
Implementing a Bayes Filter in a Neural
Circuit: The Case of Unknown Stimulus

Dynamics

Sacha Sokoloski
Max Planck Institute for Mathematics in the Sciences

Abstract

In order to interact intelligently with objects in the world, animals
must first transform neural population responses into estimates of the
dynamic, unknown stimuli which caused them. The Bayesian solution
to this problem is known as a Bayes filter, which applies Bayes’ rule to
combine population responses with the predictions of an internal model.
The internal model of the Bayes filter is based on the true stimulus dy-
namics, and in this paper we present a method for training a theoretical
neural circuit to approximately implement a Bayes filter when the stim-
ulus dynamics are unknown. To do this we use the inferential properties
of linear probabilistic population codes to compute Bayes’ rule, and train
a neural network to compute approximate predictions by the method of
maximum likelihood. In particular, we perform stochastic gradient de-
scent on the negative log-likelihood of the neural network parameters
with a novel approximation of the gradient. We demonstrate our meth-
ods on a finite-state, a linear, and a nonlinear filtering problem, and show
how the hidden layer of the neural network develops tuning curves which
are consistent with findings in experimental neuroscience.

1 Introduction

Whether its concerns the location of distant food or the presence of a lurk-
ing predator, animals must reason about the world based on uncertain beliefs.
The Bayesian brain is the hypothesis that the brain represents these beliefs with
probability distributions, and reasons about the world based on the principles
of Bayesian inference (Knill and Pouget, 2004; Doya, 2007). The Bayesian
brain is supported by both theoretical arguments (Jaynes, 2003) and experi-
mental evidence (Ernst and Banks, 2002; Fischer and Peña, 2011; Fetsch et al.,

1

ar
X

iv
:1

51
2.

07
83

9v
4

 [
cs

.L
G

]
 7

 J
un

 2
01

7

2011; Coen-Cagli et al., 2015), yet many open questions remain in how exactly
the brain implements Bayesian inference in populations of neurons (Bowers
and Davis, 2012; Pouget et al., 2013).

The goal of this work is to understand how neural circuits compute accu-
rate beliefs about dynamic stimuli with Bayesian inference. To do this we first
assume that the neural populations in a given circuit encode probability dis-
tributions in their activity with probabilistic population codes (Zemel et al.,
1998). A key property of probabilistic population codes for Bayesian theories
of the brain is that theoretical neural circuits based on probabilistic population
codes can trivially implement Bayes’ rule (Ma et al., 2006).

Bayes’ rule is the most fundamental equation in Bayesian inference, and
describes how to compute optimal beliefs about an unknown stimulus by com-
bining prior beliefs with observations of the stimulus. Nevertheless, Bayes’
rule alone can only be applied to independent observations of static stimuli,
and is not sufficient for explaining how animals compute beliefs about dynamic
stimuli. The dynamic extension of Bayesian inference is known as Bayesian fil-
tering, which complements Bayes’ rule with an equation for computing optimal
predictions (Thrun et al., 2005; Särkkä, 2013). By combining prediction and
online inference, it is possible to define the Bayes filter, which is an algorithm
for computing optimal beliefs about unknown, dynamic stimuli.

The Kalman filter is an example of a Bayes filter for when the stimulus dy-
namics are known and linear. Beck et al. (2011) show how to implement a
form of Kalman filter in a theoretical neural circuit by combining the inferen-
tial properties of linear probabilistic population codes with a recurrent neural
network which computes predictions. In order to define the neural network,
they derive a closed-form expression for the network parameters based on the
parameters of the linear stimulus dynamics. However, animals do not generally
have built-in knowledge of the dynamics of stimuli, nor can they assume that
these dynamics are linear. As such, this work is not sufficient for explaining
how animals maintain accurate beliefs about dynamic stimuli.

In this paper we generalize the approach of Beck et al. (2011) to arbitrary
dynamical systems where the stimulus dynamics are unknown. To do this, we
begin by replacing the derived, linear network of Beck et al. (2011) with a gen-
eral network with tunable parameters. By taking advantage of the exponential
family structure of linear probabilistic population codes (Welling et al., 2004;
Beck et al., 2007), we then show how to minimize the negative log-likelihood of
the parameters of the network with stochastic gradient descent. Finally, we de-
velop a novel algorithm for approximating the true stochastic gradient, which
we compare against contrastive divergence minimization (Hinton, 2002). Al-
though in our demonstrations we define the recurrent neural network as a form
of multilayer perceptron, the theory we present can be applied to any param-

2

eterized network architecture, in particular ones which satisfy more realistic
biological constraints.

The theory we develop in this paper is related to two additional approaches
in the machine learning and computational neuroscience literatures. Firstly,
the theoretical neural circuit that we construct can be roughly interpreted as
a form of the model presented in Boulanger-Lewandowski et al. (2012) for
approximate filtering. In our approach, however, the neural circuit satisfies a
set of equations which ensure that Bayes’ rule is exactly implemented, which
is not present in the work of Boulanger-Lewandowski et al. (2012). Secondly,
Makin et al. (2015) present an alternative approach to implementing a Bayes
filter in a neural circuit based on probabilistic population codes. The form of
the circuit in Makin et al. (2015), however, is markedly different from our own,
and although it lacks some of the theoretical advantages of our neural circuit,
it makes use of a more biologically realistic learning rule. We discuss these
related methods in more detail at the end of this paper.

For the purposes of demonstration we apply our methods in three simulated
experiments, each of which models how a particular neural circuit learns to
maintain accurate beliefs about some unknown stimulus. In the first simulation
the stimulus is a set of colours in a sequence learning task, which we model with
a 3-state Markov chain, and the neural circuit is composed of colour recognition
and sequence learning neural populations along the ventral stream. In the
second simulation the stimulus is the position of a mouse on a track, which we
model as a linear dynamical system, and the neural circuit is part of the self-
localization system of the hippocampus. In the third simulation the stimulus
is the angular position and velocity of a human arm, which we model as a
stochastic pendulum, and the neural circuit is part of the proprioceptive system
in the cerebellum.

In the first and second simulations it is possible to compute the optimal
beliefs of the Bayes filter based on the true stimulus dynamics, whereas in
the third simulation, approximate beliefs can be computed with a form of ex-
tended Kalman filter. These filters provide ground truth for our theoretical
neural circuits, and in all cases, we find that our circuits are able to maintain
good approximate beliefs about the stimulus. Moreover, by analyzing the hid-
den layer of the multilayer perceptron in the third experiment, we show how
the network uses gain-fields to represent position and velocity information in a
manner that is consistent with theory and experiment (Sejnowski, 1995; Sali-
nas and Thier, 2000; Paninski et al., 2004; Herzfeld et al., 2015). At the end
of this paper we consider additional features of our work which are relevant
for neuroscience, and present ways in it can be extended in the future.

3

2 Inference

Statistical inference is the process of estimating unknown quantities through
observation. There are many paradigms for formalizing statistical inference,
but Bayesian inference is arguably the most appropriate framework for describ-
ing how an agent maintains subjective beliefs which correspond to the world.
Two of the most well-known theoretical arguments for Bayesian inference are
Cox’s theorem and the class of Dutch book arguments (Jaynes, 2003; Talbott,
2015). On one hand, Cox’s theorem demonstrates that the consistent extension
of propositional logic on binary truth values to continuous probabilities is given
by Bayesian inference. On the other hand, Dutch book arguments demonstrate
that failing to follow the principles of Bayesian inference can lead gamblers to
make wagers which they are guaranteed to lose.

Both of these arguments begin with the assumption that subjective beliefs
are represented by probabilities, and lead irrevocably to Bayesian inference. In
the context of neuroscience, this implies that if populations of neurons repre-
sent beliefs with encoded probability distributions, then populations of neurons
must extract information from observations in accordance with the principles
of Bayesian inference. Nevertheless, how populations of neurons implement
Bayesian inference remains an open question, because there are many pro-
posals for how populations of neurons might encode probability distributions
(Pouget et al., 2013).

Each coding scheme has its own advantages, and greatly simplify particu-
lar operations on encoded information. Linear probabilistic population codes
(LPPCs) have the invaluable property that they allow Bayes’ rule to be trivially
implemented on encoded beliefs (Ma et al., 2006). Evaluating Bayes’ rule is
the most fundamental operation in Bayesian inference, and involves combining
the likelihood of an observation with prior beliefs in order to compute poste-
rior beliefs. By using LPPCs, Ma et al. (2006) demonstrate how to construct a
neural circuit which computes encodings of posterior beliefs by taking a linear
combination of the response of a neural population and encoded prior beliefs.

A concrete example of such a neural circuit is the self-localization system in
the hippocampus and entorhinal cortex (Moser et al., 2008). Place cells in the
hippocampus encode information about the position of the animal, and many
studies suggest that place cells optimize this encoding through a combination
of local activity in the limbic system and incoming sensory information (Mc-
Naughton et al., 2006). In the Bayesian picture, place cells encode posterior
beliefs about the position of the animal, and update these beliefs with Bayes’
rule given the responses of sensory neurons.

We begin this section by introducing Bayes’ rule, and we then formally de-
fine populations of neurons which generate Poisson-distributed spikes in re-

4

sponse to stimuli. We then formally introduce LPPCs, and demonstrate their
relationship with the family of machine learning models known as exponential
family harmoniums (Smolensky, 1986; Welling et al., 2004). This relationship
allows us to easily rederive the results of Ma et al. (2006), and later allows us
to apply machine learning algorithms to gather learning statistics from LPPCs
and thereby model how neural systems learn to solve the filtering problem.

2.1 Bayes’ Rule

Assuming it exists, the joint density pX N provides a complete description of
the relationship between the pair of random variables X and N . Given the
joint density pX N , we may derive the marginal densities pX and pN , and the
conditional densities pX |N and pN |X . With a bit of algebra, we may also derive
Bayes’ rule

pX |N (x | n) =
pN |X (n | x)pX (x)

pN (n)
. (1)

Bayes’ rule itself is a simple equation, but its interpretation is the basis for
a general approach to statistical inference. Since we are applying Bayesian
inference in the context of neuroscience, let us refer to n as the response and
x as the stimulus. In Bayesian inference, pX is the prior, which represents our
current beliefs about the stimulus, and pN |X is the likelihood, which describes
how responses are generated to the stimulus. The density pX |N is the posterior,
which represents our new beliefs about the stimulus after observing a response,
and all of these densities may be derived from the generative model pX N , which
is a complete description of the probabilistic relationship between the stimulus
and response.

For a given response n, pN (n) is constant. Since the posterior pX |N=n is a
probability density and must therefore integrate to 1, knowing the posterior up
to a constant factor is sufficient for determining the posterior. For this reason,
Bayes’ rule is often defined as the proportionality relation

pX |N (x | n)∝ pN |X (n | x)pX (x), (2)

which emphasizes that knowing the prior and the likelihood is sufficient for
determining the posterior.

