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We propose a nonparametric procedure to achieve fast inference in gen-
erative graphical models when the number of latent states is very large.
The approach is based on iterative latent variable preselection, where we
alternate between learning a selection function to reveal the relevant la-
tent variables and using this to obtain a compact approximation of the
posterior distribution for EM. This can make inference possible where
the number of possible latent states is, for example, exponential in the
number of latent variables, whereas an exact approach would be com-
putationally infeasible. We learn the selection function entirely from the
observed data and current expectation-maximization state via gaussian
process regression. This is in contrast to earlier approaches, where se-
lection functions were manually designed for each problem setting. We
show that our approach performs as well as these bespoke selection
functions on a wide variety of inference problems. In particular, for the
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challenging case of a hierarchical model for object localization with oc-
clusion, we achieve results that match a customized state-of-the-art selec-
tion method at a far lower computational cost.

1 Introduction

Inference in probabilistic graphical models can be challenging in situations
where there are large numbers of hidden variables, each of which may take
on one of several state values. The expectation-maximization (EM) algo-
rithm is widely applied to learn model parameters when hidden variables
are present; however, inference can quickly become intractable as the di-
mensionality of hidden states increases. Consider, for instance, the floor of
a nursery with different toys scattered on it and images of this floor large
enough to contain a number of toys. A nursery easily contains a hundred
different toys, and any subset of these hundred toys may appear in any
image. For 100 toys, there is therefore a combinatorics of 2100 different com-
binations of toys that can make up an image. An inference task may now be
to infer, for any given image, the toys it contains. If we approached this task
using a probabilistic graphical model, we would define a basic such model
using a set of 100 hidden variables (one for each toy). Given a specific image,
inference would then take the form of computing the posterior probability
for any combination of toys, and from this, for example, the probability of
each toy to be in the image can be computed. If done exactly, this process
needs to evaluate all 2100 different toy combinations, which easily exceeds
currently available computational resources.

While there are also many tasks for which graphical models with few
latent variables are sufficient, the requirement for many hidden variables
(as in the toy example) is typical for visual, auditory, and many other types
of data with very rich structures. Graphical models for such data are often
a central building block for tasks such as denoising (Elad & Aharon, 2006;
Titsias & Lázaro-Gredilla, 2011), inpainting (Mairal, Bach, Ponce, & Sapiro,
2009; Mairal, Bach, Ponce, Sapiro, & Zisserman, 2009; Titsias & Lázaro-
Gredilla, 2011), classification (Raina, Battle, Lee, Packer, & Ng, 2007), and
collaborative filtering (Titsias & Lázaro-Gredilla, 2011). Typically the per-
formance in these tasks improves with the number of latent variables that
can be used (and which is usually limited by computational demands).

Expectation truncation (ET) (Lücke & Eggert, 2010) is an approximate
EM algorithm for accelerating inference and learning in graphical models
with many latent variables. Its basic idea is to restrict the inference per-
formed during the E-step to an interesting subset of states of the latent vari-
ables, chosen per data point according to a selection function. This subspace
reduction can lead to a significant decrease in computational demand with
very little loss of accuracy (compared with the full model). For example,
considering the toy example, we could first analyze the colors contained in
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a given image. If the image did not contain the color red, we could already
assume red toys or partly red toys to be absent. Only in a second step would
we then consider the combinatorics (e.g., combinations of a restricted num-
ber of toys) of the remaining toys. More features and more refined features
would allow a reduction to still smaller sets of toys, until the combinatorics
of these selected toys becomes computationally tractable. The selection
function of expectation truncation mathematically models the process of
selecting the relevant hidden variables (the relevant toys), while truncated
posterior distributions then model their remaining combinatorics.

In previous work, functions to select states of high posterior mass were
derived individually for each graphical model of interest, for example, by
taking upper bounds or noiseless limits (Lücke & Eggert, 2010; Shelton,
Sterne, Bornschein, Sheikh, & Lücke, 2012; Bornschein, Henniges, & Lücke,
2013; Henniges, Turner, Sahani, Eggert, & Lücke, 2014; Sheikh, Shelton, &
Lücke, 2014). The crucial underlying assumption remains that when EM has
converged, the posterior mass is concentrated in small volumes of the latent
state space (see, e.g., Lücke & Eggert, 2010; Sheikh et al., 2014, for discus-
sions). We can expect the approximation to be accurate only if restricting the
combinatorics does not miss large parts of posterior mass. This property is
observed to hold, however, for many types of data in the auditory, visual,
or general pattern recognition domains.

The definition of appropriate selection functions for basic graphical
models such as the nursery floor example is already nontrivial. For mod-
els incorporating more detailed data properties, the definition of selections
functions becomes still more demanding. For visual data, models that also
capture mutual object occlusions (Henniges et al., 2014) or the object po-
sition (Dai & Lücke, 2014), the design of suitable selection functions is ex-
tremely challenging. It requires both expert knowledge on the problem do-
main and considerable computational resources to implement (indeed, the
design of such functions for particular problems has been a major contribu-
tion in previous work on the topic).

In the work presented in this letter, we propose a generalization of the
expectation truncation (ET) approach, where we completely avoid the chal-
lenge of problem-specific selection function design. Instead, we learn se-
lection functions adaptively and nonparametrically from the data, while
learning the model parameters simultaneously using EM. We emphasize
that the selection function is used only to guide the underlying base infer-
ence algorithm to regions of high posterior probability; it is not itself used
as an approximation to the posterior distribution. As such, the learned func-
tion does not have to be a completely accurate indication of latent variable
predictivity as long as the relative importance of the latent states likely to
contribute posterior probability mass is preserved. We use gaussian process
regression (Rasmussen & Williams, 2005) to learn the selection function—
by regressing the expected values of the latent variables onto the observed
data—though other regression techniques could also be applied. The main
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advantage of GPs is that they do not need to be retrained when only the
output changes, as long as the inputs remain the same. This makes adaptive
learning of a changing target function (given fixed inputs) computationally
trivial. We term this part of our approach GP-select. Our nonparametric gen-
eralization of ET may be applied as a black-box meta-algorithm for acceler-
ating inference in generative graphical models, with no expert knowledge
required.

