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Abstract

A typical goal of supervised dimension reduction is to find a low-dimensional
subspace of the input space such that the projected input variables preserve max-
imal information about the output variables. The dependence maximization ap-
proach solves the supervised dimension reduction problem through maximizing a
statistical dependence between projected input variablesand output variables. A
well-known statistical dependence measure is mutual information (MI) which is
based on the Kullback-Leibler (KL) divergence. However, itis known that the KL
divergence is sensitive to outliers. On the other hand, quadratic MI (QMI) is a
variant of MI based on theL2 distance which is more robust against outliers than
the KL divergence, and a computationally efficient method toestimate QMI from
data, called least-squares QMI (LSQMI), has been proposed recently. For these
reasons, developing a supervised dimension reduction method based on LSQMI
seems promising. However, not QMI itself, but the derivative of QMI is needed for
subspace search in supervised dimension reduction, and thederivative of an accu-
rate QMI estimator is not necessarily a good estimator of thederivative of QMI. In
this paper, we propose to directly estimate the derivative of QMI without estimat-
ing QMI itself. We show that the direct estimation of the derivative of QMI is more
accurate than the derivative of the estimated QMI. Finally,we develop a supervised
dimension reduction algorithm which efficiently uses the proposed derivative es-
timator, and demonstrate through experiments that the proposed method is more
robust against outliers than existing methods.

1 Introduction

Supervised learning is one of the central problems in machine learning which aims
at learning an input-output relationship from given input-output paired data samples.
Although many methods were proposed to perform supervised learning, they often work
poorly when the input variables have high dimensionality. Such a situation is commonly
referred to as thecurse of dimensionality(Bishop, 2006), and a common approach to
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mitigate the curse of dimensionality is to preprocess the input variables bydimension
reduction(Burges, 2010).

A typical goal of dimension reduction in supervised learning is to find a low-
dimensional subspace of the input space such that the projected input variables preserve
maximal information about the output variables. Thus, a successive supervised learn-
ing method can use the low-dimensional projection of the input variables to learn the
input-output relationship with a minimal loss of information. The purpose of this paper
is to develop a novel supervised dimension reduction method.

The dependence maximization approach solves the supervised dimension reduction
problem through maximizing a statistical dependence measure between projected input
variables and output variables.Mutual information(MI) is a well-known tool for mea-
suring statistical dependency between random variables (Cover and Thomas, 1991). MI
is well-studied and many methods were proposed to estimate MI from data. A notable
method is themaximum likelihood MI(MLMI) (Suzuki et al., 2008), which does not
require any assumption on the data distribution and can perform model selection via
cross-validation. For these reasons, MLMI seems to be an appealing tool for supervised
dimension reduction. However, MI is defined based on theKullback-Leiblerdivergence
(Kullback and Leibler, 1951), which is known to be sensitiveto outliers (Basu et al.,
1998). Hence, MI is not an appropriate tool when it is appliedon a dataset containing
outliers.

Quadratic MI (QMI) is a variant of MI (Principe et al., 2000). Unlike MI, QMI is
defined based on theL2 distance. A notable advantage of theL2 distance over the KL
divergence is that theL2 distance is more robust against outliers (Basu et al., 1998).
Moreover, a computationally efficient method to estimate QMI from data, calledleast-
squares QMI(LSQMI) (Sainui and Sugiyama, 2013), was proposed recently. LSQMI
does not require any assumption on the data distribution andit can perform model se-
lection via cross-validation. For these reasons, developing a supervised dimension re-
duction method based on LSQMI is more promising.

An approach to use LSQMI for supervised dimension reductionis to firstly esti-
mate QMI between projected input variables and output variables by LSQMI, and then
search for a subspace which maximizes the estimated QMI by a nonlinear optimization
method such as gradient ascent. However, the essential quantity of the subspace search
is the derivative of QMI w.r.t. the subspace, not QMI itself.Thus, LSQMI may not be
an appropriate tool for developing supervised dimension reduction methods since the
derivative of an accurate QMI estimator is not necessarily an accurate estimator of the
derivative of QMI.

To cope with the above problem, in this paper, we propose a novel method todirectly
estimate the derivative of QMI without estimating QMI itself. The proposed method
has the following advantageous properties: it does not require any assumption on the
data distribution, the estimator can be computed analytically, and the tuning parameters
can be objectively chosen by cross-validation. We show through experiments that the
proposed direct estimator of the derivative of QMI is more accurate than the derivative
of the estimated QMI. Then we develop a fixed-point iterationwhich efficiently uses the
proposed estimator of the derivative of QMI to perform supervised dimension reduction.
Finally, we demonstrate the usefulness of the proposed supervised dimension reduction
method through experiments and show that the proposed method is more robust against
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outliers than existing methods.
The organization of this paper is as follows. We firstly formulate the supervised

dimension reduction problem and review some of existing methods in Section 2, Then
we give an overview of QMI and review some of QMI estimators inSection 3. The
details of the proposed derivative estimator are given in Section 4. Then in Section 5 we
develop a supervised dimension reduction algorithm based on the proposed derivative
estimator. The experiment results are given in Section 6. The conclusion of this paper
is given in Section 7.

2 Supervised Dimension Reduction

In this section, we firstly formulate the supervised dimension reduction problem. Then
we briefly review existing supervised dimension reduction methods and discuss their
problems.

2.1 Problem Formulation

LetDx ⊂ Rdx andDy ⊂ Rdy be the input domain and output domain with dimension-
ality dx anddy, respectively, andp(x,y) be a joint probability density onDx × Dy.
Firstly, assume that we are given an input-output paired data setD = {(xi,yi)}ni=1,
where each data sample is drawn independently from the jointdensity:

{(xi,yi)}ni=1
i.i.d.∼ p(x,y).

Next, letW ∈ {W ∈ Rdz×dx |WW⊤ = Idz} be an orthonormal matrix with a
known constantdz ≤ dx, whereIdz denotes thedz-by-dz identity matrix and⊤ denotes
the matrix transpose. Then assume that there exists adz-dimensional subspace inRdx

spanned by the rows ofW such that the projection ofx onto this subspace denoted
by z = Wx preserves the maximal information abouty of x. That is, we can sub-
stitutex by z with a minimal loss of information abouty. We refer to the problem
of estimatingW from the given data assupervised dimension reduction. Below, we
review some of the existing supervised dimension reductionmethods.

2.2 Sliced Inverse Regression

Sliced inverse regression (SIR) (Li, 1991) is a well known supervised dimension reduc-
tion method. SIR formulates supervised dimension reduction as a problem of finding
W which makesx andy conditionally independent givenz:

(x ⊥⊥ y) | z. (1)

The key principal of SIR lies on the following equality1

E[c⊤x|Wx] = a0 +
dz∑

i=1

aiw
⊤
i x, (2)

1For simplicity, we assume thatx is standardized so thatE[x] = 0 andE[xx⊤] = Idz
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whereE denotes the conditional expectation andwi denotes thei-th row ofW . The
importance of this equality is that if the equality holds foranyc ∈ Rdx and some con-
stantsa0, a1, . . . , adz, then the inverse regression curveE[x|y] lies on the space spanned
byW which satisfies Eq.(1). Based on this fact, SIR estimatesW as follows. First,
the range ofy is sliced into multiple slices. ThenE[x|y] is estimated as the mean ofx
for each slice ofy. Finally,W is obtained as thedz largest principal components of the
covariance matrix of the means.

The significant advantages of SIR are its simplicity and scalability to large datasets.
However, SIR relies on the equality in Eq.(2) which typically requires thatp(x) is an
elliptically symmetric distribution such as Gaussian. This is restrictive and thus the
practical usefulness of SIR is limited.