2.2 Poisson Neurons

Poisson neurons are a simple, yet theoretically rigorous approach to modelling
how neurons respond to stimuli (Dayan and Abbott, 2005), and we make use
of them throughout this paper. Given a population of dN Poisson neurons and

5

A
ct

iv
a
ti

o
n

0

1

2

-4 -2 0 2 4
Stimulus

P
ro

b
a
b
ili

ty
 D

e
n
si

ty

0

1

2

0

5

10

R
e
sp

o
n
se

 C
o
u
n
t

-4 -2 0 2 4
Stimulus

P
ro

b
a
b
ili

ty
 D

e
n
si

ty

0

1

2

0

5

10

R
e
sp

o
n
se

 C
o
u
n
t

-4 -2 0 2 4
Stimulus

P
ro

b
a
b
ili

ty
 D

e
n
si

ty

0

1

2

0

5

10

R
e
sp

o
n
se

 C
o
u
n
t

-4 -2 0 2 4
Stimulus

Figure 1: Linear Probabilistic Population Codes: These plots demonstrate encoding
and decoding with linear probabilistic population codes. Top Left: The rates of ten
Gaussian tuning curves with uniformly distributed preferred stimuli, and gain γ = 1.
Top Right: The components of the response n1 (black dots) to the stimulus 0 (black
line) generated with γ = 2, and the resulting posterior pX |N=n1

(red line) based on
an approximately flat prior. Bottom Left: Response n2, generated with γ = 4. Bottom
Right: The encoded posterior of the rate of the posterior population z= n2+y, where
A= B= I, and the rate of the prior population is y= n1. Note that z is a more accurate
encoding of the stimulus than either y or n2 alone.

a stimulus x, the ith Poisson neuron generates a Poisson-distributed number of
spikes with rate γ fi(x), where fi(x) is the tuning curve of the neuron, and
γ is the gain. The component neurons of the population are conditionally
independent of each other given the stimulus, such that the likelihood with
respect to the entire population response N may be written

pN |X (n | x) =
dN
∏

i=1

pNi |X (ni | x) =
dN
∏

i=1

e−γ fi(x)(γ fi(x))ni

ni!
. (3)

When example tuning curves are called for in this paper, we consider the
1-dimensional Gaussian tuning curve

fi(x) = e
−(x−x0

i)
2

2σ2 , (4)

with preferred stimuli x0
i (figure 1: Top Left). The theory we develop may nev-

ertheless be generalized to a variety of tuning curves, as we later demonstrate
in our simulations.

6

2.3 Linear Probabilistic Population Codes

A population code is a description of how to encode information about a stim-
ulus in the combined activity of a population of neurons, as well as how to
decode this information from the population. For a random stimulus X and
random response N , a probabilistic population code (PPC) stochastically en-
codes information in neural populations by sampling from the likelihood pN |X ,
and decodes this information by computing the posterior pX |N (Zemel et al.,
1998; Beck et al., 2007). Finally, a linear probabilistic population code (LPPC)
is a PPC where both the likelihood and posterior may be expressed as log-linear
functions (Ma et al., 2006; Pouget et al., 2013). In this section we formally de-
fine LPPCs by using the theory of exponential families.

An exponential family is a set of probability densities with a specific form
(Amari and Nagaoka, 2007; Wainwright and Jordan, 2008; Nielsen and Garcia,
2009). Each exponential familyM is defined by a sufficient statistic s and a
base measure ν. In turn, each density q in the exponential familyM is given
by

q(x)∝ eθ ·s(x)ν(x), (5)

where θ are the natural parameters which specify the particular density. A
wide variety of families of probably densities such as the normal, von Mises,
and categorical families are in fact exponential families, and working with ex-
ponential families is typically much easier than generic families of densities.

Recall that at every stimulus x, the likelihood pN |X=x of a population of
Poisson neurons (3) is a product of Poisson densities. The set of all products
of Poisson densities is an exponential family with sufficient statistic equal to
the identity function and base measure ν(n) = (n1! · · ·ndN

!)−1. As such, where
MN is the exponential family of products of Poisson densities, the likelihood
pN |X=x ∈MN for any x.

Suppose that we also wish for the posterior pX |N=n at any response n to be an
element of some exponential familyMX , whereMX is defined by the sufficient
statistic s, and a base measure which, for simplicity, we assume to be constant.
Then it can be shown (Besag, 1974; Arnold and Press, 1989; Arnold et al.,
2001) that the only generative model pX N consistent with the likelihood pN |X
of a Poisson population and a posterior pX |N which satisfies these assumptions
is another exponential family density with the log-linear form

pX N (x,n)∝
es(x)·ΘN ·n+s(x)·θ X+n·θ N

n1! · · ·ndN
!

. (6)

In the machine learning literature, models with this form are known as expo-
nential family harmoniums (Welling et al. (2004), figure 2).

7

Figure 2: Exponential Family Harmoniums: Here we depict the graphical represen-
tation of an exponential family harmonium. From this graph we may infer that the
component random responses N(1), N(2), and N(3) are mutually independent given the
component random stimuli X(1) and X(2), and that X(1) is independent of X(2) given
N(1), N(2), and N(3).

It follows from the theory of exponential family harmoniums (Welling et al.,
2004) that the posterior pX |N and likelihood pN |X of a generative model defined
in this way may be expressed in the log-linear forms

pN |X (n | x)∝
es(x)·ΘN ·n+n·θ N

n1! · · ·ndN
!

, (7)

and
pX |N (x | n)∝ es(x)·ΘN ·n+s(x)·θ X , (8)

such that the likelihood pN |X=x ∈ MN has natural parameters s(x) ·ΘN + θ N ,
and the posterior pX |N=n ∈ MX has natural parameters ΘN · n + θ X . Since
a linear probabilistic population code is a probabilistic population code where
the likelihood and posterior have log-linear forms, the conditional distributions
of an exponential family harmonium define an LPPC.

Although it is perhaps surprising that the likelihood of a Poisson population
(3) can be expressed in the log-linear form of relation 7, the results of Arnold
et al. (2001) imply that this must be the case. For example, if pN |X is defined
by the set of Gaussian tuning curves fi(x) with preferred stimuli x0

i and shared
tuning width σ, then we can express it in the form of relation 7 by setting the
elements of the matrix ΘN equal to

ΘN ,(1,i) =
x0

i

σ2
, ΘN ,(2,i) = −

1
2σ2

, (9)

setting the elements of the vector θ N equal to

θ N ,(i) = logγ−
(x0

i)
2

2σ2
, (10)

8

and by letting s(x) = (x , x2), which is the sufficient statistic of the family of
normal distributions (figure 1: Top Right, Bottom Left).

2.4 Stimulus-Independent Total Rate

In many applications of Poisson neurons, the total rate γ
∑dN

i=1 fi(X) of the pop-
ulation is designed to be approximately independent of the stimulus X itself
(Sejnowski, 1995; Pouget et al., 2003; Beck et al., 2011). For the total rate to
be independent of the stimulus, the sum of the tuning curves must satisfy

dN
∑

i=1

fi(x) = λ (11)

for some constant λ. It turns out that for many families of tuning curves,
satisfying this relation is relatively straightforward. In the case of Gaussian
tuning curves, for example, if one distributes the preferred stimuli uniformly
over the space of the stimulus, then the sum of the tuning curves converges to
a constant as the number of preferred stimuli is increased (Ma et al., 2006).

In addition to providing expressions for the LPPC prior and posterior, it also
follows from the theory of exponential family harmoniums that the LPPC prior
may be expressed as

pX (x)∝ es(x)·θ X+γ
∑dN

i=1 fi(x). (12)

Observe that when equation 11 is satisfied, the sum of the tuning curves in the
LPPC prior is constant and can be absorbed into the constant of proportionality.
This forces the LPPC prior to be an element of the same exponential family as
the LPPC posterior. A prior is known as a conjugate prior when the prior and
posterior share the same form. Conjugate priors have numerous computational
advantages, and we return to equation 11 throughout this paper. One more
advantage of LPPCs which satisfy this equation is that by setting θ X = 0, we
define the prior over the stimulus to be flat, which is a practical prior for many
applications of Bayesian inference.

2.5 Neural Bayes’ Rule

Let us refer to the population of Poisson neurons which generate the responses
N as the observation population. In order to implement Bayesian inference in
a theoretical neural circuit, let us define two further neural populations, called
the prior population and the posterior population, with firing rates given by
the random variables Y and Z , and number of neurons equal to dY and dZ ,

9

respectively. Our goal is to define Y and Z such that they encode the prior and
posterior densities in an application of Bayes’ rule.

Now theoretically, by defining the random variables Y and Z , we imply the
existence of a generative model pNX Y Z , as well as implicit decoding densities
pX |Y and pX |Z . However, there are two reasons why we avoid relying on the
implicit probabilistic structure of the random variables in order to define our
decoders. Firstly, we ultimately know the form that we wish for the decoders
to have, and ensuring that pX |Y and pX |Z have the desired forms requires fairly
careful and rather abstruse analysis. Secondly, when it comes to the task of
learning to approximate a Bayes filter, which we undertake in section 4, the
implicit decoders are anyway inaccessible.

Therefore, in this section, and throughout this paper, we instead consider
the prior and posterior decoders qX |Y and qX |Z . We define these decoders to
have forms of our choosing, and then demonstrate how to define Y and Z to
encode the relevant densities in terms of these decoders. In those cases where
we can perform exact inference, then these decoders are equal to the implicit
decoders of the generative model. When we cannot perform exact inference,
then we may still use these decoders to implement good approximations.

Let us define the density encoded by the prior rate vector y as

qX |Y (x | y)∝ es(x)·ΘY ·y+γ
∑dN

i=1 fi(x), (13)

where ΘY is a matrix which we refer to as the decoding matrix of the prior
population. Observe that qX |Y=y is equal to the prior in relation 12 where θ X =
ΘY · y. Therefore, we may ensure that qX |Y=y = pX by choosing rates of the
prior population y which satisfy θ X =ΘY · y.

Let us then define the density encoded by the posterior rate vector z as

qX |Z(x | z)∝ es(x)·ΘZ ·z, (14)

where ΘZ is the decoding matrix of the posterior population. Let us also as-
sume that ΘZ is related to the matrix ΘN of the likelihood by

ΘN =ΘZ ·A, (15)

for some matrix A, and related to the decoding matrix ΘY of the prior popula-
tion by

ΘY =ΘZ ·B, (16)

for some matrix B.
Given these definitions, if we consider the LPPC posterior (8) given the

prior rate vector y and the response n, we find that

pX |N (x | n)∝ es(x)·ΘN ·n+s(x)·ΘY ·y = es(x)·ΘZ ·(A·n+B·y),

10

Figure 3: Neural Circuit for Bayesian Inference: Here we depict a random response
N from a population of Poisson neurons to a random stimulus X . The random rates
Y and Z represent the rates of the prior and posterior populations, respectively. The
random response N is combined with the random prior rate Y to compute the random
posterior rate Z in accordance with neural Bayes’ rule.

which implies that

pX |N (x | n) = qX |Z(x | A · n+B · y). (17)

We refer to this equation as neural Bayes’ rule. In words, as long as the prior
population encodes the true prior, and the observation, prior, and posterior
populations satisfy equations 15 and 16, then Bayes’ rule may be implemented
as a linear combination of the rates of the prior population y and the response
of the observation population n (Ma et al., 2006).