Our approach is the first to make ET a general-purpose algorithm for
discrete latent variables, whereas previously, ET had to be modified by hand
for each latent variable model addressed. For instance, in section 5.3, we
show that preselection is crucial for efficient inference in complex models.
Although ET has already been successful in some models, this work shows
that more complex models crucially depend on an improved selection step
and focuses on automating this step.

For empirical evaluation, we have applied GP-select in a number of ex-
perimental settings. First, we considered the case of sparse coding mod-
els (binary sparse coding, spike-and-slab, nonlinear spike-and-slab), where
the relationship between the observed and latent variables is known to be
complex and nonlinear.1 We show that GP-select can produce results with
equal performance to the respective manually derived selection functions.
Interestingly, we find it can be essential to use nonlinear GP regression in
the spike-and-slab case and that simple linear regression is not sufficiently
flexible in modeling the posterior shape. Second, we illustrate GP-select
on a simple gaussian mixture model, where we can provide intuition and
explicitly visualize the form of the learned regression function. We find
that even for a simple model, it can be be essential to learn a nonlinear
mapping. Finally, we present results for a recent hierarchical model for
translation-invariant occlusive components analysis (Dai & Lücke, 2014).
The performance of our inference algorithm matches that of the complex
hand-engineered selection function of previous work, while being straight-
forward to implement and having a far lower computational cost.

2 Related Work

The general idea of aiding inference in graphical models by learning a func-
tion that maps from the observed data to a property of the latent vari-
ables is quite old. Early work includes the Helmholtz machine (Dayan,
Hinton, Neal, & Zemel, 1995) and its bottom-up connections trained us-
ing the wake-sleep algorithm (Hinton, Dayan, Frey, & Neal, 1995). More

1Note that even when linear relations exist between the latents and outputs, a nonlin-
ear regression may still be necessary in finding relevant variables as a result of explaining
away.
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recently, the idea has surfaced in the context of learning variational distri-
butions with neural networks (Kingma & Welling, 2014). A two-stage infer-
ence procedure has been discussed in the context of computer vision (Yuille
& Kersten, 2006) and neural inference (Körner, Gewaltig, Körner, Richter, &
Rodemann, 1999). Recently, researchers (Mnih & Gregor, 2014) have gen-
eralized this idea to learning in arbitrary graphical models by training an
inference network that efficiently implements sampling from the posterior
distribution.

GPs have recently been widely used to “learn” the results of compli-
cated models in order to accelerate inference and parameter selection. GP
approximations have been used in lieu of solving complex partial differ-
ential equations (Sacks, Welch, Mitchell, & Wynn, 1989; Currin, Mitchell,
Morris, & Ylvisaker, 1991), to learn data-driven kernel functions for rec-
ommendation systems (Schwaighofer, Tresp, & Yu, 2004), and recently
for quantum chemistry (Rupp, Tkatchenko, Müller, & von Lilienfeld,
2012). Other work has used GPs to simplify computations in approximate
Bayesian computation (ABC) methods: namely, to model the likelihood
function for inference (Wilkinson, 2014), aid in making Metropolis-Hastings
(MH) decisions (Meeds & Welling, 2014), and to model the discrepancies be-
tween simulated/or observed data in parameter space simplification (Gut-
mann & Corander, 2015). Recently, instead of the typical choice of GPs for
large-scale Bayesian optimization, neural networks have been used to learn
an adaptive set of basis functions for Bayesian linear regression (Snoek et al.,
2015).

Our work follows the same high-level philosophy in that we use GPs to
approximate complex/or intractable probabilistic models. None of the cited
prior work addresses our problem setting: the selection of relevant latent
variables by learning a nonparametric relevance function, for use in ET.

3 Variable Selection for Accelerated Inference

We denote the observed data by the D × N matrix Y = (y(1), . . . , y(N) ),
where each vector y(n) = (y(n)

1 , . . . , y(n)
D )T is the nth observation in a

D-dimensional space. Similarly, we define corresponding binary latent
variables by the matrix S = (s(1), . . . , s(N) ) ∈ {0, 1}H×N, where each s(n) =
(s(n)

1 . . . , s(n)
H )T ∈ {0, 1}H is the nth vector in the H-dimensional latent space,

and for each individual hidden variable h = 1, . . . , H, the vector sh =
(s(1)

h . . . , s(N)
h ) ∈ {0, 1}N. The number of dimensions in the reduced latent

space is denoted by H′, where H′ � H. Note that although we restrict our-
selves to binary latent variables here, the procedure could in principle be
generalized to variables with higher cardinality (e.g., see Exarchakis, Hen-
niges, Eggert, & Lücke, 2012). We denote the prior distribution over the la-
tent variables as p(s|θ ) and the likelihood of the data as p(y|s, θ ). Using
these expressions, the posterior distribution over latent variables is
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p(s(n)|y(n),�) = p(s(n)|�) p(y(n)|s(n),�)∑
s′

p(s′ |�) p(y(n)|s′,�)
. (3.1)

3.1 Selection via Expectation Truncation in EM. Expectation maxi-
mization (EM) is an iterative algorithm to optimize the model parameters
of a given graphical model (see, e.g., Dempster, Laird, & Rubin, 1977; Neal
& Hinton, 1998). EM iteratively optimizes a lower bound on the data likeli-
hood by inferring the posterior distribution over hidden variables given the
current parameters (the E-step) and then adjusting the parameters to max-
imize the likelihood of the data averaged over this posterior (the M-step).
When the number of latent states to consider is large (e.g., exponential in the
number of latent variables), the computation of the posterior distribution in
the E-step becomes intractable and approximations are required.

Expectation truncation (ET) is a meta-algorithm, that improves conver-
gence of the EM algorithm (Lücke & Eggert, 2010). The main idea under-
lying ET is that the posterior probability mass is concentrated in a small
subspace of the full latent space. This is the case, for instance, if, for a given
data point y(n), only a subset of the H latent variables s(n)

1 , s(n)
2 , . . . , s(n)

H is
relevant. Even when the probability mass is supported everywhere, it may
still be largely concentrated on a small number of the latents.