2.3 Minimum Average Variance Estimation based on the Condi-
tional Density Functions

Theminimum average variance estimation based on the conditional density functions
(dMAVE) (Xia, 2007) is a supervised dimension method which does not require any
assumption on the data distribution and is more practical compared to SIR. Briefly
speaking, dMAVE aims to find a matrixW which yields an accurate non-parametric
estimation of the conditional densityp(y|z).

The essential part of dMAVE is the following model:

Hb(ỹ − y) = mb(z, y) + εb(y|z),

whereHb denotes a symmetric kernel function with bandwidthb > 0, mb(z, y) de-
notes a conditional expectation ofHb(ỹ − y) given z, andεb(y|z) = Hb(ỹ − y) −
E [Hb(ỹ − y)|z] with E [εb(y|z)] = 0. An important property of this model is that
mb(z, y) → p(y|z) whenb → 0 asn → ∞. Then, dMAVE estimatesmb(z, y) by a
local linear smoother (Fan et al., 1996). More specifically,a local linear smoother of
mb(zi, yk) is given by

mb(zi, yk) ≈ mb(zj, yk) +
∂mb(zj , yk)

∂z
(zi − zj)

= ajk + b
⊤
jkW (xi − xj), (3)

wherezj is an arbitrary point close tozi, andajk ∈ R andbjk ∈ Rdz are parame-
ters. Based on this local linear smoother, dMAVE solves the following minimization
problem:

min
W ,ajk,bjk

1

n3

n∑

j,k=1

ρ(xj , yk)

n∑

i=1

[
Hb(yi − yk)− ajk − b⊤jkW (xi − xj)

]2
Kh(xi,xj),

(4)

whereKh is a symmetric kernel function with bandwidthh > 0. The functionρ(x, y)
is a trimming function which is evaluated as zero when the densities ofx or y are
lower than some threshold. A solution to this minimization problem is obtained by
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alternatively solving quadratic programming problems forW , and(ajk, bjk) until con-
vergence.

The main advantage of dMAVE is that it does not require any assumption on the
data distribution. However, a significant disadvantage of dMAVE is that there is no
systematic method to choose the kernel bandwidths and the trimming threshold. In
practice, dMAVE uses a bandwidth selection method based on the normal-reference
rule of the non-parametric conditional density estimation(Silverman, 1986; Fan et al.,
1996), and a fixed trimming threshold. Although this model selection strategy works
reasonably well in general, it does not always guarantee good performance on all kind
of datasets.

Another disadvantage of dMAVE is that the optimization problem in Eq.(4) may
have many local solutions. To cope with this problem, dMAVE proposed to use a su-
pervised dimension reduction method called theouter product of gradient based on con-
ditional density functions(dOPG) (Xia, 2007) to obtain a good initial solution. Thus,
dMAVE may not perform well if dOPG fails to provide a good initial solution.

2.4 Kernel Dimension Reduction

Another supervised dimension reduction method which does not require any assump-
tion on the data distribution iskernel dimension reduction(KDR) (Fukumizu et al.,
2009). Unlike dMAVE which focuses on the conditional density, KDR aims to find a
matrixW which satisfies the conditional independence in Eq.(1). Thekey idea of KDR
is to evaluate the conditional independence through a conditional covariance operator
over reproducing kernel Hilbert spaces (RKHSs) (Aronszajn, 1950).

Throughout this subsection, we use(Hz, kz) to denote an RKHS of functions on the
domainDz equipped with reproducing kernelkz:

〈f, kz(·, z)〉Hz
= f(z),

for f ∈ Hz andz ∈ Dz. The RKHSs of functions on domainsDx andDy are also
defined similarly as(Hx, kx) and(Hy, ky), respectively. Thecross-covariance operator
ΣY Z : Hz →Hy satisfies the following equality for allf ∈ Hz andg ∈ Hy:

〈g,ΣY Zf〉Hy
= Ezy [f(z)g(y)]− Ez [f(z)]Ey [g(y)] ,

whereEzy, Ez, andEy denotes expectations over densitiesp(z,y), p(z), andp(y),
respectively. Then, theconditional covariance operatorcan be defined using cross-
covariance operators as

ΣY Y |Z = ΣY Y − ΣY ZΣ
−1
ZZΣZY , (5)

where it is assumed thatΣ−1
ZZ always exists. The importance of the conditional covari-

ance operator in supervised dimension reduction lies in thefollowing relations:

ΣY Y |Z ≥ ΣY Y |X , (6)

where the inequality refers to the partial order of self-adjoint operators, and

ΣY Y |Z = ΣY Y |X ⇐⇒ (x ⊥⊥ y) | z. (7)
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These relations mean that the conditional independence canbe achieved by finding a
matrixW which minimizesΣY Y |Z in the partial order of self-adjoint operators. Based
on this fact, KDR solves the following minimization problem:

min
W∈{W |WW⊤=Idz}

Tr
[
GY (GZ + λnIn)

−1] , (8)

whereλn denotes a regularization parameter,GZ andGY denotes centered Gram ma-
trices with the kernelskz andky, respectively, andTr [·] denotes the trace of an operator.
A solution to this minimization problem is obtained by a gradient descent method.

KDR does not require any assumption on the data distributionand was shown to
work well on various regression and classification tasks (Fukumizu et al., 2009). How-
ever, KDR has two disadvantages in practice. The first disadvantage of KDR is that even
though the kernel parameters and the regularization parameter can heavily affect the per-
formance, there seems to be no justifiable model selection method to choose these pa-
rameters so far. Although it is always possible to choose these tuning parameters based
on a criterion of a successive supervised learning method with cross-validation, this
approach results in a nested loop of model selection for bothKDR itself and the succes-
sive supervised learning method. Moreover, this approach makes supervised dimension
reduction depends on the successive supervised learning method which is unfavorable
in practice.

The second disadvantage is that the optimization problem inEq.(8) is non-convex
and may have many local solutions. Thus, if the initial solution is not properly cho-
sen, the performance of KDR may be unreliable. A simple approach to cope with this
problem is to choose the best solution with cross-validation based on the successive
supervised learning method, but this approach makes supervised dimension reduction
depends on the successive supervised learning method and isunfavorable. A more so-
phisticated approach was considered in Fukumizu and Leng (2014) which proposed
to use a solution of a supervised dimension reduction methodcalled gradient-based
kernel dimension reduction(gKDR) as an initial solution for KDR. However, it is not
guarantee that gKDR always provide a good initial solution for KDR.

2.5 Least-Squares Dimension Reduction

Theleast-squares dimension reduction(LSDR) (Suzuki and Sugiyama, 2013) is another
supervised dimension reduction method which does not require any assumption on the
data distribution. Similarly to KDR, LSDR aims to find a matrixW which satisfies the
conditional independence in Eq.(1). However, instead of the conditional covariance op-
erators, LSDR evaluates the conditional independence through a statistical dependence
measure.

LSDR utilizes a statistical dependence measure calledsquared-loss mutual infor-
mation(SMI). SMI between random variablesz andy is defined as

SMI(Z, Y ) =
1

2

∫∫
p(z)p(y)

(
p(z,y)

p(z)p(y)
− 1

)2

dzdy. (9)

SMI(Z, Y ) is always non-negative and equals to zero if and only ifz andy are sta-
tistically independent, i.e.,p(z,y) = p(z)p(y). The important properties of SMI in
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supervised dimension reduction are the following relations:

SMI(Z, Y ) ≤ SMI(X, Y ),

and

SMI(Z, Y ) = SMI(X, Y )⇐⇒ (x ⊥⊥ y) | z.

Thus, the conditional independence can be achieved by finding a matrixW which
maximizesSMI(Z, Y ). SinceSMI(Z, Y ) is typically unknown, it is estimated by the
least-squares mutual information(Suzuki et al., 2009) method which directly estimates
the density ratiop(z,y)

p(z)p(y)
without performing any density estimation. Then, LSDR solves

the following maximization problem:

max
W∈{W |WW⊤=Idz}

ŜMI(Z, Y ), (10)

whereŜMI(Z, Y ) denotes the estimated SMI. The solution to this maximization prob-
lem is obtained by a gradient ascent method. Note that this maximization problem is
non-convex and may have many local solutions.