In accordance with neural Bayes’ rule, if we define the rates of the posterior
population by

Z = A · N +B · Y, (18)

where Y is drawn from a distribution over the set of y that satisfy θ X =ΘY · y,
we may ensure that the posterior population encodes the posterior density for
any realization of the circuit. We depict the neural circuit composed of N , X ,
Y , and Z in figure 3, and we demonstrate an application of this circuit in the
bottom right panel of figure 1.

3 Dynamics

Bayesian inference formalizes statistical inference as the answer to the ques-
tion, "What is the conditional probability distribution over the unknown vari-
able given the available observations?" If we are given a sequence of population

11

responses to a dynamic stimulus, we may compute the corresponding condi-
tional probability over the stimulus with a recursive, two-step algorithm known
as a Bayes filter. A Bayes filter recursively computes beliefs about the stimu-
lus at time k + 1 by computing predictions of the stimulus at time k + 1 as a
function of the beliefs at time k, and combining these predictions with the re-
sponse at time k+1 using Bayes’ rule (Thrun et al., 2005; Särkkä, 2013). This
has important implications for the Bayesian brain hypothesis, because if neural
populations are performing Bayesian inference, then not only must populations
of neurons implement Bayes’ rule, but they must also implement prediction.

For some neuroscientists this is not surprising, as many argue that predic-
tion is essential to neural computation and constitutes a guiding principle for
the architecture of the brain (Bubic et al., 2010; Friston, 2010; Clark, 2013).
For example, forward models are ubiquitous in computational models of mo-
tor control (Miall and Wolpert, 1996; Todorov and Jordan, 2002; Franklin and
Wolpert, 2011). Forward models in the brain predict the result of a given motor
command, and this information is combined with the responses of propriocep-
tors in order to estimate body position. In addition to the observation, prior,
and posterior populations introduced in section 2, this entails the existence of
an additional neural network which transforms efference copies of the motor
command into predictions of the consequences of that command.

We begin this section by formalizing dynamic stimuli and dynamic Poisson
populations, and continue by introducing the prediction and update equations
which define the Bayes filter. We then introduce closed-form solutions to the
Bayes filter on population responses for the case of finite-state systems and
linear dynamical systems, generalizing an approach described in Makin et al.
(2015). We conclude by demonstrating how these solutions can be imple-
mented in theoretical neural circuits based on the work of Beck and Pouget
(2007) and Beck et al. (2011), and thereby lay the groundwork for how ap-
proximate solutions can be similarly defined.

3.1 Dynamic Poisson Populations

We define a dynamic Poisson population as a sequence of pairs of random vari-
ables (Xk, Nk)k∈N, where Xk is the random stimulus at time k, and Nk is the
random response at time k. We assume that the dynamic stimulus is Markov,
such that each stimulus Xk+1 is conditionally independent of the past random
variables given the previous stimulus Xk, where X0 is drawn from some initial
density pX0

. We also assume that the densities pXk+1|Xk
are invariant with respect

to k, such that we may recursively generate the sample sequences of (Xk)k∈N
with a single, time-invariant conditional density, which we refer to as the tran-
sition density. Because the transition density is time-invariant, we denote it by

12

Figure 4: Dynamic Poisson Population: The graphical representation of a dynamic
Poisson population. The arrow from the current stimulus Xk to the subsequent stimu-
lus Xk+1 represents the dependence of the subsequent stimulus on the current stimu-
lus, and is described by transition density pX ′|X . The arrow from the current stimulus
Xk to the current response Nk represents the dependence of the response on the stim-
ulus, and is described by emission density pN |X .

pX ′|X = pXk+1|Xk
for any k.

We assume that each response Nk is conditionally independent of all the
other random variables given the simultaneous response Xk, and that the con-
ditional density pNk|Xk

is given by the likelihood of a population of Poisson neu-
rons, as defined in equation 3 and relation 7. The tuning curves and gain of the
dynamic Poisson population often depend on time, but for the purposes of de-
veloping the theory in this section we assume that they are constant. As such,
we denote the time-invariant conditional density by pN |X = pNk|Xk

for any k,
and refer to it as the emission density. We depict the graphical representation
of the stimulus and Poisson population in figure 4.

3.2 Bayesian Filtering

Given the sequence of responses n0, . . . ,nk from a dynamic Poisson population,
a Bayes filter is an algorithm for computing the beliefs pXk|N0=n0,...,Nk=nk

. A Bayes
filter is defined by two equations. The first is a form of Bayes’ rule (2), and is
given by

pXk+1|N0,...,Nk+1
(xk+1 | n0, . . . ,nk+1)∝
pN |X (nk+1 | xk+1)pXk+1|N0,...,Nk

(xk+1 | n0, . . . ,nk). (19)

When normalized, this relation is known as the update equation, and computes
the beliefs at time k + 1 by applying Bayes’ rule to the emission density pN |X
and the prior pXk+1|N0=n0,...,Nk=nk

.
This prior constitutes beliefs about the stimulus at time k + 1 given only

the sequence of responses up to time k. Because these prior beliefs transform

13

available information into information about the future, these prior beliefs are
known as predictions. The prediction density may be expressed as

pXk+1|N0,...,Nk
(xk+1 | n0, . . . ,nk) =
∫

X
pX ′|X (xk+1 | xk)pXk|N0,...,Nk

(xk | n0, . . . ,nk)dxk, (20)

whereX is the state space of the stimulus. If the state space is countable, then
the integral in this equation becomes a sum.

The predictions are a function of the transition density pX ′|X and the beliefs
pXk|N0=n0,...,Nk=nk

at time k. Therefore, given the transition and emission densi-
ties, we may recursively compute the beliefs at any time k given the sequence
of responses n0, . . . ,nk by using the update equation to calculate the beliefs as
a function of the predictions, and by using the prediction equation to compute
the predictions as a function of the previous beliefs. This recursion ultimately
completes at the prior over the initial stimulus pX0

.

3.3 Closed-Form Solutions

For arbitrary dynamic stimuli and dynamic Poisson populations, the prediction
and update equations cannot be evaluated in closed-form. Nevertheless, dy-
namic Poisson populations do have a particular flexibility when it comes to
Bayesian filtering. Before we explain this, first note that the prediction equa-
tion (20) depends on the transition density pX ′|X , but not the emission density
pN |X . This implies that if we know how to solve the prediction equation for a
particular dynamic stimulus, then we may apply this solution towards evalu-
ating the Bayes filter for any form of emission density.

Now recall from section 2.3 that the posterior (8) computed from the re-
sponse of a Poisson population (3) and an appropriate prior (12) is a member
of an exponential family determined by the form of the tuning curves of the
Poisson population (7). Moreover, as described in section 2.4, if the sum of
the tuning curves is constant (11), then the prior is a member of the same ex-
ponential family as the posterior. As such, if the sum of the tuning curves of
the emission density is constant (11), and if the predictions at time k (20) are
elements of the same exponential family as the beliefs, then we can compute
the exponential family beliefs at time k (19) by computing the posterior (8) as
a function of the emission density and the exponential family predictions.

More formally, suppose thatMX is the exponential family which matches
the tuning curves of the emission density pN |X , that the sum of the tuning curves
of pN |X is constant (11), and that the parameters of the initial prior pX0

∈MX

are θ ∗. Then given the initial response n0, the natural parameters of the initial

14

belief density pX0|N0=n0
∈ MX are θ 0 = ΘN · n0 + θ

∗ in accordance with the
posterior of linear probabilistic population codes (8). Now suppose that the
belief density pXk|N0,...,Nk

at time k is in MX with natural parameters θ k, that
the prediction density pXk+1|N0,...,Nk

at time k + 1 is also in MX , and that there
exists a function h which computes the natural parameters h(θ k) of pXk+1|N0,...,Nk

.
Then given the sequence of population responses n0, . . . ,nk+1, we may compute
natural parameters of the belief density at time k+ 1 by computing

θ k+1 =ΘN · nk+1 + h(θ k), (21)

and therefore by induction, we may compute the parameters of the belief den-
sity at any k.

The question then becomes whether we can find such a function h. Out-
side the context of neuroscience, there are two well-known cases for which
Bayes filters may be evaluated in closed-form. The first is when the latent vari-
able (i.e. the stimulus) and the observation (i.e. the response) only take on
a finite number of values. In this case both the normalization in the update
equation and the sum in the prediction equation can be computed brute-force.
The second case is when the transition and emission densities are given by
linear transformations with additive Gaussian noise. In this case the solution
is known as a Kalman filter, and solving the corresponding prediction and up-
date equations may be reduced to straightforward linear algebra (Thrun et al.,
2005; Särkkä, 2013).

Now suppose we wish to apply the solutions to the prediction equation
provided by these two Bayes filters to computing beliefs given sequences of
population responses. The prediction and belief densities are given by cate-
gorical densities in the finite-state case, and (multivariate) normal densities in
the Kalman filter case, both of which are exponential family densities. This
implies that if θ k are the natural parameters of the belief density at any time
k, then there exists a function h such that h(θ k) are the natural parameters of
the prediction density at time k+ 1, and we may therefore use equation 21 to
recursively compute the beliefs at all times.

Moreover, even when the prediction densities are not elements of an ex-
ponential family, it often remains a good strategy to approximate them with
exponential family densities. For example, the most well-known extension of
Kalman filtering to nonlinear dynamical systems is the extended Kalman filter
(Thrun et al., 2005; Särkkä, 2013). Although the extended Kalman filter does
not compute the true predictions, it does compute good exponential family ap-
proximations to the true predictions, and we may use this approximation to
define the function h, and thereby approximate a Bayes filter. We apply these
techniques later in this paper when we validate our method for learning to
compute approximate predictions.

15

Figure 5: Generic Neural Circuit: Here we depict the graphical representation of the
generic neural circuit proposed in this paper. At time k, the circuit is composed of a
random dynamic stimulus Xk, a random dynamic response Nk, and the random rates
of the prediction and filtering populations, Yk and Zk. The arrow from Zk to Yk+1
represents the output of the prediction network g, such that Yk+1 = g(Zk). The arrows
from Yk+1 and Nk+1 to Zk+1 represent the linear combination of Yk+1 and Nk+1, such
that Zk+1 = A · Nk+1 +B · Yk+1.

3.4 Optimal Filtering in Neural Circuits

In the previous section we demonstrated how to solve the prediction and up-
date equations based on dynamic Poisson populations, and in this section we
wish to encode these solutions in a dynamic neural circuit. In section 2.5 we
introduced the concept of prior and posterior populations. In the context of
Bayesian filtering, we refer to these populations as the prediction population
and the filtering population.

We begin by defining the components of the dynamic neural circuit. Let
(Yk)k∈N and (Zk)k∈N be the sequence of random firing rates of the prediction
and filtering populations. Given the emission density pN |X with parametersΘN ,
let ΘY , ΘZ , A, and B be matrices which satisfy equations 15 and 16, and let us
define the densities encoded by the prediction and filtering populations Yk and
Zk at any time k as the decoding densities qX |Y and qX |Z in relations 13 and 14,
respectively. Let the rates of the filtering population be Zk = A · Nk +B · Yk, let
the initial rates of the prediction population Y0 be given by some density pY0

,
and finally, for k > 0, let the rates of the prediction population be Yk = g(Zk−1),
where g is a neural network which we refer to as the prediction network. We
depict the graphical representation of this dynamic neural circuit in figure 5.

