single memory storage step from any

state, we must therefore also obtain the correct probabilities for any number

of memory storage steps from any initial states. Thus, Dn

(
n · w0,n · s0

)T

gives the same probabilities of the synapse being weak or strong as those com-

puted directly from ΩT
−M

n
(
wT

0

∣∣sT0
)T

or ΩT
+M

n
(
wT

0

∣∣sT0
)T

, respectively. Again,

we stress that we require the full internal synaptic dynamics to compute the

probabilities p±n , and we stress that these probabilities depend on the full initial

synaptic state and on the particular sequence of (superposed) induction signals

experienced by the synapse. However, they allow us to work with an effective

simple synapse and only a 2 × 2 strength transition matrix without internal

dynamics. This allows us to focus purely on changes in synapses’ strengths,

and therefore on the dynamics of the perceptron activation, without having

to keep track of all synapses’ internal states. The 2 × 2 transition matrices

Wn depend on the memory storage step, so we refer to this simplified, reduced

synapse as a time-dependent stochastic updater (TDSU).
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We write the matrix Dn in the form

Dn =

(
1
2
(1 +Xn)

1
2
(1− Yn)

1
2
(1−Xn)

1
2
(1 + Yn)

)
, (3.11)

which defines the quantities Xn and Yn. As n → ∞, we must asymptote to

the correct equilibrium distribution of synaptic strengths governed by the filter

dynamics, so

Dn →
(

1
2

1
2

1
2

1
2

)
(3.12)

since π± = 1
2
for g± = 1

2
. Thus, we have isolated this equilibrium distribution

in the definition in Eq. (3.11) so that Xn and Yn are defined relative to equi-

librium. We must then have that Xn → 0 and Yn → 0 as n → ∞. Writing

Dn+1 = Wn+1Dn, we obtain simple recurrence relations for Xn and Yn,

Xn+1 =
[
1− 1

2

(
p+n + p−n

)]
Xn − 1

2

(
p+n − p−n

)
, (3.13a)

Yn+1 =
[
1− 1

2

(
p+n + p−n

)]
Yn +

1
2

(
p+n − p−n

)
, (3.13b)

with X0 = 1 and Y0 = 1 giving the correct form for D1 ≡ W1. For Xn → 0

and Yn → 0 as n → ∞, we must have that p+n /p
−
n → 1, so that over time, the

potentiation and depression probabilities must become equal. The recurrence

relations in Eq. (3.13) will be used extensively below.

As we have indicated, the probabilities p±n depend on the initial state vector
(
wT

0 | sT0
)T

, and this can be either M+A or M−A depending on the sign of ξ0i .

For M
+A, a direct calculation shows that p+0 = 2/(Θ2 − 1) and p−0 = 0 for

Θ > 1, while for M−A, p+0 = 0 and p−0 = 2/(Θ2 − 1). These probabilities are

merely interchanged, reflecting the equivalence of the S̃i(t) distributions for

balanced processes with g± = 1
2
. We note, furthermore, that in the recurrence

relations in Eq. (3.13), under p+n ↔ p−n , we have Xn ↔ Yn, which again reflects
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this equivalence. Thus, we take the probabilities p±n to be the transition prob-

abilities in the tilded strength variables, as the initial mixed state collapses to

a single distribution for balanced processes. To compute them, then, we need

only consider the initial distribution associated with M
+A. With this under-

standing, the elements of the matrix Dn give the transition probabilities for

tilded strength states after n memory storage step. For example, the element

1
2
(1−Xn) is just the transition probability Prob

[
S̃i(n) = +1 | S̃i(0) = −1

]
.

Although we may use the renewal methods described elsewhere (Elliott &

Lagogiannis, 2012) to obtain explicit formulae for arbitrary Θ for the condi-

tional strength-change probabilities p±n , the resulting expressions are in general

very messy. For example, for Θ = 3, we obtain

p±n =
6(2n ± 2)∓

(√
3
)n[

2 +
√
3 + (−1)n(2−

√
3)
]

6(9 · 2n ± 4)∓ 2
(√

3
)n[

7 + 4
√
3 + (−1)n(7− 4

√
3)
] ,

for n > 0, with p+0 = 1
4
and p−0 = 0. Numerically, it is more efficient simply to

construct one-time tables of these conditional probabilities rather than repeat-

edly use explicit formulae with the associated computational overheads. These

tables may be constructed, if necessary, by explicit numerical evaluation of the

matrix powers Mn when analytical results are not available for any particular

form of M. To illustrate the behaviour of p±n , in Fig. 2 we plot them against n

for Θ = 4. We see that initially p+n > p−n , but that they approach each other,

overshoot somewhat, and then both asymptote to 1/Θ2 as n→ ∞.

We have discussed the construction of an effective, simple synapse with

identical strength-change probabilities only for our filter-based model of synap-

tic plasticity. It is clear, however, that this construction will in fact go through

for any model of synaptic plasticity with internal synaptic states and not just

a filter-based model. For any given model, we merely have to identify the
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Figure 2: Conditional strength-change probabilities p±n as functions of n for

Θ = 4.

equivalents of the two matrices T± that lead directly to strength-change pro-

cesses, which are the equivalents of threshold processes in a filter-based model.

Also, this construction works for general, multi-level discrete synapses and not

just for the binary-strength, two-level synapses considered here. Finally, this

construction will also work for unbalanced processes with g± 6= 1
2
, but then

we will have two sets of probabilities p±n corresponding to the two different

distributions in the mixed initial state.

4 Dynamics of Perceptron Activation

Now that we have synaptic dynamics purely in terms of conditional strength-

change probabilities, we may determine exactly the probability distribution of

the perceptron activation hn in discrete time and thus via Poisson summation
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the continuous time form h(t). In discrete time, with random, uncorrelated

memories, synapses are completely independent of each other. Dependence is

introduced in continuous time but is entirely due to driving synaptic updates

as a continuous-time process: performing Poisson summation fully accounts

for the induced dependence. The independence of synapses in discrete time

allows us to compute exactly the probability generating function (PGF) or the

moment generating function (MGF) for hn.

4.1 Generating Functions for Perceptron Activation

The scaled perceptron activation Nhn is a sum over N random variables taking

values of±1. The value of hn is therefore completely determined by the number

of synapses with S̃i(n) = +1, so we may construct generating functions for hn

or its moments by conditioning on this number. Specifically, we condition on

the initial value, h0, immediately after the storage of memory ξ0. If h0 =

2j/N − 1, then precisely j synapses have S̃i(0) = +1 and the remaining N − j

synapses have S̃i(0) = −1. We define the two PGFs

G±
n (x) =

∑

σ∈{0,1}

Prob
[
S̃i(n) = 2σ − 1

∣∣ S̃i(0) = ±1
]
xσ, (4.1)

where we have used the powers 0 and 1 rather than −1 and +1 because to

determine the distribution of hn we count only the synapses with S̃i(n) = +1.

Just by reading off the elements of the matrix Dn, we may immediately write

down these PGFs as

G−
n (x) =

1
2
(1 +Xn)x

0 + 1
2
(1−Xn)x

1, (4.2a)

G+
n (x) =

1
2
(1− Yn)x

0 + 1
2
(1 + Yn)x

1. (4.2b)
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We note that G−
0 (x) = 1 and G+

0 (x) = x since X0 = 1 and Y0 = 1. In discrete

time, all N synapses are independent, so the PGF for the number of synapses

with S̃i(n) = +1 immediately after the storage of memory ξn, conditional on

h0 = 2j/N − 1, is given simply by

Gn

(
x
∣∣h0 = 2j

N
− 1
)
=

N∑

i=0

Prob
[
hn = 2i

N
− 1

∣∣h0 = 2j
N
− 1
]
xi

=
[
G−
n (x)

]N−j[G+
n (x)

]j
. (4.3)

The coefficients Prob
[
hn = 2i

N
− 1

∣∣h0 = 2j
N

− 1
]
in this conditional PGF en-

code the entire n-step (N + 1)× (N + 1) transition matrix for the perceptron

activation. We denote this matrix by Hn. For convenience we index its entries

from 0 to N rather than 1 to N + 1 so that we may explicitly write

[Hn]ij = Prob
[
hn = 2i

N
− 1

∣∣h0 = 2j
N
− 1
]
. (4.4)

The generating function Gn

(
x
∣∣h0 = 2j

N
−1
)
therefore generates the jth column

of the matrix Hn. We have that G0

(
x
∣∣h0 = 2j

N
− 1
)
= xj, so that H0 ≡ I as

required. From Eq. (2.17), we know that Prob
[
S̃i(0) = ±1

]
= 1

2
(1± µ0). Thus,

the initial distribution of j in h0 = 2j/N − 1 is binomial with parameter N

and probability 1
2
(1 + µ0). The unconditional PGF for the number of synapses

with S̃i(n) = +1 at step n is then just

Gn(x) =
N∑

i=0

Prob
[
hn = 2i

N
− 1
]
xi

=

{
1
2

[
1 + 1

2
(1− µ0)Xn − 1

2
(1 + µ0)Yn

]
x0

+ 1
2

[
1− 1

2
(1− µ0)Xn +

1
2
(1 + µ0)Yn

]
x1
}N

. (4.5)
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This PGF encodes the entire probability distribution of hn via its coefficients

Prob
[
hn = 2i

N
− 1
]
. The state vector for hn is an (N + 1)-dimensional vector,

again indexed from 0 to N , with entries Prob
[
hn = 2i

N
− 1
]
for i = 0, . . . , N .

We see that hn is itself essentially binomially-distributed (up to a scaling of

its range) with parameter N and probability given by the coefficient of the x1

term inside the curly brackets in Eq. (4.5). In the limit n→ ∞, we obtain

Gn(x) →
(
1
2
x0 + 1

2
x1
)N
, (4.6)

which of course agrees with the equilibrium distribution of S̃i(n), since π± = 1
2
.

These conditional and unconditional PGFs for hn translate directly into

the corresponding MGFs for hn. We write

M±
n (x) =

∑

σ∈{−1,+1}

Prob
[
S̃i(n) = σ

∣∣ S̃i(0) = ±1
]
eσ x/N , (4.7)

where we use σ x/N in the exponent because the divisor automatically accounts

for the scaling of
∑N

i=1 S̃i(n) by N in the definition of hn. We then obtain

M−
n (x) = cosh

x

N
−Xn sinh

x

N
, (4.8a)

M+
n (x) = cosh

x

N
+ Yn sinh

x

N
, (4.8b)

and the conditional MGF for hn, given h0, is simply

Mn(x |h0) =
(
cosh

x

N
−Xn sinh

x

N

)N

2
(1−h0)

×
(
cosh

x

N
+ Yn sinh

x

N

)N

2
(1+h0)

. (4.9)

From this conditional MGF we then obtain the conditional first- and second-
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order moments and thus variance,

E[hn |h0] = −1
2
(1− h0)Xn +

1
2
(1 + h0)Yn, (4.10a)

Var[hn |h0] =
1

N

[
1− 1

2
(1− h0)X

2
n − 1

2
(1 + h0)Y

2
n

]
. (4.10b)

The unconditional MGF for hn is

Mn(x) = E
[
exhn

]
=
(
cosh

x

N
+ µn sinh

x

N

)N
, (4.11)

where µn = E[hn] is given by

µn = −1
2
(1− µ0)Xn +

1
2
(1 + µ0)Yn. (4.12)

The second- (variance), third- (skewness) and fourth-order (kurtosis) cumu-

lants of hn follow directly from the cumulant generating function loge Mn(x)

and are

σ2
n = Var[hn] =

1

N
(1− µ2

n), (4.13a)

Skew
∗[hn] = −2µn(1− µ2

n)

N2
, (4.13b)

Kurt
∗[hn] =

2

N3
(1− µ2

n)(3µ
2
n − 1), (4.13c)

where we use the asterisk to indicate that these cumulants are not normalised

by appropriate powers of the variance. Because hn is essentially binomially-

distributed (up to a scaling of its range), we would expect it to become

normally-distributed in the large N limit. Defining ĥn = (hn − µn)/σn, its
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MGF is M̂n(x) = Mn(x/σn) e
−xµn/σn , and we find that

M̂n(x) =

{
1 + µn

2
exp

[
+
x(1− µn)

Nσn

]
+

1− µn

2
exp

[
−x(1 + µn)

Nσn

]}N

=

[
1 +

x2

2N
+O

(
N−3/2

)]N
−−−→
N→∞

exp
(
1
2
x2
)
, (4.14)

which is the MGF of a normal distribution with zero mean and unit variance.