LSDR does not require any assumption on the data distribution, similarly to dMAVE
and KDR. However, the significant advantage of LSDR over dMAVE and KDR is that
LSDR can perform model selection via cross-validation and avoid a poor local solu-
tion without requiring any successive supervised learningmethod. This is a favorable
property as a supervised dimension reduction method.

However, a disadvantage of LSDR is that the density ratio function p(z,y)
p(z)p(y)

can
be highly fluctuated, especially when the data contains outliers. Since it is typically
difficult to accurately estimate a highly fluctuated function, LSDR could be unreliable
in the presence of outliers.

Next, we consider a supervised dimension reduction approach based on quadratic
mutual information which can overcome the disadvantages ofthe existing methods.

3 Quadratic Mutual Information

In this section, we briefly introduce quadratic mutual information and discuss how it
can be used to perform robust supervised dimension reduction.

3.1 Quadratic Mutual Information and Mutual Information

Quadratic mutual information(QMI) is a measure for statistical dependency between
random variables (Principe et al., 2000), and is defined as

QMI(Z, Y ) =
1

2

∫∫
(p(z,y)− p(z)p(y))2 dzdy. (11)

QMI(Z, Y ) is always non-negative and equals to zero if and only ifz andy are statis-
tically independent, i.e.,p(z,y) = p(z)p(y). Such a property of QMI is similar to that
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of the ordinarymutual information(MI), which is defined as

MI(Z, Y ) =

∫∫
p(z,y) log

(
p(z,y)

p(z)p(y)

)
dzdy. (12)

The essential difference between QMI and MI is the discrepancy measure.QMI(Z, Y )
is theL2 distance betweenp(z,y) and p(z)p(y), while MI(Z, Y ) is the Kullback-
Leibler (KL) divergence (Kullback and Leibler, 1951).

MI has been studied and applied to many data analysis tasks (Cover and Thomas,
1991). Moreover, an efficient method to estimate MI from datais also available (Suzuki
et al., 2008). However, MI is not always the optimal choice for measuring statistical
dependence because it is not robust against outliers. An intuitive explanation is that MI
contains the log function and the density ratio: the value oflogarithm can be highly
sharp near zero, and density ratio can be highly fluctuated and diverge to infinity. Thus,
the value of MI tends to be unstable and unreliable in the presence of outliers. In
contrast, QMI does not contain the log function and the density ratio, and thus QMI
should be more robust against outliers than MI.

Another explanation of the robustness of QMI and MI can be understood based
on their discrepancy measures. BothL2 distance (QMI) and KL divergence (MI) can
be regarded as members of a more general divergence class called thedensity power
divergence (Basu et al., 1998):

DPα(p‖q) =
∫ (

p(x)1+α −
(
1 +

1

α

)
p(x)q(x)α +

1

α
q(x)1+α

)
dx, (13)

whereα > 0. Based on this divergence class, theL2 distance and the KL divergence
can be obtained by settingα = 1 andα → 0, respectively. As discussed in Basu et al.
(1998), the parameterα controls the robustness against outliers of the divergence, where
a large value ofα indicates high robustness. This means that theL2 distance (α = 1) is
more robust against outliers than the KL divergence (α→ 0).

In supervised dimension reduction, robustness against outliers is an important re-
quirement because outliers often make supervised dimension reduction methods to
work poorly. Thus, developing a supervised dimension reduction method based on
QMI is an attractive approach since QMI is robust against outliers. This QMI-based
supervised dimension reduction method is performed by finding a matrixW ∗ which
maximizesQMI(Z, Y ):

W ∗ = argmax
W∈{W |WW⊤=Idz}

QMI(Z, Y ).

The motivation is that, ifQMI(Z, Y ) is maximized thenz andy are maximally depen-
dent on each other, and thus we may disregardx with a minimal loss of information
abouty.

SinceQMI(Z, Y ) is typically unknown, it needs to be estimated from data. Below,
we review existing QMI estimation methods and then discuss aweakness of performing
supervised dimension reduction using these QMI estimationmethods.
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3.2 Existing QMI Estimation Methods

We review two QMI estimation methods which estimateQMI(Z, Y ) from the given
data. The first method estimates QMI through density estimation, and the second
method estimates QMI through density difference estimation.

3.2.1 QMI Estimator based on Density Estimation

Expanding Eq.(11) allows us to expressQMI(Z, Y ) as

QMI(Z, Y ) =
1

2

∫∫ (
p(z,y)2 − 2p(z,y)p(z)p(y) + p(z)2p(y)2

)
dzdy. (14)

A naive approach to estimateQMI(Z, Y ) is to separately estimate the unknown den-
sities p(z,y), p(z), andp(y) by density estimation methods such askernel density
estimation(KDE) (Silverman, 1986), and then plug the estimates into Eq.(14).

Following this approach, the KDE-based QMI estimator has been studied and ap-
plied to many problems such asfeature extraction for classification(Torkkola, 2003;
Principe et al., 2000),blind source separation(Principe et al., 2000), andimage regis-
tration (Atif et al., 2003). Although this density estimation basedapproach was shown
to work well, accurately estimating densities for high-dimensional data is known to be
one of the most challenging tasks (Vapnik, 1998). Moreover,the densities contained in
Eq.(14) are estimated independently without regarding theaccuracy of the QMI estima-
tor. Thus, even if each density is accurately estimated, theQMI estimator obtained from
these density estimates does not necessarily give an accurate QMI. An approach to mit-
igate this problem is to consider density estimators which their combination minimizes
the estimation error of QMI. Although this approach shows better performance than the
independent density estimation approach, it still performs poorly in high-dimensional
problems (Sugiyama et al., 2013).

3.2.2 Least-Squares QMI

To avoid the separate density estimation, an alternative method calledleast-squares
QMI (LSQMI) (Sainui and Sugiyama, 2013) was proposed. Below, webriefly review
the LSQMI method.

First, notice thatQMI(Z, Y ) can be expressed in term of the density difference as

QMI(Z, Y ) =
1

2

∫∫
f(z,y)2dzdy, (15)

where

f(z,y) = p(z,y)− p(z)p(y).

The key idea of LSQMI is to directly estimate the density differencef(z,y) without
going through any density estimation by the procedure of theleast-squares density dif-
ference(Sugiyama et al., 2013). Lettingd(z,y) be a model of the density difference,
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LSQMI learnsd(z,y) so that it is fitted to the true density difference under the squared
loss:

1

2

∫∫
(d(z,y)− f(z,y))2 dzdy.

By expanding the integrand, we obtain

1

2

∫∫
d(z,y)2dzdy −

∫∫
d(z,y)f(z,y)dzdy +

1

2

∫∫
f(z,y)2dzdy.