Let us now consider initial rates of the prediction population y0 which sat-
isfy qX |Y=y0

= pX0
, the initial population response n0 and the initial rates of the

16

filtering population z0 = A ·n0+B ·y0. Since the prior pX0
is equal to qX |Y=y0

by
assumption, the encoded beliefs qX |Z=z0

are equal to the beliefs pX0|N0=n0
in ac-

cordance with neural Bayes’ rule (17). Let us now suppose that at an arbitrary
time k, the rates of the filtering population are zk, the subsequent rates of the
prediction population are yk+1 = g(zk), and the subsequent response is nk+1.
Let us also suppose that the prediction network g has the property that if qX |Z=zk

is equal to the belief density pXk|N0=n0,...,Nk=nk
at time k, then qX |Y=yk+1

is equal to
the prediction density pXk+1|N0=n0,...,Nk=nk

at k+1. Since the update equation (19)
is simply an application of Bayes’ rule to the emission and prediction densities,
neural Bayes’ rule (17) implies that qX |Z=zk+1

is equal to pXk+1|N0=n0,...,Nk+1=nk+1

where zk+1 = A · nk+1 + B · yk+1. Therefore, by induction, yk and zk encode
the predictions and beliefs at any k, and the dynamic neural circuit depicted
in figure 5 exactly implements a Bayes filter for any realization of the system.

The question, again, is whether there in fact exists a neural network g which
computes encodings of the true predictions. The work of Beck and Pouget
(2007) and Beck et al. (2011) answers this question in the affirmative, where
the authors derived stochastic differential equations which describe how to
encode beliefs in a neural population when the stimulus has either finite-states
or is driven by linear dynamics, respectively. Critically, these solutions involve
linearly combining the responses of the observation population with encoded
predictions at every time step, in accordance with equation 18.

In the linear dynamical system case, under the assumption that the dy-
namic population code satisfies equation 11, the prediction network g may be
expressed as

g(z) = (G(2) · z+ z ·G(3) · z+ 1(z0 −
1 · z
m
))d t + z, (22)

where d t is the time-step in the time-discretized system. Intuitively, G(2) drives
the rate of the population in proportion to the linear dynamics, G(3) quadrati-
cally drives the rate of the population in proportion to the noise in the dynam-
ics, and z0 is a parameter which encourages the component-wise average of
the rate process to remain near z0 (Beck et al., 2011). Although this is the op-
timal solution, computing this g depends on knowing the parameters of linear
the stimulus dynamics, which may not always be available. In the next section
we describe how to maximize the likelihood of of a parameterized g based the
responses of the observation population.

17

4 Learning

In the previous section we described how to compute beliefs about an un-
known, dynamic stimulus with a Bayes filter. Evaluating the Bayes filter re-
quires solving the prediction and update equations, which in turn depend on
access to the transition and emission densities, respectively. Although assum-
ing that we can access these densities allows us to define optimal neural circuits
directly, this assumption is not ecologically valid. Animals do not, in general,
have direct access to emission and transition densities, and must rather learn
to implement Bayes filters in their neural circuitry.

In this paper we reduce learning to the optimization of the parameters of
a theoretical neural circuit. Different tasks and experimental designs call for
training some of these parameters, and leaving others fixed. In our case, we
focus on optimizing the parameters of a neural network for computing approx-
imate predictions, and assume that the rest of the parameters of the neural
circuit have already been optimized. This scenario applies when dealing with
an adult subject with well-developed neural populations for sensation, but no
familiarity with the task or dynamic stimulus.

A concrete example of such a task is sequence learning in a psychophysics
experiment (Clegg et al., 1998). Many colour sensitive neurons are found in
the visual area V4, which connect further down the ventral stream with neu-
rons in the inferior temporal cortex (ITC) (Roe et al., 2012), which in turn has
been found to play a role in sequence learning (Meyer and Olson, 2011). We
may thus interpret the neural populations in V4 as the observation population,
and populations in the ITC as the prediction and filtering populations. In a
given sequence learning task, the prediction network is then trained to ensure
that the rates of the filtering population in the ITC encode accurate beliefs
about the stimulus.

In this section we begin by defining the architecture of our theoretical neu-
ral circuit, and introducing the general negative log-likelihood gradient on the
parameters of the neural network. We continue by deriving an expression for
this gradient, and then introduce contrastive divergence minimization and a
novel exponential family approximation in order to descend it.

4.1 Approximate Filtering in Neural Circuits

Suppose we know the emission density pN |X of a dynamic Poisson population
(Xk, Nk)k∈N, and that we wish to train a neural circuit to approximately imple-
ment a Bayes filter on responses of the dynamic Poisson population. We take a
parametric approach in this paper, which means we must choose a form for the
approximate beliefs. We therefore assume that the approximate belief densi-

18

ties are elements of some exponential familyMX with sufficient statistic s and
a constant base measure.

As discussed in sections 2.3 and 2.4, in order apply the update equation
(19) to compute such exponential family beliefs given a response from the
observation population, the approximate predictions must be proportional to
es(x)·θ X+γ

∑dN
i=1 fi(x) for some parameters θ X . Moreover, as described in section

3.3, since many algorithms for Bayesian filtering yield predictions and beliefs
which are in a single exponential family, and since we typically aim to approx-
imate these algorithms as well as possible, we typically assume that the sum
of the tuning curves of the observation population is constant such that the
approximate prediction densities are also elements ofMX .

Nevertheless, the brain cannot work with such abstract prediction and be-
lief densities directly. The theoretical neural circuit described in section 3.4
and depicted in figure 5 is designed to encode predictions and beliefs with
such exponential family forms by way of the prediction and filtering popula-
tion decoders qX |Y (13) and qX |Z (14). We therefore assume that the neural
circuit considered in this section has the same structure as in section 3.4, ex-
cept now the prediction network g is parameterized by φ. In our simulations,
g will be a three layer perceptron with dY input neurons, dZ output neurons,
dH hidden neurons, and φ will be a pair of matrices and biases.

The prediction network g computes encodings of the parameters of predic-
tion densities over the stimuli, and so if we could access sample sequences of
the stimuli x0, . . . ,xk, then optimizing g would reduce to a regression problem.
However, since the purpose of a Bayes filter, approximate or otherwise, is to
compute beliefs about unknown stimuli, using these stimuli for training pur-
poses would violate the spirit of the problem. Therefore, we aim instead to
optimize g based on sequences of population responses n0, . . . ,nk.

In order to optimize g based on sequences of responses, we first define the
approximate generative model

qX N |Y (x,n | y)∝
es(x)·ΘN ·n+s(x)·ΘY ·y+n·θ N

n1! · · ·ndN
!

, (23)

which is equal to the harmonium defined in relation 6 where ΘY · y = θ X . As
discussed in sections 2.3 and 2.4, this density is the only approximate gener-
ative model over stimuli and responses which is consistent with exponential
family beliefs, a likelihood given by a population of Poisson neurons, and pre-
dictions encoded by y. Where qN |Y is the marginal density of qX N |Y , and given
the sequence of responses n0, . . . ,nk, we may maximize the likelihood of the
parameters φ by following the stochastic negative log-likelihood gradient

−∇φ log qN |Y (nk | yk), (24)

19

where yk is computed as a function of the neural network and the sequence of
responses n0, . . . ,nk−1 (see Welling et al., 2004; Bengio, 2009).

4.2 Computing the Gradient

As shown in Welling et al. (2004), the component partial derivatives of the
negative log-likelihood gradient of θ X for the harmonium in relation 6 are

− ∂θ X
log pN (n) = Ep[s(X) | N = n]−Ep[s(X)], (25)

where the random variables are distributed according to pX N . Given a sequence
of responses n0, . . . ,nk and the corresponding rates of the prediction popu-
lation y0, . . . ,yk, if we consider the derivative of the negative log-likelihood
with respect to the component parameters φi of φ, and define the biases as
θ X = ΘY · yk, we may apply the chain rule to combine derivative 25 with the
partial derivative ∂φi

yk. By taking the expectations with respect to qX N |Y and
adding the dependencies on Yk, we may then write the partial derivatives as

−∂φi
log qN |Y (nk | yk) =

(Eq[s(X) | N = nk, Y = yk]−Eq[s(X) | Yk = yk]) ·ΘY · ∂φi
yk. (26)

Observe that this gradient is zero when the predictions of the network match
the posterior, and is thus a form of prediction error.

Because yk depends recurrently on y0, . . . ,yk−1, we must recursively ap-
ply the chain rule to the gradient ∂φi

yk until y0 is reached. This leads to the
algorithm known as backpropagation-through-time (Werbos, 1990; Sutskever
et al., 2009; Makin et al., 2016) for computing the recursive gradient of yk. Un-
fortunately, backpropagation-through-time is known to be problematic (Ben-
gio et al., 1994; Pascanu et al., 2013), and introduces complexities into the
gradient calculation that we wish to avoid in this paper.

In section 3.4 we showed how to define optimal and near-optimal filtering
populations such that (Zk)k∈N loses (nearly) no information about the stimulus
over time. This implies that (Zk)k∈N is (approximately) Markov, and so at the
optimal parameters φ of g, Yk is (nearly) independent of Zk− j for j > 1. This
suggests that we may ignore the long-range dependencies in the gradient and
still hope to find good parameters. We therefore consider a one-step approx-
imation to the true derivative of yk, and assume that the rates of the filtering
population at the previous time zk−1 are independent of the parametersφ. This
allows us to express the components of gradient 24 as

−∂φi
log qN |Y (nk | yk) =

(Eq[s(X) | N = nk, Y = yk]−Eq[s(X) | Yk = yk]) ·ΘY · ∂φi
g(zk−1), (27)

20

and thereby reduce the problem of maximizing the likelihood of the param-
eters φ to computing equation 25 and the partial derivatives ∂φi

g at zk−1.
When g is a multilayer perceptron, we may apply standard backpropagation to
compute these derivatives (Rumelhart et al., 1986). The last remaining prob-
lem is therefore to compute the expectations Eq[s(X) | N = nk, Y = yk] and
Eq[s(X) | Y = yk].

4.3 Approximating the Harmonium Expectations

Computing the first conditional expectation Eq[s(X) | N = nk, Y = yk] is not
challenging, as qX |N=nk ,Y=yk

is given by the decoder of the filtering population
qX |Z=A·nk+B·yk

(14) in accordance with neural Bayes’ rule (17). By design qX |Z
is always an element of some exponential family, and for many exponential
families the expected value of the sufficient statistics can be computed exactly,
or in the very least can be approximated by sampling. On the other hand,
Eq[s(X) | Y = yk] is determined by the encoded prediction density qX |Y (13),
which cannot, in general, be trivially evaluated or sampled. In this paper we
consider two strategies for approximating this expectation.

