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Abstract

Hearing, vision, touch – underlying all of these senses is stimulus selectivity, a robust in-

formation processing operation in which cortical neurons respond more to some stimuli

than to others. Previous models assume that these neurons receive the highest weighted

input from an ensemble encoding the preferred stimulus, but dendrites enable other

possibilities. Non-linear dendritic processing can produce stimulus selectivity based

on the spatial distribution of synapses, even if the total preferred stimulus weight does
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not exceed that of non-preferred stimuli. Using a multi-subunit non-linear model, we

demonstrate that stimulus selectivity can arise from the spatial distribution of synapses.

We propose this as a general mechanism for information processing by neurons possess-

ing dendritic trees. Moreover, we show that this implementation of stimulus selectivity

increases the neuron’s robustness to synaptic and dendritic failure. Importantly, our

model can maintain stimulus selectivity for a larger range of synapses or dendrites loss

than an equivalent linear model. We then use a layer 2/3 biophysical neuron model

to show that our implementation is consistent with two recent experimental observa-

tions: (1) one can observe a mixture of selectivities in dendrites, that can differ from

the somatic selectivity, and (2) hyperpolarization can broaden somatic tuning without

affecting dendritic tuning. Our model predicts that an initially non-selective neuron can

become selective when depolarized. In addition to motivating new experiments, the

model’s increased robustness to synapses and dendrites loss provides a starting point

for fault-resistant neuromorphic chip development.

1 Introduction

The standard model of neuronal integration in neuroscience, which owes much to Hubel

and Wiesel (Hubel and Wiesel, 1959), produces stimulus selectivity at the neuronal level

by linearly integrating inputs within a single compartment. This model neglects the rich

and in many cases spatially precise structure of the dendritic tree associated with many

neuronal cell types throughout the brain (Stuart et al., 2016).

Several groups have recently presented data which is counter-intuitive given this
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standard model, as applied to orientation selectivity in the visual cortex. Firstly, this

model integrates inputs with a narrow range of selectivity. In contrast, some experimen-

tal groups observed a mixture of selectivity (Smith et al., 2013; Jia et al., 2010). Specif-

ically, Smith et al performed dual soma-dendrites recordings and they have demon-

strated that somatic and dendritic tuning could differ (Smith et al., 2013). Moreover, Jia

and colleagues have shown using calcium imaging that the tuning of dendritic hotspots

could also differ from the somatic tuning (Jia et al., 2010). The first set of observa-

tions can be explained in a Hubel and Wiesel type model by using a higher number of

synapses for preferred than non-preferred stimuli. Secondly, it was observed that hy-

perpolarization can significantly broaden somatic tuning, while dendritic tuning stays

sharp (Jia et al., 2010). It is more difficult however to explain this second set of ob-

servations with a linear model. Why hyperpolarization does not also broaden dendritic

tuning like it does for somatic tuning? Taken together these two sets of observations

call for a new model and we propose here that these observations can be accounted for

by the properties of dendrites.

Biophysical studies from the 80s and 90s demonstrated that a neuron can be sen-

sitive to the spatial distribution of synaptic inputs because of its dendrites (Mel, 1993;

Koch et al., 1982). Mel and colleagues have shown that a neuron could respond more

intensely to clustered than dispersed inputs (Mel, 1993; Poirazi et al., 2003). Alter-

natively, Koch and colleagues have had demonstrated that under other conditions the

opposite can also be true: a neuron can respond more to dispersed than clustered inputs

(Koch et al., 1982). More recently it was also proposed that neuron can respond to a

global stimulation (Poleg-Polsky, 2015) Our previous studies built on these biophysical
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findings and demonstrated that dendrites extend the computational capacity of a single

neuron (Cazé et al., 2012, 2013). Recent experimental evidence has shown that exci-

tatory synapses distribute non-randomly on dendrites and can form synaptic clusters

(Takahashi et al., 2012; Druckmann et al., 2014; Kleindienst et al., 2011). We examine

here whether we can employ the spatial distribution of excitatory synapses to imple-

ment stimulus selectivity. We show that such an implementation is more robust than a

linear equivalent model and propose that it could better explain the recent experimental

data.

2 Results

Dendrites enable stimulus selectivity based on the spatial distribu-

tion of synapses

We show here how it is possible for a neuron to implement stimulus selectivity even if

both the preferred and the non-preferred inputs make the same number of equal weight

synaptic contacts.