A selection function can be used to identify a subset I ⊆ {1, 2, . . . , H} of
size H′ (H′ � H) of salient variables, which in turn is used to define a sub-
set Kn = {s | s ∈ 2H ∧ ∀h /∈ I : sh = 0} ⊆ {0, 1}H of the possible state configu-
rations of the latent variables s(n) for each data point. This subset contains
only state configurations where the values of the variables not identified
to be relevant by the selection function are fixed to 0. The posterior distri-
bution in equation 3.1 can then be approximated by a truncated posterior
distribution, computed on the reduced support,

p(s(n)|y(n),�)

≈ qn(s(n);�) = p(s(n), y(n)| �) I(s(n) ∈ Kn)∑
s′∈Kn

p(s′, y(n)| �)
, (3.2)

where I(s ∈ Kn) = 1 if s ∈ Kn is true and 0 otherwise. In other words, equa-
tion 3.2 is proportional to equation 3.1 if s(n) ∈ Kn (and zero otherwise),
so that the approximate posterior qn(s(n);�) assigns zero mass to states
s(n) /∈ Kn. The set Kn contains only states for which sh = 0 for all h that are
not selected, that is, all states where sh = 1 for some nonselected h are as-
signed zero probability. This means that there are fewer terms in the de-
nominator of equation 3.2 compared with equation 3.1, thus reducing the
computational complexity. Equation 3.2 still remains proportional to equa-
tion 3.1 for the remaining states s ∈ Kn, however. As there are only 2H′

terms
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Figure 1: Illustration of the affinity function for selection. The affinity approx-
imates the marginal posterior probability of each h = 1, . . . , H latent variable
(top), which corresponds to the most relevant variables for a given data point
y(n) (bottom). Here, the variables s1 and s3 yield high affinity and would thus be
considered relevant for y(n).

in the sum over Kn, computing this posterior approximation is much more
efficient than computing the exact normalizing constant for the full poste-
rior (containing 2H terms). The number of latent dimensions to select, H′, is
chosen based on the computing resources available: as large as resources al-
low in order to be closer to true EM, although empirically it has been shown
that much smaller values suffice (see, e.g., Sheikh et al., 2014, on complexity-
accuracy trade-offs).

3.2 ET with Affinity. One way of constructing a selection function is by
first ranking the latent variables according to an affinity function fh(y(n) ) :
RD 	→ R, which directly reflects the relevance of the latent variable s(n)

h . A
natural choice for such a function is the one that approximates the marginal
posterior probability of each variable. For example, we try to learn f as
follows,

fh(y(n) ) = p̂(n)
h ≈ p(n)

h ≡ p(s(n)
h = 1|y(n),�), (3.3)

meaning that the relevant variables will have greater marginal posterior
probability p(n)

h . (See Figure 1 for a simplified illustration.) When the la-
tent variables s(n)

h=1, . . . , s(n)
H in the marginal posterior probability p̂(n) =

p̂(n)
h=1, . . . , p̂(n)

H are conditionally independent given a data point y(n), this
affinity function correctly isolates the most relevant variables in the pos-
terior. To see this, consider the full joint p(s1, . . . sh | y,�) in the case when
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a subset of latents has values clamped to zero: sh = 0 for all h �∈ I (compare
equation 3.2). We can then ask what the overall joint posterior mass is in
this case. If we suppose the latents to be conditionally independent, this
total mass is given by a product of marginals as follows:

∑
s with sh=0 for all h�∈I

p(s1, . . . sH | y,�) = 1 −
∏
h�∈I

p(sh = 1 | y,�). (3.4)

We want this mass to be as large as possible as its complement is the pos-
terior mass that we discard with our approximation. If the affinity func-
tion correctly estimates the marginals p(sh = 1 | y,�), then discarding those
(H − H′) marginal with the lowest values is equivalent to discarding the
space with the least posterior mass (compared to discarding with regard
to all alternative choices with the same number of latents). Even when this
strong assumption does not hold in practice (which is often the case), how-
ever, the affinity can still correctly highlight relevant variables and has been
empirically shown to be quite effective when dependencies exist (see, e.g.,
the source separation tasks in Sheikh et al., 2014).

Next, using all p̂(n)
h=1, . . . , p̂(n)

H from the affinity function f(y(n) ) =
( f1(y(n) ), . . . , fH (y(n) )), we define γ (p̂(n) ) to simultaneously sort the indices
of the latent variables in descending order [of probability p̂(n)] and reduce
the sorted set to the H′ highest (most relevant) variables’ indices. γ (p̂(n) )
thus returns the H′ selected variable indices I chosen by the affinity to be
relevant to the nth data point. To ensure that there is a nonzero probability
of selecting each variable per EM iteration, 10% of the H′ indices are uni-
formly chosen from H at random. This prevents the possible propagation of
errors from q(n) continuously assigning small probabilities to a variable sh

in early EM iterations. The rationale for this is that the optimization of q(n)
in early iterations of EM starts from randomly initialized sh. If the affinity
function itself is based on the posterior approximation (as it will be in the
algorithm described in section 4), it has a tendency to not select indices that
were previously not selected. Thus, in order for selection-based EM to not
“get stuck,” it is important to select a few extra hidden indices randomly
to give the algorithm an opportunity to evaluate possibly unused variables
that might be relevant for y(n).

Finally, using the indices I from γ , we define I(I) to return an H′-
dimensional subset of selected relevant latent states Kn for each data point
y(n). All nonrelevant variable states sh for all variables h �∈ I are effectively
set to 0 in equation 3.2 by not being present in the state set Kn. For example,
say that there are five sh, where h ∈ {1, . . . , 5}. We consider the case where
only s1 and s2 are selected. The I function will then return zeros for s3, s4,
and s5 but will return both allowed possibilities 0 or 1 for s1 and s2. Thus, a
valid setting for the entire vector s can be s = [01000] but not s = [01100].
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Using f, I , and γ , we can define a selection function S : RD 	→ 2{1,...,H} to
select subsets Kn per data point y(n). Again, the goal is for the states Kn to
contain most of the probability mass p(s | y) and to be significantly smaller
than the entire latent space. The affinity-based selection function to obtain
the set of states Kn can be expressed as

S (y(n) ) = I
[
γ

[
f(y(n) )

]]
= Kn. (3.5)

To summarize, the main task is to formulate a general data-driven function
to identify relevant latent variables and select the corresponding set of states
Kn. This is performed using GP regression in order to compute the truncated
posterior equation 3.2 on the reduced support Kn. With the combined effort
of the above utility functions, we have concisely defined the functionS (y(n) )
in equation 3.5 to perform this selection.

