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Abstract

Knowledge of synaptic input is crucial to understand synaptic integration and

ultimately neural function. However, in vivo the rates at which synaptic inputs

arrive are high, so that it is typically impossible to detect single events. We show

here that it is nevertheless possible to extract the properties of the events, and in

particular to extract the event rate, the synaptic time-constants, and the properties

of the event size distribution from in vivo voltage-clamp recordings. Applied to

cerebellar interneurons our method reveals that the synaptic input rate increases

from 600Hz during rest to 1000Hz during locomotion, while the amplitude and

shape of the synaptic events are unaffected by this state change. This method thus

complements existing methods to measure neural function in vivo.

Introduction

Neurons typically receive a barrage of thousands of excitatory and inhibitory events

per second. As these inputs determine to a large extent the spiking activity of the

neuron, it is important to know the properties of synaptic input and how it changes, for

example, with behavioral state (e.g. sleep, attention, locomotion), with plasticity, or

with homoeostasis. Consider a neuron receiving synaptic input while the total current
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is being measured in voltage-clamp, Fig.1a. While in vitro, or in cases where activity is

artificially lowered, individual excitatory and inhibitory inputs can be resolved (top), in

vivo the rates are typically so high that this is impossible. Instead, the total synaptic

current trace is wildly fluctuating and single event extraction methods will fail.

Nevertheless, information can still be extracted from the statistical properties of

the recorded in vivo currents. Although individual synaptic events might not be dis-

tinguishable in the observed current trace, the trace will still bear signatures of the

underlying events. Intuitively, the mean current should be proportional to the product

of the synaptic event size and the total event frequency. But it is possible to extract

other information as well. For instance, when the synaptic events have short time-

constants, the observed current trace will have more high frequency content than when

the synaptic time-constants are slow. Similarly, when the input is composed of many

small events, the variance of the current trace will be smaller than when it is composed

of a few large events.

An early application of these ideas was used at the neuro-muscular junction (Katz

and Miledi, 1972) and in the retina to measure visually evoked transmitter release (Ash-

more and Falk, 1982). Other earlier methods have estimated of both the excitatory and

inhibitory conductances using across trial averages of different magnitude current injec-

tions (Borg-Graham, Monier, and Frégnac, 1996; Häusser and Roth, 1997; Anderson,

Carandini, and Ferster, 2000; Wehr and Zador, 2003; Rudolph et al., 2004; Greenhill

and Jones, 2007). More recently, conductances have been estimated from a single trace

by applying a diverse range of probabilistic inference methods. In some of those studies

the size of the excitatory and inhibitory inputs is assumed to be identical, fixed, and

known a priori, while the synaptic inputs were assumed to be δ-functions, with instan-

taneous rise and decay time and Poisson statistics (Kobayashi, Shinomoto, and Lansky,

2011). Some of the assumptions were relaxed in Paninski et al. (2012), where the num-

ber of inputs in a time window followed either an exponential or truncated Gaussian

distribution, but the synaptic decay time constant had to be known a priori. Finally,

Lankarany et al. (2013) further generalized the distribution of the number of inputs in

a time window by making use of a mixture of Gaussians. This method allowed a good

estimation of the conductance traces even when the distribution of synaptic amplitudes

has long tails.

These methods typically attempt to recover the global excitatory and inhibitory

conductances. Here instead we focus on recovering the statistics of the constituent

synaptic events. Specifically, we introduce a method that aims to infer the event rate,

synaptic time-constants, and distribution of synaptic event amplitudes from the power
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spectral density and statistical moments of the observed current trace. We applied our

method to voltage-clamp traces of electrotonically compact interneurons recorded in the

cerebellum of awake mice. We find that during voluntary locomotion, the excitatory

input rate increases from 600 to 1000 Hz, while the synaptic event amplitudes remain

the same. Our method thus provides a novel way to resolve synaptic event properties

in vivo.

a

Arrival times

2 ms

τ
1

τ
2

a

Voltage clamp trace

in vitro - like

in vivo - like

Synaptic inputs

20 ms

 EPSC

b Semi-automated single event analysis

Figure 1: Inference of synaptic properties. a) A neuron receives input from a number
of synapses under a Poisson rate assumption. The events have identical shape, but the
amplitude a varies between events. Right: For in vitro experiments synaptic events rates
are typically low and the individual events can be extracted and quantified. However,
for in vivo experiments, rates are high and individual events are not distinguishable.
b) Analysis based on semi-automated single event extraction produces incorrect results
when the total rate exceeds 500 HZ. From left to right: estimated event frequency,
estimated mean event amplitude, estimated standard deviation of the event amplitude.
Model parameters: ak = 50pA. rise-time τ1 = 0.3 ms and the decay-time τ2 = 2 ms.
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Results

A common method to extract synaptic properties is to identify and analyze isolated

events from current traces, but in vivo this fails because the events will overlap, Fig.1a.