We generate stimulus selectivity with a multi-subunit neuron model (see method)

sensitive to the spatial distribution of synaptic inputs. Each subunit of this model non-

linearly transforms its synaptic input (Fig. 1A) similar to recent experimental obser-

vations (Polsky et al., 2004; Tamás et al., 2002; Abrahamsson et al., 2012; Cash and

Yuste, 1998). A single large cluster of active synapses on a subunit generates a single

dendritic spike whereas multiple smaller clusters of synapses (at least 40 synapses in

this case) can generate multiple dendritic spikes. The neuron only fires when it receives
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multiple dendritic spikes. Because of this property, our model is more likely to fire an

action potential when synaptic activation is distributed across multiple subunits rather

than clustered onto a single subunit. We positioned the synapses to exploit this prop-

erty and represent their distribution in Fig. 1B. The 100 synapses corresponding to the

preferred stimulus distribute equally across two dendrites (50 onto subunit #1, 50 onto

subunit #2 Fig. 2 top). In contrast, synapses from the non-preferred stimulus cluster

primarily onto one dendrite (20 onto dendrite #1, 80 onto dendrite #2 Fig. 2 bottom).

20 synapses weakly drive dendrite #1, while 80 synapses saturate dendrite #2 (Fig. 2

bottom). Their summation of the dendritic integration at the soma falls short of the

somatic spike threshold (red line Fig. 2). In contrast, the preferred stimulus’s synapses

drive both dendrites such that their summation at the soma exceeds threshold. Thus,

input ensembles with equal total synaptic weight can differentially affect the neuron’s

spiking through their spatial distribution across dendrites.

For a single preferred stimulus, the implementation could be directly done by con-

necting only the preferred stimulus’ synapses, all other synapses being irrelevant. We

employ the spatial distribution of synapses in this case to demonstrate its use, but all

synapses become relevant for slightly more complex and realistic cases. For instance,

let us take three distinct stimuli: X, Y and Z. The neuron must respond to XY and XZ

but not YZ. It has two non-linear subunits: X’s synapses targets the first subunit and

Y/Z’s synapses target the second. X’s synapses saturates the first subunit and the sec-

ond subunit saturates as soon as Y’s or Z’s synapses activate. The neuron will fire only

if both subunits saturate. Consequently, the preferred stimuli XY and XZ will be more

dispersed than YZ. In this case all synapses do matter and we use space to implement
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Figure 1: A non-linear model where activated synapses are distributed differently

for preferred and non-preferred stimuli. (A) Local transfer function within a subunit;

a non-linear jump occurs at the point θ, the non-linearity threshold. Input and output are

normalized given their respective maxima. (B) The input sites (a red circle corresponds

to 10 synapses) on dendrites (horizontal lines), a subunit corresponds to four branches.

The preferred stimulus activates synapses distributed equally on both dendrites, whereas

the non-preferred stimulus activates more synapses on the first subunit.

the function.

Spatial distribution-based stimulus selectivity increases robustness

to synaptic and dendritic failure

We compare in this section two types of models, linear and non-linear, with more than

5000 synapses of equal weight distributed non-deterministically. We benchmark how

resilient they are to dendritic and synaptic losses. In both models, synapses distribute

similarly onto seven dendritic subunits (see methods tab. 1), and the activity at the soma

is the linear sum of all subunit activity. In the non-linear model, each subunit integrates
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Figure 2: Implementing stimulus selectivity using the spatial distribution of

synapses. First column, raster plot demonstrating the model’s input (top for the pre-

ferred, and bottom for non-preferred). Three synchronous events of a hundred spikes

occur with stimuli that are preferred (A, neurons 101-200) and non-preferred (B, neu-

rons 1-100). The number of synapses made by each ensemble are indicated above the

arrows that show onto which of two dendrites they target. Second column result of den-

dritic integration within the two subunits. A dendritic spike occurs when more than 40

synapses activate on a subunit. Last column the somatic activity, an arithmetic sum of

the dendritic sub-unit activity.
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synaptic inputs and 100 active synapses suffice to trigger a dendritic spike, saturating

the subunit. In the linear model, however, synaptic integration results in the linear

sum of all synaptic inputs. To compare these two models of synaptic integration we

computed separability, the fraction of the model’s instances capable of separating the

preferred stimulus from all non-preferred stimuli. We generated a 1000 instances of the

two models and count how many evoked activity in the soma larger for the preferred

stimulus than all the non-preferred stimuli.