3.3 Inference in EM with Selection. In each iteration of EM, the fol-
lowing occurs. Prior to the E-step, the selection function S (y(n) ) in equation
3.5 is computed to select the most relevant states Kn, which are then used
to compute the truncated posterior distribution qn(s) in equation 3.2. The
truncated posterior can be computed using any standard inference method,
such as exact inference or, for example, Gibbs sampling from q(s) if infer-
ence is still intractable or further computational acceleration is desired. The
result of the E-step is then used to update the model parameters with max-
imum likelihood in the M-step.

4 GP-Select

In previous work, the selection function S (y(n) ) was a deterministic func-
tion derived individually for each model (see, e.g., Shelton et al., 2012; Dai
& Lücke, 2012a, 2012b; Bornschein et al., 2013; Sheikh et al., 2014; Shelton,
Sheikh, Bornschein, Sterne, & Lücke, 2015), specific examples of which
will be shown in section 5.1. We now generalize the selection approach.
Instead of predefining the form of S for variable selection, we want to
learn it in a blackbox and model-free way based on the data. We learn S
using gaussian process (GP) regression (Rasmussen & Williams, 2005), a
flexible nonparametric model that scales cubicly2 with the number of data
points N but linearly with the number of latent variables H. We define
the affinity function fh as being drawn from a gaussian process model:
fh(y(n) ) ∼ GP (0, k(·, ·)), where k(·, ·) is the covariance kernel, which can
be flexibly parameterized to represent the relationship between variables.

2If the scaling with N is still too expensive, an incomplete Cholesky approximation
is used, with cost linear in N and quadratic in the rank Q of the approximation (see sec-
tion 5.3 for details).
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Again, we use fh to approximate the marginal posterior probability ph that
s(n)

h = 1. A nice property of gaussian processes is that the kernel matrix K
need only be computed once (until the kernel function hyperparameters are
updated) to approximate p(n)

h for the entire H × N set of latent variables S.
Thus, prior to each E-step in each EM iteration, within each calculation

of the selection function, we calculate the affinity using a GP to regress the
expected values of the latent variables 〈S〉 from the observed data Y. Specif-
ically, we train on ph from the previous EM iteration (where ph is equal to
〈sh〉), for training data of D = {(y(n), 〈s(n)〉qn (s(n) )|n = 1, . . . , N}, where we re-
call that qn(s(n) ) is the approximate posterior distribution for s(n) in equa-
tion 3.2. Note that we do not use a sigmoid link; hence, this is clearly not
a correct estimate of a probability (it can be negative or greater than one).
From the selection perspective, however, it is not necessary to avoid these
pathologies, as we want only an ordering of the variables. A correct GP
classification approach with a properly defined likelihood will no longer
have a marginal gaussian distribution, and we would no longer be able to
trivially express the posterior means of different functions with the same
inputs, without considerable extra computation.

In the first EM iteration, the expectations 〈s(n)〉q are initialized randomly.
In each subsequent EM iteration, the expectations with regard to the Kn-
truncated posterior q(s) are used. The EM algorithm is run for T iterations
and the hyperparameters of the kernel are optimized by maximum likeli-
hood every T∗ EM iterations.

For each data point n and latent variable sh, we compute the predicted
mean of the GP by leaving this data point out of the training set and con-
sidering all others, which is called leave-one-out (LOO) prediction. It can
be shown that this can be implemented efficiently (see section 5.4.2 in Ras-
mussen & Williams, 2005), and we use this result to update the predicted
affinity as follows:

p̂(n)
h ← 〈s(n)

h 〉qn − [K−1〈sh〉qn ]nn

[K−1]nn
. (4.1)

Equation 4.1 can be efficiently implemented for all latent variables h =
1, . . . , H and all data points n = 1, . . . , N using matrix operations, thereby
requiring only one kernel matrix inversion for the entire data set.

Substituting equation 4.1 for f in the affinity-based selection function,
equation 3.5,

S (y(n) ) = I
[
γ

[
〈s(n)

h 〉qn − [K−1〈sh〉qn ]nn

[K−1]nn

]]
= I

[
γ

[
f(y(n) )

]]
= Kn,

we call the entire process GP-select. An outline is shown in algorithm 1.
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5 Experiments

We apply our GP-select inference approach to five probabilistic generative
models. First, we consider three sparse coding models (binary sparse cod-
ing, spike-and-slab, and nonlinear spike-and-slab), where the relationship
between the observed and latent variables is known to be complex and
nonlinear. Second, we apply GP-select to a simple gaussian mixture model
to provide a functional intuition of approach and explicitly visualize the
form of the learned regression function. Finally, we apply our approach to
a recent hierarchical model for translation-invariant occlusive components
analysis (Dai, Exarchakis, & Lücke, 2013; Dai & Lücke, 2012a, 2014).