Firstly, the expectations of the marginal densities of an exponential fam-
ily harmonium may be approximated by Gibbs sampling (Geman and Geman,
1984; Roberts and Polson, 1994). In this context, gibbs sampling involves con-
structing a Markov chain through recursive sampling of the densities qN |X ,Y and
qX |N ,Y based on an arbitrary initial response n0. It can be shown that the sample
stimuli and responses generated after many such iterations are distributed ap-
proximately according to the density qX N |Y . Since it often takes a long time for
this Markov chain to converge, the contrastive divergence gradient was devel-
oped as an alternative to the negative log-likelihood gradient (Hinton, 2002;
Bengio and Delalleau, 2009). Approximating the contrastive divergence gra-
dient leads to a similar approximation scheme as Gibbs sampling, however,
instead of an arbitrary starting condition which we wish the sampler to forget,
we let n0 = nk, which allows a useful gradient to be calculated after a handful
of iterations.

Secondly, if the sum of the tuning curves of the emission density pN |X are
constant (11), then the decoder of the prediction population qX |Y is in the same
exponential family as the decoder of the filtering population qX |Z , and therefore
Eq[s(X) | Y = yk] can be evaluated as easily as Eq[s(X) | N = nk, Y = yk]. In
particular, where τ is the coordinate transform from the natural parameters to
the expectation parameters of the exponential family of s (Amari and Nagaoka,
2007; Wainwright and Jordan, 2008; Nielsen and Garcia, 2009), equation 25

21

is then given by

Ep[s(X) | N = n]−Ep[s(X)] = τ(ΘN · nk + θ X)−τ(θ X). (28)

In the case of the 1-dimensional Gaussian tuning curve, τ may be computed
in closed-form, and is given by

τ(θX ,1,θX ,2) =

�

−
θX ,1

2θX ,2
,
θX ,1

4θX ,2
−

1
2θX ,1

�

. (29)

Nevertheless, equation 11 is often only approximately satisfied, and so this
strategy may not always be optimal. In the subsequent section, we compare
the performance of this exponential family approximation with contrastive di-
vergence minimization.

5 Simulations

In this section we describe in detail how to apply the methods we have de-
veloped in three simulated experiments. In each experiment we aim to un-
derstand how a subject learns to compute accurate beliefs about an unknown
dynamic stimulus with a neural circuit composed of an observation population
which generates responses to stimuli, a prediction population which encodes
approximate predictions, a filtering population which encodes approximate be-
liefs, and a prediction network which computes rates of the prediction popu-
lation as a function of the rates of the filtering population. In the first half of
this section we describe the details of the neural circuits, the training proce-
dures, and the validation procedures, which are more or less the same across
all experiments. In the second half of this section we present the results of the
three simulated experiments.

5.1 Methods

The theoretical neural circuits we consider are composed of the observation,
prediction, and filtering populations, and the prediction network. The param-
eters of the observation population are the parameters of the emission density
ΘN and θ N , and the observation population recoder A; the parameters of the
prediction population are the decoding matrix ΘY , the prediction population
recoder B, and the initial rates y0; and the parameters of the filtering popula-
tion are the decoding matrix ΘZ . We set these parameters of the three neural
populations by hand. The remaining parameters are the parameters φ of the

22

prediction network g, which we optimize by stochastic gradient descent on the
negative log-likelihood of φ given sequences of population responses.

In order to test what kind of population codes are likely used by the brain,
we propose two candidate neural circuits which differ in how the prediction
and filtering populations encode probabilities, as defined byΘY andΘZ . More-
over, when training the prediction network in each circuit, we apply and com-
pare contrastive divergence minimization (Hinton, 2002) and the exponential
family approximation to the negative log-likelihood gradient (28), leading to
a total of four sub-experiments in each experiment. Because we keep the stim-
uli mathematically simple, we may then validate the learned filter against the
corresponding optimal, or mostly optimal, filter.

All simulations presented in this paper were developed in Haskell, and are
available at the repository of the author at hub.darcs.net/alex404/goal.

5.1.1 Population Parameters

In each simulation we define the parameters of the emission density ΘN and
θ N by first defining the gain γ and tuning curves (fi)

dN
i=1 such that the sum of

the tuning curves is (approximately) constant. We then equate the likelihood
of the Poisson population (3) with its exponential family form (7) and solve
for ΘN and θ N . We define the decoding matrix ΘY as equal to the decoding
matrix ΘZ . This implies that the prediction population recoder B= I, since the
population codes of the prediction and filtering populations are the same. In
this case we may intuitively think of the prediction and filtering populations
as a single population for encoding approximate beliefs. Finally, since the sum
of the tuning curves of the emission density is constant (11), we set the initial
rates of the prediction population to y0 = 0, such that the prediction population
initially encodes a flat prior over the stimulus.

We define the parameters of the filtering populationΘZ in one of two ways.
The first is by settingΘZ =ΘN , which we refer to as the naive code. In the case,
the observation population recoder is given by A = I. We refer to the second
code as the orthogonal code, based on the code presented in the supplementary
material of Beck et al. (2011). In this case we construct ΘZ from a set of
mutually orthogonal rows, which are also orthogonal to the vector of ones,
such that ΘZ ,(i) ·ΘZ ,(j) = 0 for i 6= j, and ΘZ ,(i) · 1 = 0. In this case ΘZ · 1 = 0,
which implies that for any rates of the filtering population z, the rates z+ c1
encode the same beliefs for any scalar c. The details of constructingΘZ , as well
as a corresponding observation population recoder A which satisfies equation
15, can be found the supplementary material of Beck et al. (2011).

For the naive code, because ΘN = ΘY = ΘZ , all three neural populations
in the circuit have the same number of neurons. In the case of the orthogonal

23

Parameter Experiment 1 Experiment 2 Experiment 3
dN = dY = dZ 10 10 20

dH 100 200 500
nt 10, 000 10, 000 20,000

Table 1: Summary of Circuit and Training Parameters: In this table we show the
simulation parameters which change in each experiment. These are the sizes of the
observation, prediction, and filtering populations dN , dY , dZ , respectively; the num-
ber of hidden neurons in the prediction network dH ; and the number of steps in the
training simulation nt . In all experiments, ΘZ = ΘY and y0 = 0; in the naive circuit
ΘZ =ΘN , and in the orthogonal circuitΘZ is constructed from orthogonal rows which
are also orthogonal to 1. Where ie is the epoch, the parameters of the Adam algorithm
are α = 0.00005 · 1.25−(ie−1), β1 = 0.9, β2 = 0.999, and ε = 10−8, and contrastive
divergence is run with ie contrastive divergence steps.

code, because ΘY = ΘZ , the prediction and filtering populations continue to
have the same number of neurons. Although we could set the number of neu-
rons in these populations to be different from the number in the observation
population, in order to ensure that differences in circuit performance are not
simply due to differences in the number of parameters, we continue to define
ΘZ to have the same number of columns as ΘN . This implies that in all the
cases we consider, dN = dY = dZ , which is to say that the observation, predic-
tion, and filtering populations always have the same number of neurons. For
the number of neurons in each experiment, and a summary of all simulation
parameters, see table 1.

5.1.2 Prediction Network and Training Procedure

In all experiments we define the prediction network g as a 3-layer perceptron
with dH hidden neurons, where the number of input and output units is de-
termined by the number of neurons in the filtering population. We define the
activation functions of the neural network to be a sigmoid activation function
in the hidden layer, and an exponential activation function in the output layer.
We use the exponential function on the output layer in order to ensure that
the rates computed by the prediction network are always positive. This is es-
pecially important in the case of the naive code, as negative rates cannot be
reliably decoded by ΘN .

We denote the parameters of g by φ, such that φ is composed of a pair
of matrices and biases. We thus compute the gradient in equation 27 by ap-
plying backpropagation to compute ∂φi

g(zk−1) (Rumelhart et al., 1986), and

24

one of the two methods proposed in section 4.3 to compute the expectations in
equation 25. Given the proposed neural circuits and gradient approximation
schemes, we run four parallel simulations in every experiment, by applying
either contrastive divergence minimization (CD) or the exponential family ap-
proximation (EF) to computing the stochastic gradient (24), in order to train
the neural circuits based on either the naive (NV) or orthogonal (OT) popu-
lation codes. We denote these four simulations and corresponding circuits by
NV-EF, NV-CD, OT-EF, and OT-CD.

In each experiment we train each neural circuit over the course of twenty
epochs, where each epoch is composed of a training simulation of nt steps.
During the training simulation, where ie is the number of the current epoch,
we reset the rates of the prediction population Yk to 0 every (ie − 1)2 number
of steps. We do this because newly initialized prediction networks g tend to be
unstable, in that recursively evaluating Zk for large k tends to result in rates
which diverge and fail to encode accurate beliefs. By first training g on shorter,
stable paths, we may avoid this problem and better maximize the likelihood of
the parameters φ.

When updating φ, we apply the Adam algorithm in order to dynamically
adapt the step size of the gradient descent (Kingma and Ba, 2014). In every
epoch we define the initial learning rate to be α = 0.00005

1.25ie−1 , we set the momen-
tum parameters of the Adam algorithm to β1 = 0.9 and β2 = 0.999, and the
regularizer to ε = 10−8. Finally, when applying contrastive divergence mini-
mization, we also set the number of contrastive divergence steps equal to the
epoch number ie.

5.1.3 Validation

After each training epoch we validate the trained neural circuits on a simulation
of nv = 200,000 steps. We compute the sequence of rates z0, . . . ,znv

as a
function of the sequence of validation responses n0, . . . ,nnv

without resetting
the rates of the prediction population. Where ε is a function which measures
error given a stimulus and the natural parameters of a belief density, we then
compute the average of the error measure EZ =

∑nv

i=0
ε(xi ,ΘZ ·zi)

nv
.

By computing the average error EOpt =
∑nv

i=0
ε(xi ,θ k)

nv
on the belief param-

eters θ k of the closed-form filters described with equation 21, we compute a
lower-bound on the error of the trained circuits. Conversely, since any use-
ful filter must provide more information about the stimulus then the instan-
taneous responses, we compute EN =

∑nv

i=0
ε(xi ,ΘN ·ni)

nv
to provide a performance

upper-bound. Finally, by computing the ratio r = EZ−EN
EOpt−EN

, we may express the
performance of the neural circuit in question as a percentage of the distance

25

achieved from the upper- to the lower-bound.
In the first two experiments we validate our model by computing the aver-

age negative log-likelihoods of the approximate beliefs given the true stimuli;
that is, ε(x,θ) = − log q(x), where q is the exponential family density described
in relation 5 with parameters θ . In these experiments we can compute the true
beliefs of the Bayes filter based on knowledge of the stimulus dynamics. The
true beliefs have minimal negative log-likelihood, and the smaller the differ-
ence between the average negative log-likelihood of the approximate beliefs
and true beliefs, the better our neural circuit has implemented a Bayes’ filter.

In the third experiment we model a two-dimensional stimulus with a stochas-
tic pendulum, where the first dimension in the angle and the second is the
angular velocity. We define the tuning curves of the observation population
as the concatenation of a set of von Mises and normal tuning curves, and the
exponential family density which corresponds to these tuning curves is the
product density of a von Mises density and a normal density. Because von
Mises densities cannot be computed in closed-form, we cannot evaluate the
corresponding negative log-likelihoods. Therefore, we instead take our error
measure to be the average squared error of the mean of the belief density
from the true stimulus, such that ε(q, q̇,θ vM ,θ n) =

(q−µ1(θ vM))2+(q̇−µ2(θ n))2

2 , where
(µvM(θ vM),µn(θ n)) is the mean of of the bivariate von Mises-normal density
with parameters θ = (θ vM ,θ n).