We started by comparing the resilience of these models to the loss of synapses

(Fig. 3). To maintain the same stimulus selectivity in the linear model, it is neces-

sary that the ensemble coding for the preferred stimulus makes the strongest contact,

e.g. makes the highest number of synaptic contacts or makes the synaptic contact with

the highest weights. This prevents the linear model from selecting for a stimulus when

another stimulus makes stronger contacts (proof in Methods). This is not the case for

a neuron with non-linear dendrites. We can see that the non-linear neuron remains se-

lective for the preferred stimulus even when the other stimuli have 150 more synapses

(Fig. 3A, red). This property confers to the non-linear model robustness against synap-

tic failure (Fig. 3B). The non-linear model can separate both types of stimuli (Fig. 3C)

and can maintain its function after 50% of its synapses fail (Fig. 3D). Given the same

number of synapses the non-linear model will alway be more robust than the linear

model.

If the number of synapses is the same for all ensembles, a linear neuron will never be

able to separate preferred from non-preferred inputs. In the non linear model, however,

stimulus selectivity arises through the clustering of synapses coming from the non-
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Figure 3: Stimulus selectivity achieved with the spatial distribution of synapses

increases the robustness to synaptic failure. (A-B) Separability, calculated as the

fraction of model capable of separating preferred and non-preferred stimuli (over 1000

model following the synaptic distribution depicted in Table 1), for the non-linear (red

circles) and linear (black square) models as a function of (A) the synaptic bias, which

is the difference in the number of synapses between preferred and non-preferred en-

semble; or (B) the synaptic failure which is the fraction of malfunctioning synapses.

Here synaptic bias is zero. (C-D) Fraction of spiking/active subunits in a model with

seven subunits (a subunit may not be fully active). Distribution for preferred (red) and

non-preferred stimuli (gray) (C) In control condition, or (D) with 50% synapses failing.
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preferred ensembles (Fig. 4A red line). This way of implementing stimulus selectivity

in the non-linear model fundamentally differs from the method used in a linear model.

A non-linear model maintains its function when dendrites are disabled. This could

occur when a dendrite is physically pruned from the neuron. Our multi-subunit non-

linear model maintains its function even if only 10 % of its synapses cluster on a single

subunit as shown in Fig.. 4A red). This considerably boosts the stability of the non-

linear model, which in this implementation can maintain functionality even with of loss

of more than 50 % of compartments (Fig. 4B, black and Fig. 4C). In comparison, a

linear model cannot make use of the spatial distribution of synapses. Therefore, if the

synaptic bias is nil, it is impossible to differentiate preferred from non-preferred stimuli

(Fig. 4A, black). The clustering bias (here 30 %) is detrimental for this type of model.

It makes the linear model sensitive to the loss of even a single compartment (Fig. 4B

black). Fig. 4D shows that, in this case, it is impossible for a linear model losing four

dendrites to separate the preferred from non-preferred stimuli.

In summary, we compared two multi-subunit models: a linear and a non-linear

model. We used simulations to demonstrate that the non-linear model is much more

robust than its linear equivalent. We have shown that non-linear dendrites offer a new

dimension of robustness. Our non-linear multi-subunit model can lose 50% (more than

2600) of its synapses or more than 50% of its dendrites (more than 4) while maintaining

its function.
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Figure 4: Stimulus selectivity achieved with spatial distribution of synapses in-

creases the robustness to dendritic failure. (A-B) Separability, calculated as the frac-

tion of models capable of separating preferred and non-preferred stimuli (n = 1000),

for the non-linear (red circles) and linear (black square) model as a function of (A) the

clustering bias, which is the number of synapses specifically set on a precise compart-

ment; and (B) the number of removed subunits. (C-D) Distribution of dendritic activity

for preferred (red) and non-preferred (gray) (C) in the non-linear models where den-

dritic activity closely relates to the number of maximally active compartment; and (D)

in the linear model, where synaptic activity is the number of active synapses.
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The biophysical model replicates the mixture of dendritic tunings

We have shown how a multi-subunit non-linear model can robustly implement stim-

ulus selectivity. The following section demonstrates that these results carry over to a

biophysical model capturing rich temporal dynamics and interactions between compart-

ments. This biophysical model fits recent experimental observations (Jia et al., 2010).