Since the last term is a constant w.r.t. the modeld(z,y), we omit it and obtain the
following criterion:

1

2

∫∫
d(z,y)2dzdy −

∫∫
d(z,y)f(z,y)dzdy. (16)

Then, the density difference estimatord̂(z,y) is obtained as the solution of the follow-
ing minimization problem:

d̂ = argmin
d

[
1

2

∫∫
d(z,y)2dzdy −

∫∫
d(z,y)f(z,y)dzdy

]
. (17)

The solution of the minimization problem in Eq.(17) dependson the choice of the
modeld(z,y). LSQMI employs the following linear-in-parameter model

d(z,y) = α⊤ψ(z,y),

whereα is a parameter vector andψ(z,y) is a basis function vector. For this model,
finding the solution of Eq.(17) is equivalent to solving

min
α

[
1

2
α⊤Dα−α⊤q

]
,

where

D =

∫∫
ψ(z,y)ψ(z,y)⊤dzdy, (18)

q =

∫∫
ψ(z,y)f(z,y)dzdy

=

∫∫
ψ(z,y)p(z,y)dzdy −

∫∫
ψ(z,y)p(z)p(y)dzdy. (19)

By approximating the expectation over the densitiesp(z,y), p(z), andp(y) with sam-
ple averages, we obtain the following empirical minimization problem

min
α

[
1

2
α⊤Dα−α⊤q̂

]
,

whereq̂ is the sample approximation of Eq.(19):

q̂ =
1

n

n∑

i=1

ψ(zi,yi)−
1

n2

n∑

i,j=1

ψ(zi,yj).
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By including theL2 regularization term, we obtain

α̂ = argmin
α

[
1

2
α⊤Dα−α⊤q̂ +

λ

2
α⊤α

]
,

whereλ ≥ 0 is the regularization parameter. Then, the solution is obtained analytically
as

α̂ = (D + λI)−1
q̂. (20)

Therefore, the density difference estimator is obtained as

d̂(z,y) = α̂⊤
ψ(z,y).

Finally, QMI estimator is obtained by substituting the density difference estimator into
Eq.(15). A direct substitution yields two possible QMI estimators:

Q̂MI(Z, Y ) =
1

2
α̂

⊤
q̂, (21)

Q̂MI(Z, Y ) =
1

2
α̂

⊤
Dα̂. (22)

However, it was shown in Sugiyama et al. (2013) that a linear combination of the two
estimators defined as

Q̂MI(Z, Y ) = α̂⊤
q̂ − 1

2
α̂

⊤
Dα̂, (23)

provides smaller bias and is a more appropriate QMI estimator.
As shown above, LSQMI avoids multiple-step density estimation by directly es-

timating the density difference contained in QMI. It was shown that such direct esti-
mation procedure tends to be more accurate than multiple-step estimation (Sugiyama
et al., 2013). Moreover, LSQMI is able to objectively choosethe tuning parameter
contained in the basis functionψ(z,y) and the regularization parameterλ based on
cross-validation. This property allows LSQMI to solve challenging tasks such asclus-
tering (Sainui and Sugiyama, 2013) andunsupervised dimension reduction(Sainui and
Sugiyama, 2014) in an objective way.

3.3 Supervised Dimension Reduction via LSQMI

Given an efficient QMI estimation method such as LSQMI, supervised dimension re-
duction can be performed by finding a matrixW ∗ defined as

W ∗ = argmax
W∈{W |WW⊤=Idz}

Q̂MI(Z, Y ). (24)

A straightforward approach to solving Eq.(24) is to performthe gradient ascent:

W ←W + t
∂Q̂MI(Z, Y )

∂W
,
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wheret > 0 denotes the step size. The update formula means that the essential point
of the QMI-based supervised dimension reduction method is not the accuracy of the
QMI estimator, but the accuracy of the estimator of the derivative of the QMI. Thus,
the existing LSQMI-based approach which first estimates QMIand then compute the
derivatives of the QMI estimator is not necessarily appropriate since an accurate esti-
mator of QMI does not necessarily mean that its derivative isan accurate estimator of
the derivative of QMI. Next, we describe our proposed methodwhich overcomes this
problem.

4 Derivative of Quadratic Mutual Information

To cope with the weakness of the QMI estimation methods when performing supervised
dimension reduction, we propose todirectly estimate the derivative of QMI without
estimating QMI itself.

4.1 Direct Estimation of the Derivative of Quadratic Mutual Infor-
mation

From Eq.(15), the derivative of theQMI(Z, Y ) w.r.t. the(ℓ, ℓ′)-th element ofW can be
expressed by2

∂QMI(W )

∂Wℓ,ℓ′
=

∂

∂Wℓ,ℓ′

(
1

2

∫∫
f(z,y)2dzdy

)

=

∫∫
f(z,y)

∂f(z,y)

∂Wℓ,ℓ′
dzdy

=

∫∫
f(z,y)

∂f(z,y)

∂z

⊤ ∂z

∂Wℓ,ℓ′
dzdy

=

∫∫
p(z,y)

∂f(z,y)

∂z

⊤ ∂z

∂Wℓ,ℓ′
dzdy

−
∫∫

p(z)p(y)
∂f(z,y)

∂z

⊤ ∂z

∂Wℓ,ℓ′
dzdy, (25)

where in the second line we assume that the order of the derivative and the integration
is interchangeable. By approximating the expectations over the densitiesp(z,y), p(z),
andp(y) with sample averages, we obtain an approximation of the derivative of QMI
as

∂̂QMI(W )

∂Wℓ,ℓ′
=

n∑

i=1

∂f(zi,yi)

∂z

⊤ ∂zi
∂Wℓ,ℓ′

−
n∑

i,j=1

∂f(zi,yj)

∂z

⊤
∂zi

∂Wℓ,ℓ′
. (26)

Note that sincez(ℓ) =
∑dx

ℓ′=1Wℓ,ℓ′x
(ℓ′), we have that ∂z

∂Wℓ,ℓ′
is thedz-dimensional vector

with zero everywhere except at theℓ-th dimension which has valuex(ℓ′). Hence, Eq.(26)

2Throughout this section, we useQMI(W ) instead ofQMI(Z, Y ) when we consider its derivative
for notational convenience. However, they still representthe QMI between random variablesz andy.

12



can be simplified as

∂̂QMI(W )

∂Wℓ,ℓ′
=

n∑

i=1

∂f(zi,yi)

∂z(ℓ)
x
(ℓ′)
i −

n∑

i,j=1

∂f(zi,yj)

∂z(ℓ)
x
(ℓ′)
i . (27)

This means that the derivative ofQMI(Z, Y ) w.r.t.W can be obtained once we know
the derivatives of the density difference w.r.t.z(ℓ) for all ℓ ∈ {1, . . . , dz}. However,
these derivatives are often unknown and need to be estimatedfrom data. Below, we first
discuss existing approaches and their drawbacks. Then we propose our approach which
can overcome the drawbacks.

4.2 Existing Approaches to Estimate the Derivative of the Density
Difference

Our current goal is to obtain the derivative of the density difference w.r.t.z(ℓ) which can
be rewritten as

∂f(z,y)

∂z(ℓ)
=

∂p(z,y)

∂z(ℓ)
− ∂p(z)

∂z(ℓ)
p(y). (28)

All terms in Eq.(28) are unknown in practice and need to be estimated from data. There
are three existing approaches to estimate them.

(A) Density estimation
Separately estimate the densitiesp(z,y), p(z), andp(y) by, e.g.,kernel density
estimation. Then estimate the right-hand side of Eq.(28) as

∂p̂(z,y)

∂z(ℓ)
− ∂p̂(z)

∂z(ℓ)
p̂(y),

wherep̂(z,y), p̂(z), andp̂(y) denote the estimated densities.

(B) Density derivative estimation
Estimate the densityp(y) by e.g., kernel density estimation. Next, separately
estimate the densities derivative∂p(z,y)

∂z(ℓ)
and ∂p(z)

∂z(ℓ)
by, e.g., the method ofmean

integrated square error for derivatives(Sasaki et al., 2015), which can estimate
the density derivative without estimating the density itself. Then estimate the
right-hand side of Eq.(28) as

∂̂p(z,y)

∂z(ℓ)
− ∂̂p(z)

∂z(ℓ)
p̂(y),

wherep̂(y) denotes the estimated density, and∂̂p(z,y)

∂z(ℓ)
and ∂̂p(z)

∂z(ℓ)
denote the (di-

rectly) estimated density derivatives.