To demonstrate the problem explicitly we simulated a neuron randomly receiving ex-

citatory synaptic events (see below for model details). For illustration purposes we

assume momentarily that the amplitude of all events is identical (50pA). From the total

current recorded in voltage clamp we attempt to reconstruct the frequency of events

and the distribution of their amplitudes.

We used single event dectection software (see Methods) to find putative post-synaptic

currents (PSCs). At low input frequencies (50Hz), most of PSCs were correctly iden-

tified and the resulting estimation of the synaptic input amplitude distribution was

correct. However, at higher frequencies, when the event interval became shorter than

the synaptic decay time, the event frequency was grossly underestimated and reached

a plateau, Fig. 1b, left. At this point the individual EPSCs overlapped and became

indistinguishable. The reason is that the most probable inter-time interval of a Poisson

process (a common model for the inputs received by a neuron, but see Lindner, 2006) is

zero. In addition, as a result of the overlap, the estimated PSC amplitude distribution

had peaks at multiples of the original amplitude and the variance of the event amplitude

was highly overestimated, Fig. 1b right. Finally, at high input frequencies the traces

had to be manually post-processed to correct mistakes in event detection. This manual

processing is time consuming - even an experienced researcher spent more than 1 hour

to analyze a 10 second trace. Thus at high input frequencies single event analysis is

not only incorrect, it is also time consuming. While somewhat better result might be

achievable when the PSCs are identified by their rising phase, such methods will still

fail at high rates.

Generative model for the observed current trace

Unlike the in vitro situation, the synaptic properties are not directly accessible from

in vivo recordings. Instead, the data indirectly and stochastically reflects the synaptic

properties. We therefore use a generative model to couple the data, in particular the

statistics of the current trace, to the underlying synaptic properties. We define the

generative model as follows: the synaptic inputs are assumed to arrive according to a

Poisson process with a rate ν, Fig.1a (also see Discussion). The synaptic events are
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modelled with a bi-exponential time-course as this can accurately fit most fast synapses

(e.g. Roth and van Rossum, 2009)

f(t) = (1− e−t/τ1)e−t/τ2 (t > 0) (1)

with rise-time τ1 and decay-time τ2. While we initially assumed that all PSCs have the

same time constants, the effect of heterogeneous time-constants is studied below. The

total current is

I(t) =
K∑
k=1

akf(t− tk), (2)

where tk denotes the time of event k, and ak is the amplitude of that event. Unlike the

schematic example above, the event amplitudes were drawn from a synaptic amplitude

distribution P (a) (with a ≥ 0). This distribution captures the spread of amplitudes

across the population of synapses, as well as variation in single synapse event amplitudes

due to randomness and non-stationarities such as short-term plasticity.

Although our method is general and not restricted to any specific distribution of

synaptic amplitudes, we consider for concreteness the amplitudes to be distributed as

either: 1) a log-normal distribution (LN )

P (a) =
1

p2
√
2πa

e
− (ln a−p1)

2

2p22 , (3)

with raw moments an ≡
∫∞
0 P (a)anda = enp1+n2p22/2. Or, 2) a stretched exponential

distribution (SE )

P (a) =
1

p1Γ(1 + 1/p2)
e−(a/p1)p2 , (4)

with moments an =
pn1
p2

Γ ((1 + n)/p2) /Γ(1 + 1/p2) where Γ(·) is the Gamma function.

Or, 3) a zero-truncated-normal distribution (TN)

P (a) =
ϕ(a/p2 + h)

p2[1− Φ(h)]
, (5)

where h = −p1/p2, and ϕ(·) and Φ(·) are the density of a normal distribution with

zero-mean and unit variance and its cumulative. The mean µa = p1 + p2ρ and variance

σ2
a = p22(1−ρ(ρ−h)) , where ρ = ϕ(h)/[1−Φ(h)] (for higher moments see e.g. Horrace,

2013).

These three probability distributions (examples are shown in Fig.2) are commonly

used in the experimental and theoretical literature (Song et al., 2005; Barbour et al.,
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2007; Buzsáki and Mizuseki, 2014). The stretched exponential distribution has a max-

imum at zero amplitude, while the two other distributions have an adjustable mode,

but differ in the heaviness of their tails. The LN and the SE distribution(for p2 < 1)

are heavy-tailed, while the TN distribution is not. Conveniently all these distributions

are characterized by the two parameters p1 and p2. These parameters determine the

mean and variance of the events but, as can be seen from the equations for the moments

above, the exact relations are different for each of the three candidate distributions.

Moments of the synaptic current

Next, we calculated the current trace I(t) that results from the random inputs. The

statistics of the current follow from the distribution of synaptic event amplitudes and

the time-course of the events according to Campbell’s theorem (Rice, 1954; Bendat and

Piersol, 1966; Ashmore and Falk, 1982). The cumulants κn of the current probability

distribution P (I) follow from the event distribution and the synaptic time-course as

κn = νan
∫ ∞

0
[f(t)]ndt, (6)

In this equation the raw moments an of the synaptic event amplitude distribution

P (a), are given above for the different candidate distributions. Furthermore, for the bi-

exponential synaptic kernel f(t) (Eq. 1) the integrals are
∫∞
0 [f(t)]ndt = n!τ1Γ(n

τ1
τ2
)/Γ(1+

n+ n τ1
τ2
). Finally, the moments of the current trace MI are expressed in the cumulants

κn. In practice we use the first four moments of the current distribution,

µI = κ1

σI =
√
κ2

skew(I) = κ3/κ
3/2
2

kurtosis(I) = (κ4 + 3κ2)/κ
2
2 − 3.