Thus, hn is approximately normally-distributed for N large enough, with mean

µn and variance σ2
n = (1− µ2

n)/N .

4.2 Continuous-Time Generating Functions

The PGFs and MGFs in discrete time may be converted into PGFs and MGFs

in continuous time by performing Poisson summation. For a sequence of quan-

tities wn in discrete time, we use the convenient notation,

PPP
{
wn; t

}
=

∞∑

n=0

e−rt (rt)
n

n!
wn, (4.15)

to define the Poisson sum, so that the continuous time quantity w(t) is simply

w(t) = PPP
{
wn; t

}
. (4.16)

With this notation, the continuous time PGFs are

G
(
t; x
∣∣h(0) = 2j

N
− 1
)
= PPP

{
Gn

(
x
∣∣h0 = 2j

N
− 1
)
; t
}
, (4.17a)

G(t; x) = PPP
{
Gn(x); t

}
, (4.17b)
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with the conditional PGF inducing the time-dependent transition matrix

H(t) = PPP
{
Hn; t

}
. (4.18)

The continuous time MGFs are

M
(
t; x
∣∣h(0)

)
= PPP

{
Mn

(
x
∣∣h0
)
; t
}
, (4.19a)

M(t; x) = PPP
{
Mn(x); t

}
. (4.19b)

In the above we have replaced h0 by h(0) for notational consistency, but they

both refer to the perceptron activation immediately after the storage of mem-

ory ξ0. In general the Poisson sums cannot be evaluated in closed form, but

when the probabilities p±n are especially simple, or even constants, the first few

moments may be calculated exactly.

We may determine the moments E
[
h(t)m

]
of h(t) from Eq. (4.19b). The

(un-normalised) cumulants of h(t) can then be computed from them or directly

from logM(t; x). With the continuous-time mean µ(t) = E
[
h(t)

]
, the variance

σ(t)2 = E
[
h(t)2

]
− µ(t)2 is standard, and the skewness and kurtosis are given

by

Skew
∗(t) = E

[
h(t)3

]
− 3µ(t)E

[
h(t)2

]
+ 2µ(t)3, (4.20a)

Kurt
∗(t) = E

[
h(t)4

]
− 4µ(t)E

[
h(t)3

]
− 3E

[
h(t)2

]2

+ 12µ(t)2 E
[
h(t)2

]
− 6µ(t)4. (4.20b)

These are general forms independent of the particular, perceptron-based model

for h(t) considered here. For completeness, we write out E[h(t)m] for m = 2, 3
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and 4 in terms of the underlying synaptic correlation functions:

E[h(t)2] =
1

N
+

(N − 1)

N
E
[
S̃i(t)S̃j(t)

]
, (4.21a)

E[h(t)3] =
(3N − 2)

N2
µ(t) +

(N − 1)(N − 2)

N2
E
[
S̃i(t)S̃j(t)S̃k(t)

]
, (4.21b)

E[h(t)4] =
(3N − 2)

N3
+

2(N − 1)(3N − 4)

N3
E
[
S̃i(t)S̃j(t)

]

+
(N − 1)(N − 2)(N − 3)

N3
E
[
S̃i(t)S̃j(t)S̃k(t)S̃l(t)

]
, (4.21c)

where the expectation values are over distinct doublets, triplets and quadru-

plets of synapses.

4.3 Conditioning on Step m > 0

By conditioning on the number of synapses with S̃i(0) = +1, we have computed

transition probabilities for the evolution of hn and thus obtained the transition

matrix Hn. We can use this matrix instead to condition on a different step.

Specifically, we write

Hn|m = HnHm
−1, (4.22)

for n ≥ m. The inverse matrix Hm
−1 evolves the state at step m backwards to

the state at step 0, and the matrix Hn then evolves this state at step 0 forwards

to the state at step n. The matrix Hn|m is therefore the evolution matrix for the

perceptron activation conditioned on step m rather than step 0. We note that

Hn|mHm|l = Hn|l, so that the Markovian property is automatically satisfied;

that Hn|n = I; and that Hn|0 = Hn. The matrices defined by

Vn = Hn|n−1 (4.23)
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then correspond to the 1-step matrices for the transition from hn−1 to hn, with

Hn = VnVn−1 · · ·V2V1. (4.24)

This equation is analogous to Eq. (3.10) for single-synapse transitions but

applies to transitions in perceptron activation, so to the entire population of

synapses. We then have

Hn|m =





Vn · · ·Vm+1 for n > m

I for n = m
, (4.25)

so that the transition matrix conditioned on step m is a product of the V

matrices starting at Vm+1.

We may explicitly compute the elements of Hn|m. We know that the PGF
[
G−
n (x)

]N−j[G+
n (x)

]j
is the generating function for the jth column of Hn, where

the coefficients of the two PGFs G±
n (x) are just the elements of the matrix Dn.

We may confirm by direct calculation that the elements of the matrix Dn D
−1
m

are the coefficients of the two PGFs, call them G±
n|m(x), that are required to

construct the generating function for the jth column of Hn|m,

Gn|m

(
x
∣∣hm = 2j

N
− 1
)
=
[
G−
n|m(x)

]N−j[G+
n|m(x)

]j
. (4.26)

The corresponding MGFs are M±
n|m(x), with

Mn|m

(
x |hm

)
=
[
M−

n|m(x)
]N

2
(1−hm)[M+

n|m(x)
]N

2
(1+hm)

. (4.27)

We are especially interested in the particular case n = m+1, giving the 1-step

transition matrix Vm+1 for transitions in perceptron activation between suc-
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cessive memory storage steps. In this case, we may use the recurrence relations

in Eq. (3.13) to simplify the expressions for G±
m+1|m(x) and M±

m+1|m(x). We

obtain

G−
m+1|m(x) =

(
1− 1

2
p+m
)
x0 + 1

2
p+mx

1, (4.28a)

G+
m+1|m(x) =

1
2
p−mx

0 +
(
1− 1

2
p−m
)
x1, (4.28b)

and

M−
m+1|m(x) = cosh

x

N
− (1− p+m) sinh

x

N
, (4.29a)

M+
m+1|m(x) = cosh

x

N
+ (1− p−m) sinh

x

N
, (4.29b)

which lead to

E[hm+1 |hm] = −1
2
(1− hm)(1− p+m) +

1
2
(1 + hm)(1− p−m), (4.30a)

Var[hm+1 |hm] =
1

N

[
1− 1

2
(1− hm)(1− p+m)

2 − 1
2
(1 + hm)(1− p−m)

2
]
. (4.30b)

Notice that the two generating functions G−
m+1|m(x) and G+

m+1|m(x), which gen-

erate the 1-step transition matrix Vm+1 for transitions in the perceptron ac-

tivation via Gm+1|m

(
x
∣∣hm = 2j

N
− 1
)
, also generate the two columns of the

1-step transition matrix Wm+1 in Eq. (3.9) for transitions in a single synapse’s

strength. In this balanced scenario, therefore, the PGF Gm+1|m

(
x
∣∣hm = 2j

N
−1
)

generates both the 1-step transitions for single synapses (with N = 1) and the

1-step transitions in perceptron activation. This equivalence between the two

processes only occurs for balanced processes.
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4.4 Comparison Between Analytical and Simulation

Results

With these analytical expressions for the generating functions for h(t), we

may compare the statistics of h(t) obtained analytically to those obtained

from simulations of full, filter-based synapses. Full details of our simulation

protocols may be found elsewhere (Elliott & Lagogiannis, 2012; Elliott, 2014).

Simulation results are averaged over 106 separate simulations in order to obtain

good statistics.

In Fig. 3 (for Θ = 2) and Fig. 4 (for Θ = 5) we plot analytical results

for the statistics of h(t) based on the continuous-time MGF in Eq. (4.19b)

and simulation results in which synapses undergo full, filter-based transitions

rather than the simplified, purely strength-based transitions associated with

conditional strength-change probabilities. We see essentially exact agreement

between our analytical results and simulation results averaged over a large

enough ensemble. There is a little more noise in the simulation results for

Θ = 5 for the skewness and kurtosis compared to those for Θ = 2. This is to

be expected as there are more internal states in the former case, so for larger

Θ larger numbers of individual trials are necessary, especially for higher-order

statistics. The essentially exact agreement confirms that simplified synapses

with step-dependent strength-change probabilities are completely equivalent

to full, filter-based synapses. It also serves to verify our analytical results and

validate our simulations protocols.

In computing the moments in Figs. 3 and 4, we have truncated the Poisson

sums at a point beyond which further contributions are negligible. Because the

Poisson sums cannot in general be evaluated exactly, this procedure constitutes

a good numerical approximation scheme. With this numerical approximation
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Figure 3: Analytical and simulation results for the statistics of h(t) in con-

tinuous time. Analytical results (solid lines) for (A) µ(t), (B) σ(t)2 and the

normalised (C) skewness and (D) kurtosis are obtained from the MGF for h(t).

We have set N = 103 and used a filter size of Θ = 2. Simulation results (in-

dicated by circles) are obtained by running full simulations of synapses with

internal filter-based transitions and averaging over 106 separate simulations in

order to obtain good statistics.
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Figure 4: Analytical and simulation results for the statistics of h(t). The

format of this figure is identical to Fig. 3 except that we have used a filter size

of Θ = 5.
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understood, we are able to compute any moment to any desired accuracy us-

ing Eq. (4.19b). This computation relies critically on the use of the simplified

synaptic dynamics with conditional strength-change probabilities. Although

we can derive exact expressions for µ(t) using the full, filter-based synaptic dy-

namics, the calculation of σ(t)2 and specifically the covariance between pairs of

synapses’ strengths is extremely hard in general (Elliott & Lagogiannis, 2012)

and has been possible only for small enough Θ (up to around 6, depending

on the amount of memory available to computer algebra packages). In gen-

eral, in order to compute the mth-order moment, we would need to compute

the mth-order correlation function over m synapses’ (tilded) strengths (see

Eq. (4.21). For the full, filter-based synaptic dynamics, this means considering

the tensor product M ⊗ · · · ⊗ M with m occurrences of M. Unfortunately,

for our filter-based model of synaptic plasticity, the matrix M is defective (i.e.

it lacks a complete set of eigenvectors), so it is not possible to write down

the spectrum of such tensor products directly from the spectrum of M. It is

therefore necessary to flatten tensor products down to a single matrix, and for

m products, we would obtain a matrix of size [2(2Θ − 1)]m × [2(2Θ − 1)]m.