(C) Density difference estimation
Estimate the density differencef(z,y) by e.g.,least-squares density difference

13



(Sugiyama et al., 2013), which can estimate the density difference without es-
timating the densities themselves. Then estimate the left-hand side of Eq.(28)
as

∂f̂ (z,y)

∂z(ℓ)
,

wheref̂(z,y) denotes the (directly) estimated density difference.

The problem of approaches (A) and (B) is that they involve multiple estimation steps
where some quantities are estimated first and then they are plugged into Eq.(28). Such
multiple-step methods are not appropriate since each estimated quantity is obtained
without regarding the others and the succeeding plug-in step using these estimates can
magnify the estimation error contained in each estimated quantity.

On the other hand, approach (C) seems more promising than theprevious two ap-
proaches since there is only one estimated quantityf(z,y). However, it is still not the
optimal approach due to the fact that an accurate estimator of the density difference
does not necessarily means that its derivative is an accurate estimator of the derivative
of the density difference.

To avoid the above problems, we propose a new approach which directly estimates
the derivative of the density difference.

4.3 Direct Estimation of the Derivative of the Density Difference

We propose to estimate the derivative of the density difference w.r.t.z(ℓ) using a model
gℓ(z,y):

∂f(z,y)

∂z(ℓ)
≈ gℓ(z,y).

The modelgℓ(z,y) is learned so that it is fitted to its corresponding derivative under the
square loss:

1

2

∫∫ (
gℓ(z,y)−

∂f(z,y)

∂z(ℓ)

)2

dzdy. (29)

By expanding the square, we obtain

1

2

∫∫
gℓ(z,y)

2dzdy −
∫∫

gℓ(z,y)
∂f(z,y)

∂z(ℓ)
dzdy +

1

2

∫∫ (
∂f(z,y)

∂z(ℓ)

)2

dzdy.

Since the last term is a constant w.r.t. the modelgℓ(z,y), we omit it and obtain the
following criterion:

1

2

∫∫
gℓ(z,y)

2dzdy −
∫∫

gℓ(z,y)
∂f(z,y)

∂z(ℓ)
dzdy. (30)
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The second term is intractable due to the unknown derivativeof the density difference.
To make this term tractable, we useintegration by parts(Kasube, 1983) to obtain the
following:

∫∫
[gℓ(z,y)f(z,y)]

z(ℓ)=∞
z(ℓ)=−∞ dz\z(ℓ)dy

=

∫∫
f(z,y)

∂gℓ(z,y)

∂z(ℓ)
dzdy +

∫∫
gℓ(z,y)

∂f(z,y)

∂z(ℓ)
dzdy, (31)

where
∫
·dz\z(ℓ) denotes an integration overz except for theℓ-th element. Here, we

require

[gℓ(z,y)f(z,y)]
z(ℓ)=∞
z(ℓ)=−∞ = 0, (32)

which is a mild assumption since the tails of the density differencep(z,y)− p(z)p(y)
often vanish whenz(ℓ) approaches infinity. Applying the assumption to the left-hand
side of Eq.(31) allows us to express Eq.(30) as

1

2

∫∫
gℓ(z,y)

2dzdy +

∫∫
f(z,y)

∂gℓ(z,y)

∂z(ℓ)
dzdy.

Then, the estimator̂gℓ(z,y) is obtained as a solution of the following minimization
problem:

ĝℓ = argmin
gℓ

[
1

2

∫∫
gℓ(z,y)

2dzdy +

∫∫
f(z,y)

∂gℓ(z,y)

∂z(ℓ)
dzdy

]
. (33)

The solution of Eq.(33) depends on the choice of the model. Let us employ the
following linear-in-parameter model asgℓ(z,y):

gℓ(z,y) = θ
⊤
ℓ ϕℓ(z,y), (34)

whereθℓ is a parameter vector andϕℓ(z,y) is a basis function vector whose practical
choice will be discussed later in detail. For this model, finding the solution of Eq.(33)
is equivalent to solving

min
θℓ

[
1

2
θ⊤ℓ Hℓθℓ + θ

⊤
ℓ hℓ

]
, (35)

where we define

Hℓ =

∫∫
ϕℓ(z,y)ϕℓ(z,y)

⊤dzdy, (36)

hℓ =

∫∫
f(z,y)

∂ϕℓ(z,y)

∂z(ℓ)
dzdy

=

∫∫
p(z,y)

∂ϕℓ(z,y)

∂z(ℓ)
dzdy −

∫∫
p(z)p(y)

∂ϕℓ(z,y)

∂z(ℓ)
dzdy. (37)
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By approximating the expectation over the densitiesp(z,y), p(z), andp(y) with sam-
ple averages, we obtain the following empirical minimization problem:

min
θℓ

[
1

2
θ⊤ℓ Hℓθℓ + θ

⊤
ℓ ĥℓ

]
, (38)

whereĥℓ is the sample approximation of Eq.(37):

ĥℓ =
1

n

n∑

i=1

∂ϕℓ(zi,yi)

∂z(ℓ)
− 1

n2

n∑

i,j=1

∂ϕℓ(zi,yj)

∂z(ℓ)
. (39)

By including theL2 regularization term to control the model complexity, we obtain

θ̂ℓ = argmin
θℓ

[
1

2
θ⊤ℓ Hℓθℓ + θ

⊤
ℓ ĥℓ +

λℓ

2
θ⊤ℓ θℓ

]
, (40)

whereλℓ ≥ 0 denotes the regularization parameter. This minimization problem is
convex w.r.t. the parameterθℓ, and the solution can be obtained analytically as

θ̂ℓ = − (Hℓ + λℓI)
−1
ĥℓ, (41)

whereI denotes the identity matrix. Finally, the estimator of the derivative of the
density difference is obtained by substituting the solution into the model Eq.(34) as

ĝℓ(z,y) = θ̂
⊤
ℓ ϕℓ(z,y). (42)

Using this solution, an estimator of the derivative of QMI can be directly obtained
by substituting Eq.(42) into Eq.(27) as

∂̂QMI(W )

∂Wℓ,ℓ′
=

1

n

n∑

i=1

θ̂
⊤
ℓ ϕℓ(zi,yi)x

(ℓ′)
i − 1

n2

n∑

i,j=1

θ̂
⊤
ℓ ϕℓ(zi,yj)x

(ℓ′)
i . (43)

We call this method theleast-squares QMI derivative(LSQMID).

4.4 Basis Function Design

As basis functionϕℓ(z,y), we propose to use

ϕℓ(z,y) =
[
ϕ
(1)
ℓ (z,y), · · · , ϕ(b)

ℓ (z,y)
]⊤

,

whereb ≤ n. First, let us define thek-th Gaussian function as

φ
(k)
ℓ (z,y) = exp

(
−‖z − uk‖2 + ‖y − vk‖2

2σ2
ℓ

)
, (44)

whereuk and vk denote Gaussian centers chosen randomly from the data samples
{zi,yi}ni=1, andσℓ denotes the Gaussian width. We may use different Gaussian widths
for z andy, but this approach significantly increases the computationtime for model
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selection which will be discussed in Section 4.5. In our implementation, we standardize
each dimension ofx andy to have unit variance and zero mean, and then use the com-
mon Gaussian width for bothz andy. We also setb = min(n, 200) in the experiments.

Based on the above Gaussian function, we propose to use the following function as
thek-th basis for theℓ-th model of the derivative of the density difference:

ϕ
(k)
ℓ (z,y) =

∂φ
(k)
ℓ (z,y)

∂z(ℓ)

= − 1

σ2
ℓ

(z(ℓ) − u
(ℓ)
k )φ

(k)
ℓ (z,y). (45)

This function is the derivative of thek-th Gaussian basis function w.r.t.z(ℓ). A benefit
of this basis function design is that the integral appeared inH ℓ can be computed ana-
lytically. Through some simple calculation, we obtain the(k, k′)-th element ofH ℓ as
follows:

H
(k,k′)
ℓ =

1

σ4
ℓ

(
√
πσℓ)

dz+dy exp

(
−‖uk − uk′‖2 − ‖vk − vk′‖2

4σ2
ℓ

)

×
(
u
(ℓ)
k u

(ℓ)
k′ −

(u
(ℓ)
k + u

(ℓ)
k′ )

2

2
+ (

u
(ℓ)
k + u

(ℓ)
k′

2
)2 +

σ2
ℓ

2

)
.