(7)

We can thus express the statistical moments of the distribution of the observed current

trace, Eq.7, in the underlying model.

Power spectrum of the synaptic current

Also the power spectral density (PSD) of the current I(t) can be expressed in the

model parameters. The current is the convolution a Poisson process, which has a flat

power spectrum, with the synaptic kernel. As a result, the PSD is the magnitude of

6



a a

Power

Spectrum

M
a

Syn. event 

   std ̀ {LN, SE, TN}

Weight distribution

M
I

Observed current

moments     

Current (pA)

Synaptic event

moments

H

Low freq

noise  ̀
L

Hi freq

noise ̀

Syn. event

mean ̀

0

Baseline 

current I

1

Syn. rise

time ̀ 2

Syn. decay

time  ̀

Event 

rate ν

p
A

TN

SE

LN

P(a)

Event ampl. a

Figure 2: Bayesian network representing the dependencies between the variables. Or-
ange nodes represent variables that have to be inferred from the data, green nodes stand
for variables that are measured directly from the data. The blue nodes are additional
contributions to the current in typical experiments. The top left graph shows the PSD
fit (red line is the fit with Eq. 8) and the bottom right graph is the probability distri-
bution of I(t), used to calculate the observed moments MI . All variables are described
in Table 1.

the Fourier transform of the synaptic kernel Eq.1 and for non-zero frequencies equals

(Puggioni, 2015)

PSD(f) = 2ν(µ2
a + σ2

a)
τ42

(τ1 + τ2)2 + (2πfτ2)2(2τ21 + 2τ1τ2 + τ22 ) + (2πfτ2)4τ21
. (8)

Note that being a second order statistic, the PSD depends on the mean and variance of

the amplitude distribution P (a) only.

Inference procedure

Now that we have expressed both the PSD and the moments of the current distribution

in the model parameters, one could proceed using classical fitting techniques, such as

least square fitting, to find the synaptic parameters that best fit the data. However, we

use a probabilistic approach that yields the distribution of parameters that best fit the

data. A probabilistic approach is advantageous because: 1) We expect strong correla-

tions between the model parameters, this can cause traditional fitting to fail (see e.g.

Costa, Sjostrom, and van Rossum, 2013). 2) The probabilistic approach naturally yields

the probability distribution of possible fit parameters. 3) The probabilistic approach
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Parameter name Description

Measured data D
MI = (µI , σI , skewI , kurtosisI) Observed first four moments of the current I(t)
PSD Power spectral density of I(t)

Parameters of idealized model
τ1, τ2 Rise and decay time of the EPSCs
Sa = {LN,SE,TN} Synaptic amplitude distribution =

{log-normal, stretched exponential, truncated normal}
µa, σa Mean and std. dev. of the amplitude distribution
Ma Moments of the synaptic amplitude distribution
ν Frequency of synaptic inputs

Additional parameters of full model
i0 Voltage clamp baseline current
σH Std. of high frequency noise
σL Std. of low frequency fluctuations

Table 1: Description of the parameters and variables of the model.

offers a natural way to perform model selection.

We first present an idealized model, which ignores some distortions typical of in vivo

recordings. Fig. 2 shows the Bayesian network and the dependencies among the variables

(nodes). The green nodes stand for variables that are measured directly from the data:

the PSD and the first four moments of the current MI = [µI , σI , skewI , kurtosisI ].

Together the data are succinctly denoted D. The orange nodes represent variables that

are to be inferred. The 5 parameters of the model are the rate ν, the mean synaptic

amplitude µa, its variance σa, synaptic rise-time τ1 and decay time τ2, as well as the

type of distribution Sa, Table 1. The set of parameters is denoted θ.

Written formally, the joint probability of the Bayesian network in Fig. 2 is

Pjoint(θ,D) =P (τ1|PSD)P (τ2|PSD)f(Ma|µa, σa, Sa)×

P (µa)P (σa)P (ν)P (MI |τ1, τ2,Ma, ν)
(9)

where we introduced the vector of moments of the synaptic amplitude distribution, Ma

(see below).

From this equation the parameter distribution given the data P (θ|D) follows as

P (θ|D) ∝ Pjoint(θ,D). We now describe Pjoint and the probabilistic dependencies

among the nodes term by term. The first two terms infer the values for the synaptic
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time-constants from the PSD. Since we cannot obtain an analytic expression of the

likelihood of the PSD, we use empirical Bayes to set the prior on the time constants of

the post-synaptic current (Casella, 1985). We fit the shape of Eq. 8 with a least square

method to the PSD to find τ1 and τ2 (see top left inset in Fig. 2; note that the values

ν, µa, σa are not needed to perform this fit). Since we found the relative cross-terms

of the Hessian matrix between τ1 and τ2 to be very small (< 0.005), we model the time

constants with independent Gaussian distributions with mean and variance given by

the mean and the Hessian of the PSD fit. A common criticism of empirical Bayes is

that it uses data for both prior and inference, thus double counting the data. Here

however, the PSD data is used to set the prior on the time constants, but it is not used

as evidence in the inference process, Fig. 2.