5.1 Sparse Coding Models. Many types of natural data are composed
of potentially many component types, but any data point often contains
only a very small number of this potentially large set of components. For
the example of toys on the nursery floor, for instance, there are many dif-
ferent toys that can potentially be in a given image, but typically only a
relatively small number of toys actually appear in any one image. An-
other example is a sound played by a piano at a given time t. While the
sound can contain waveforms generated by pressing any of the 88 piano
keys, only relatively few keys (typically much fewer than 10) actually gen-
erated the sound. Sparse coding algorithms model such data properties
by providing a large number of hidden variables (potential data compo-
nents) but assigning nonzero (or significantly different from zero) values
to only a small subset of components (those actually appearing). Sparse
coding algorithms are typically used for tasks such as denoising (Elad &
Aharon, 2006; Mairal, Bach, Ponce, Sapiro et al., 2009), inpainting (Mairal,
Bach, Ponce, & Sapiro, 2009; Mairal, Bach, Ponce, Sapiro, & Zisserman,
2009; Titsias & Lázaro-Gredilla, 2011), classification (LeCun, n.d.; Titsias &
Lázaro-Gredilla, 2011; Raina et al., 2007, e.g., MNIST data set, http://yann
.lecun.com/exdb/mnist/, and the flowers data set, http://www.robots.ox
.ac.uk/∼vgg/data/flowers/), transfer learning (Raina et al., 2007), and

http://yann.lecun.com/exdb/mnist/
http://www.robots.ox.ac.uk/
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collaborative filtering (Titsias & Lázaro-Gredilla, 2011) and are important
models for neurosensory processing (Olshausen & Field, 1997; Zylberberg,
Murphy, & Deweese, 2011; Bornschein et al., 2013; Sheikh et al., 2014, and
many more). A variety of sparse coding models have been successfully
scaled to high-dimensional latent spaces with the use of selection (Hen-
niges, Puertas, Bornschein, Eggert, & Lücke, 2010); Bornschein et al., 2013;
Sheikh et al., 2014) or selection combined with Gibbs sampling (Shelton
et al., 2011, 2012, 2015) inference approaches. Latent variables were selected
in these earlier works using selection functions that were individually de-
fined for each model. In order to demonstrate our method of autonomously
learned selection functions, we consider three of these sparse generative
models and perform inference in EM with our GP-select approach instead of
a handcrafted selection function. The models are relevant for different tasks
such as classification (e.g., binary sparse coding), source separations and
denoising (linear spike-and-slab sparse coding), or sparse encoding and ex-
traction of interpretable image components (nonlinear sparse coding). Note
that when it is obvious from context, we drop the notation referring to each
data point n in order to make the equations more concise.

The models and their parameters are:

• Binary sparse coding

latents: s ∼ Bern(s|π ) = ∏H
h=1 π sh

(
1 − π

)1−sh

observations: y ∼ N (y;Ws, σ 2I)

parameters: W =
(

N∑
n=1

y(n) 〈s 〉T
qn

) (
N∑

n=1

〈
s s T 〉

qn

)−1

σ 2 = 1
ND

∑
n

〈∣∣∣∣∣∣y(n) − W s
∣∣∣∣∣∣2

〉
qn

π = 1
N

∑
n

|〈s〉qn
|, where |x| = 1

H

∑
h

xh,

where W ∈ RD×H denotes the components or dictionary elements and
π parameterizes the sparsity (see, e.g., Henniges et al., 2010).

• Spike-and-slab sparse coding

latents: s = b � z where

b ∼ Bern(b|π ) and z ∼ N (z; μ,�h)

observations: y ∼ N (y;Ws, σ 2I)

parameters: W =
∑N

n=1 y (n) 〈s � z〉T
n∑N

n=1

〈
(s � z)(s � z)T

〉
n
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π = 1
N

N∑
n=1

〈s〉n

σ 2 =
N∑

n=1

[ 〈
(s � z)(s � z)T〉

n−
〈
s sT〉

n� μμT
]

�
(

N∑
n=1

[ 〈
s sT〉

n

])−1

μpr =
∑N

n=1 〈s � z〉n∑N
n=1 〈s〉n

σ 2
pr = 1

N

N∑
n=1

[
y (n)(y (n) )T

−W
[ 〈

(s � z)
〉
n

〈
(s � z)

〉T
n

]
WT

]
where the point-wise multiplication of the two latent vectors, (s �
z)h = sh zh, generates a spike-and-slab distributed variable (s � z) that
has either continuous values or exact zero entries (e.g., Titsias &
Lázaro-Gredilla, 2011; Goodfellow, Courville, & Bengio, 2013; Sheikh
et al., 2014).

• Nonlinear spike-and-slab sparse coding

latents: s = b � z where b ∼ Bern(b|π )

and z ∼ N (z; μpr, σ
2)

observations: y ∼ N (y; max
h

{shWh}, σ 2I)

parameters: Ŵhd = 〈shyd〉∗
〈s2

d〉∗
π̂ = 〈I(s)〉

σ̂ 2 =
〈
Wdhsh − y(n)

d

〉∗
μ̂pr = 〈sh〉∗ σ̂ 2

pr = 〈(sh − μ̂pr)2〉∗

Where expectations 〈 . 〉∗ mean:

〈 f (s)〉∗ =
∑

n

∫
s p(s|y(n),�) f (s) I(h is max) ds∫

s p(s|y(n),�) I(h is max) ds
,

where I is the indicator function denoting the domain to integrate
over, namely, where h is the maximum. Using 〈 f (s)〉∗ allows for the
condensed expression of the update equations shown above. The
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mean of the gaussian for each y(n) is centered at maxh{shWh}, where
maxh is a nonlinearity that considers all H latent components and
takes the h yielding the maximum value for shWh (Lücke & Sahani,
2008; Shelton et al., 2012; Bornschein et al., 2013), instead of centering
the data at the linear combination of

∑
h shWh = Ws.

In the above models, inference with the truncated posterior of equa-
tion 3.2 using handcrafted selection functions Sh(y(n) ) to obtain the subset
of states Kn of selected relevant variables s(y(n) ), shown in equation 3.5,
has yielded results as good or more robust performance than exact infer-
ence (converging less frequently to local optima than exact inference; see
earlier references for details). For models A and C, the hand-constructed
function approximating f(y(n) ), for substitution in equation 3.5, was the co-
sine similarity between the weights Wh (e.g., dictionary elements, compo-
nents) associated with each latent variable sh and each data point y(n): f(y(n) )
= (WT

h / ||Wh||) y(n). For model B, the constructed affinity function was the
data likelihood given a singleton state: f(y(n) ) = p(y(n)|s = sh,�), where sh

represents a singleton state in which only the entry h is nonzero. The goal
of these experiments is to demonstrate the performance of GP-select and
the effects or benefits of using different selection functions. To do this, we
consider artificial data generated according to each sparse coding model,
and thus with known ground-truth parameters. As discussed above, we
could also apply the sparse coding models using GP-select to other appli-
cation domains listed, but that is not the focus of these experiments. We
generate N = 2000 data points consisting of D = 5 × 5 = 25 observed di-
mensions and H = 10 latent components according to each of the models
A to C: N images of randomly selected overlapping bars with varying in-
tensities for models B and C and additive gaussian noise parameterized by
ground-truth σ 2 = 2, and we choose H′ = 5 (e.g., following the spike-and-
slab prior). On average, each data point contains two bars, that is, ground
truth is πH = 2, and we choose H′ = 5. With this choice, we can select suf-
ficiently many latents for virtually all data points.