As discussed in Section 5, this basis function choice has further benefits when we
develop a supervised dimension reduction method.

4.5 Model Selection by Cross-Validation

The practical performance of the LSQMID method depends on the choice of the Gaus-
sian widthσℓ and the regularization parameterλℓ included in the estimator̂gℓ(z,y).
These tuning parameters can be objectively chosen by theK-fold cross-validation (CV)
procedure which is described below.

1. Divide the training dataD = {(xi,yi)}ni=1 into K disjoint subsets{Dj}Kj=1 with
approximately the same size. In the experiments, we chooseK = 5.

2. For each candidateM = (σ̃ℓ, λ̃ℓ) and each subsetDj, compute a solution̂θℓ,M,\j
by Eq.(41) with the candidateM and samples fromD\Dj (i.e., all data samples
except samples inDj).

3. Compute the CV score of each candidate pairM by

CVℓ(M) =
1

K

K∑

j=1

[
1

2
θ̂
⊤
ℓ,M,\jH ℓ,M θ̂ℓ,M,\j + θ̂

⊤
ℓ,M,\jĥℓ,M,j

]
,

whereĥℓ,M,j denoteŝhℓ computed from the candidateM and samples inDj .

4. Choose the tuning parameter pair such that it minimizes the CV score as

(σ̂ℓ, λ̂ℓ) = argmin
M

CVℓ(M).
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5 Supervised Dimension Reduction via LSQMID

In this section, we propose a supervised dimension reduction method based on the pro-
posed LSQMID estimator.

5.1 Gradient ascent via LSQMID

Recall that our goal in supervised dimension reduction is tofind the matrixW ∗:

W ∗ = argmax
W∈{W |WW⊤=Idz}

QMI(Z, Y ). (46)

A straightforward approach to find a solution of Eq.(46) using the proposed method is
to perform gradient ascent as

W ←W + t
∂̂QMI(W )

∂W
, (47)

wheret > 0 denotes the step size. It is known that choosing a good step size is a
difficult task in practice (Nocedal and Wright, 2006).Line searchis an algorithm to
choose a good step size by finding a step size which satisfies certain conditions such
as theArmijo rule (Armijo, 1966). However, these conditions often require access to
the objective valueQMI(W ) which is unavailable in our current setup since the QMI
derivative is directly estimated without estimating QMI. Thus, if we want to perform
line search, QMI needs to be estimated separately. However,this is problematic since
the estimation of the derivative of the QMI and the estimation of the QMI are performed
independently without regard to the other, and thus they maynot be consistent. For

example, the gradient∂̂QMI(W )
∂W

,which is supposed to be an ascent direction, may be
regarded as a descent direction on the surface of the estimated QMI. For such a case,
the step size chosen by any line search algorithm is unreliable and the resultingW may
not be a good solution.

Below, we consider two approaches which can cope with this problem.

5.2 QMI Approximation via LSQMID

To avoid separate QMI estimation, we consider an approximated QMI which is obtained
as a by-product of the proposed method. Recall that the proposed method models the
derivative of the density difference as

∂f(z,y)

∂z(ℓ)
≈ gℓ(z,y)

= θ⊤ℓ ϕℓ(z,y)

= θ⊤ℓ
∂φℓ(z,y)

∂z(ℓ)

=
∂
(
θ⊤ℓ φℓ(z,y)

)

∂z(ℓ)
.
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This means that the density difference can be approximated by

f̃ℓ(z,y) = θ̂
⊤
ℓ φℓ(z,y) + cℓ, (48)

wherecℓ is an unknown quantity which is a constant w.r.t.z(ℓ).
In a special case wheredz = 1, we can use Eq.(48) to obtain a proper approximator

of QMI(Z, Y ) in a similar fashion to the LSQMI method. To verify this, let us substitute
Eq.(48) into one of thef(z,y) in Eq.(15) to obtain

Q̃MI(Z, Y ) =
1

2

∫∫
f(z,y)f̃(z,y)dzdy

=
1

2

∫∫
f(z,y)

(
θ̂
⊤
φ(z,y) + c

)
dzdy

=
1

2

∫∫
f(z,y)θ̂

⊤
φ(z,y)dzdy +

1

2

∫∫
f(z,y)cdzdy

=
1

2

∫∫
f(z,y)θ̂

⊤
φ(z,y)dzdy,

where the last line follows from∫∫
f(z,y)cdzdy =

∫∫
p(z,y)cdzdy −

∫∫
p(z)p(y)cdzdy

= 0.

By approximating the expectation with sample averages, we obtain a QMI approximator
as

Q̃MI(Z, Y ) =
1

2n

n∑

i=1

θ̂
⊤
φ(zi,yi)−

1

2n2

n∑

i,j=1

θ̂
⊤
φ(zi,yj). (49)

The main advantage of using̃QMI(Z, Y ) is that it is obtained from the derivative
estimation, and thus should be consistent with the estimated derivative. This allows us
to perform line search for the gradient ascent in a consistent manner. We may further
improve the optimization procedure by considering an optimization problem over the
Grassmann manifold:

W ∗ = argmax
W∈Grdx

dz

Q̃MI(Z, Y ), (50)

whereGrdxdz is defined as

Grdxdz := {W ∈ Rdz×dx |WW T = Idz}/ ∼ .

That is,Grdxdz is a set ofdz-by-dx orthonormal matrices whose rows span the same
subspace. This manifold optimization is more efficient thanthe original optimization
since every step of the optimization always satisfies the orthonormal constraint, and we
no longer need to perform orthonormalization. More detailsof manifold optimization
can be found in Absil et al. (2008).

Although the QMI approximation in Eq.(49) allows us to choose step size by line
search in a consistent manner, such an approximation is unavailable whendz > 1. Next,
we consider an alternative optimization strategy which does not require an access to the
QMI value.
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5.3 Fixed-Point Iteration

To avoid the problem of choosing the step size which requiresan access to the QMI
value, we propose to use a fixed-point iteration for finding a solution of Eq.(46). Note
that from the first order optimality condition, a solutionW ∗ is a stationary point which
satisfies

∂QMI(W ∗)

∂W
= 0dz,dx ,

where0dz,dx denotesdz-by-dx zero matrix. By using the proposed basis function in
Eq.(45), Eq.(43) can be expressed as

∂̂QMI(W )

∂Wℓ,ℓ′
= F

(ℓ,ℓ′)
1 − F

(ℓ,ℓ′)
2 −Wℓ,ℓ′F

(ℓ,ℓ′)
3 , (51)

where we define

F
(ℓ,ℓ′)
1 = θ̂

⊤
ℓ

(
u(ℓ) ⊙

(
1

n

n∑

i=1

φℓ(zi,yi)x
(ℓ′)
i − 1

n2

n∑

i,j=1

φℓ(zi,yj)x
(ℓ′)
i

))
σ−2
ℓ ,

F
(ℓ,ℓ′)
2 =

dx∑

m6=ℓ′

Wℓ,mθ̂
⊤
ℓ

(
1

n

n∑

i=1

φℓ(zi,yi)x
(m)
i x

(ℓ′)
i − 1

n2

n∑

i,j=1

φℓ(zi,yj)x
(m)
i x

(ℓ′)
i

)
σ−2
ℓ ,

F
(ℓ,ℓ′)
3 = θ̂

⊤
ℓ

(
1

n

n∑

i=1

φℓ(zi,yi)x
(l′)
i x

(ℓ′)
i −

1

n2

n∑

i,j=1

φℓ(zi,yj)x
(ℓ′)
i x

(ℓ′)
i

)
σ−2
ℓ ,

with u(ℓ) be the column vector of lengthb consisting of theℓ-th dimension over alluk

and the symbol⊙ represents the element-wise vector product. Then, an approximated
solution may be obtained by findingWℓ,ℓ′ for all (ℓ, ℓ′) such that the left-hand side of
Eq.(51) is zero. This optimization strategy results in a fixed-point iteration for each
dimension ofW :

Wℓ,ℓ′ ←
F

(ℓ,ℓ′)
1 − F

(ℓ,ℓ′)
2

F
(ℓ,ℓ′)
3

.