Even for Θ = 2, computing the kurtosis, which requires m = 4, results in a

1296× 1296 matrix; for Θ = 3, this becomes 104 × 104. For anything but very

small Θ and very small m, such matrices become unmanageably large. Even

when a general transition matrix M is not defective, the resulting m-fold sums

over eigenvectors and eigenvalues become time consuming. The use of the

equivalent TDSU formulation with conditional strength-change probabilities

and no internal synaptic states considerably ameliorates these computational

problems and permits moments to be calculated to any desired accuracy where

otherwise such calculations would be intractable or numerically very intensive.

The PGF for h(t) in Eq. (4.17b) encodes the entire probability distribution,
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call it P (h, t), for the perceptron activation or tracked memory signal h over

time t. Using the same truncation procedure for Poisson sums as above, we

may determine P (h, t) essentially exactly. In Fig. 5 we show superimposed heat

and contour maps for P (h, t) in the rt–h plane for different choices of Θ. Of

course, h takes discrete values in the interval [−1,+1] with spacing 2/N , but for

N large enough, it appears essentially continuous. We have selected N = 103

in this figure. We see clearly for early times the contributions from separate

memory storage steps coming in with weightings determined by the relevant

factors in the Poisson sums. These contributions are particularly clear for Θ =

2. The two isolated “islands” of probability for Θ = 2 are concentrated around

rt = 1 and rt = 2, which correspond precisely to the locations of the maxima

of e−rt(rt)n/n! for n = 1 and n = 2. These early-time contributions serve

to increase the mean µ(t) by pulling the distribution P (h, t) towards larger

values of h. They arise because of the imbalance between the probabilities

p+n and p−n seen in Fig. 2. This imbalance itself reflects the biasing of filter

states by the storage of memory ξ0, so that synapses experiencing ξ0i = +1

are initially biased to become or remain strong while those experiencing ξ0i =

−1 are initially biased to become or remain weak. When this biasing works

out of the system, the distribution of h relaxes back to being symmetrically

distributed around h = 0, as can be seen for larger times in this figure.

5 Fokker-Planck Equation

Although we have determined the evolution of hn and thus h(t) exactly, it is

convenient to consider an approximation based on the Fokker-Planck equation.

The first- and second-order moments obtained from the Fokker-Planck equa-

tion are exact (if the jump moments can be calculated exactly), while higher-
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Figure 5: Superimposed heat and contour maps for the probability distri-

bution P (h, t) of the perceptron activation or tracked memory signal, h, over

time, t. Results are shown for N = 103 synapses for filters of size: (A) Θ = 2,

(B) Θ = 3, (C) Θ = 4, (D) Θ = 5. Contours are shown for probabilities of

0.005, 0.010, 0.015, 0.020 and 0.025, which can be identified from the heat map

colour box on the right.
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order cumulants in general are not. The higher-order cumulants given by the

Fokker-Planck equation are identically zero. This is because either the underly-

ing stochastic process is normally-distributed and the Fokker-Planck equation

is in fact a formally-derivable limit; or the Fokker-Planck equation is based on

a second-order truncation of the Kramers-Moyal expansion for processes that

are not normally-distributed. As hn is approximately normally-distributed for

N large enough, it may appear that a Fokker-Planck approach would therefore

become exact in the large N limit. However, the Fokker-Planck equation is also

based on a diffusion approximation, while the dynamics of hn contains jump

processes. Despite the limiting normality of hn, a Fokker-Planck approach is

thus only ever at best a diffusion-limit approximation to the dynamics of hn.

It is convenient to consider this diffusion limit because in section 6 we will

implement an absorbing boundary when solving the Fokker-Planck equation.

This allows us to obtain MFPTs for memory lifetimes in the limit in which

jump processes are ignored.

5.1 Evolution of the Moments

Before we derive the jump moments for perceptron activation, we first derive

exact equations for the evolution of the first- and second-order moments of

h(t) and thus for the evolution of its variance. We can of course compute the

moments exactly and directly from the results above, but we obtain equations

for their evolution because they will validate our results for the jump moments.

Consider a sequence of values of some quantity w at each memory storage

step in discrete time, wn for n = 0, 1, 2, . . ., and thus its continuous-time form

w(t) = PPP
{
wn; t

}
. Computing PPP

{
wn+1; t

}
=
∑∞

n=0
(rt)n

n!
e−rtwn+1 in which the
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sequence is offset by one step, we find

PPP
{
wn+1; t

}
−PPP

{
wn; t

}
≡ PPP

{
wn+1 − wn; t

}
=

1

r

dw(t)

dt
, (5.1)

so that performing a Poisson sum over differences between consecutive steps

therefore just returns the time derivative.

To determine dµ(t)/dt, we therefore need µn+1 − µn. We have the initial

condition µ0 = µ(0) = 1/Θ2. From Eq. (4.12) and Eq. (3.13), we obtain

µn+1 − µn = 1
2
(1− µn)p

+
n − 1

2
(1 + µn)p

−
n . (5.2)

The conditional probabilities p±n were defined in Eq. (3.8), with the denomi-

nators n ·wn and n · sn being the probabilities of the synapse being weak or

strong, respectively. But these latter probabilities are just 1
2
(1 ∓ µn), so we

can rewrite Eq. (5.2) in the form

µn+1 − µn = f+
n − f−

n , (5.3)

where f+
n = n ·T+wn and f−

n = n ·T−sn. From the structures of the matrices

T
±, the quantities f±

n are just the probabilities for a synapse being in filter

state I = +(Θ− 1) when it is weak or in filter state I = −(Θ− 1) when it is

strong, respectively. These probabilities are computed in discrete time directly

from M
n acting on the initial state immediately after the storage of memory

ξ0, which for balanced processes we may take to be just M
+A. Thus, they

are given directly by the relevant components of the vector Mn
M

+A. When

we perform a Poisson sum over Eq. (5.3) to obtain dµ(t)/dt, f±
n will turn

into f±(t) = PPP
{
f±
n ; t
}
, where equivalently f±(t) may be determined explicitly

from the relevant components of the continuous-time state vector given by
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exp(rtG)M+A, since PPP
{
M

n; t
}
≡ exp(rtG) with G = M− I (cf. Eq. (2.14)).

Eq. (5.3) therefore becomes, under Poisson summation,

1

r

dµ(t)

dt
= f+(t)− f−(t). (5.4)

We now define the continuous-time conditional strength-change probabilities

via the equation

p±(t) =
f±(t)

1
2

[
1∓ µ(t)

] , (5.5)

where the two denominators 1
2

[
1 ∓ µ(t)

]
are just the continuous-time proba-

bilities for a synapse to be weak or strong, respectively.3 The continuous-time

mean strength µ(t) may be computed from the discrete-time mean strengths

µn via PPP
{
µn; t

}
or, equivalently, directly from ΩT exp(rtG)M+A. With these

definitions, Eq. (5.4) becomes

1

r

dµ(t)

dt
= 1

2

[
1− µ(t)

]
p+(t)− 1

2

[
1 + µ(t)

]
p−(t), (5.6)

with µ(0) = 1/Θ2, which governs the evolution of µ(t) in continuous time. Al-

though the RHSs of Eqs. (5.2) and (5.6) are structurally identical, it is not the

case that we have effectively moved from Eq. (5.2) to Eq. (5.6) by replacing the

Poisson sum of a product by the product of the Poisson sums: such a replace-

ment would in general be invalid. Rather, the RHSs of Eqs. (5.2) and (5.6) are

structurally identical purely because they unpack to the state probabilities f±
n

3 It is critical to note that p±(t) are given by PPP
{
f±
n ; t
}
/PPP
{

1
2

[
1 ∓ µn

]}
and

are not given by PPP
{
f±
n /

1
2

[
1∓ µn

]}
: the continuous-time conditional strength-

change probabilities are the ratios of state probabilities in continuous time to

strength probabilities in continuous time.
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for Θ = 4.

and f±(t), respectively, which are derived from M
n and PPP

{
M

n; t
}
= exp(rtG),

respectively. We note that for dynamics with fixed conditional strength-change

probabilities of just p±n = p± (so essentially just a simple synapse with no inter-

nal states), Poisson summing Eq. (5.2) does indeed lead directly to Eq. (5.6),

with p±(t) = p±, as we should expect.

In Fig. 6 we plot p±(t) against t for the same choices of parameters as for p±n

in Fig. 2. Although we have stressed the fact that the continuous-time condi-

tional strength-change probabilities are not just the Poisson-summed discrete-

time conditional strength-change probabilities (see footnote 3), we see never-

theless that p±(t) are very similar in overall profile to p±n , with the jaggedness

in the latter pair being smoothed out in the former pair.

Because all the higher-order moments of hn depend only on µn, the deter-

mination of their evolution in terms of µn is in principle straightforward. The
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variance σ2
n is given in Eq. (4.13a) as σ2

n = (1 − µ2
n)/N . The second-order

moment is just E
[
h2n
]
= σ2

n + µ2
n, which we denote for convenience by ϕn. We

have that

ϕn =
1

N
+
N − 1

N
µ2
n, (5.7)

and so by using Eq. (5.2) we obtain

ϕn+1 − ϕn =
N − 1

N

[
1
2
(1− µn)p

+
n − 1

2
(1 + µn)p

−
n

]

×
[
2µn +

1
2
(1− µn)p

+
n − 1

2
(1 + µn)p

−
n

]
. (5.8a)

We would in general expect the RHS to depend only linearly on both the first-

and second-order moments µn and ϕn (see below), but deriving this equation

by exploiting the identity in Eq. (5.7) has effectively replaced the second-order

moment ϕn by expressions involving µ2
n on the RHS. We therefore rewrite the

RHS by replacing the µ2
n term by (Nϕn − 1)/(N − 1), to obtain

ϕn+1 − ϕn = 1
2
(p+n + p−n )

[
1
2
(p+n + p−n )− 2

]
ϕn

− N − 1

N

[
1
2
(1− p+n )

2 − 1
2
(1− p−n )

2
]
µn

+
1

N

[
1− 1

2
(1− p+n )

2 − 1
2
(1− p−n )

2
]
+ 1

4
(p+n − p−n )

2. (5.8b)

Poisson summing either Eq. (5.8a) or (5.8b) will give us dϕ(t)/dt where ϕ(t) =

PPP
{
ϕn; t

}
. The two resulting equations for dϕ(t)/dt are exact and completely

equivalent, but it does not appear to be possible in general to evaluate the

Poisson sums on the RHSs and express them purely in terms of µ(t) and

ϕ(t), even when we use the state probabilities f±
n = 1

2
(1∓ µn)p

±
n that allowed

Eq. (5.2) to be summed. For the particular case that p±n = p± are constants,

the Poisson sums can be explicitly evaluated.
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In Fig. 7 we show for N = 103 synapses and various choices of Θ that the

mean µ(t) determined from Eq. (5.6) and the variance σ(t)2 determined via

ϕ(t) from the Poisson-summed Eq. (5.8b) agree exactly with µ(t) computed

analytically (Elliott & Lagogiannis, 2012) and σ(t)2 determined explicitly from

numerical matrix methods. To determine the evolution of ϕ(t) from Eq. (5.8b),

we have as above truncated the Poisson sum at a point beyond which further

contributions are negligible. The differential equations are solved by standard

numerical methods.