We constructed a stimulus selective neuron (Fig. 5A) that replicates the experimen-

tal data. Both the data and our model can display a variety of dendritic tunings (Fig. 5A-

B). To replicate the experimental observations, we used 8 ensembles of AMPA/NMDA-

type synapses distributed each on 7 locations. Synapses from the preferred stimulus en-

semble scatter across all branches, whereas synapses from the non-preferred ensembles

cluster, each onto a particular dendrite. We placed these synapses on a Layer 2/3 neuron

reconstruction (Jia et al., 2010).

The activation of a synapse results in a somatic depolarization of 1
7

mV, indepen-

dent of its location (Fig. 5C), as has been observed in another cell type (Smith et al.,

2003). We enforced this “dendritic democracy” (Häusser, 2001) by scaling synaptic

conductances depending on their distance to the soma. Consequently, all synapses pro-

duce the same depolarization at the soma and each ensemble makes the same number

of synapses. All ensemble may therefore produce the same depolarization at the soma,

this is not what is happening because of non-linear interaction between synapses.

Interestingly, synapses interact in two distinct ways, dependent on their location.

For synapses clustered on a branch (Fig.5C black line), seven active synapses, one per

location interact supra-linearly and they produce a depolarization superior to one mV

because they generates an NMDA spike (Nevian et al., 2007), but 35 synapses on a
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Figure 5: Stimulus selectivity using our implementation displays a mixture of den-

dritic selectivities. (A) Somatic voltage for two stimuli (0/45 degrees during shaded

period). (B) Spike count (red) and experimentally determined integral of the calcium

response in dendrites (black) vs integral of the voltage response in dendrites (one ex-

ample, gray). Note the similarity of the somatic tuning but not of the dendritic tuning.

The experimental’s sharp tuning is due to hyperpolarization. (C) Somatic depolariza-

tion when one(top)/five(bottom) synapse(s) activate in one of the input sites from 0 to

800 ms; or when one/five occurs at all the 7 sites (800 to 1000ms). (D) Expected (arith-

metic sum) versus measured depolarization in the 8 sets (red:scattered on 7 branches,

black/grey:clustered on a branch) of 7 input sites. Black and red marks correspond to

experiments carried out in (C). The four dots (two squares and two circles) correspond

to the four pairs (scattered/clustered case).
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branch (five per location) interact sub-linearly due to reduced driving force at synapses

(Koch et al., 1982; Tran-van Minh et al., 2015). Even if the depolarization at the soma

is weak, locally, the membrane voltage within a branch reaches the equilibrium voltage

(0 mV) because of the branch small diameter 1 µm (see Movie S1). In contrast, for

35 synapses distributed across the seven branches, scattered stimulation depolarizes the

soma more than the same number of clustered synapses because their activation gen-

erates multiple NMDA spikes (Fig. 5C, red line) as has been observed experimentally

in vivo (Jia et al., 2014). These observations are summarized in an expected/measured

plot (Fig. 5D) and show the biophysical model’s sensitivity to the synaptic spatial dis-

tribution.

This sensitivity enables the generation of stimulus selectivity in our model. If the

population coding for the preferred stimulus makes functional synapses on all primary

dendrites, whereas non-preferred stimuli cluster on a single branches, then the dis-

tributed synaptic arrangement produces multiple NMDA spikes that reach the soma in

parallel, as observed in vitro (Larkum et al., 2007) and in vivo (Hill et al., 2013; Palmer

et al., 2014) (Fig. 5A). Both scenarios are illustrated in animations provided as sup-

plementary material (see movies S1 and S2). Because the preferred stimulus produces

multiple NMDA spikes it generates the highest synaptic depolarization.

In a single compartment model, the highest weighted stimulus always ”wins”, ren-

dering synaptic spatial distribution irrelevant. Conversely, our multi-compartment bio-

physical model uses exclusively the spatial distribution of synapses to implement stim-

ulus selectivity, a configuration that could explain, in contrast with single compartment

models, how calcium hotspots in dendrites display mixed stimulus tuning (Jia et al.,
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2010). Note that our model does not exclude an average dendritic tuning similar to

the somatic tuning, however it can explain the cases where the average dendritic tuning

differs from somatic tuning. Although here we implemented spiking without dendritic

backpropagation, our previous Hodgkin and Huxley-based implementation that allowed

backpropagation exhibited the same result (data not shown).