Finally, we orthonormalize the solution after each iteration as

W ←
(
WW⊤)− 1

2 W .

In practice, we perform this orthonormalization only everyseveral iterations for com-
putational efficiency.

Note that the optimization problem in Eq.(46) is non-convexand may have many
local solutions. To avoid obtaining a poor local optimal solution, we perform the opti-
mization starting from several initial guesses and choose the solution which gives the
maximum estimated QMI as the final solution.

6 Experiments

In this section, we demonstrate the usefulness of the proposed method through experi-
ments.
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6.1 Illustrative Experiment

Firstly, we perform the following experiment to illustratethe usefulness of the proposed
method in term of the QMI derivative estimation. LetN (µ,Σ) denotes the Gaussian
distribution with meanµ and covarianceΣ. Then, forǫ ∼ N (0, 0.152), we generate a
dataset{(xi, yi)}ni=1 and a matrixW as follows:

x ∼ N (02, I2),

y = (x(1))2 + ǫ,

W =
[
cos θ sin θ

]
,

where02 denotes a zero vector of length 2. Thus we havez = x(1) cos θ + x(2) sin θ.
The goal is to estimate

∂QMI(Z, Y )

∂θ
=

∂QMI(Z, Y )

∂W

∂W

∂θ

at different value ofθ. Note thatQMI(Z, Y ) is maximized atθ = 0, i.e.,W =
[
1 0

]
.

Figure 1(a) shows the averaged value over 20 experiment trials of the estimated
QMI(Z, Y ) by LSQMI. The vertical axis indicates the value of the estimated QMI and
the horizontal axis indicates value ofθ ∈

[
−π

2
, π
2

]
. We usen = 3000 andn = 100 for

estimating QMI and denote the results by LSQMI(3000) and LSQMI(100), respectively.
We perform cross validation atθ = 0 and use the chosen tuning parameters for all values
of θ. The result shows that LSQMI accurately estimatesQMI(Z, Y ) when the sample
size is large. However, when the sample size is small, the estimatedQMI(Z, Y ) has
high fluctuation.

Figure 1(b) shows the averaged value over 20 experiment trials of the derivative
of QMI(Z, Y ) w.r.t. θ computed by LSQMI(3000), LSQMI(100), and the proposed
method withn = 100 which is denoted by LSQMID(100). For the proposed method,
we perform cross validation atθ = 0 and use the chosen tuning parameters for all
values ofθ. The result shows that LSQMID(100) gives a smoother estimate than
LSQMI(100) which has high fluctuation. To further explain the cause of the fluctua-
tion of LSQMI(100), we plot experiment results of 4 trials inFigure 2, where the left
column corresponds to the value of the estimatedQMI(Z, Y ) while the right column
corresponds to the value of the estimated derivative ofQMI(Z, Y ) w.r.t.θ. These results
show that for LSQMI(100), a small fluctuation in the estimated QMI can cause a large
fluctuation in the estimated derivative of QMI. On the other hand, LSQMID directly
estimates the derivative of QMI and thus does not suffer fromthis problem.

6.2 Artificial Datasets

Next, we evaluate the usefulness of the proposed method in supervised dimension re-
duction using artificial datasets. Firstly, letU(a, b) denote the uniform distribution over
an interval[a, b], Γ(a, b) denote the gamma distribution with shape parametera and
scale parameterb, andLaplace(a, b) denote the Laplace distribution with meana and
scale parameterb. Then we consider the inputx with dx = 5, the outputy with dy = 1,
and the optimal matrixW opt (including their rotations) as follows:
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(a) The averaged estimated QMI.
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(b) The averaged estimated derivative of QMI.

Figure 1: The mean and standard error of the estimatedQMI(Z, Y ) and the estimated
derivative ofQMI(Z, Y ) w.r.t. θ over 20 experiment trials.

Dataset A: For ǫ ∼ Γ(0.25, 0.25), we use

x ∼ N (05, I5),

y = exp(−(x
(1) + x(2))2

0.5
) + ǫ,

W opt =
[

1√
2

1√
2

0 0 0
]
.

Dataset B: For ǫ ∼ Γ(0.25, 0.5) andi ∈ {1, . . . , 5}, we use

x(i) ∼ U(−1, 1),

z =
1√
5
(x(1) + 2x(2)),

y = z sin(z)− ǫ,

W opt =
[

1√
5

2√
5

0 0 0
]
.

Dataset C: For ǫ ∼ Γ(0.25, 0.5) andi ∈ {1, . . . , 5}, we use

x(i) ∼ U(−1, 1),

y =
1√
2
x(1)x(2) − ǫ,

W opt =

[
1 0 0 0 0
0 1 0 0 0

]
.

Dataset D: For ǫ ∼ N (0, 0.25) andi ∈ {1, . . . , 5}, we use

x(i) ∼ Laplace(0, 0.5),

y = sinc(
x(1)π

2
) + x(2)ǫ,

W opt =

[
1 0 0 0 0
0 1 0 0 0

]
.
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(a) The estimated QMI.
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(b) The estimated derivative of QMI.

Figure 2: Examples of the estimated QMI and the estimated derivative of QMI. The
left column shows the estimatedQMI(Z, Y ), and the right column shows the estimated
derivative ofQMI(Z, Y ) w.r.t. θ. Each row indicates each experiment trial.
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Figure 3: Artificial datasets.

For the datasetsA, B, andC, ǫ is an additive gamma noise, while for the datasetsD,
ǫ is a multiplicative Gaussian noise. Figure 3 shows the plot of these datasets (after
standardization). Note the presence of outliers in the datasets.

To estimateW from {(xi, yi)}ni=1, we execute the following methods:

LSQMID: The proposed method. Supervised dimension reduction is performed by
maximizingQMI(Z, Y ) where the derivative ofQMI(Z, Y ) is estimated by the
proposed method. The solution̂W is obtained by fixed-point iteration.

LSQMI: Supervised dimension reduction is performed by maximizingQMI(Z, Y )
whereQMI(Z, Y ) is estimated by LSQMI and the derivative ofQMI(Z, Y )

w.r.t.W is computed from the QMI estimator. The solution̂W is obtained by
gradient ascent with linesearch over the Grassmann manifold 3.

LSDR (Suzuki and Sugiyama, 2013): Supervised dimension reduction is performed
by maximizingSMI(Z, Y ). The solutionŴ is obtained by gradient ascent with

3We use the manifold optimization toolbox (Boumal et al., 2014) to perform the optimization.
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linesearch over the Grassmann manifold4.

dMAVE (Xia, 2007): Supervised dimension reduction is performed by minimizingan
error of the local linear smoother of the conditional density p(y|z). The solution
Ŵ is obtained by alternatively solving quadratic programming problems5.

KDR (Fukumizu et al., 2009): Supervised dimension reduction is performed by mini-
mizing the trace of the conditional covariance operatorΣY Y |Z . The solutionŴ
is obtained by gradient descent with linesearch over the Stiefel manifold6.