The next term in Eq. 9 is f(Ma|µa, σa, Sa). This is a deterministic function, because

the moments of the synaptic amplitude distribution Ma are fully determined by µa, σa

and the type of amplitude distribution type, see Eqs. 3-5. The parameters µa, σa and

ν are given uninformative uniform priors spanning a reasonable and positive range of

values.

The final term in Eq. 9, the likelihood of the moments of the current P (MI |τ1, τ2,Ma, ν)

cannot be calculated analytically. Although Eq. 6 gives the expected value, MI is a

stochastic quantity that due to the Poisson process is different on each run and thus

requires simulation. However, below we present a method to speed up its calculation.

Inclusion of in vivo variability and other experimental confounds

In vivo voltage clamp recordings show a number of effects that need to be included

in the model via additional parameters. The first additional feature is the baseline

current (i0) of the voltage clamp that has to be subtracted from the current. In in vitro

situations one can estimate it by finding the baseline of the current trace, but due to the

high input rates this is challenging for in vivo recordings. Instead a prior probability

of P (i0) was included. It was normally distributed with mean and variance estimated

with an informed guess, reflecting the uncertainty in the value of i0.

The second feature is the inclusion of high frequency noise coming, for instance,

from the recording set-up or from the stochastic opening and closing of ion channels.

Its standard deviation σH is measured experimentally and we model it as a zero mean

Ornstein-Uhlenbeck (OU) process

dUHt = −τHUHtdt+ σH
√
2/τHdBt, (10)
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where Bt is a Wiener process and the cut-off frequency is 1/(2πτH) = 600 Hz.

Finally we include low frequency fluctuations typically present in in vivo synaptic

activity (e.g. Schiemann et al., 2015). We relax the constant rate assumption by adding

a modulation term to the Poisson rate, which is modeled as an OU process with power

σ2
L and cut-off frequency fL = 1/(2πτL) of 5 Hz

dULt = −τLULtdt+ σL
√

2/τLdBt. (11)

As a result in the expression for the PSD, Eq. 8, the rate ν is replaced by (ν + PSDOU (f)),

where the power spectrum of the OU process is given by PSDOU (f) = σ2
LτL/[1 +

(2πfτL)
2]. To find the variance of this slow noise, we fit the PSD with Eq.8 in a

range above fL and calculate its integral σth (the theoretical standard deviation of the

modulation-free trace). The value of fL was set heuristically as the minimal value that

that resulted in a good fit. Since the observed variance of the signal σ2
obs is the sum of

σ2
th, σ

2
H and σ2

L (the slow component is independent from the underlying process), it

follows that σ2
L = σ2

obs − σ2
H − σ2

th.

These three additional features are depicted by the blue nodes in Fig. 2. The joint

probability for the full model becomes

Pjoint =P (τ1|PSD)P (τ2|PSD)P (Ma|µa, σa,Sa)P (µa)P (σa)P (ν)×

P (i0)P (σH)P (σL|PSD)P (MI |τ1, τ2,Ma, ν, i0, σH , σL)
(12)

Description of the sampling algorithm

In the Bayesian framework, the posterior probabilities of the parameters of the model

can be estimated by sampling from Pjoint, for instance using a suitable Markov chain

Monte Carlo algorithm. However, this approach is very slow, because the likelihood

does not have a closed form and has to be estimated with multiple simulations after

each MCMC sample. As the estimation of the likelihood takes about 1 minute on a

standard PC, a typical MCMC run of ∼ 100000 samples would take approximately 2

months.

We introduce a speed up that can be used whenever a likelihood can only be obtained

by sampling from the generative model, but its means can be calculated analytically.

The idea is to fit the likelihood with a kernel density estimate (KDE). Assuming that

the shape of the likelihood does not depend much on the parameter values, the same

KDE can be exploited to approximate the likelihood for different parameter values. As

a result we can keep the shape fixed, but we translate it to a new location determined
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the MI .

by the analytically calculated average moments of the likelihood. A thorough validation

shows that the method correctly infers the parameters across a wide range of biologically

plausible values (see below).

To perform the inference, we first initialize the parameters {τ1, τ2,Ma, ν} by Least-

Square fitting Eq. 7 to the observed moments and Eq. 8 to the observed PSD. Next, we

run the generative model multiple times to calculate the shape of P (MI |τ1, τ2,Ma, ν)

using an exponential KDE. Finally, during the main MCMC run where we sample Pjoint,

we keep the shape fixed but at each step we translate it to the location of the analytically

calculated average moments (Eq. 6, red crosses in Fig 3).