Hyperpolarization broadens somatic but sharpens dendritic tuning

in our model

We injected current at the soma in our biophysical model to pull down the membrane

potential from -65mV to -70mV, as in Jia et al.’s experiment (Jia et al., 2010). Because

of hyperpolarization, the neuron stops firing action potentials, and the somatic tuning

of the membrane voltage becomes broader than the tuning of spikes. This might be

mainly due to the non-linearity induced by somatic spiking in the control condition.

The dendritic tuning, however, is sharp even under hyperpolarization.

When we decrease the resting membrane voltage to -70mV, the number of synapses

necessary to trigger a membrane non-linearity increases, and only the dendritic pre-

ferred stimulus provokes this non-linearity. Fig. 6A shows that only the 45 degree stim-

ulus triggers this non-linearity, and consequently dendritic selectivity sharpens (Fig. 6B).

Furthermore, this could be reinforced by the non-linearity of the calcium sensor. Con-

versely, the somatic depolarization difference between scattered and clustered synapses

decreases, when we hyperpolarize the neuron (Fig. 6C-D), and somatic selectivity broad-

ens.

The model’s sensitivity to the spatial distribution of synapses predicts the effect
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Figure 6: Hyperpolarization broadens somatic tuning whereas it sharpens den-

dritic tuning in our model. (A) Local membrane potential in the first dendritic branch

for two stimuli: the soma’s preferred stimulus and for the dendrite’s preferred stimulus.

(B) Integral of dendritic calcium signal (black) and of the somatic membrane voltage

(red) (experimental data replotted from (Jia et al., 2010)). In our model we compute the

integral of the dendritic membrane voltage. (C) Somatic depolarization when one(top)

or five(bottom) synapses activate in one of the seven input site from 0 to 800 ms; or

when one/five activate at all the seven sites simultaneously (800 to 1000ms). (D). Ex-

pected (arithmetic sum) versus measured depolarization in the simulation 2 sets of 7

locations.
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of hyperpolarization on dendritic tuning. The broadening of the somatic tuning can

intuitively be explained by hyperpolarization. Intuitively, somatic spiking non-linearly

sharpens somatic tuning in the control condition. The sharp dendritic tuning however

is much less intuitive, and the sharpening of dendritic tuning during hyperpolarization

is another important prediction of our modeling work. This could be tested by using

micro-injection of TTX, or a similar approach, instead of hyperpolarization to block

back-propagated action potentials.

3 Discussion

We implemented stimulus selectivity in a multi-subunit non-linear model (Fig. 2 &

Fig. 1). This implementation of stimulus selectivity is more robust than the linear one

(Fig. 3 & Fig. 4). Because it is possible in our model that the preferred stimulus can

be less strongly connected than non-preferred stimuli, our implementation is resilient

to synapse or dendrites loss.

In our model, the preferred stimuli generate multiple clusters and elicit multiple

NMDA spikes whereas the non-preferred inputs elicit a single NMDA spike. We imple-

mented NMDA spikes for biological relevance, but a saturating dendritic non-linearity

would have also sufficed. The dendritic non-linearity is the main parameter responsible

for the enhanced robustness. The amount of added robustness depends on the model

parameters, e.g. the number of dendrites (Fig. /reffig4). Future work can study in detail

the influence of parameters such as somatic threshold and subunit number.

Our non-linear implementation can coexist with the classic implementation based
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upon synaptic strength (Fig. 5A), providing an additional channel for neuronal informa-

tion processing. As it has been observed, the ensemble encoding the preferred stimulus

does make the strongest contact, as suggested by Cossel et al (Cossell et al., 2015) and

observed by Chen et al (Chen et al., 2013). We provide here a new layer of robustness

through the spatial distribution of synapses.

Locally non-linear integration could have made our model cluster sensitive. A neu-

ron with the latter type of sensitivity might possess the same robustness to synaptic

failure than our neuron model, but not to dendritic failure. Instead the neuron model

used here is scatter sensitive: it responds more to scattered (widely distributed) than

clustered synaptic activity. This behavior has previously been described (Koch et al.,

1982; Mel, 1993), but has never been proposed as a mechanism underlying stimulus

selectivity. Scatter sensitivity, contrary to cluster sensitivity, only requires saturating

non-linearities (Cazé et al., 2012).