Since pendula are nonlinear dynamical systems and the tuning curves are
von Mises, we cannot exactly compute the true Bayes filter for the third exper-
iment. An extended Kalman filter (EKF) is an algorithm for approximate fil-
tering of nonlinear dynamical systems, however the predictions of an EKF can
only be computed as a function multivariate normal beliefs, not von Mises-
normal beliefs. Nevertheless, when the concentration parameter of the von
Mises density is high, it is approximately equal to the inverse variance of the
density, and the von Mises density is approximately normal. We therefore com-
pute approximate EKF predictions in the following manner.

First note that if the von Mises-normal beliefs at some time are given by
some natural parameters θ , then we may equivalently express this density
with the parameters (µvM ,κ,µn,σ2), where κ is the concentration of the von
Mises density, and σ2 is the variance of the normal density. We convert this
density into a multivariate normal density by setting the mean µEKF of the
multivariate normal to µEKF = (µvM ,µn), and the covariance matrix ΣEKF to
a diagonal matrix with first component ΣEKF,(1,1) = 1/κ and second compo-
nent ΣEKF,(2,2) = σ2. After computing the multivariate normal predictions with
parameters µ∗EKF and Σ∗EKF as a function of the parameters µEKF and ΣEKF

with the EKF, we convert the multivariate normal predictions back into von

26

Mises-normal predictions by setting (µ∗vM ,µ∗n) = µ
∗
EKF , κ∗ = Σ∗EKF,(1,1), and

(σ2)∗ = Σ∗EKF,(2,2). After computing the approximate predictions, we apply
Bayes’ rule by evaluating equation 21 in the usual manner. As we later show,
when the concentration of the von Mises density is high, this provides an ef-
fective filter for this nonlinear, von Mises-normal system.

Finally, in the last two experiments we also estimate the tuning curves of the
hidden layer of the prediction network with respect to the stimuli. We estimate
these tuning curves by simulating the trained neural circuits for nv steps, and
then sorting these steps into bins, where each bin contains the activity of the
hidden layer of the prediction network when the stimulus is near a particular
stimulus value. We then average the rate of each hidden neuron in each bin,
in order to estimate the mean activity of the hidden neuron given the stimulus
which corresponds to the bin.

5.2 Results

In this section we simulate three experiments which model how a neural cir-
cuit learns to implement a Bayes filter. The three stimuli are colour sequences
which we model as a finite-state Markov chain; the position of a mouse on a
track which we model as a 1-dimensional linear dynamical system; and the
angle and angular velocity of a human arm, which we model as a pendulum.
In the first experiment the tuning curves of the observation population are de-
signed to ensure that the sum of the tuning curves is exactly constant. In the
second experiment the tuning curves are Gaussian, and in the third experiment
the tuning curves are a product of a von Mises and a Gaussian tuning curve. In
both the second and third experiments the tuning curves tile the space of the
stimulus so that the sum of the tuning curves is approximately constant.

5.2.1 Colour Sequence Learning

In this simulated experiment we imagine that subjects are shown sequences
of colours drawn from red, green, and blue. The colours are described by a
Markov chain, such that each colour has a certain probability of appearing
based on the previously seen colour. Subjects must learn to predict the se-
quence as well as possible. We assume that the stimuli change quickly, so that
subjects do not always perceive the stimulus before it transitions to the next
stimulus value. We consider how this problem might be solved in the ventral
stream, and model colour-sensitive neurons in the visual area V4 with the ob-
servation population, and sequence-learning neurons in the inferior temporal
cortex with the prediction and filtering populations (Roe et al., 2012).

27

For simplicity, let us denote the three colour values by r, g, and b. The
transition probabilities of the Markov chain are

pX ′|X (r | r) = pX ′|X (b | b) = 0.8, pX ′|X (g | g) = 0.5,

pX ′|X (r | g) = pX ′|X (b | g) = 0.25, pX ′|X (g | r) = pX ′|X (g | b) = 0.15,

pX ′|X (b | r) = pX ′|X (r | b) = 0.05.

Intuitively, blue tends to stay blue and red tends to stay red, whereas green
is a relatively transitory state. Moreover, red and blue tend to first transition
through green before reaching blue and red, respectively.

We assume that the observation population has dN = 10 neurons, and that
the gain γ = 1. We define the tuning curve of neuron i given blue as fi(b) =
e0.4(i−1)−5, given red as fi(r) = f10−i(b) and given green as fi(g) =

1
n

∑10
i=1 fi(b).

This construction ensures that equation 11 is satisfied exactly. Intuitively, the
low-index neurons of the observation population respond to red, the high-
index neurons respond to blue, and the observation population responds with
a uniform pattern of activity to green, which provides little information about
the true colour. Finally, we set the number of hidden neurons in the prediction
network to dH = 100.

We depict the results of the simulations of the NV-EF, NV-CD, OT-EF, and
OT-CD circuits in figure 6. As displayed in the left panel, the circuit which best
approximates the true beliefs of the Bayes filter is the orthogonal circuit trained
with the exponential family approximation of the stochastic cross-entropy gra-
dient (solid red), which achieves r = 95.4% of the performance of the Bayes
filter. In this experiment, because equation 11 is exactly satisfied, it is unsur-
prising that the EF gradient produces the best results, as it is in fact equal to the
true stochastic gradient. It is surprising, however, that the choice of population
code has such a dramatic effect on the learning. Where the orthogonal circuits
more or less completely recover the true beliefs, the naive circuits cannot even
surpass the baseline provided by the responses.

In the right panels of figure 6 we display 30 steps of a simulation from this
system. In the top right panel we use the opacities of coloured squares to show
the dynamic beliefs of both the optimal and OT-EF filter, and one can see how
the beliefs of the two filters are nearly identical. In the bottom right panel we
show the corresponding population responses. In total, the observation pop-
ulation spikes 25 times over the course of the simulation. Both filters initially
recognize that the stimulus is blue. However, in the middle of the simulation
when the stimulus changes to red and back to blue again, the filters cannot
recognize this, as no spikes reveal this transition.

28

A
v
e
ra

g
e
 N

e
g
a
ti

v
e
 L

o
g
-L

ik
e
lih

o
o
d

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20
Epoch

Learned

Stimulus

Optimal

0 10 20 30
Step

Red

Blue

0 10 20 30
Step

Figure 6: Colour Sequence Training and Simulation: Here we depict the training
of the proposed neural circuits, and a simulation with the OT-EF circuit. Left: The
average negative log-likelihood of the approximate beliefs given the stimuli over each
epoch. We display the descent of the NV-EF circuit (blue), the NV-CD circuit (dashed
blue), the OT-EF circuit (red) and the OT-CD circuit (dashed red). We also depict
the baseline (black) provided by the population responses and the optimum (green)
computed by the discrete Bayes filter. Top Right: A simulation from the Markov chain
(coloured circles), as well as the learned an optimal filters. The beliefs of the optimal
filter (top) and the learned filter (bottom) are indicated by the opacity of a colour,
which corresponds to the inferred probability of the stimulus value. Bottom Right: The
responses of the observation population over the 30 steps of the simulation. Spikes
(black diamonds) from a particular neuron are arranged along the x-axis in accordance
with the neuron index.

5.2.2 Self-Localization

In this simulated experiment we imagine that a mouse is confined to a one-
dimensional track, and explores the local track while avoiding straying too
far from its home position. We model the dynamics of the position of the
mouse with a stochastic, one-dimensional, linear dynamical system. We wish
to understand how the mouse learns to track its position in a novel environment
with place cells in the hippocampus, given noisy position estimates provided by
visual cues (McNaughton et al., 2006). We model place cells with the filtering
population, and cue-sensitive cells with the observation population.

Since the position of the mouse is a continuous-time variable, we describe
it with the linear stochastic differential equation

dX t = aX t d t + bdWt ,

29

P
o
si
ti
o
n

-2

-1

0

1

2

0 0.5 1 1.5 2
Time

A
v
g
.
-L

o
g
-L

ik
e
lih

o
o
d

0

0.5

1

1.5

2

0 5 10 15 20
Epochs

A
ct
iv
a
ti
o
n

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3
Position

Figure 7: Self-Localization Training and Simulation: Here we depict the training
of the proposed neural circuits, and simulations with the OT-EF circuit. Top Right:
The descent of the negative log-likelihood using the same colour scheme as in figure
6. Left: A simulation from the dynamical system, where we depict the stimulus (black
line), and the dynamic mean of the response posteriors (black dots), the optimal belief
density (green line), and the learned belief density (red line). Bottom Right: Six tuning
curves from the hidden layer of the prediction network.

where Wt is a Wiener process. Where h is the time-step, this implies that the
transition density pX ′|X of the time-discretized system at x is a normal density
with mean x + hax and variance hb2. In our case we let a = −1, b = 1,
and h = 0.02. We then define the observation population to have dN = 10
neurons with the 1-d Gaussian tuning curves defined in equation 4, with gain
γ= h·100= 2, preferred stimuli x0

i distributed evenly over the interval [−7, 7],
and variance σ2 = 2. Finally, we set the number of hidden neurons of the
prediction network to dH = 200.

We depict the results of the four simulations in figure 7. As depicted in
the top right panel, the orthogonal circuit trained with the exponential family
approximation (red) best approximates the optimal filter, achieving r = 96.0%
of the performance of the optimal filter, which is slightly better than the OT-
CD circuit. In the left panel we display a 2 second simulation from the system.
The black dots indicate the mean of the posterior pX |N=nk

of each response nk

from equation 8 under the assumption of a flat prior. The mean of the optimal
beliefs (green line) given these responses is very close to the true stimulus, and
the mean of the learned beliefs (red line) is nearly identical to the optimum.
In the bottom right panel we display six approximate tuning curves from the

30

hidden layer of the trained multilayer perceptron g, which we find to have
learned sigmoid tuning curves over the stimuli.

5.2.3 Proprioception

In this final simulated experiment we imagine that a human is trying to op-
timize its forward model of the swing of its arm. We focus on the role of the
cerebellum in proprioception, and assume that Purkinje cells in the cerebellum
receive information about the angle and angular velocity of the shoulder from
proprioceptors, and use this information to drive a forward model of arm posi-
tion (Kawato et al., 2003; Franklin and Wolpert, 2011). We model the neural
populations in the cerebellum with the prediction and filtering populations,
and the proprioceptors with the observation population.