Validation on simulated data

To validate the method we simulated 10s current traces with known parameters and

we apply our inference method to recover their values. One parameter at a time was

varied while the other parameters were set to a default value (µa = 50 pA, σa = 40 pA,

ν = 700 Hz). The rise-time τ1 = 0.3 ms and the decay-time τ2 = 2 ms are based on
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in vivo PSCs in cerebellar interneurons (Szapiro and Barbour, 2007, and below). We

first assumed that the shape of the synaptic amplitude distribution (LN, SE, or TN) is

a priori known. Fig. 4a compares the estimated parameters vs. their true value. The

inference works well in a physiologically plausible range and the true value is almost

always within the confidence interval. The largest error bars occur when either the

mean event amplitude is small or the std dev. is large, i.e. the CoV is large.

The approach also yields the inferred joint distribution for a given parameter setting.

The posterior distribution of the parameters contains the true values in the region of

maximal density, Fig. 4b. Unlike single point estimates (e.g. maximum a posteriori,

MAP estimates), one can also evaluate the dependencies between the parameters. In

particular we observe a strong anti-correlation between event rate and event size (bottom

left panel). In other words, the model compensates for changes in the rate by changing

the estimate for the event size; their product is approximately invariant.

Model selection

Next, we tested whether the method is able to recover the correct amplitude distri-

bution (LN, SE, or, TN) when it is not known a priori. The Bayesian framework

offers straightforward tools to assess the likelihood of a model, such as the Deviance

Information Criterion (DIC) (Spiegelhalter et al., 2002). The higher is the DIC, the

less likely is the model suitable to describe the data, and this would be the simplest

way to choose the most likely distribution. However, the DIC value is a random vari-

able that varies from trial to trial. Thus rather than selecting the lowest DIC, we use

Bayesian model comparison based on the distribution of the DIC values. We generated

100 traces using a given amplitude distribution and run the inference algorithm assum-

ing either LN, SE, or TN amplitude distribution and we calculate the DIC for each

mode, Fig. 5a. From the three DIC values of the three models DICLN , DICSE , and

DICTN (corresponding to the LN, SE, and TN model respectively) we calculate two

quantities: ∆LT = DICLN − DICTN , and ∆LE = DICLN − DICSE . To find the most

likely amplitude distribution, we apply Bayes’ theorem and calculate

P (X|∆LE ,∆LT ) =
P (∆LE ,∆LT |X)P (X)

ΣY ∈[LN, TN, SE]P (∆LE ,∆LT |Y )P (Y )
,

=
P (∆LE ,∆LT |X)

ΣY ∈[LN TN, SE]P (∆LE ,∆LT |Y )
,

(13)

where in the second line we assumed that each amplitude distribution is a priori equi-

probable. Thus, for each point in the space (∆LE ,∆LT ), we select the distribution
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Figure 5: Inference of the underlying weight distribution of simulated data. a) The
distribution of DIC differences for the three simulation weight distributions. As the
shapes of the distributions differ, we used Bayesian model selection. The contour lines
are linearly spaced. b) The resulting maximum likelihood solution that tells which
underlying distribution is most likely. c) Performance of the algorithm to recover the
correct weight distribution (expressed as fraction correct, based on 100 runs).

which has the highest probability according to Eq.13, see Fig. 5b. This method is able

to correctly identify the amplitude distribution with ∼ 90% accuracy, Fig. 5c.

Robustness of method

We examined the robustness of the method in a number of ways. First, we explored how

the posterior of the parameters depends on the length of the trace. Longer traces should

lead to less uncertainty and yield narrower, more precise distributions, because more

statistics are collected. However, short intervals are preferable, because they allow the

analysis of shorter periods in in vivo traces and allows one to see more rapid modulation

in the synaptic inputs. Indeed, longer traces lead to less uncertainty on the parameters,

Fig. 6a. The analysis shows that 10 second long recordings are in general enough to

obtain a reasonable estimation of the parameters.

Next, in vivo PSCs rise- and decay-times might vary across synapses as different

synapses may have different kinetic properties and may be subject to different amounts

of dendritic filtering (Williams and Mitchell, 2008). To test whether our model performs

well when the shape of the PSCs varies, both time constants that determine the PSC
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Figure 6: Robustness of inference demonstrated on simulated data. The traces were
simulated with input amplitude drawn from a LogNormal distribution (µa = 50 pA,
σa = 30 pA) and ν = 700 Hz.
a) The estimates are robust using current traces of about 10s or longer. For shorter
traces the inference is based on too little data and deteriorates. Top: estimate of mean
single event amplitude µa; middle: standard deviation of amplitude; bottom: event
rate.
b) Robustness to heterogeneity in the synaptic time-constants as expressed in the CV
of the rise- and decay-time constants, that were both independently drawn from a
truncated normal distribution.
c) Robustness to in vivo variability when an inhomogeneous low frequency (< 5 Hz)
component is added to the Poisson rate. The parameters’ estimation is plotted against
the contribution (in percentage) of the low frequency modulation to the total standard
deviation. i) Result after correcting the PSD at low frequency (text). ii) Without the
correction, substantial biases arise.

shape were independently drawn from truncated normal distributions for each PSC.