For each of the models considered, we run 10 repetitions of each of the
following set of experiments: (1) selection using the respective handcrafted
selection function, (2) GP-select using a linear covariance kernel, (3) GP-
select using an RBF covariance kernel, and (4) GP-select using a kernel com-
posed by adding the following kernels: RBF, linear, bias, and white noise
kernels, which we term the composition kernel. As hyperparameters of ker-
nels are learned, the composition kernel experiment 4, can adapt itself to
the data and only use the kernel components required. (See Rasmussen &
Williams, 2005 for a discussion on kernel adaptation.) Kernel parameters
were model-selected via maximum marginal likelihood every 10 EM itera-
tions. For models A and B, inference was performed exactly using the trun-
cated posterior, equaiton 3.2, but as exact inference is analytically intractable
in model C, inference was performed by drawing Gibbs samples from the
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Figure 2: Sparse coding models results comparing GP-select with a successful
hand-derived selection function. Results are shown on artificial ground-truth
data with H = 10 latent variables and H′ = 5 preselected variables for (A) binary
sparse coding, (B) Spike-and-slab sparse coding, and (C) nonlinear spike-and-
slab sparse coding. First column: Example data points y(n) generated by each of
the models. Middle column: Converged dictionary elements W learned by the
handcrafted selection functions. Third column: Converged dictionary elements
W learned by GP-select with H′ = 5 using the kernel with best performance
(matching that of inference with handcrafted selection function). In all cases,
the model using the GP-select function converged to the ground-truth solution,
just as the handcrafted selection functions did.

truncated space (Shelton et al., 2011, 2012, 2015). We run all models until
convergence.

Results are shown in Figure 2. In all experiments, the GP-select approach
was able to infer ground-truth parameters as well as the handcrafted func-
tion. For models where the cosine similarity was used (in A and C), GP re-
gression with a linear kernel quickly learned the ground-truth parameters,
and hence fewer iterations of EM were necessary. In other words, even with-
out providing GP-select explicit weights W as required for the handcrafted
function, its affinity function using GP regression, equation 4.1 learned a
similar enough function to quickly yield identical results. Furthermore, in
the model with a less straightforward handcrafted function (in the spike-
and-slab model of B), only GP regression with an RBF kernel was able to
recover ground-truth parameters. In this case (model B), GP-select using an
RBF kernel recovered the ground-truth bars in 7 of 10 repetitions, whereas
the handcrafted function recovered the bases in 8 instances. For the remain-
ing models, GP-select converged to the ground-truth parameters with the
same average frequency as the handcrafted functions.
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Finally, we have observed empirically that the composition kernel is flex-
ible enough to subsume all other kernels: the variance of the irrelevant ker-
nels dropped to zero in simulations. This suggests the composition kernel
is a good choice for general use.

5.2 Gaussian Mixture Model. Next, we apply GP-select to a simple ex-
ample, a gaussian mixture model, where the flexibility of the approach can
be easily and intuitively visualized. Furthermore, the GMM’s flexibility al-
low us to explicitly visualize the effect of different selection functions. A
demonstration and code for the GMM application is provided in (Dai, 2016).

The model of the data likelihood is

p(y(n)|μc, σc, π ) =
C∑

c=1

N (y(n);μc, σc) πc, (5.1)

where C is the number of mixture components; the task is to assign each
data point to its latent cluster.

For training data for GP regression, we used D = {(y(n), 〈s(n)
h 〉qn )|n =

1, . . . , N}, where the targets were the expected cluster responsibilities (pos-
terior probability distribution for each cluster) for all data points, 〈sh〉q, and
we use one-hot encoding for cluster identity. With this, we apply our GP-
select approach to this model, computing the selection function according
to equation 3.5 with affinity f defined by GP regression equation 4.1, and
following the approximate EM approach as in the previous experiments. In
these experiments we consider two scenarios for EM learning of the data
likelihood in equation 5.1: GP-select with an RBF covariance kernel and a
linear covariance kernel. We do not include the composition kernel sug-
gested (based on experiments) in section 4.1, as the goal of the current ex-
periments is to show the effects of using the “wrong” kernel. These effects
would further support the use of the flexible composition kernel in general,
as it can subsume both kernels considered in the current experiments (RBF
and linear).

To easily visualize the output, we generate two-dimensional observed
data (y(n) ∈ RD=2) from C = 3 clusters—first with randomly assigned clus-
ter means and then such that the means of the clusters lie roughly on a line.
In the GP-select experiments, we select C′ = 2 clusters from the full set and
run 40 EM iterations for both kernel choices (linear and RBF). Note that
for mixture models, the notation of C′ selected clusters of the C set is anal-
ogous to the H′ selected latent variables from the H full set, as described
in the nonmixture model setting, and the GP-select algorithm proceeds un-
changed. We randomly initialize the variance of the clusters σc and initialize
the cluster means μc at randomly selected data points. Results are shown
in Figure 3.
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Figure 3: Gaussian mixture model results using GP-select (selection of C′ = 2
in a C = 3 class scenario) for inference. Progress of the inference is shown using
(top row) an RBF covariance kernel in the regression and (bottom row) a lin-
ear covariance kernel. For each iteration shown, we see (1) the observed data
and their inferred cluster assignments and (2) the C corresponding GP regres-
sion functions learned or used for GP-select in that iteration. Different iterations
are pictured due to different convergence rates. As shown, inference with GP-
select using a linear kernel is unable to assign the data points to the appropriate
clusters, whereas GP-select with an RBF kernel succeeds.