Because we cannot Poisson sum Eq. (5.8b) explicitly in the general case of

non-constant p±n , in order to make progress we perform an approximation in

the following manner. Let the vector P n contain the probability distribution

of hn, so that the ith component of P n is Prob
[
hn = 2i

N
− 1
]
. Then

P n+1 = Vn+1P n, (5.9)

where the elements of Vn+1 depend only on p±n from Eq. (4.28). We may use

this equation to compute the changes in the moments of hn from step to step.

For example, for N = 2, we may write P n in the form

P n =




1 1 1

−1 0 +1

+1 0 +1




−1


1

µn

φn


 =




1
2
(ϕn − µn)

1− ϕn

1
2
(ϕn + µn)


 , (5.10)

which gives the required zeroth-, first- and second-order moments of 1, µn and

ϕn, respectively.
4 Eq. (5.9), which is then purely linear in the moments, then

4For generalN the matrix whose inverse is given on the RHS of Eq. (5.10) has

element (2j
N
−1)i in row i and column j, with the understanding that for i = 0,

these elements are always unity even if 2j/N − 1 = 0. These elements are just
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Figure 7: Mean and variance in perceptron activation computed either di-

rectly or from their associated differential equations. Solid lines show results

computed directly while the circles show results computed from differential

equations. (A) Means µ(t) for Θ = 2, 3, 4 and 5, moving from top to bottom

in the figure; (B) variances σ(t)2 for the same values of Θ as in panel A, again

moving from top to bottom. Results are shown for N = 103 synapses.
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explicitly gives Eqs. (5.2) and (5.8b) for N = 2 and in general for arbitrary N

we obtain the correct overall factors in Eqs. (5.8b). From Eq. (5.9), we have

P n+1 − P n = (Vn+1 − I)P n, or

1

r

dP (t)

dt
= PPP

{
Vn+1P n; t

}
− P (t), (5.11)

but we also have from Eq. (5.9) that P n = HnP 0 using Eq. (4.24), or

P (t) = PPP
{
P n; t

}
= PPP

{
Hn; t

}
P (0) ≡ H(t)P (0). (5.12)

While it appears that this solution of Eq. (5.11) implies that the Poisson sum

on the RHS of Eq. (5.11) can be evaluated, explicitly doing so merely results in

the essentially tautological and completely useless dP (t)/dt = dH(t)/dtP (0).

Except for the case when p±n = p±, the Poisson sum on the RHS of

Eq. (5.11) cannot therefore be usefully evaluated. However, the structure of

this equation suggests that a natural approximation is to replace the Poisson

sum PPP
{
Vn+1P n; t

}
with V(t)P (t), where the time-dependent matrix V(t) is

generated from the time-dependent probabilities p±(t), so that column j is

generated by

N∑

i=0

xi
[
V(t)

]
ij
=
{[

1− 1
2
p+(t)

]
x0 + 1

2
p+(t)x1

}N−j

×
{

1
2
p−(t)x0 +

[
1− 1

2
p−(t)

]
x1
}j

. (5.13)

We therefore replace the exact distribution P (t) = H(t)P (0) obtained from

all relevant powers of the possible values of the perceptron’s activation. This

matrix is in fact a transposed Vandermonde matrix. The vector multiplying

this inverse matrix in general has components E
[
hin
]
.
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the Poisson sum PPP
{
P n; t

}
by the approximated distribution obtained from the

solution of

1

r

dP (t)

dt
=
[
V(t)− I

]
P (t), (5.14)

with V(t) depending on p±(t). This approximation is graphically represented

in Fig. 8, in which we replace the single-synapse strength-change transitions in

Fig. 8A by those shown in Fig. 8B. This approximation in effect elevates the

continuous-time probabilities p±(t) induced by the underlying discrete-time

probabilities p±n to the status of fully and completely defining the dynamics.

Of course, when p±(t) = p±n = p± are constants, then this approximation

reproduces the exact dynamics, with a Poisson sum over Eq. (5.9) yielding

directly Eq. (5.14) with V(t) = V, a constant matrix. In this case, the solution

of Eq. (5.14) is P (t) = H(t)P (0) with H(t) = exp
[
rt(V − I)

]
. In general,

however, the solution of Eq. (5.14) gives us the approximated evolution matrix

H(t) = TTT
{
exp r

∫ t

0

dτ
[
V(τ)− I

]}
, (5.15)

where TTT {·} denotes the time-ordered product (meta-)operator, although in

practice we must solve the differential equation in Eq. (5.14) numerically.

With this approximation, we may use Eq. (5.14) to compute the evolution

of the moments of h(t). Expanding P (t) out in terms of its continuous-time

moments similarly to Eq. (5.10), we obtain Eq. (5.6) exactly, so that at the

level of the dynamics in the mean µ(t), the approximated dynamics reproduce
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Figure 8: Step- and time-dependent changes in synaptic strength. (A) The

full, unapproximated dynamics consist of step-dependent probabilities p±n for

changes in synaptic strength and thus a master equation for each step for the

change in state probabilities per step. (B) We may instead approximate these

dynamics by time-dependent probabilities p±(t) and a single master equation

with these time-dependent probabilities. These two processes are only equiv-

alent when p±n = p±(t) = p± are constants, independent of the step or time.

the exact dynamics. For the second-order moment, we obtain

1

r

dϕ(t)

dt
= 1

2

[
p+(t) + p−n (t)

]{
1
2

[
p+(t) + p−(t)

]
− 2
}
ϕ(t)

− N − 1

2N

{[
1− p+(t)

]2 −
[
1− p−(t)

]2}
µ(t)

+
1

N

{
1− 1

2

[
1− p+(t)

]2 − 1
2

[
1− p−(t)

]2}

+ 1
4

[
p+(t)− p−(t)

]2
, (5.16)

whose RHS is of course structurally identical to Eq. (5.8b). The result of

this approximation is that Poisson sums of products have been replaced by

the products of Poisson sums. Further, the approximation has equated p±(t)

with the Poisson sums PPP
{
p±n ; t

}
, which is incorrect. However, because p±(t)

are defined as ratios of Poisson sums, the approximation has thus essentially

replaced a ratio of Poisson sums with a Poisson sum of ratios. The approxi-

mation therefore consists in the assumption that Poisson sums factorise both

multiplicatively and divisively.
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We may numerically solve Eq. (5.14) governing these approximated dynam-

ics to obtain the entire distribution P (h, t), and compare it to the distribution

for the exact dynamics shown in Fig. 5. From Eq. (5.13), the elements of

the matrix V(t) are sums of products of binomial coefficients and involve the

probabilities p±(t). We use N = 103, which is large enough to replace these el-

ements with normal distributions, making numerical solutions more tractable

for large N . Fig. 9 shows the resulting distributions for different choices of

Θ. Comparing these distributions for the approximated dynamics governed by

Eq. (5.14) to those for the exact dynamics in Fig. 5, we see good qualitative

agreement. The approximated dynamics tend to smooth out the isolated is-

lands of probability that arise in Fig. 5 as each separate Poisson mode develops,

but we clearly see in Fig. 9 for Θ = 2 and Θ = 3 these concentrated regions of

probability developing at earlier times for larger h and then connecting with

the other regions for smaller h at later times.

The approximated dynamics reproduce exactly the exact dynamics at the

level of the mean but the variances differ. We can see this by comparing

Figs. 5 and 9. For example, considering a slice through these maps for rt ≈ 5

for Θ = 4 or Θ = 5, it is clear that the approximated dynamics have somewhat

broader ranges of non-zero probability than the exact dynamics. By explic-

itly computing the variance in the approximated dynamics via Eq. (5.16), we

directly compare the variances for the exact and approximated dynamics in

Fig. 10. For Θ = 2, the approximated dynamics underestimate the exact vari-

ance while for Θ > 2 the approximated dynamics (mostly) overestimate the

exact variance. The small- and large-time behaviours are in agreement, but

the intermediate-time behaviours differ somewhat. Specifically, in the vicinity

of the peak in the mean memory signal, the variance in the exact dynamics

exhibits a minimum, but for Θ > 2 the variance in the approximated dynamics
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Figure 9: Superimposed heat and contour maps for the probability distri-

bution P (h, t) of the perceptron activation or tracked memory signal, h, over

time, t, obtained from the approximated dynamics governed by Eq. (5.14).

The format of this figure is identical to Fig. 5 except that we have added an

additional contour in yellow corresponding to a probability of 0.0025 in panel

A, for Θ = 2.
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Figure 10: Comparison between the variance in the exact and approximated

dynamics. The variance in the exact dynamics in shown with solid lines while

that in the approximated dynamics is shown with dashed lines. Each panel

shows results for the indicated value of Θ. These variances are determined

with N = 103 synapses.

is larger and only exhibits an inflexion or undulation at this same location.

5.2 Jump Moments

Assuming that we have a standard Fokker-Planck equation of the form

1

r

∂

∂t
P (h, t) = − ∂

∂h

[
A(h, t)P (h, t)

]
+

1

2

∂2

∂h2
[
B(h, t)P (h, t)

]
, (5.17)
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its solution would determine the entire probability distribution P (h, t) of the

perceptron activation or tracked memory signal h over time t. The use of a

Fokker-Planck equation entails a continuum limit for h, which for large enough

N is valid. If P (h′, t′ |h, t) is the transition probability from h at time t to h′ at

time t′ ≥ t, then the first- and second-order jump moments A(h, t) and B(h, t)

are determined from

Ml(h, t) =
1

r
lim
δt→0

1

δt

∫
dh′(h′ − h)lP (h′, t+ δt |h, t), (5.18)

with A(h, t) = M1(h, t) and B(h, t) = M2(h, t).
5 The first- and second-order

moments µ(t) and ϕ(t) are then determined from Eq. (5.17) via the equations

1

r

dµ(t)

dt
= E

[
A(h, t)

]
, (5.19a)

1

r

dϕ(t)

dt
= E

[
B(h, t)

]
+ 2E

[
hA(h, t)

]
. (5.19b)

We must determine whether we do indeed have a standard Fokker-Planck equa-

tion and if so, we must compute the jump moments A(h, t) and B(h, t) for per-

ceptron activation and show that they lead to the required evolution equations

for µ(t) and ϕ(t) derived in section 5.1.