When the heterogeneity of the time-constants were modest (CV≲ 0.3), the model cor-

rectly extracted µa, σa and ν, but at larger values the frequency estimate in particular

diverges, Fig. 6b. One reason might be that our model assumes fixed time-constants,

but in this case the cumulants of Eq. 6 should actually be averaged over the distribution

of time-constants.

Finally, we tested what happens when in vivo activity breaks the stationary assump-

tion of the homogeneous Poisson model and inputs typically fluctuate on a slow time

scale. To test the robustness of our model, we generate in vivo-like traces by adding

an inhomogeneous component to the Poisson rate, modeled as a OU process with 5Hz

15



Quiet Movement power power to
mean std err mean std err p-value of data detect 10% change

τ1 0.27 ms 0.03 ms 0.28 ms 0.03 ms 0.24 0.15 0.61
τ2 1.68 ms 0.22 ms 1.65 ms 0.19 ms 0.61 0.1 0.74
µa 42.8 pA 8.7 pA 43.2 pA 7.9 pA 1.00 0.04 0.83
σa 31.3 pA 6.2 pA 31.0 pA 4.9 pA 0.86 0.04 0.42
ν 585 Hz 153 Hz 1006 Hz 80 Hz 0.03 0.93 0.07

Table 2: Summary of the MAP values of the parameters estimated from n = 8 in-vivo
recordings.

cut-off frequency. When we applied the correction described above, the model performs

well even in presence of considerable fluctuations in the synaptic input rate, Fig. 6c.i.

Including the correction is important, as without it large biases arise, Fig. 6c.ii.

Inference method applied to cerebellar in vivo data

We applied our inference method to in vivo recordings obtained from cerebellar interneu-

ronsin the molecular layer (basket and/or stellate cells). These neurons are ideal to test

our method as they are electronically compact (Kondo and Marty, 1998), although some

cable filtering can be observed in older animals (Abrahamsson et al., 2012). The voltage

clamp held neurons at -70mV to isolate excitatory inputs. The head-restrained mice

displayed bouts of self-paced voluntary locomotion on a cylindrical treadmill, Fig. 7a.

All traces (n = 8) were 90 seconds long and contained at least 10 seconds of move-

ment. Locomotion modulates subthreshold and spiking activity in a large number of

brain regions (Dombeck, Graziano, and Tank, 2009; Polack, Friedman, and Golshani,

2013; Schiemann et al., 2015). In cerebellar interneurons, locomotion is associated with

increased excitatory input drive, Fig. 7b. In particular we were interested in what un-

derlies this increased drive. For instance, it could be caused by increased frequency,

increased amplitude as an effect of neuromodulation, or recruitment of a distinct set of

synapses.

To apply our method we extracted the PSD and distribution from the current trace,

Fig. 7b. We corrected for the low frequency modulation as described above, while the

high frequency noise was measured directly from the system. The subsequent inference

showed that the increase in excitatory synaptic current is associated with an increased

input frequency, shown for a representative trace in Fig. 7c, bottom panel. However,

movement did not lead to changes in the mean amplitude, or in the standard deviation

of the synaptic amplitudes, Fig. 7c (top and middle panels). During movement the input
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Figure 7: Analysis of in vivo voltage-clamp recordings.
a) Experimental setup: head-fixed awake mice, walking voluntarily on a wheel. Right:
Voltage clamp current in cerebellar interneurons (top) and simultaneously recorded an-
imal movement (bottom). Periods of movement are accompanied with an increased
excitatory current in the neuron. b) Left: Observed current distribution in the moving
and quiet periods. Note that due to the high input frequency, periods with zero current
are very rare. Right: Samples of the recorded Power Spectral Density. c) Posterior
distribution of the input parameters of a representative interneuron (under Log-Normal
assumption, which was the most likely distribution for this neuron). While the esti-
mation of µa and σa during movement, has less uncertainty, their maximum likelihood
value is hardly changed. d) Inference of the synaptic input parameters across 8 record-
ings displaying an increase in the input frequency during movement but not in the mean
or variance of the event amplitude. e) Classification of the synaptic event amplitude
distribution. In both conditions both Log-normal and Stretched exponential distribu-
tions were observed. The truncated normal was inferred only once. Error bars denote
the (min, max) range, boxes the 25th-75th percentile, horizontal bar the median.
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frequency roughly doubles, from 585 to 1006 Hz. The synaptic time constants found by

fitting the power spectrum of the current, were τ1 = 0.25±0.04 ms and τ2 = 1.56±0.21

ms (mean ± standard error), comparable with the 20-80% rise time of 0.41 ± 0.14 ms

and the 1.85 ± 0.52 ms decay reported in slice (Szapiro and Barbour, 2007).

Across the population the MAP estimates of µa, σa and ν during quiet wakefulness

and movement show a similar pattern, Fig. 7d and Table 2. Note that given the small

changes between quiet and moving state, the power of the test calculated from the data

is low, but 10% changes would be detected with high probability.