On these data, the linear GP regression prediction cannot correctly assign
the data to their clusters (as seen in Figure 3B), but the nonlinear approach
successfully and easily finds the ground-truth clusters (Figure 3A). Further-
more, even when both approaches were initialized in the optimal solution,
the cluster assignments from GP-select with a linear kernel quickly wan-
dered away from the optimal solution and were identical to random initial-
ization, converging to the same result shown in iteration 20 of Figure 3B).
The RBF kernel cluster assignments remained at the optimal solution even
with the number of selected clusters set to C′ = 1.

These experiments demonstrate that the selection function needs to be
flexible even for very simple models, and that nonlinear selection functions
are an essential tool even in such apparently straightforward cases.

5.3 Translation-Invariant Occlusive Models. Now that we have veri-
fied that GP-select can be applied to various generative graphical models
and converge to ground-truth parameters, we consider a more challenging
model that addresses a problem in computer vision: translations of objects
in a scene.

5.3.1 Model. Translation-invariant models address the problem that, for
example, visual objects can appear in any location of an image. Probabilistic
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models for translation invariance are particularly appealing as they allow
separately inferring object positions and object type, making them very in-
terpretable and powerful tools for image processing.

Translation-invariant models are particularly difficult to optimize, how-
ever, because they must consider a massive latent variable space: evaluating
multiple objects and locations in a scene leads a latent space complexity of
the number of locations exponentiated by the number of objects. Inference
in such a massive latent space heavily relies on the idea of variable selec-
tion to reduce the number of candidate objects and locations. In particular,
hand-engineered selection functions that consider translational invariance
have been successfully applied to this type of model (Dai & Lücke, 2012b,
2014; Dai et al., 2013). The selection function used so far for reducing latent
space complexity in this model has been constructed as follows. First, the
candidate locations of all the objects in the model are predicted. Then a sub-
set of candidate objects that might appear in the image is selected according
to those predicted locations. Next, the subset of states Kn is constructed ac-
cording to the combinations of the possible locations and numbers of can-
didate objects. The posterior distribution is then computed following equa-
tion 3.2.

This selection system is very costly: the selection function has parameters
that need to be hand-tuned (e.g., the number of representative features), and
it needs to scan through the entire image, considering all possible locations,
which becomes computationally demanding for large-scale experiments. To
maximally exploit the capabilities of the GP-selection function, we directly
use the GP regression model to predict the possible locations of a compo-
nent without introducing any knowledge of translation invariance into the
selection function. In this work, a GP regression model is fitted from the
input image to marginal posterior probabilities of individual components
appearing at all possible locations. Therefore, the input to the GP-selection
function is the image to be inferred, and the output is a score for each possi-
ble location of each component in the model. For example, when learning 10
components in a D = 30 × 30 pixel image patch, the output dimensionality
of GP-select is 9000. This task is computationally feasible, since GP models
scale linearly with output dimensionality. The inference of components’ lo-
cations with GP-select is significantly faster than the selection function in
the original work, as it avoids explicitly scanning through the image.

Although additional computations are necessary for an automatic selec-
tion function like GP-select, for instance, due to the adjustment of its pa-
rameters, there are many options to reduce computational costs. First, we
may approximate the full N × N gram matrix by an incomplete Cholesky
approximation (Fine & Scheinberg, 2001), resulting in a cost of O(N × Q),
where Q << N is the rank of the Cholesky approximation. Second, we may
reduce the update frequency of the kernel hyperparameters to be computed
only every T∗ EM iterations, where a T∗ > 1 represents a corresponding
computation reduction. The combination of the Cholesky approximation
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Figure 4: COIL data set (Nene, Nayar, & Murase, 1996): Ahandful of data points
used in experiments with the translation-invariant occlusive (InvECA) model,
showing the occluding objects to be learned.

plus infrequent updates will have the following benefits: a factor of five
speed-up for infrequent updates and a factor of (N − Q)2 speed-up from
incomplete Cholesky, where Q is the rank of the Cholesky approximation
and N is the number of original data points.

5.3.2 COIL Data Set. We apply our GP-selection function to the invari-
ant exclusive component analysis (InvECA) model (Dai & Lücke, 2012b;
Dai et al., 2013). For our experiments, we consider an image data set used
in previous work. Data were generated using objects from the COIL-100
image data set (Nene et al., 1996), taking 16 different objects, downscaled to
D = 10 × 10 pixels and segmented out from the black background. A given
image was generated by randomly selecting a subset of the 16 objects, where
each object has a probability of 0.2 of appearing. The appearing objects were
placed at random positions on a 30 × 30 black image. When the objects over-
lap, they occlude each other with a different random depth order for each
image. In total, N = 2000 images were generated in the data set (examples
shown in Figure 4). The task of the InvECA model is to discover the visual
components (i.e., the images of 16 objects) from the image set without any
label information. We compare the visual components learned by using four
different selection functions in the InvECAmodel: the handcrafted selection
function used in the original work by Dai and Lücke (2012b), GP-select up-
dated every iteration, GP-select updated every T∗ = 5 iterations, and GP-
select with incomplete Cholesky decomposition updated every iteration, or
T∗ = 1 (in this manner, we isolate the improvements due to Cholesky from
those due to infrequent updates). In these experiments, the parameters of
GP-select are optimized at the end of each T∗ EM iteration(s), using a maxi-
mum of 20, gradient updates. The number of objects to be learned is H = 20,
and the algorithm preselects H′ = 5 objects for each data point. The kernel
used was the composition kernel, as suggested in section 4.1, although af-
ter fitting the hyperparameters, only the RBF kernel remained with large
variance (i.e., a linear kernel alone would not have produced good variable
selection; thus the flexible composition kernel was further shown to be a
good choice).
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Figure 5: Image components and their masks learned by GP-select with the
translation-invariant model. GP-select learned all objects in the data set. The
first row shows the mask of each component, the second row shows the learned
image components, and the third row shows only the area of the learned com-
ponents that had a mask > 0.5. For the second three-row block of images, the
same titles of the first three-row block hold. Enlarge and rotate (+90°) for best
visibility.