For simplicity, we assume that the arm may be described by a single rigid
body at a joint, and that the subjects use random motions of the arm in order
to explore its dynamics. We therefore model the arm as a stochastic pendulum,
which is a two-dimensional stochastic process over the angular position q, and
the angular velocity q̇. We define the discrete-time transition dynamics pX ′|X
of the stochastic pendulum at x= (q, q̇) as a multivariate normal density with
mean x + ha(x) and covariance matrix h2Σ, where h is the time-step. The
function a is known as the drift, and is given by

a1(q, q̇) = q̇,

a2(q, q̇) = −g sin(q)− cq̇,

where g = 9.81 is the gravitational constant and c = 0.1 is the coefficient of
friction. We define the covariance matrix of the process by

Σ(1,1)(q, q̇) = Σ(1,2)(q, q̇) = Σ(2,1)(q, q̇) = 0,

Σ(2,2)(q, q̇) = σ2
q̇ ,

where σ2
q̇ = 1 is the variance of the noise process. By restricting the noise to

the velocity, we may interpret the noise to be the result of the subject applying
random forces to its arm. Finally, we define h= 0.02.

We define the gain of the emission density pN |X by γ= h · 100= 2, and we
define the tuning curves of pN |X with two independent sets of tuning curves
over the angle and angular velocity, such that half the neurons in the observa-
tion population respond to angle, and the other half to angular velocity. Since
the angle is periodic, we define the tuning curves over the angle as a set of von
Mises tuning curves

fi(q) = eκ cos(q−q0
i),

31

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

0

0.5

1

1.5

2

2.5

0 5 10 15 20
Epochs

A
ct
iv
a
ti
o
n

0

0.2

0.4

0.6

0.8

1

ππ/20-π/2-π
Angle

A
ct
iv
a
ti
o
n

0

0.2

0.4

0.6

0.8

1

ππ/20-π/2-π
Angle

A
n
g
le

π

π/2

0

-π/2

-π

0 1 2 3 4
Time

A
n
g
u
la

r
V

e
lo

ci
ty

-7.5
-5

-2.5
0

2.5
5

7.5
10

0 1 2 3 4
Time

Figure 8: Proprioception Training and Simulation: Here we depict the training of
the proposed neural circuits, and simulations with the OT-CD circuit. Top Right: The
descent of the mean squared error of the approximate beliefs using the same colour
scheme in figure 6, where green indicates the approximate EKF beliefs. Top Right:
Two tuning curves from the hidden layer of the multilayer perceptron. The stimulus
angle is plotted on the x-axis, and the stimulus angular velocity is indicated by the
colours from red to black, where black indicates an angular velocity of -6, and red
indicates a velocity of 6. Bottom: Simulation of the angle and angular velocity from
the dynamical system. We depict the stimulus (black line), and the dynamic mean of
the response posteriors (black dots), the approximate EKF belief density (green line),
the approximate KF belief density (blue line), and the learned belief density (red line).

32

with 10 preferred stimuli q0
i distributed evenly over the period [−π,π], and

concentration κ = 1/2. The tuning curves over the angular velocity are again
1-dimensional Gaussian tuning curves as defined in equation 4 with 10 pre-
ferred stimuli distributed evenly over the interval [−12, 12], and covariance
σ2 = 4. The sufficient statistic of the exponential family determined by these
tuning curves is s(q, q̇) = (cos q, sin q, q̇, q̇2). The matrix ΘN is a diagonal block
matrix in four quadrants, with the parameters in the upper-left and lower-right
quadrants defined by the parameters of the two sets of tuning curves, and with
the parameters in the upper-right and lower-left quadrants equal to zero. In
total, the neural populations have dN = dY = dZ = 20 neurons, and we set the
number of neurons in the hidden layer of the prediction network g to dH = 500.

We depict the results of the four simulations in figure 8. As displayed in the
top left panel, the circuit which best approximates the optimal beliefs, by an
extremely slim margin over the OT-EF circuit, is the orthogonal circuit trained
with the contrastive divergence minimization (dashed red), which achieves
r = 89.7% of the performance of the approximate EKF. In the lower two panels
we depict a 4 second simulation from the system. The black dots, green line,
and red line indicate the mean of the response posteriors, the approximate EKF,
and the learned beliefs, as in the previous section. The blue line indicates the
mean of an approximate Kalman filter with linear dynamics given by the small-
angle approximation, and which updates its beliefs with the same strategy as
the approximate EKF. As can be seen, a straightforward linear model is not
sufficient for tracking the nonlinear stimulus.

In the upper right two panels we depict two tuning curves from the hid-
den layer of the trained multilayer perceptron g. We plot the two-dimensional
tuning curves by plotting the stimulus angle on the x-axis, and indicating the
angular velocity with the colour of the line, where black corresponds to -6, and
red to 6. As can be seen in these plots, the tuning curve over the angle is a von
Mises tuning curve, and the angular velocity is a monotonic function, and the
two components interact multiplicatively. Such multiplicative interactions in
neural populations are known as gain-fields, and have been widely applied in
theory (Zipser et al., 1988; Sejnowski, 1995; Pouget and Sejnowski, 1997) and
reported in experiment (Salinas and Thier, 2000; Hwang et al., 2003; Paninski
et al., 2004; Herzfeld et al., 2015).

6 Discussion

In this paper we demonstrated how to define and train a theoretical neural
circuit to approximately implement a Bayes filter, and thereby encode accu-
rate beliefs about an unknown, dynamic stimulus. As depicted in figure 5,

33

this neural circuit is composed of three neural populations called the obser-
vation population, the prediction population, and the filtering population, as
well as a neural network called the prediction network. The observation pop-
ulation generates responses to the stimulus, the prediction population encodes
predictions of the stimulus, the filtering population encodes beliefs about the
stimulus, and the prediction network computes the rates of the prediction pop-
ulation as a function of the rates of the filtering population.

In our work we assume that the parameters of the three neural populations
are fixed, and that our goal is exclusively to optimize the parameters of the
prediction network. Towards this end, we derived the negative log-likelihood
gradient of the parameters of the prediction network given the responses of
the observation population. In addition, we developed a novel approach to
approximating this gradient based on the theory of exponential families.

We demonstrated our methods in three simulated experiments. In the
first experiment we modelled a sequence learning task and neural popula-
tions along the ventral stream, in the second we modelled self-localization and
neural populations in the visual cortex and hippocampus, and in the third we
modelled proprioception optimization, and shoulder joint receptors and neu-
ral populations in the cerebellum. In each experiment we demonstrated how
our circuit recovered most of the performance of an optimal, or near-optimal
filter. Moreover, we found that the hidden layer of the prediction network de-
veloped tuning curves which reproduce well-known experimental findings in
the literature.

In concluding this paper we discuss three topics. Firstly, we discuss how
our work relates to other algorithms for filtering in machine learning and com-
putational neuroscience. Secondly, we provide a deeper analysis of the models
developed and trained in the previous section, and the broader relevance of this
work for experimental neuroscience. Thirdly and finally, we discuss how the
theory we have developed in this paper could be extended to continuous-time
spiking networks, and how it could be applied to modelling noise correlations
in the brain.

6.1 Related Computational Work

To begin, let us consider the relationship between the exponential family gra-
dient (EF) we have introduced in this paper and the contrastive divergence
gradient (CD) for approximating the negative log-likelihood gradient of the
exponential family harmonium (EFH). As can be seen in the gradient descent
panels of figures 6, 7, and 8, the EF gradient in general perform as well or bet-
ter than the CD gradient. Although the advantage is relatively slight, the EF
gradient is also much easier to compute – it requires no additional sampling,

34

and no tuning of the number of contrastive divergence steps. As such, when
the EFH in question approximately satisfies equation 11, it is arguable that the
EF gradient should be applied.

Our method for approximate Bayesian filtering based on an EFH is related
to previous work on approximate filtering with restricted Boltzmann machines
(Sutskever et al., 2009; Boulanger-Lewandowski et al., 2012). Although there
are many differences in the details, our model can essentially be viewed as
a special case of the RNN-RBM model presented in Boulanger-Lewandowski
et al. (2012). However, the predictions and beliefs of Bayesian filtering are
not clearly separated in the RNN-RBM, and the updating of the dynamic pa-
rameters of the RNN-RBM is rather justified as a “mean-field” approximation.
In our case, by extending the work on optimal Bayesian inference with proba-
bilistic population codes (Ma et al., 2006), we present conditions under which
these updates are exact, leading to equations 15, 16, and 18 for optimally im-
plementing Bayes’ rule, and allowing us to describe optimal filters (Beck and
Pouget, 2007; Beck et al., 2011) as special cases of our general model. In short,
the RNN-RBM is arguably overparameterized, as many of the neural circuits it
describes suboptimally implement Bayes’ rule.

Another importance difference between our model and the RNN-RBM is
that we do not apply backpropagation-through-time (BPTT). It has been ar-
gued that BPTT is necessary for these models to learn implicit higher-order
temporal structure (Sutskever, 2013; Makin et al., 2016). In particular, in the
experiment of section 5.2.3, if the observation population does not respond
to the angular velocity of the arm, then BPTT should be required to infer it.
Indeed, in our simulations we have found that training a neural circuit to filter
responses to a pendulum fails when the observation population does not re-
spond to the angular velocity. Nevertheless, there are proprioceptors for both
position and motion (McCloskey, 1978), so this fact does not limit our ability
to model proprioception with our circuit, and if it were required, we could in
principle apply BPTT to infer the missing state variables.

Another model related to our own is the rEFH presented in Makin et al.
(2015), which also depends on an EFH trained with contrastive divergence
minimization to approximate a Bayes filter based on the responses of a dynamic
Poisson population. Despite these similarities, however, there are important
differences between the rEFH and our approach. At every time k, the rEFH
optimizes the joint density of the rates of the filtering population Zk and the
concatenated vector (Nk, Zk−1) of the response of the observation population
and the previous rates of the filtering population, whereas in our circuit and the
RNN-RBM it is the conditional probability of Nk given Zk−1 that is optimized.
Moreover, in the rEFH architecture it is this joint density over Zk and (Nk, Zk−1)
that is modelled as an EFH (Makin et al., 2013), whereas in our circuit the EFH

35

is over the stimuli Xk and responses Nk.
Because the optimization problem is based on the joint density of Zk and

(Nk, Zk−1), the structure of the rEFH circuit is more strict, and so cannot, for ex-
ample, incorporate a multilayer perceptron for computing predictions. More-
over, it is not clear if the rEFH can exactly implement Bayes’ rule, or the op-
timal solutions discussed in sections 3.3 and 3.4. Nevertheless, as reported
in Makin et al. (2016), the rEFH can learn to infer velocities without direct
observation, and without using BPTT. Moreover, in our circuit the gradient de-
scent procedure involves computing expectations in the space of the stimulus
directly, which is difficult to justify biologically, whereas the rEFH applies Gibbs
sampling between two neural populations, which is less problematic. As such,
the training procedure of the rEFH is more biologically realistic Makin et al.
(2015), and choosing either our circuit or the rEFH comes down to a trade-off
between a flexible prediction network and theoretical exactness on one hand,
and a flexible and biologically realistic learning rule on the other.

6.2 Neuroscience Applications

The three simulated experiments we presented in this paper were kept theoret-
ically simple so that they could be validated against optimal models, yet they
can easily be extended to more complex and realistic experimental designs as
required. We consider simulation 5.2.1 in its current form to constitute a sound
experiment, as such a sequence learning experiment could easily be performed
with real subjects, allowing hypothetical networks and circuits to be compared
against subject performance and recorded neural activity. The self-localization
experiment of section 5.2.2 could be expanded to 2-dimensional place cells
by applying 2-d Gaussian tuning curves, and could incorporate models of spa-
tially periodic grid cells in the entorhinal cortex (Moser et al., 2008; Giocomo
et al., 2011) through the application of von Mises tuning curves. Finally, our
work can trivially be extended to include control variables, which would allow
the proprioception task in section 5.2.3 to depend on motor commands and
efference copies (Thrun et al., 2005; Särkkä, 2013; Makin et al., 2015).