Next, we applied our inference method to each trace using the LN (log-normal), SE

(stretched exponential), and TN (truncated normal) distribution and determined which

synaptic amplitude distribution was the most likely, where it should be kept in mind

that the statistical power of the data is limited. In general, we found that both during

quiet periods and movement the most likely distributions were heavy-tailed being either

LN or SE (with exponent on average 0.8, range 0.7 - 1.2), Fig. 7e. In particular, during

active periods the LN distribution (the most common) was significantly more likely than

the TN (p=0.046), but the SE distribution was not significantly less likely (p=0.37).

Thus while this suggests that the distribution is stretched, the current data can not

distinguish between the LN and SE types. Next, we wondered if the shape change

using a binomial test. For instance, if a recording yielded 5 times the LN distribution

out of 8 data traces during the quiet period, and did so 6 out of 8 times during the

active period, there is no evidence for a change. We found no evidence for a change in

the distribution shape between quiet and active period (LN, p=0.78; SE, p=0.96; TN,

p=0.71).

Finally, we compared our estimates to a standard single event extraction method

(see Methods). Because the event extraction method fails at frequencies higher than

∼ 500 inputs per second, the frequency of the synaptic inputs is underestimated by a

factor two, due to the misclassification of overlapping events.

Discussion

In the last decade, numerous studies have been published using voltage-clamp data from

anesthetized animals to investigate the contribution of excitation and inhibition to the

Vm dynamics, with recordings from auditory cortex (Wehr and Zador, 2003; Poo and

Isaacson, 2009; Liu et al., 2010), visual cortex (Liu et al., 2010; Haider, Hausser, and

Carandini, 2012), and pre-frontal cortex (Haider et al., 2006). However, in these exper-

iments only the total excitatory or inhibitory contributions can be extracted, therefore
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they are unable to distinguish properties of single synapses and changes therein. We

proposed a novel probabilistic method to infer the synaptic time-constants, the mean

and variance of the synaptic event amplitude distribution, and the synaptic event rate

from in vivo voltage-clamp traces. Moreover, the method accurately recovers the shape

of the distribution of synaptic inputs. The inference is robust to slow fluctuations of

synaptic input rate, experimental noise, and to heterogeneity in the time constants of

the PSCs.

The extracted distribution reflects the amplitude of events received by the neuron. It

therefore includes not only variations across synapses, but also variation due to synaptic

unreliability and heterogeneity from effects like short-term synaptic plasticity (Szapiro

and Barbour, 2007; Abrahamsson et al., 2012). Furthermore, the contribution of each

synapse is weighted by its own input rate: synapses receiving inputs at higher rates

will contribute more to the estimated amplitude distribution than synapses receiving

low rates. Our method thus captures the effective distribution of synaptic inputs in

an in vivo recording and thereby complements techniques that infer the amplitude

distribution either anatomically from spine size or from paired recordings in vitro, and

that are not weighted by the input rate.

Applied to voltage-clamp recordings from cerebellar interneurons of awake mice, we

found that the excitatory synaptic amplitude distribution is either a stretched exponen-

tial or log-normal. This means that the probability for large events is larger than for a

Gaussian with same mean and variance. Such heavy-tailed distributions have been ob-

served in a number of systems (Sayer, Friedlander, and Redman, 1990; Song et al., 2005;

Barbour et al., 2007; Ikegaya et al., 2013) and are believed to be an important charac-

teristic of neural processing (Koulakov, Hromádka, and Zador, 2009; Roxin et al., 2011;

Teramae, Tsubo, and Fukai, 2012). While any distribution can be tested (although for

efficiency reasons the moments should ideally be available analytically), a future goal is

to reconstruct the amplitude distribution directly, for instance by reconstructing it from

it moments. However, there are currently no fully satisfactory mathematical methods

to achieve this.

Furthermore we found no evidence that the synaptic amplitude distribution changes

in these neurons when the animal is moving. Instead the increase of the excitatory

current during movement is due to the higher frequency of the inputs. The most par-

simonious explanation is that all inputs, big and small, increase their rates similarly

during movement. However it is important to remember that the method is based on

the ensemble of inputs. While our findings are inconsistent with a case where only

large inputs become more active, and inconsistent with a case where all single synaptic
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events become stronger by, say, neuro-modulation, we can however not rule out that for

instance a second population of inputs with an identical amplitude distribution becomes

active during movement.

We summarize restrictions of the method. First, as in most methods, the in vivo

traces need to be stationary over a period long enough to accumulate sufficient statistics.

The second assumption is that the neurons are electronically compact such that a good

’space clamp’ can be achieved, which is problematic for Purkinje and pyramidal neurons

(Williams and Mitchell, 2008). It would be of interest to examine how robust our method

is toward deviations from this (Abrahamsson et al., 2012), e.g. using compartmental

simulations.