Eq. (5.11) is a master equation in continuous time for the discrete prob-

ability distribution P (t) for h at time t. The Fokker-Planck equation would

be derived from this equation either in certain formal limits or as a truncation

of the Kramers-Moyal expansion. However, Eq. (5.11) is itself derived as a

5Because we prefer to retain an overall factor of 1/r on the left-hand side

of the Fokker-Planck equation so that the rate r manifestly acts as a simple

scale factor for time, we have modified this standard definition of the jump

moments by dividing through by the rate.
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Poisson sum over the discrete-time equation

Pm+1 − Pm =
(
Vm+1 − I

)
Pm. (5.20)

The matrix operator Vm+1 − I on the RHS induces the jumps in the moments

between successive steps, giving the change in the distribution from Pm to

Pm+1. Heuristically, in order to move to a continuous probability distribution

Pm(h) at step m when h takes continuous rather than discrete values, we

merely have to replace the matrix operator Vm+1−I with a differential operator

that induces the same jump moments. This differential operator is of course

precisely that which occurs on the RHS of the Fokker-Planck equation. The

matrix Vm+1 induces the conditional first-order moment and variance given in

Eq. (4.30). The matrix Vm+1 − I acting on Pm induces the jump moments

E
[
(hm+1−hm)l|hm

]
, which can be written down directly from Eq. (4.30). Thus,

defining

Am(h) =
1
2
(1− h)p+m − 1

2
(1 + h)p−m, (5.21a)

Bm(h) =
1

N

[
1− 1

2
(1− h)(1− p+m)

2 − 1
2
(1 + h)(1− p−m)

2
]

+
[
1
2
(1− h)p+m − 1

2
(1 + h)p−m

]2
, (5.21b)

we replace Eq. (5.20) with

Pm+1(h)− Pm(h) = − ∂

∂h

[
Am(h)Pm(h)

]
+

1

2

∂2

∂h2
[
Bm(h)Pm(h)

]
, (5.22)

in order to move to the continuum limit. We may explicitly confirm by direct
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calculation that using Eq. (5.22), we obtain

µm+1 − µm = E
[
Am(h)

]
, (5.23a)

ϕm+1 − ϕm = E
[
Bm(h)

]
+ 2E

[
hAm(h)

]
, (5.23b)

where the expectation values on the RHSs are evaluated over the probability

distribution Pm(h) with first- and second-order moments µm and ϕm, respec-

tively, and that the RHSs reproduce the results in Eqs. (5.2) and (5.8b).

The form in Eq. (5.22) is a discrete-time analogue of the Fokker-Planck

equation. While it resembles a one-step forward Euler method for obtaining

numerical solutions, we stress that it is not. It is an equation that governs the

change in distribution of h between successive memory storage steps, which

occur as a Poisson process. In order to move to continuous time, we must of

course Poisson sum this equation, obtaining

1

r

∂

∂t
P (h, t) = − ∂

∂h

[
PPP
{
Am(h)Pm(h); t

}]
+

1

2

∂2

∂h2
[
PPP
{
Bm(h)Pm(h); t

}]
. (5.24)

This equation is not a standard Fokker-Planck equation because the presence

of the Poisson sums on the RHS prevents us from pulling out the distribution

P (h, t) from these sums. This failure of factorisation reflects the failure of

factorisation in the original master equation in Eq. (5.11). Only when Am(h)

and Bm(h) are independent of m and so constant in time do we obtain a

standard Fokker-Planck equation with time-independent jump moments A(h)

and B(h). Nevertheless, Eq. (5.24) does necessarily reproduce the correct

differential equations for µ(t) and ϕ(t) and so it does generate the correct first-

and second-order moments for the tracked memory signal h(t) in continuous

time.
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Because of this failure of factorisation, we must move to the approximated

dynamics governed by Eq. (5.14). The time-dependent matrix V(t)− I on the

RHS of Eq. (5.14) induces jump moments that may be computed directly from

the generating function for the columns of V(t) in Eq. (5.13). These are of

course completely analogous to the jump moments computed from Vm+1 − I.

Thus, we may immediately write down the jump moments for the approximated

dynamics as

A(h, t) = 1
2
(1− h)p+(t)− 1

2
(1 + h)p−(t), (5.25a)

B(h, t) =
1

N

{
1− 1

2
(1− h)

[
1− p+(t)

]2 − 1
2
(1 + h)

[
1− p−(t)

]2}

+
[
1
2
(1− h)p+(t)− 1

2
(1 + h)p−(t)

]2
. (5.25b)

These jump moments appear in the standard form of the Fokker-Planck equa-

tion stated in Eq. (5.17). Since E[h] = µ(t) and E[h2] = ϕ(t), we may directly

verify that we obtain the correct equations for dµ(t)/dt and dϕ(t)/dt for the

approximated dynamics from Eq. (5.19).

Before considering solutions of this Fokker-Planck equation for the approxi-

mated dynamics, we examine the structure of its jump moments by considering

the asymptotic behaviour of the continuous-time, conditional strength-change

probabilities p±(t). In the limit t → ∞, filter and strength states return to

equilibrium. The probabilities of a filter being in states ±(Θ−1) in equilibrium

for balanced processes are both just 1/(2Θ2), and the strength probabilities are

both 1
2
. Thus, we have p±(t) → p∞ where p∞ = 1/Θ2 is the equilibrium condi-

tional strength-change probability for both weak and strong synapses. We also

know that p−(0) = 0. Examining Fig. 6, as a qualitatively good approximation
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we see that we can write

p−(t) = p∞
(
1− e−λ

−
rt
)
, (5.26)

where λ− controls the rate at which p−(t) returns to its equilibrium value.

This form does not capture the finer details of the slight overshooting of p−(t)

beyond p∞ at intermediate times, but it is sufficient for our purposes here.

For p+(0), we have that p+(0) = 2/(Θ2 − 1) for Θ > 1. We write this value

as p0 for simplicity. Again, then, we may write down a qualitatively good

approximation for p+(t) as

p+(t) = p∞ + (p0 − p∞)e−λ+rt, (5.27)

where λ+ is the analogue of λ−. We set λ± = λ since from Fig. 6 both

p±(t) appear to return to equilibrium at the same rate, as we might expect

from the symmetry of processes with balanced plasticity. We now separate

the equilibrium behaviour of the jump moments from the initial transients by

writing

A(h, t) = A∞(h) + A1(h)e
−λrt, (5.28a)

B(h, t) = B∞(h) + B1(h)e
−λrt + B2(h)e

−2λrt. (5.28b)

We obtain

A∞(h) = −p∞h, (5.29a)

B∞(h) = p2∞h
2 +

1

N

[
1− (1− p∞)2

]
, (5.29b)
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and

A1(h) =
1
2
p0(1− h) + p∞h, (5.30a)

B1(h) =
1

N
(1− p∞)

[
p0(1− h)− 2p∞

]
− p∞h

[
p0(1− h) + 2p∞h

]
, (5.30b)

B2(h) =
1

N

[
p0p∞(1− h)− 1

2
(1− h)p20 − p2∞

]
+
[
1
2
p0(1− h) + p∞h

]2
.

(5.30c)

In the absence of the transients, we have jump moments that define a fixed

probability stochastic updater with update probability p∞ = 1/Θ2. Since

µ(0) = 1/Θ2 = p∞, this interpretation is consistent as the mean initial signal

for such a synapse is indeed just the update probability. We have previously

studied MFPTs for memory lifetimes with such dynamics extensively (Elliott,

2014), and obtained precisely these jump moments (see Eq. (7.5) in Elliott

(2014), which is essentially the backward Kolmogorov equation, used for de-

termining passage times). We showed that the dynamics of a fixed probability

stochastic updater are essentially just those of the Ornstein-Uhlenbeck (OU)

process. The transients modify these dynamics. Although A∞(h) pulls h

towards zero, A1(h) increases h: initially, the full jump moment A(h, 0) is

1
2
p0(1 − h), which pulls h towards unity. The balance between A∞(h) and

A1(h)e
−λrt determines whether h is pulled towards unity or towards zero, with

the equilibrium pull towards zero eventually overcoming the transient pull to-

wards unity as the transient decays. We can see these two competing influences

explicitly by writing A(h, t) as

A(h, t) = 1
2
p0(1− h)e−λrt − p∞h

(
1− e−λrt

)
.

At t = 0, there is a stable fixed point at h = 1, at the level of the Liouville
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dynamics, while in equilibrium, the stable fixed point is at h = 0. At inter-

mediate times, there is a stable fixed point at an intermediate value of h. A

filter-based synapse therefore modifies the equilibrium OU-like dynamics by

superimposing a transient that pulls h towards unity.

5.3 Solutions of Fokker-Planck Equation

We are primarily concerned with using the Fokker-Planck equation for the

approximated dynamics in the presence of an absorbing boundary in order to

obtain MFPTs for perceptron activation to fall below a defined threshold. Here

we therefore only briefly consider unconstrained solutions of the Fokker-Planck,

i.e. solutions in the absence of an absorbing boundary.

The Fokker-Planck equation with jump moments in Eq. (5.25) almost cer-

tainly cannot be solved analytically. We therefore use standard numerical

methods for solving this partial differential equation. To check the integrity of

a numerical solution for any given choice of parameters, we verify that it is al-

ways non-negative and normalised to an integral of unity. The exact numerical

agreement between the mean and variance of the numerically-obtained prob-

ability distribution and the mean and variance obtained from the differential

equations in Eqs. (5.6) and (5.16) also validates the numerical solution.

In Fig. 11 we show superimposed heat and contour maps for numerical

solutions of the Fokker-Planck equation for the approximated dynamics for

different choices of filter size. This figure should be compared to Fig. 9, which

shows results for the approximated dynamics obtained directly from the master

equation in Eq. (5.14), from which the Fokker-Planck equation is obtained as a

continuum (and diffusion) limit. We see that for Θ = 4 and Θ = 5 (and in gen-

eral for larger values of Θ), the Fokker-Planck and master equation solutions
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Figure 11: Superimposed heat and contour maps for the probability distribu-

tion P (h, t) of the perceptron activation or tracked memory signal, h, over time,

t, obtained from the Fokker-Planck equation for the approximated dynamics.

The format of this figure is identical to Fig. 5.
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are very similar, with only relatively small qualitative differences in the overall

structures of the solutions. For Θ = 2 and Θ = 3, however, we clearly see

the impact of the diffusion approximation. At small times, the solutions from

the master equation remain tightly focused around their initial mean. These

small-time solutions of the master equation are governed by the initial Poisson

mode, which decays as e−rt, arising from the storage of the tracked memory

ξ0. As time progresses, subsequent Poisson modes corresponding to the stor-

age of subsequent memories arise in the master equation solution, and these

are clearly seen in Fig. 9 (and even more clearly seen in the solutions of the

exact dynamics in Fig. 5). However, in the Fokker-Planck equation solutions

in Fig. 11, we see that at small times, the solution diffuses outwards from its

initial state, and that the entire solution drifts upwards towards higher values

of h rather than developing islands of non-zero probability that then connect

with other regions as time progresses. In the regions where the master equa-

tion solutions exhibit clearly visible distinct Poisson modes, the Fokker-Planck

solutions appear quite diffuse, with probability being spread over a wide range

of h rather than concentrated in distinct, non-overlapping regions. Neverthe-

less, the mean and variance of the distributions from the Fokker-Planck and

master equation solutions must agree, and this is confirmed in Fig. 12.