5.3.3 Results. All four versions of the InvECA model using each of the
selection functions considered successfully recover each individual object
in our modified COIL image set. The learned object representations with
GP-select are shown in Figure 5. Four additional components developed
into representations; however, these all had very low mask values, allowing
them to easily be distinguished from other true components.

Next, we compare the accuracy of the four selection functions. For this,
we collected the object locations (pixels) indicated by each selection func-
tion after all EM iterations, applied the selection functions (for the GP
selection functions, this was using the final function learned after all EM
iterations) to the entire image data set again, and then compared these re-
sults with the ground-truth location of all of the objects in the data set. The
accuracy of the predicted locations was then computed by comparing the
distance of all ground-truth object locations to the location of the top can-
didate locations from each selection function. (See Figure 6 for a histogram
of these distances and the corresponding accuracy for all selection func-
tions.) Note that the percentages in the histogram are plotted in log scale.
Also, as a baseline verification, we computed and compared the pseudo-
log-likelihood (Dai et al., 2013) of the original selection function to the three
GP-select based ones. The pseudo-log-likelihood for all selection functions
is shown in Figure 7. Figures 6 and 7 show that all four selection func-
tions can accurately predict the locations of all the objects in the data set:
the GP-select selection functions yield no loss in inference performance in
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Figure 6: Prediction accuracy of the four selection functions in the InvECA
model. Functions depicted in the figures: GP-select with no modifications (GP,
red), the incomplete Cholesky decomposition (GP IChol, blue), with updated
kernel hyperparameters every five EM iterations (GP every5, green), and with
handcrafted selection (handcrafted, cyan). Shown: the log-scale histogram of
the prediction accuracy for the four selection functions, measured by the dis-
tance each function’s predicted object location was to the ground-truth object
location. All bars of the selection functions show very similar accuracy for the
various distances.

Figure 7: Baseline comparison of the four selection functions in the InvECA
model. Functions depicted in the figures are identical to those in Figure 6.
Shown: the convergence of the pseudo-log marginal likelihood (of the model
parameters learned at each EM iteration) for the four selection functions over
all EM iterations. After about 40 EM iterations, all selection function versions
of the algorithm converge to the same likelihood solution. Simultaneously, the
GP-select approaches exhibit no loss of accuracy compared to the handcrafted
function, and GP IChol represents a factor of 100 speedup versus GP, and GP
every5 represents a factor of 5 speed-up.
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comparison to the original hand-engineered selection function. Even those
using speed-considerate approximations (incomplete Cholesky decompo-
sition of the kernel matrix, GP IChol, and updating kernel hyperparameters
only every five EM iterations, GP every5) have indistinguishable prediction
accuracy on the task.

An analysis of the benefits indicates that as GP-select avoids explicitly
scanning through the image, the time to infer the location of an object is
significantly reduced compared to the handcrafted function. GP-select re-
quires 22.1 seconds on a single CPU core to infer the locations of objects
across the whole image set, while the handcrafted function requires 1830.9
seconds. In the original work, the selection function was implemented with
GPU acceleration and parallelization. Although we must compute the ker-
nel hyperparameters for GP-select, it is important to note that the hyper-
parameters need not perfectly fit each iteration. For the purposes of our
approach, a decent approximation suffices for excellent variable selection.
In this experiment, updating the parameters of GP-select with 10 gradient
steps took about 390 seconds for the full-rank kernel matrix. When we com-
pute the incomplete Cholesky decomposition while inverting the covari-
ance matrix, computing time was reduced to 194 seconds (corresponding
to the (N − Q)2 speed-up, where Q is the rank of the Cholesky approxi-
mation), with minimal loss in accuracy. Furthermore, when updating the
GP-select hyperparameters only every five iterations, average computing
time was reduced by another one-fifth, again without loss in accuracy.

6 Discussion

We have proposed a means of achieving fast EM inference in Bayesian gen-
erative models by learning an approximate selection function to determine
relevant latent variables for each observed variable. The process of learning
the relevance functions is interleaved with the EM steps, and these func-
tions are used in obtaining an approximate posterior distribution in the
subsequent EM iteration. The functions themselves are learned via gaussian
process regression and do not require domain-specific engineering, unlike
previous selection functions. In experiments on mixtures and sparse coding
models with interpretable output, the learned selection functions behaved
in accordance with our expectations for the posterior distribution over the
latents.

The significant benefit we show empirically is that by learning the se-
lection function in a general and flexible nonparametric way, we can avoid
using potentially expensive hand-engineered selection functions. Cost re-
duction is in terms of both required expertise in the problem domain and
computation time in identifying the relevant latent variables. Inference us-
ing our approach required 22.1 seconds on a single CPU core, versus 1830.9
seconds with the original handcrafted function for the complex hierarchical
model of Dai et al. (2013).
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A major area where further performance gains might be expected is in
improving computational performance, since we expect the greatest advan-
tages of GP-select to occur for complex models at large scale. For instance,
kernel ridge regression may be parallelized (Zhang, Duchi, & Wainwright,
2014), or the problem may be solved in the primal via random Fourier fea-
tures (Le, Sarlos, & Smola, 2013). Furthermore, there are many recent devel-
opments regarding the scaling up of GP inference to large-scale problems—
for example, sparse GP approximation (Lawrence, Seeger, & Herbrich,
2002), stochastic variational inference (Hensman, Fusi, & Lawrence, 2013;
Hensman, Rattray, & Lawrence, 2012), using parallelization techniques and
GPU acceleration (Dai, Damianou, Hensman, & Lawrence, 2014), or in com-
bination with stochastic gradient descent (Bottou & Bousquet, 2008). For
instance, for very large data sets where the main model is typically trained
with mini-batch learning, stochastic variational inference can be used for
GP fitting as in Hensman et al. (2013) and the kernel parameters can be
efficiently updated each (or only every T∗ few) iteration with respect to a
mini-batch.
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