The third assumption is that synaptic inputs are uncorrelated and follow a Poisson

distribution. Experimental measurements of correlations in the brain are contradic-

tory and largely depend on what time-scale is considered, reviewed in Cohen and Kohn

(2011). Notably, slow correlations are visible in the PSD, adding a component with a

different time-constant (Moreno-Bote, Renart, and Parga, 2008). When fitting the PSD

of in vivo data, we observed a bump in activity in the low frequencies (f < 10 Hz), that

could correspond to spike correlations on time-scales ? 15ms. Such correlations are

included in our model. The method would not be able to identify spike-correlations on

the order of the synaptic time-constants (τ1 and τ2), because they would contribute to

the PSD in the same frequency range. However, it is generally believed that spike count

correlations on a short time scale (∼ 2ms) are small, normally < 0.03 (Smith and Kohn,

2008; Helias, Tetzlaff, and Diesmann, 2014; Grytskyy et al., 2013; Renart et al., 2010;

Ecker et al., 2010), and thus the inference would likely still give correct results. Recent

experimental evidence shows that high frequency firing Purkinje cells contact interneu-

rons directly (Witter et al., 2016), which could lead to strongly correlated input. We

did not observe bumps in the interneuron powerspectum at around 200-250 Hz, which is

the typical cerebellar oscillation frequency (de Solages et al., 2008). Nevertheless, when

applying this method one should be aware of the possibility of such effects. Finally, in

these population measurements truly instantaneous correlations, where multiple events

arrive simultaneously, can in principle never be distinguished from altered distributions.

However, the error associated to this effect is likely limited. Consider a neuron that

receives inputs of equal amplitude a at a rate ν. If the inputs have correlation c = 0.05,

it means that every 100 events, as a first approximation one will observe on average only

95 events, 90 of size a and 5 of size 2a. In general, for a given correlation c, the observed

frequency is νobs = νtrue(1− c) and the observed average amplitude aobs = atrue/(1− c).

Thus, even assuming c = 0.05, the error in the estimate would be ≤5%.
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While the robustness of the method can further be tested using (multi-compartment)

simulations, physiological validation is much harder as even with optogenetics there is

no obvious way to generate high frequency Poisson-like input trains.

The method used the first four moments of the measured current. While in order

to infer the distribution shape, one needs at least three moments, we found that using

only the first three led to a consistent overestimate of the event amplitude with some

10 pA (not shown). In contrast, higher moments are difficult to estimate with brief

recordings. Thus four seems a good middle ground for the recordings analyzed here.

In summary, commonly used methods to analyse in vivo voltage clamp data can

not infer the single event statistics at all or introduce large errors. Instead the pro-

posed method represents an important step to extract such information from in vivo

intracellular recordings.
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Implementation details

We implemented the model in PyMC2, a python package to perform Bayesian compu-

tation (Patil, Huard, and Fonnesbeck, 2010), using a Metropolis Hastings sampler,

with normal proposal distribution and standard deviation in each dimension equal

to 1 over the absolute value of the parameters. Usually, the auto-correlation of the

chains was about 300 − 500 samples and the burn-in phase was about 10 effective

samples. To construct the posterior, we generated 150,000 samples yielding ∼ 400 ef-

fective samples and assessed the mixing by using the Geweke method provided by the

PyMC package. The computational analysis tools and data are available at https:

//github.com/ppuggioni/invivoinfer.

To compare our method to traditional single event detection methods, we employed

TaroTools, a freely available IgorPro package (see sites.google.com/site/tarotoolsregister/)

to detect putative post-synaptic currents (PSCs).

The experimental data is described in detail elsewhere (Jelitai et al., 2016). Briefly,

whole-cell patch clamp recordings of molecular layer interneurons (basket and stellate
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cells) were obtained from awake behaving but head-restrained mice at a depth of 100-

300 µm from the pial surface of the cerebellum, using a Multiclamp 700B amplifier

(Molecular Devices, USA). The signal was filtered at 6 - 10 kHz and acquired at 10 -

20 kHz using PClamp 10 software in conjunction with a DigiData 1440 DAC interface

(Molecular Devices). Patch pipettes (5-8 MΩ) were filled with internal solution (285-295

mOsm) containing (in mM): 135 K-gluconate, 7 KCl, 10 HEPES, 10 sodium phospho-

creatine, 2 MgATP, 2 Na2ATP, 0.5 Na2GTP and 1 mg/ml biocytin (pH adjusted to

7.2 with KOH). External solution contained (in mM): 150 NaCl, 2.5 KCl, 10 HEPES,

1.5 CaCl2, 1 MgCl2 (adjusted to pH 7.3 with NaOH). While biocytin was included in

the pipette for histological identification, to allow for off-line classification interneuron

type, our recovery rate was relatively low (<10%) Thus, we were unable to further

differentiate between different interneuron subtypes in this study.

To detect movement, the animals were filmed using a moderate frame rate digital

camera (60 fps) synchronized with the electrophysiological recording. We defined a

region of interest (ROI) covering the forepaws, trunk and face and calculated a mo-

tion index between successive frames (as in Schiemann et al., 2015). All movements

(positioning, grooming and locomotion) were included.
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