6 Mean First Passage Times

We now consider memory lifetimes defined by the MFPT for the perceptron

activation h(t) to fall below a defined threshold ϑ, which could be the per-

ceptron’s firing threshold. For balanced potentiation and depression processes,

µ(t) → 0 as t→ ∞, so we will typically consider a threshold ϑ = 0 but we will

also consider thresholds ϑ > 0.
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Figure 12: Mean and variance in perceptron activation determined either

from numerical solutions of the Fokker-Planck equations or from the differ-

ential equations governing the evolution of the moments of the approximated

dynamics. Solid lines show results from the Fokker-Planck equation while the

circles show results from the differential equations. The format of this figure

is otherwise identical to Fig. 7.
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Previously we gave a general derivation of the lifetime τmfpt(ξ
0) of memory

ξ0 defined by the MFPT for h(t) to fall below ϑ in a general model with internal

synaptic states (see Eq. (3.7) in Elliott (2014)). This result, although exact,

is essentially useless for explicit computations, either analytical or numerical,

unless N is very small. However, if we have a transition matrix for changes in

the perceptron activation at each memory storage step, as here with the step-

dependent matrix Vm, then we can instead work directly with these transitions

in h rather than the underlying transitions in the internal states of all N

synapses. The matrix Vm in general allows transitions from any value of hm−1

to any value of hm. However, we wish to consider transitions between states

hm−1 > ϑ and hm > ϑ in order to impose the threshold on perceptron activation

and obtain MFPTs: transitions to disallowed states with hm ≤ ϑ should be

excluded. Defining the (N + 1)× (N + 1) diagonal matrix

Ph>ϑ = diag{ 0, · · · , 0︸ ︷︷ ︸
h≤ϑstates

| 1, · · · , 1︸ ︷︷ ︸
h>ϑstates

}, (6.1)

the product Ph>ϑVm then imposes the requirement that only transitions to

states with h > ϑ are allowed, with the states h ≤ ϑ being projected out. By

using the projection property P
2
h>ϑ = Ph>ϑ, we observe that, for example,

(Ph>ϑVm)(Ph>ϑVm−1) · · · = (Ph>ϑVmPh>ϑ)(Ph>ϑVm−1Ph>ϑ) · · · ,

so that we may consider the transition matrix between allowed states to be

Ph>ϑVmPh>ϑ, which is essentially just the relevant sub-block of Vm for transi-

tions between allows states.

We define the vector P (h0) to correspond to an initial state in which h0

takes a definite value, so that P (h0) has an entry of unity at position i =

68



N
2
(1 + h0) and zeros elsewhere. If h0 > ϑ, then Ph>ϑP (h0) = P (h0), but if

h0 ≤ ϑ, then Ph>ϑP (h0) = 0. We then have that

ψm(h0) = nT(Ph>ϑVmPh>ϑ) · · · (Ph>ϑV1Ph>ϑ)[Ph>ϑP (h0)] (6.2)

is the probability that h > ϑ during and after the storage of memories ξ1, . . . , ξm

from the definite initial state h0; we define ψ0(h0) = nT
Ph>ϑP (h0), with

ψ0(h0) ∈ {0, 1} depending on whether h0 ≤ ϑ or h0 > ϑ. To include ξ0,

we merely average h0 over the initial distribution induced by the storage

of ξ0. Any states with h0 ≤ ϑ are automatically excluded in this averag-

ing. Because Ph>ϑ 6= I, ψm(h0) → 0 as m → 0, so that it is inevitable

that h will eventually fall (to or) below ϑ. The sequence of probabilities

ψ0(h0) ≥ ψ1(h0) ≥ ψ2(h0) ≥ . . . is monotonic decreasing, and the difference

ψm(h0) − ψm+1(h0) ≥ 0 is the probability that h falls (to or) below ϑ at step

m+1. The MFPT for h to fall (to or) below ϑ from some definite initial state

h0 is then

τmfpt(h0) =
∞∑

m=0

(m+ 1)
[
ψm(h0)− ψm+1(h0)

]
=

∞∑

m=0

ψm(h0). (6.3)

In continuous time, we obtain an identical result, up to an overall rate factor

appearing on the left-hand side (Elliott, 2014). For Vm = V, a constant matrix

independent of m, the sum in Eq. (6.3) can be evaluated exactly although a

matrix inverse must be computed. In general, we must evaluate each proba-

bility ψm(h0) and sum them numerically, terminating the sum when further

contributions become negligible. The numerical evaluation of τmfpt(h0) and its

average 〈τmfpt(h0)〉, averaged over the initial distribution of h0 induced by ξ0,

is feasible for N up to around 104. When we obtain MFPTs from simulations,
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we automatically obtain 〈τmfpt(h0)〉 because we always average over a sufficient

number of trials to obtain good statistics.

We may also obtain τmfpt(h0) for the approximated dynamics from the

Fokker-Planck equation. To do so, we erect an absorbing boundary at h =

ϑ and solve the Fokker-Planck equation subject to the boundary condition

P (ϑ, t) = 0 and the initial condition P (h, 0) = δ(h−h0) for h0 > ϑ, where δ(x)

is the Dirac delta function. For 〈τmfpt(h0)〉, we may change the initial condition

to P (h, 0) = H(h− ϑ)P0(h), where H(x) is the Heaviside step function, which

cuts off the distribution below the boundary at h = ϑ, and P0(h) is the initial

distribution of h induced by the storage of ξ0. We may take P0(h) to be a

normal distribution with mean µ0 = 1/Θ2 and variance σ2
0 = (1− µ2

0)/N . The

change in the total probability
∫∞

ϑ
dhP (h, t) gives the MFPT via

τmfpt(h0) = −
∫ ∞

0

dt t
d

dt

∫ ∞

ϑ

dhP (h, t) =

∫ ∞

0

dt

∫ ∞

ϑ

dhP (h, t), (6.4)

which is essentially equivalent to Eq. (6.3). Numerically, when the Fokker-

Planck equation is spatially discretised, the probability that moves onto the

boundary at h = ϑ at each discretised time step, before it is set to zero, gives

the change in total probability and may, when weighted by the current time,

be explicitly summed to give τmfpt(h0).

In Fig. 13, we show results for 〈τmfpt(h0)〉 and for τmfpt(h0) for a threshold

ϑ = 0 and different filter sizes Θ. For 〈τmfpt(h0)〉, in Fig. 13A, we obtain

analytical results using Eq. (6.3) for N = 103 and N = 104; results from

the Fokker-Planck equation for N = 103 and only for smaller values of the

filter size Θ; and results by running simulations of either the full, filter-based

dynamics without reduction to a simple synapse with step-dependent update

probabilities or the reduced, simple dynamics. For the analytical results, we use
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Figure 13: Comparison of results for memory lifetimes defined by mean first

passage times (MFPTs). (A) The MFPT-defined memory lifetime τmfpt(h0)

averaged over the binomial distribution of the initial memory signal h0,

〈τmfpt(h0)〉, as a function of filter size Θ. Results are shown for N = 103,

N = 104 and N = 105 synapses as indicated, for simulations of the time-

dependent stochastic updater (TDSU) (solid lines); analytical results for the

TDSU (circles); full simulations of filter-based dynamics without reduction to

the TDSU form (dash lines); numerical results from the Fokker-Planck equa-

tion with an absorbing boundary at h = 0 (dotted lines). (B) Memory lifetimes

τmfpt(h0) as a function of the definite initial state h0, so not averaged over the

distribution of h0. Results are shown for N = 103 synapses for the different

choices of Θ as indicated, either for analytical results from the TDSU (solid

lines) or for numerical results from the Fokker-Planck equation with an ab-

sorbing boundary at h = 0 (dashed lines).
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a normal approximation to the binomial probabilities in the transition matrix.

We have shown previously that this is an extremely good approximation that

allows N to be pushed to higher values numerically (Elliott, 2014). Even so,

for N = 104 we have obtained results only up to Θ = 13 as convergence of

the sum in Eq. (6.3) takes too long for larger values of Θ. For simulations,

we typically average over 108/N different trials to obtain good statistics. We

see basically exact agreement between the analytical results for the reduced

dynamics and their simulation results. Any disagreement is almost entirely due

to noise in simulations of a stochastic process and can be removed by averaging

over more trials to obtain even better statistics. Any disagreement due to

the normal approximation is essentially negligible. The Fokker-Planck results,

which are based on the approximated dynamics, qualitatively agree with the

other results, but they tend to underestimate 〈τmfpt(h0)〉. This underestimate is

largely due to the increased variance in the approximated dynamics compared

to the exact dynamics (see Fig. 10). We have obtained results for the Fokker-

Planck equation only for N = 103 and smaller Θ because it is very hard to

obtain stable numerical solutions of the equation for larger parameter choices

as these require pushing the numerical solutions out to larger and larger times,

for which numerical instabilities tend to develop. We see a small discrepancy

between full and reduced simulation results. The discrepancy is larger for

smaller N . This discrepancy is real and not merely due to noisy simulations.

We shall explain it momentarily. In Fig. 13B, we plot τmfpt(h0) as a function of

the definite initial value h0 for exact results for the reduced, simple dynamics

and for the Fokker-Planck equation, for different choices of filter size Θ as

indicated. Despite the noted slight underestimate of τmfpt by the Fokker-Planck

equation, we see that the quantitative agreement is good and the qualitative

agreement, in terms of following the trend in the exact results, is essentially
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perfect. The quantitative disagreement is larger for smaller h0 and smaller Θ,

for which jump processes, not included in the Fokker-Planck equation because

of the diffusion approximation, are more significant.

We observe that the MFPTs in Fig. 13A increase monotonically with in-

creasing Θ. This monotonic increase appears to continue indefinitely. If we

consider an SNR definition of memory lifetimes, then using the slowest decay-

ing mode in Eq. (2.21), a good estimate of SNR memory lifetime, τsnr, is

rτsnr =
4Θ2

π2
loge

(
256

π4

N

Θ2

)
. (6.5)

Contrary to τmfpt, τsnr exhibits a maximum as a function of Θ, with the max-

imum occurring at Θ = 16
π2

√
N
e
, giving a maximum SNR memory lifetime of

1024N/(erπ6), where e is the base of natural logarithms. This difference be-

tween τsnr and τmfpt has been examined before (Elliott, 2016a). Although τmfpt

increases indefinitely as a function of Θ, the variance in the first passage times

grows as Θ increases, so that the MFPT eventually becomes indistinguishable

from zero at the level of one standard deviation in the first passage time (El-

liott, 2016a). Nevertheless, while τsnr appears to exhibit what may be termed a

network size effect, this effect may be entirely an artifact of the SNR definition

of memory lifetimes. Similar effects in other models of complex synapses are

likely similarly artifactual.

The discrepancy between results for the MFPTs for the full and reduced

dynamics in Fig. 13A appears to contradict the exact agreement in the statis-

tics of h(t) explicitly demonstrated in Figs. 3 and 4 and thus perhaps to cast

doubt on the claimed complete equivalence between full synaptic dynamics

and synaptic dynamics with internal states integrated out, as discussed in sec-

tion 3. In obtaining these reduced, simple dynamics with the step-dependent

73



conditional probabilities p±n above, it is implicit that the statistical ensemble

over which the probabilities p±n are defined does not change as a function of

the time step n. The ensemble is time-independent. For time-independent en-

sembles, the equivalence between the full, complex synaptic dynamics and the

reduced, simple, time-dependent synaptic dynamics is indeed exact. Critically,

however, in the presence of an absorbing boundary, used to determine MFPTs,

the ensemble changes over time. Specifically, when any particular perceptron

in the ensemble crosses the h = ϑ threshold, it is removed from the ensemble

so that it no longer contributes to the determination of memory lifetimes be-

yond that point. Any particular perceptron that crosses the threshold can do

so only by at least one of its synapses changing strength; all of its synapses

change their filter states in response to any memory storage step. The percep-

tron is removed from the ensemble and therefore the subsequent evolution of

its filter states no longer contributes to the determination of p±n for later time

steps. In the presence of an absorbing boundary that changes the statistical

ensemble over which p±n are defined, p±n are therefore dependent on this ensem-

ble. They will therefore also depend on N , which determines the relative size

of the ensemble, since p±n are computed as averages over all synapses. In the

limit N → ∞, the ensemble remains formally unchanged with absorption at

the boundary, so in the large N limit, we would expect to see the p±n defined

over a time-dependent, absorbing ensemble to approach the p±n defined over a

time-independent, non-absorbing ensemble. For MFPTs, we would therefore

expect the use of p±n defined over a non-absorbing ensemble to constitute a

1/N approximation, becoming exact in the N → ∞ limit.