For methods which require initial solutions, i.e., LSQMID,LSQMI, and LSDR, we
randomly generate 10 orthonormal matrices and use them as the initial solutions. For
dMAVE and KDR, we use a solution obtained by dOPG and gKDR, respectively, as
the initial solution. Finally, the obtained solution̂W is evaluated by the dimension
reduction error defined as

ErrorDR = ‖W⊤
optW opt − Ŵ

⊤
Ŵ ‖Frobenius,

where‖ · ‖Frobenius denotes the Frobenius norm of a matrix.
Table 1 shows the mean and standard error over 30 experiment trials of the dimen-

sion reduction error on the artificial datasets with different sample size. The results
show that the proposed method works well overall. LSDR performs well especially for
datasetA andB. KDR also performs well overall. However, its performance is quite
unstable for datasetB, which can be seen by relatively large standard errors. Thisis
because gKDR might provide a poor initial solution to KDR in some experiment trials,
which makes KDR fails to find a good solution.

On the other hand, both LSQMI and dMAVE do not perform well overall. LSQMI
tends to be unstable and works very poorly especially when the sample size is small,
except for datasetD. The cause of this failure could be the high fluctuation of thederiva-
tive of QMI by LSQMI, as shown previously in the illustrativeexperiment. Although
the solution of dMAVE is quite stable, its performance is notoverall comparable to the
other methods. This is because the model selection strategyin dMAVE did not perform
well for these datasets.

6.3 Benchmark Datasets

Finally, we evaluate the proposed method in supervised dimension reduction on UCI
benchmark datasets (Bache and Lichman, 2013). For all datasets, we append the origi-
nal inputx with noise features of dimensionality 5. More specifically,for the original
inputxwith dimensionalitydx, we consider the augmented inputx̃with dimensionality
dx̃ = dx + 5 as

x̃ =
[
x⊤, γ1, γ2, γ3, γ4, γ5

]⊤
,

4We use the program code:http://www.ms.k.u-tokyo.ac.jp/software.html#LSDR
5We use the program code:http://www.stat.nus.edu.sg/˜staxyc/
6We use the program code:http://www.ism.ac.jp/˜fukumizu/software.html
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Table 1: Mean and standard error of the dimension reduction error over 30 trials for artificial datasets. The best method in term of the mean
error and comparable methods according to the pairedt-testat the significance level5% are specified by bold face.

Dataset n LSQMID LSQMI LSDR dMAVE KDR

A
100 0.126(0.039) 0.394(0.094) 0.073(0.007) 0.123(0.009) 0.077(0.008)
200 0.046(0.006) 0.077(0.035) 0.046(0.005) 0.082(0.007) 0.048(0.006)

B
100 0.079(0.009) 0.488(0.097) 0.072(0.006) 0.128(0.010) 0.306(0.088)
200 0.041(0.004) 0.174(0.064) 0.038(0.003) 0.078(0.006) 0.099(0.045)

C
200 0.192(0.026) 0.633(0.100) 0.203(0.011) 0.146(0.010) 0.155(0.010)
400 0.084(0.005) 0.108(0.011) 0.128(0.006) 0.105(0.006) 0.090(0.007)

D
300 0.245(0.050) 0.301(0.054) 0.286(0.032) 0.370(0.046) 0.257(0.025)
500 0.128(0.017) 0.129(0.013) 0.185(0.015) 0.263(0.038) 0.198(0.013)

Table 2: Mean and standard error of the root mean squared error over 30 trials for benchmark datasets. The best method in term of the mean
error and comparable methods according to the pairedt-testat the significance level5% are specified by bold face.

Dataset ntr dx̃ dz LSQMID LSQMI LSDR dMAVE KDR

Fertility 50 14

1 1.215(0.049) 1.092(0.043) 1.315(0.043) 1.321(0.063) 1.116(0.050)
2 1.051(0.045) 1.029(0.043) 1.199(0.031) 1.340(0.052) 1.104(0.044)
3 1.052(0.044) 1.038(0.047) 1.104(0.044) 1.288(0.048) 1.121(0.043)
4 1.046(0.042) 1.026(0.042) 1.092(0.039) 1.271(0.033) 1.146(0.044)

Yacht 100 11

1 0.120(0.005) 0.546(0.042) 0.180(0.012) 0.213(0.017) 0.124(0.007)
2 0.154(0.011) 0.675(0.047) 0.344(0.023) 0.224(0.014) 0.278(0.033)
3 0.314(0.024) 0.690(0.037) 0.425(0.018) 0.265(0.013) 0.353(0.028)
4 0.413(0.021) 0.732(0.043) 0.494(0.015) 0.352(0.017) 0.399(0.012)

Concrete 200 13

1 0.621(0.013) 0.606(0.014) 0.606(0.008) 0.582(0.006) 0.791(0.030)
2 0.568(0.010) 0.591(0.009) 0.568(0.010) 0.529(0.009) 0.614(0.025)
3 0.557(0.009) 0.579(0.011) 0.576(0.012) 0.539(0.007) 0.579(0.016)
4 0.545(0.012) 0.667(0.025) 0.568(0.010) 0.540(0.008) 0.571(0.014)

Breast-cancer 200 15

1 0.447(0.011) 0.523(0.018) 0.442(0.010) 0.375(0.007) 0.447(0.012)
2 0.435(0.010) 0.473(0.012) 0.437(0.009) 0.420(0.012) 0.454(0.014)
3 0.376(0.004) 0.462(0.010) 0.431(0.007) 0.426(0.008) 0.430(0.007)
4 0.377(0.005) 0.419(0.008) 0.436(0.007) 0.426(0.011) 0.433(0.007)

Bike 300 19

1 0.043(0.011) 0.070(0.019) 0.016(0.001) 0.139(0.051) 0.513(0.059)
2 0.036(0.005) 0.035(0.003) 0.049(0.002) 0.081(0.007) 0.291(0.050)
3 0.037(0.005) 0.032(0.003) 0.065(0.002) 0.086(0.008) 0.243(0.037)
4 0.060(0.006) 0.051(0.007) 0.077(0.002) 0.071(0.005) 0.213(0.029)

2
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whereγi ∼ Γ(1, 2) for i ∈ {1, . . . , 5}. Then we use the paired data{(x̃i, yi)}ni=1

to perform experiments. We randomly choosentr samples for training purposes, and
use the restnte = n − ntr for testing purposes. We execute the supervised dimension
reduction methods with target dimensionalitydz ∈ {1, 2, 3, 4} to obtain solutionŝW .
Then we train a kernel ridge regressorŷ = f(Ŵ x̃) with the Gaussian kernel where
the tuning parameters are chosen by 5-fold cross-validation. Finally, we evaluate the
regressor by theroot mean squared error(RMSE):

RMSE =

√√√√ 1

nte

nte∑

i=1

(
yi − f(Ŵ x̃i)

)2
.

Table 2 shows the RMSE averaged over 30 trials for the benchmark experiments. It
shows that the proposed method performs well overall on all datasets. LSQMI performs
very well for the ‘Fertility’ and ‘Bike’ datasets, but its performance is quite poor for the
other datasets. In contrast, dMAVE performs very well especially for the ‘Concrete’
dataset where it gives the best solutions for all value ofdz. However, its performance is
quite poor for the ‘Fertility’ and ‘Bike’ datasets. Both LSDR and KDR do not perform
well on these datasets.

7 Conclusion

We proposed a novel supervised dimension reduction method based on efficient maxi-
mization of quadratic mutual information (QMI). Our key idea was todirectlyestimate
the derivative of QMI without estimating QMI itself. We firstly developed a method to
directly estimate the derivative of QMI, and then developedfixed-point iteration which
efficiently uses the derivative estimator to find a maximizerof QMI. In addition to
the robustness against outliers thanks to the property of QMI, the proposed method is
widely applicable because it does not require any assumption on the data distribution
and tuning parameters can be objectively chosen via cross-validation. The experiment
results on artificial and benchmark datasets showed that theproposed method is promis-
ing.
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