Additional experimental work could confirm the functional role of scatter sensitiv-

ity and show that stimulus selectivity is resilient to dendrites removal. For instance,

targeted laser dendrotomy (Go et al., 2016).

Importantly, the average dendritic tuning and somatic tuning can, different to the

results presented here, be identical. Let’s take a case where each branch does not have

the same weight and produces the same depolarization on the soma. One could imagine

a situation where branches with a small weight have the same tuning as the soma. If

these branches are the most numerous, then the average dendritic tuning will correspond

the somatic tuning.

Although we have focused, to ease comparison with experimental studies, on the
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tuning of a neuron to sensory stimuli, all neural computations can be described in terms

of stimulus selectivity. Boolean functions can both describe a neural computation and

stimulus selectivity. In the latter case, we can describe stimuli as words of 0s and 1s.

In the former case, we can describe all neural computations as Boolean functions if

we binarize activity. Therefore our implementation based on the spatial distribution of

synapses can be used for general neural computation. To transpose a synaptic strength

based implementation of a computation, it suffices to turn inputs with the strongest

synapses activated into inputs with the most dispersed synapses activated.

The biophysical model reinforces our work that the insights gained from the multi-

subunit model are physiologically relevant; together, they yield three predictions. Firstly,

we predict that hyperpolarization not only broadens somatic tuning (Jia et al., 2010;

Lavzin et al., 2012) but it also sharpens dendritic tuning (Fig. 6). Secondly, our model

predicts that a neuron may recover its tuning after losing a large fraction of either its

synapses or dendrites, due to the robustness provided by spatial synaptic distribution

based information processing. Thirdly, we predict that a cortical neuron with no appar-

ent stimulus tuning can acquire stimulus selectivity when depolarized, similar to what

can be observed in place cells (Lee et al., 2012).

Our implementation using nonlinear dendritic integration, that can be learned using

an unsupervised learning algorithm (Cazé et al., 2016), may inform the design of neu-

romorphic chips, as it suggests that the use of dendrites – even passive – can extend the

robustness of the circuit. While we have demonstrated these capabilities in the context

of a model neuron’s selectivity to a visual stimulus, the mechanism we have proposed is

general, and potentially reflects a canonical computational principle for neuronal infor-
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mation processing. Whether or not the mechanism proposed here turns out to underlie

or assist in selectivity to the orientation of visual stimuli, it may be examining further in

the study of a range of elementary information processing operations involving neurons

with rich dendritic trees.

4 Methods

Multi-subunit model

Our neuron model is made of subunits Dj , each sums their synaptic inputs dj =
n∑

i=1

wi,jxi where xi and wi,j are equal to 0 or 1:

• In the linear case Dj(dj) = dj

• In the non-linear case Dj(dj) =


dj if dj ≤ θ

θ + J otherwise

. See Fig. 1A

This results in a somatic activity equals to
s∑

j=1

Dj

For the elementary model used in the first part θ = 40 and J = 60 and in the

model with seven subunits and more synaptic inputs θ = 100 and J = 0 to show that a

saturating non-linearity suffices to exploit the spatial distribution of synapses.

In this latter model the seven subunits receive input coming from eight presynaptic

neuronal ensembles corresponding to eight different stimulus orientations. The mean

number of synaptic contacts for each ensemble-dendrite pair is described in Table 1.

The preferred stimulus (0 degrees) activates 700 synapses following a random uniform

distribution across all seven dendrites. In contrast, non-preferred stimuli activate 650
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connections each, including a bias such that 40% of input from each orientation prefer-

entially target one of the dendrites and the remaining 60% being uniformly distributed

among the remaining six dendrites following a uniform distribution.

Two recent papers describe how such a spatial distribution of synapses could be

learned (Legenstein and Maass, 2011; Wu and Mel, 2009). Please note that we also

proposed a learning algorithm presented in a self-archived manuscript currently under

review (Cazé et al., 2016).

Table 1: Synaptic distribution in our multi-subunit model. Mean number of

synapses made by each presynaptic ensemble for each stimulus, for each postsynap-

tic dendrite.