We explore these issues in Fig. 14, where we plot p±n for a time-dependent,

absorbing ensemble against n for different values of N , and we also show for

reference p±n for the time-independent, non-absorbing ensemble. For N =
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Figure 14: Conditional strength-change probabilities p±n , as a function of

time step n, in the presence of an absorbing boundary. Results for four dif-

ferent values of N are shown, and for comparison results are also shown for

dynamics in the absence of an absorbing boundary so that the ensemble of

states over which p±n are determined does not change over time. Lines show

results obtained from simulations while the solid points show analytical results

for N = 3 synapses. As N increases, the results for p±n converge on the solid

lines. We have selected a filter size of Θ = 3. The inset magnifies the region

for 5 ≤ n+ 1 ≤ 20.
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3, this value is small enough to permit an explicit analytical or numerical

calculation of p±n for Θ small enough, but in general we must determine p±n

in the presence of an absorbing boundary (here ϑ = 0) via simulations. The

basically exact agreement between the N = 3 analytical or numerical results

and those from simulation validates both methods. We see that the absorbing

ensemble p±n ’s do indeed differ from the non-absorbing ensemble p±n ’s. We also

see that the absorbing ensemble p±n ’s do depend on N . The absorbing p±n ’s

approach the non-absorbing p±n ’s as n increases, but the former asymptote to

values that differ from the latter. Specifically, the absorbing p−n ’s asymptote

to larger values than the non-absorbing p−n ’s, and conversely the absorbing

p+n ’s asymptote to smaller values than the non-absorbing p+n ’s. For finite N ,

the absorbing p±n ’s do not converge to each other as n increases, but they

remain separated by an amount that depends on N . As N increases, the

absorbing p±n ’s approach the non-absorbing p±n ’s more and more closely as n

increases before they stabilise on what are essentially their different, asymptotic

values. These dynamics explain why MFPTs determined using p±n ’s from a

non-absorbing ensemble differ slightly from those obtained from full, complex

synapse simulations in the presence of an absorbing boundary, or equivalently,

from an absorbing ensemble of simple synapses. In principle we could employ

the absorbing ensemble definitions of p±n to obtain exact agreement for MFPTs,

but: first, they depend on N (and on ϑ); second, we cannot obtain them simply

except for very small N and Θ. The use of the non-absorbing p±n ’s, which are

independent of N are are easy to compute, constitutes a 1/N approximation

for the determination of MFPTs, which imply the presence of an absorbing

boundary. For calculations of the statistics of h in the absence of an absorbing

boundary, the use of the non-absorbing p±n ’s is, as argued, exact.

Finally, in Fig. 15 we consider how a non-zero threshold ϑ affects 〈τmfpt(h0)〉.
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Figure 15: Memory lifetimes 〈τmfpt(h0)〉, defined by mean first passage times

for perceptron activation to fall below a firing threshold, as a function of

the number of synapses, N . Results are shown for simulations of the time-

dependent stochastic updater (TDSU) (solid lines; data points correspond to

the circles) and for full, filter-based simulations without reduction to the TDSU

(dashed lines; data points correspond to the circles). Results are shown for six

different choices of firing threshold ϑ as indicated. We have selected a filter

size of Θ = 4.
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Previously, for a fixed probability simple stochastic updater synapse, we found

that for any threshold ϑ > 0 (for balanced processes for which µ(t) → 0 as

t→ ∞) the logarithmic growth of 〈τmfpt(h0)〉 as a function of N is cut off, with

〈τmfpt(h0)〉 asymptoting to a finite, ϑ-dependent constant as N → ∞ (Elliott,

2014). We observe identical behaviour in Fig. 15 and indeed we find identical

behaviour for other models based on synaptic dynamics with internal states.

A threshold ϑ > 0 cuts off the logarithmic growth because the dynamics of h

below ϑ become inaccessible, as we have argued before (Elliott, 2014). This

behaviour is independent of whether a synapse is simple or complex, or whether

it is time-dependent or time-independent: once h falls below threshold, the

exponential relaxation of h back to an average of zero that would otherwise

result in the logarithmic growth of memory lifetimes withN ceases to be visible,

in terms of the output of the perceptron.

Based on an OU limit for a simple stochastic updater synapse with update

probability p, we showed that rτmfpt(h0) ∼ p−1 loge (h0/ϑ) in the limit N → ∞

(Elliott, 2014). By imposing an accessibility criterion on the SNR, requiring

that the memory signal is one standard deviation above ϑ > 0, we also showed

that rτsnr(h0) ∼ p−1 loge (h0/ϑ)−1/(ϑp
√
N), which agrees with the asymptotic

form for rτmfpt(h0) but also contains a large N correction going like 1/
√
N

(Elliott, 2014). For filter-based dynamics, we do not have a fixed p, but rather

the step-dependent conditional probabilities p±n . However, we saw in section 5.2

that the filter-based dynamics become OU-like after an initial transient that

differs from OU dynamics. This initial transient increases the mean memory

signal µ(t). Viewing filter-based dynamics as OU-like beyond the peak in the

mean memory signal, we can in fact obtain reasonable quantitative agreement

between the asymptotic, large N values of 〈τmfpt(h0)〉 in Fig. 15 and the OU-

limit result rτmfpt(h0) ∼ p−1 loge (h0/ϑ). Previously we showed that the peak in
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the mean memory signal occurs at rtpeak ≈ 0.375Θ2 with amplitude µ(tpeak) ≈

0.766/Θ (Elliott & Lagogiannis, 2012). If we set h0 = 0.766/Θ for simplicity

and take p = p∞ = 1/Θ2 beyond the memory signal peak, then we obtain an

asymptotic, large N estimate for MFPTs, including the pre-peak period, of

rτmfpt(h0) ∼ Θ2

(
0.375 + loge

0.766

Θϑ

)
. (6.6)

Ignoring the inclusion of the pre-peak period, the requirement that τmfpt(h0) >

0 is just the condition that the peak mean memory signal must at least exceed

ϑ. Plugging Θ = 4, used in Fig. 15, into this expression, and using the various

non-zero values of the threshold ϑ shown in that figure, we obtain values,

for increasing ϑ, of rτmfpt ≈ 64, 53, 42, 36 and 31. These values, especially

for larger values of ϑ, are in remarkably good agreement with the large N

values of 〈τmfpt(h0)〉 that can be read off from Fig. 15. The agreement is all

the more remarkable because of the rather crude estimates involved. These

arguments show that we can, to a reasonable approximation, view filter-based

dynamics as consisting of an initial, non-OU transient that takes the mean

memory signal up to its peak value, following by OU-like dynamics that return

the mean memory signal to its equilibrium value. Of course, the transition

between these dynamics is not sharp, but viewing it in this way does allow an

understanding of the dependence of MFPT memory lifetimes on the perceptron

threshold ϑ.

7 Discussion

Complex models of synaptic plasticity in which synapses possess internal states

that control or regulate the expression of synaptic plasticity can in general
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be quite difficult to analyse exactly. Conversely, simple stochastic updater

synapses that lack internal states are relatively easy to study. By integrat-

ing out internal synaptic states and working purely in terms of transitions in

synaptic strength, we have shown in earlier work that we can often derive exact

results that would otherwise be quite difficult, if not impossible, to obtain by

other means (Elliott, 2010b, 2016a). Furthermore, this change of perspective

often affords far greater theoretical insight by stripping away the microscopic

details and bringing into sharp focus the macroscopic dynamics.

Motivated by the desire to understand MFPT memory lifetimes in models

of synaptic plasticity with complex synapses (Elliott, 2014), we have carried

through this program of reducing complex, filter-based synapses to simple,

stochastic updater synapses, at least for binary-strength synapses. Although

we have focused on filter-based synaptic plasticity here, we can perform a

similar reduction for any complex model of synaptic plasticity. The price

paid for this reduction is that the conditional strength-change probabilities for

the resulting stochastic updater synapse are time-dependent rather than time-

independent and of course they depend on the history of induction signals and

a synapse’s initial state. The conditional probabilities p±n must be known in

order to use the methods developed here. However, even when analytical re-

sults for p±n are not available, we need simply construct once and only once an

explicit table of these probabilities by extracting p±n from the matrix powers

M
n, which may be determined numerically if necessary. In return for pay-

ing the price of time- and history-dependent probabilities, we buy the ability

to work directly in the transitions in the perceptron’s activation from memory

storage step to memory storage step, ignoring entirely the internal states of the

N synapses that contribute to the perceptron’s activation. This trade brings

with it considerable computational, numerical and theoretical benefits.
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Computationally, we need run simulations of only stochastic updater syn-

apses using the probabilities p±n . When we run full simulations of synapses

with internal states, averaging in order to obtain good statistics is achieved

by running many (typically millions of) individual trials and then averaging

results over all the trials. Each individual trial is a particular realisation of

the stochastic dynamics. However, when we run simulations of the reduced,

simple dynamics, although we still work with particular realisations of synaptic

strengths and memories, some degree of averaging is already present in single

trials by the use of the conditional probabilities p±n in determining whether

synapses should change strength. Single trials are therefore hybrids, combining

individual realisations with some element of ensemble averaging. The result is

that typically we can run fewer simulations of the reduced dynamics compared

to the full dynamics in order to obtain good statistical averaging, and this

effect is comparatively more significant for complex synapses with more internal

states (e.g. a larger value of Θ) because complex synapses with more internal

states require more averaging than complex synapses with fewer internal states

in order to obtain good statistics.

Numerically, we have seen that it is much easier to compute, for example,

higher-order cumulants with the reduced dynamics compared to the full dy-

namics. We have exact results for the MGFs of the perceptron activation for

the reduced dynamics, and these reproduce the moments (and therefore cumu-

lants) of the full dynamics exactly for non-absorbing ensembles. Although the

moments obtained from the MGF for the continuous-time process are Poisson

sums that in general cannot be expressed in closed form, we may nevertheless

evaluate them numerically to any desired accuracy because the contributions

to the sums asymptote to zero. In contrast, for the full dynamics, in order

to compute the mth-order moment we must work with a tensor product of m
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matrices, or flatten such products down to single, very large matrices. For non-

defective transition matrices, the eigen-structure of the tensor products can be

written down immediately, but for defective transitions matrices, this is not

possible. In these cases, the reduced dynamics provide a numerically much

simpler approach to computing higher-order statistics than working with very

large matrices.

The greatest benefits of the reduction of complex synapses to simple syn-

apses are, however, theoretical. First, by allowing us to work directly in the

transitions in the perceptron’s activation, we are able to derive PGFs and

MGFs for the perceptron’s activation, with these generating functions being

exact. We are able in principle to compute the entire probability distribution

for h(t), P (h, t). Second, we can write down a master equation for the evolution

of the probability distribution of the perceptron activation, either in discrete

time or in continuous time. This provides an alternative way of determining

the evolution of the moments, from a set of ordinary differential equations.