Dendrite (dj)

Preferred orientation 0 1 2 3 4 5 6 Total

0 100 100 100 100 100 100 100 700

45 260 65 65 65 65 65 65 650

90 65 260 65 65 65 65 65 650

135 65 65 260 65 65 65 65 650

180 65 65 65 260 65 65 65 650

225 65 65 65 65 260 65 65 650

270 65 65 65 65 65 260 65 650

315 65 65 65 65 65 65 260 650
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A necessary condition for the linear model

The highest weight needs to be from the preferred stimulus in a linear model. To prove

that let us consider the simplest scenario where two presynaptic neurons each synapse

onto a postsynaptic neuron. We arrange it so that one input codes for the preferred

stimulus while the other for a non-preferred stimulus, and Wpref and Wnonpref is the

amplitude of their resulting depolarization on the postsynaptic neuron. Here, stimulus

selectivity is possible only if Wpref ≥ Θ and Wnonpref < Θ, which is equivalent to

Wpref > Θ > Wnonpref . This condition can be generalized for any number of presy-

naptic neurons, and implies in the linear neuron model when constrained to positive

values of W that stimulus selectivity is only possible when the preferred stimulus has

the highest weight.

Biophysical model

For detailed modeling, we used a reconstructed morphology of a neuron from Layer

2/3 of visual cortex in mouse (Jia et al., 2010). The capacitance of the model is C =

1µF/cm2. The axial resistance in each section was Ra = 100Ω.cm to match the one

observed in pyramidal neurons (Stuart and Spruston, 1998; Oswald and Reyes, 2008),

and passive elements were included (gl = 0.0003 Ω−1, el = −65 mV). To hyperpolarize

the neuron to −85mV we injected in the soma 0.2nA which gives an input resistance

of 100MΩ matching what is observed in pyramidal neurons. Spiking was implemented

using an integrate-and fire mechanism with a hard threshold of -40mV, which has been

shown to provide an accurate depiction of spike initiation behaviour (Brette, 2015),

whereupon we set the voltage to 20 mV in the following timestep, before resetting to -
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65 mV. We have previously used a Hodgkin Huxley for the generation of action potential

and we obtained the same result (data not shown). The model was implemented using

NEURON with a Python wrapper (Hines et al., 2009), with the time resolution set to

0.1ms.

Synaptic inputs to the biophysical model

We used 280 synapses divided into 8 groups of 35 synapses, corresponding to 8 different

stimuli (orientations). Each had a background activity of 1 Hz which increased to 10Hz

during the presentation of the stimulus. As experimental evidence suggests that stimulus

information is coded not only by an increase in firing rate but also in correlation (Bruno

and Sakmann, 2006; DeCharms and Merzenich, 1996), synapses synchronously co-

activate 20 times to encode the presence of a stimulus (preferred or otherwise). This

raises the firing rate of this group to 30 Hz. The specific set of synchronous synapses

activated depends on the stimulus identity, e.g. synapses 1-35 synchronously activate

for the preferred stimulus, synapses 36-70 activate for the non-preferred stimulus #1,

etc.

Conductance based NMDA-type synapses

NMDA-like inputs were included by modeling voltage-dependent, conductance-based

synapses that generated a postsynaptic currents is = g(t)gmg(v) × (v(t) − es), with

reversal potential es =0 mV. For g(t), we used a two scheme kinetic scheme with rise

and decay time constants τ1 = 0.1ms and τ2 = 10ms (Destexhe et al., 1994). The

voltage-dependent conductance gmg(v) was determined assuming [Mg2+] =1mM. The
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equation for the Mg block was gMg(v) = 1
1−ve0.062

× 1
3.57

following (Jahr and Stevens,

1990). Files we used to run the binary and biophysical simulations are available on the

github repository of the corresponding author (https://github.com/rcaze).
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Supporting Information

S1 Video

Neuron response to clustered synaptic inputs. L2/3 neuron reconstruction from the

visual cortex. The large circle is the soma and black dots are input sites. Depolarisation

of a section is color-coded (black:low, yellow:high).

S2 Video

Neuron response to scattered synaptic inputs. L2/3 neuron reconstruction from the

visual cortex. The large circle is the soma and black dots are input sites. Depolarisation

of a section is color-coded (black:low, yellow:high).
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