The jump moments derived from the master equation then permit us to move

to a Fokker-Planck equation. Because the underlying process is one of memory

storage as discrete, punctate events, the continuous-time master and Fokker-

Planck equations are expressed as Poisson sums that, unfortunately, do not

factorise. However, third, in order to circumvent this non-factorisation, it is

necessary to develop an approximation that replaces the discrete-time prob-

abilities p±n with the continuous-time probabilities p±(t), with the latter not

being Poisson sums over the former. While only an approximation, it never-

theless provides considerable theoretical insight into the dynamics of h(t). For

example, we found that these dynamics can be considered to be composed of

an initial transient that leads to an increasing mean memory signal followed

by an OU-like process that returns the memory signal to its equilibrium dis-
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tribution. This separation of the dynamics into pre- and post-peak phases

permitted some degree of quantitative understanding of MFPTs in the pres-

ence of a non-zero perceptron firing threshold. Critical to this was viewing the

post-peak dynamics as those governed by stochastic updater synapses with a

fixed strength-change probability p∞, allowing us to use our earlier results for

MFPTs for such synapses (Elliott, 2014).

The reduction of complex synapses to simple synapses with time-dependent

strength-change probabilities is necessarily exact for non-absorbing ensembles.

However, for absorbing ensembles, such as those required for determining MF-

PTs, the reduction entails what is essentially a 1/N approximation if we use

the probabilities p±n extracted from a non-absorbing ensemble. For larger and

larger N , we obtain MFPTs for the full and reduced dynamics that agree more

and more closely. For absorbing dynamics, the conditional strength-change

probabilities p±n become ensemble-dependent, but the dependence on the en-

semble drops out in the formal limit, N → ∞. Because of the difficulty in

determining p±n for absorbing dynamics except for extremely small N , it ap-

pears very hard, analytically speaking, to examine precisely how the large N

limit is achieved. Whether any progress can be made in understanding this

limit is something that we shall investigate in future work.

An examination of MFPT-defined memory lifetimes with complex synapses

reveals that network-size effects or optimality conditions are absent, in contrast

to memory lifetimes defined by SNRs (Elliott, 2016a). Although we have only

examined this issue with filter-based synapses here, this difference between

MFPT and SNR memory lifetimes appears to be present in other models of

complex synapses (unpublished observations). Previously, we also showed that

for MFPT memory lifetimes for fixed probability stochastic updater synapses,

a non-zero firing threshold (for balanced potentiation and depression dynam-
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ics) leads to a catastrophic truncation of the dependence of memory lifetimes

on the number of synapses, N (Elliott, 2014). Specifically, τmfpt asymptotes to

a ϑ-dependent constant independent of N for any value of ϑ > 0 or, in gen-

eral, any value ϑ > µ(∞). This truncation happens because the memory signal

dynamics below threshold become inaccessible, while the growth of memory

lifetimes with N for a firing threshold ϑ = 0 or ϑ = µ(∞) depends critically

on the accessibility of this signal (Elliott, 2014). Here, we observe identical

behaviour for complex synapses, too. Again, this behaviour must occur quite

generally in any complex model of synaptic plasticity for precisely the same

reason that it occurs for the fixed probability stochastic updater synapses that

we analysed in detail earlier (Elliott, 2014). This truncation of memory life-

times appears to be disastrous for any such model of real, biological memory

because real neurons in real memory systems cannot set their firing thresholds

to coincide precisely with their asymptotic, mean membrane potential: the

latter cannot be known a priori since it depends on the details of the input

statistics to which a neuron cannot have prior access. It may be argued that

asymptotically, the neuron could achieve such a matching. However, first, the

lifetimes of memories stored while the matching of threshold to input statis-

tics is still incomplete would be compromised. Second, the input statistics in

real systems are almost certainly not stationary, so the matching can never

be complete. Thus, it is unlikely that even an ongoing, dynamic adjustment

of threshold to non-stationary input statistics could prevent the truncation of

memory lifetimes.

We have performed this reduction of complex synapses to simple synapses

for binary-strength, two-state synapses, but as we have indicated, this reduc-

tion can be achieved for any number of discrete states of synaptic strength. If

there are ν states of strength, then the full transition matrices are reduced in
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general to ν× ν matrices rather than 2× 2 matrices, and the two probabilities

p±n would generalise to 2(ν−1) probabilities. TheW and Dmatrices would gen-

eralise immediately, and we would be able to write down generating functions

for the transition from the initial synaptic configuration, determined by ν − 1

parameters, to any future synaptic configuration. Such generating functions

would be expressed as products over ν rather than 2 distinct factors raised to

various powers, and each factor could be expressed in terms of a degree ν − 1

polynomial. As a definite synaptic configuration uniquely determines h(t), we

would still be able to write down the exact distribution of perceptron activa-

tion for general, multistate synapses. However, the ability to work directly

in the transitions in perceptron activation depends critically on the fact that

for binary-strength synapses, any particular value of h = 2j/N − 1 uniquely

determines, up to an irrelevant permutation symmetry, the underlying config-

uration of (tilded) synaptic strengths: j synapses have (tilded) strength of +1

and N− j have (tilded) strength of −1. This isomorphism between perceptron

activation and the underlying configuration of (tilded) synaptic strengths is

unique to binary synapses. For ν = 3, ternary-strength synapses, for exam-

ple, for strengths Si ∈ {−1, 0,+1}, a pair of synapses may have a combined

strength of 0 either by each having 0 strength or their having strengths of +1

and −1 in any order. The ordering is an irrelevant permutation symmetry,

but for non-binary synapses, the mapping from perceptron activation to the

underlying synaptic strength configuration is not unique (factoring out permu-

tations). This non-permutation degeneracy in mapping definite values of h to

synaptic strength configurations means that it is possible that for non-binary

synapses, we cannot work directly in the transitions in h(t). Nevertheless, if

we have the exact distribution of h(t) available, it is possible that we may still

be able to derive jump moments for h(t) and thus obtain approximations ulti-
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mately leading to a Fokker-Planck equation. It will be interesting to determine

whether we can carry through this program leading to insightful, approximate

dynamics for general, multistate synapses in future work.

References

Amit, D.J., & Fusi, S. 1994. Learning in neural networks with material

synapses. Neural Comput., 6, 957–982.

Bagal, A.A., Kao, J.P.Y., Tang, C.-M., & Thompson, S.M. 2005. Long-term

potentiation of exogenous glutamate responses at single dendritic spines.

Proc. Natl. Acad. Sci. U.S.A., 102, 14434–14439.

Barrett, A.B., & van Rossum, M.C.W. 2008. Optimal learning rules for discrete

synapses. PLoS Comput. Biol., 4, e1000230.

Bartol, T.M., Bromer, C., Kinney, J., Chirillo, M.A., Bourne, J.N., Harris,

K.M., & Sejnowski, T.J. 2015. Nanoconnectomic upper bound on the

variability of synaptic plasticity. eLife, 4, e10778.

Cox, D.R. 1962. Renewal Theory. London: Methuen.

Elliott, T. 2008. Temporal dynamics of rate-based plasticity rules in a stochas-

tic model of spike-timing-dependent plasticity. Neural Comput., 20, 2253–

2307.

Elliott, T. 2010a. Discrete states of synaptic strength in a stochastic model of

spike-timing-dependent plasticity. Neural Comput., 22, 244–272.

Elliott, T. 2010b. A non-Markovian random walk underlies a stochastic model

of spike-timing-dependent plasticity. Neural Comput., 22, 1180–1230.

86



Elliott, T. 2011a. The mean time to express synaptic plasticity in stochas-

tic, integrate-and-express models of synaptic plasticity induction. Neural

Comput., 23, 124–159.

Elliott, T. 2011b. Stability against fluctuations: Scaling, bifurcations and

spontaneous symmetry breaking in stochastic models of synaptic plastic-

ity. Neural Comput., 23, 674–734.

Elliott, T. 2014. Memory nearly on a spring: A mean first passage time ap-

proach to memory lifetimes. Neural Comput., 26, 1873–1923.

Elliott, T. 2016a. The enhanced rise and delayed fall of memory in a model of

synaptic integration: Extension to discrete state synapses. Neural Com-

put., 28, 1927-1984.

Elliott, T. 2016b. Variations on the theme of synaptic filtering: A compar-

ison of integrate-and-express models of synaptic plasticity for memory

lifetimes. Neural Comput., 28, 2393–2460.

Elliott, T., & Lagogiannis, K. 2009. Taming fluctuations in a stochastic model

of spike-timing-dependent plasticity. Neural Comput., 21, 3363–3407.

Elliott, T., & Lagogiannis, K. 2012. The rise and fall of memory in a model of

synaptic integration. Neural Comput., 24, 2604–2654.

Fusi, S., Drew, P.J., & Abbott, L.F. 2005. Cascade models of synaptically

stored memories. Neuron, 45, 599–611.

Hopfield, J.J. 1982. Neural networks and physical systems with emergent col-

lective computational abilities. Proc. Natl. Acad. Sci. U.S.A., 79, 2554–

2558.

87



Huang, Y., & Amit, Y. 2010. Precise capacity analysis in binary networks with

multiple coding level inputs. Neural Comput., 22, 660–688.

Huang, Y., & Amit, Y. 2011. Capacity analysis in multi-state synaptic models:

A retrieval probability perspective. J. Comput. Neurosci., 30, 699–720.

Lahiri, S., & Ganguli, S. 2013. A memory frontier for complex synapses. Pages

1034–1042 of: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z.,

& Weinberger, K.Q. (eds), Advances in Neural Information Processing

Systems 26. Cambridge, MA: MIT Press.

Leibold, C., & Kempter, R. 2006. Memory capacity for sequences in a recurrent

network with biological constraints. Neural Comput., 18, 904–941.

Leibold, C., & Kempter, R. 2008. Sparseness constrains the prolongation of

memory lifetime via synaptic metaplasticity. Cerebral Cortex, 18, 67–77.

Montgomery, J.M., & Madison, D.V. 2002. State-dependent heterogeneity in

synaptic depression between pyramidal cell pairs. Neuron, 33, 765–777.

Montgomery, J.M., & Madison, D.V. 2004. Discrete synaptic states define a

major mechanism of synapse plasticity. Trends Neurosci., 27, 744–750.

Nadal, J.P., Toulouse, G., Changeux, J.P., & Dehaene, S. 1986. Networks of

formal neurons and memory palimpsests. Europhys. Lett., 1, 535–542.

O’Connor, D.H., Wittenberg, G.M., & Wang, S.S.-H. 2005a. Dissection of

bidirectional synaptic plasticity into saturable unidirectional process. J.

Neurophysiol., 94, 1565–1573.

O’Connor, D.H., Wittenberg, G.M., & Wang, S.S.-H. 2005b. Graded bidirec-

tional synaptic plasticity is composed of switch-like unitary events. Proc.

Natl. Acad. Sci. U.S.A., 102, 9679–9684.

88



Parisi, G. 1986. A memory which forgets. J. Phys. A: Math. Gen., 19, L617–

L620.

Petersen, C.C.H., Malenka, R.C., Nicoll, R.A., & Hopfield, J.J. 1998. All-or-

none potentiation at CA3-CA1 synapses. Proc. Natl. Acad. Sci. U.S.A.,

95, 4732–4737.

Rubin, D.D.B.D., & Fusi, S. 2007. Long memory lifetimes require complex

synapses and limited sparseness. Front. Comput. Neurosci., 1, 7.

Sobczyk, A., & Svoboda, K. 2007. Activity-dependent plasticity of the NMDA-

receptor fractional Ca2+ current. Neuron, 53, 17–24.

Tsodyks, M.V. 1990. Associative memory in neural networks with binary

synapses. Mod. Phys. Lett. B, 4, 713–716.

Yasuda, R., Sabatini, B.L., & Svoboda, K. 2003. Plasticity of calcium channels

in dendritic spines. Nature Neurosci., 6, 948–955.

89