One surprising result of our simulations was the dramatic effect that the
choice of population code can have on learning. We considered the naive cir-
cuit which uses the same population code across the observation, prediction,
and filtering populations, and the orthogonal circuit, which uses the code pre-
sented in the supplementary material of Beck et al. (2011) for the prediction
and filtering populations. In the self-localization and proprioception experi-
ments, the naive circuit performs reasonably well, though not nearly as well
as the orthogonal circuit. In the sequence learning experiment, however, the
naive circuit fails to even achieve the upper-bound on the error provided by the

36

instantaneous information in the responses. This finding is in line with compu-
tational (Boulanger-Lewandowski et al., 2012) and experimental (Chang and
Snyder, 2010) evidence which suggests that diverse population codes improves
performance in neural circuits.

Moreover, an important feature which distinguishes these two codes is the
importance of the sum of the rates of the population. When the sum of the
rates of the observation population is constant, then the sum of the rates is
also proportional to the precision of the encoded density (Ma et al., 2006;
Beck et al., 2007). In the naive circuit, this implies that the sums of the rates
of the prediction and filtering populations are also proportional to the precision
of the encoded densities, and since the rates of the three neural populations
are always positive, this enforces a trade-off between encoding accurate beliefs
and adding too much precision when adjusting the rates of the prediction and
filtering populations. In the orthogonal circuit, however, because the rows of
the decoding matrix are mutually orthogonal and orthogonal to the vector of
ones, , the parameters of the encoded density may be adjusted independently,
and the magnitude of the sum of the rates of the filtering population does not
influence the encoded beliefs. Evidently, this provides a much better code for
learning to implement a Bayes filter.

We have also shown that the hidden layer of the prediction network learns
tuning curves over stimuli. In the self-localization experiment (5.2.2), training
the network resulted in sigmoid tuning curves over the unobserved stimuli.
Although sigmoid tuning curves are often found in the brain (Pouget and Se-
jnowski, 1997; Pouget et al., 2000), to the best our knowledge, sigmoid tuning
curves for self-location have not been found in the limbic system. Because it is
a linear circuit with no hidden activity, the optimal circuit described in equa-
tion 22 could avoid this discrepancy. In our experiments, however, we found
that a nonlinear network is required for learning stable neural circuits, and
that we could not successfully train a neural circuit based on a linear predic-
tion network. Moreover, self-localization in general is a nonlinear problem, for
which a linear prediction network would in any case not suffice.

Although it could be the case that there exists an as of yet undiscovered neu-
ral population in the limbic system with tuning curves which match those of our
learned hidden layer, we rather suspect that the model neural circuit which we
tested fails to capture essential features of the self-localization circuitry, and
that the sigmoid tuning curves are a result of this. The exact structure and
connectivity of recurrent connections in the hippocampus and entorhinal cor-
tex remains a highly active area of research, and we believe that our work can
contribute to this research by providing a general framework for exploratory
modelling. By matching the observation, prediction, and filtering populations,
as well as the prediction network, to hypotheses about neural circuitry, the re-

37

sulting performance and internal structure of the circuit can serve to validate
the hypothesis in question. In our simple case, our experiment emphasizes that
a local neural network is insufficient for explaining the activity of hippocampal
place cells, and that a more realistic neural circuit must incorporate additional
neural circuitry, for example from the entorhinal cortex.

In simulation 5.2.3, training the neural circuit resulted in von Mises tun-
ing curves over the angle, and sigmoid tuning curves over the angular velocity,
which interact via multiplication. When the tuning curve over one stimulus
interacts multiplicatively with the tuning curve over another stimulus, it is
known as a gain-field or gain modulation (Salinas and Thier, 2000), and gain-
fields have been found in many areas of the brain (Salinas and Thier, 2000;
Hwang et al., 2003; Paninski et al., 2004). In particular, Herzfeld et al. (2015)
demonstrated that eye position and velocity is encoded by Purkinje cells in the
cerebellum with the same gain-field structure as in our arm-localization circuit.
Although the stimuli in this experiment and our simulated experiment are dif-
ferent, both respective neural circuits must ultimately predict the motion of
parts of the body, and they do so in similar manners.

It is well-known that given data which match population activity for encod-
ing stimuli, gain-fields can arise spontaneously in the hidden layer of multilayer
perceptrons (Zipser et al., 1988). At the same time, Gaussian/sigmoid gain-
fields have been used to model the neural computation of coordinate trans-
formations in the posterior parietal cortex (Sejnowski, 1995; Pouget and Se-
jnowski, 1997), and were found to be especially apt for computing addition
over the encoded variables. In our proprioception experiment, although our
neural circuit is not performing a coordinate transformation per se, it is learn-
ing to add velocity to position at every time, and therefore the emergence of
this particular gain-field fits well into the existing theory. What is novel in
our work however, is that our neural network is not trained solve a standard
regression problem as in Zipser et al. (1988), but is trained rather as part of
a more complex neural circuit for implementing a Bayes filter. As we have
demonstrated, gain-fields continue to emerge in this context.

In our simulated experiments we implemented the prediction networks
with multilayer perceptrons for performance reasons. Nevertheless, the max-
imum likelihood approach we have presented in this paper can be applied to
any parameterized network, and it is entirely possible to apply our method
to optimize the parameters of more biologically plausible prediction networks
and thereby validate more realistic neural circuit models. To reiterate, our the-
ory is not dependent on multilayer perceptrons, but rather only populations of
Poisson-spiking neurons and probabilistic population codes, which are well-
established for explaining the activity of populations of neurons (Dayan and
Abbott, 2005; Pouget et al., 2013).

38

6.3 Future Directions

In concluding our paper we discuss two ways in which we hope to extend
and apply our work in the future. In particular, we discuss how to model a
continuous-time, spiking neural circuit with our methods, and how our model
might be applied to understanding noise correlations in the brain.

Although we described the neural circuit for linear Bayesian filtering pre-
sented in Beck et al. (2011) as a special case of our model, the circuit in Beck
et al. (2011) is both a spiking and continuous-time circuit, which ours is not.
Nevertheless, extending our neural circuit to be spiking and continuous-time is
relatively straightforward. On one hand, as shown in Beck et al. (2011), gener-
ating spikes from the rates of the prediction and filtering populations and using
them as the exclusive basis for neural communication ultimately results in lit-
tle loss of information. On the other hand, a parameterized network with the
form of 22 can in principle be optimized by our method, and the linear transfor-
mations could be made nonlinear for stability and more expressive power. In
unpublished work we have done exactly this, and the initial results are promis-
ing. Nevertheless, there are details and pitfalls specific to the training of such
a continuous-time circuit, which are beyond the scope of this paper.

Understanding noise correlations in neural populations is a major research
area in neuroscience, as they represent a breakdown of the simple understand-
ing of neurons as independent Poisson processes, and affect the efficacy of neu-
ral coding (Averbeck et al., 2006). The only source of noise in our neural circuit
is in the observation population, which is indeed a population of independent
Poisson neurons, and the rates of the prediction and filtering populations are
only random by virtue of being functions of the observation population. This
might suggest that our theoretical neural circuit cannot model noise correla-
tions, however recent research has shown that many patterns of noise correla-
tion in the brain can be explained by correlations resulting from downstream
responses to sensory noise (Kanitscheider et al., 2015). In initial simulations
we have indeed found that the prediction and filtering populations in our neu-
ral circuits exhibit significant noise correlations, and in the future we hope to
use our neural circuit model to explore the extent to which noise correlations
in dynamic neural populations can be explained as the result of sensory noise.

Acknowledgements

This work was partially funded by the DFG Priority Program 1527, Autonomous
Learning. The author would like to thank Nihat Ay, Guido Montufar, Keyan Za-
hedi, and Anna Erzberger, for their comments, advice, and support.

39

References

Amari, S.-i. and Nagaoka, H. (2007). Methods of information geometry, volume
191. American Mathematical Soc.

Arnold, B. C., Castillo, E., Sarabia, J. M., and others (2001). Conditionally
specified distributions: an introduction (with comments and a rejoinder by
the authors). Statistical Science, 16(3):249–274.

Arnold, B. C. and Press, S. J. (1989). Compatible conditional distributions.
Journal of the American Statistical Association, 84(405):152–156.

Averbeck, B. B., Latham, P. E., and Pouget, A. (2006). Neural correlations,
population coding and computation. Nature Reviews Neuroscience, 7(5):358–
366.

Beck, J., Ma, W. J., Latham, P. E., and Pouget, A. (2007). Probabilistic popu-
lation codes and the exponential family of distributions. Progress in Brain
Research, 165:509–519.

Beck, J. M., Latham, P. E., and Pouget, A. (2011). Marginalization in Neu-
ral Circuits with Divisive Normalization. The Journal of Neuroscience,
31(43):15310–15319.

Beck, J. M. and Pouget, A. (2007). Exact inferences in a neural implementation
of a hidden Markov model. Neural computation, 19(5):1344–1361.

Bengio, Y. (2009). Learning Deep Architectures for AI. Foundations and
Trends R© in Machine Learning, 2(1):1–127.

Bengio, Y. and Delalleau, O. (2009). Justifying and generalizing contrastive
divergence. Neural Computation, 21(6):1601–1621.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependen-
cies with gradient descent is difficult. IEEE transactions on neural networks,
5(2):157–166.

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice sys-
tems. Journal of the Royal Statistical Society. Series B (Methodological), pages
192–236.

Boulanger-Lewandowski, N., Bengio, Y., and Vincent, P. (2012). Modeling
temporal dependencies in high-dimensional sequences: Application to poly-
phonic music generation and transcription. arXiv preprint arXiv:1206.6392.

40

Bowers, J. S. and Davis, C. J. (2012). Bayesian just-so stories in psychology
and neuroscience. Psychological bulletin, 138(3):389.

Bubic, A., Von Cramon, D. Y., Schubotz, R. I., Bubic, A., Cramon, D. Y. v., and
Schubotz, R. I. (2010). Prediction, cognition and the brain. Frontiers in
Human Neuroscience, 4:25.

Chang, S. W. C. and Snyder, L. H. (2010). Idiosyncratic and systematic aspects
of spatial representations in the macaque parietal cortex. Proceedings of the
National Academy of Sciences, 107(17):7951–7956.

Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the
future of cognitive science. Behavioral and Brain Sciences, 36(03):181–204.

Clegg, B. A., DiGirolamo, G. J., and Keele, S. W. (1998). Sequence learning.
Trends in cognitive sciences, 2(8):275–281.

Coen-Cagli, R., Kohn, A., and Schwartz, O. (2015). Flexible gating of contex-
tual influences in natural vision. Nature Neuroscience, 18(11):1648–1655.

Dayan, P. and Abbott, L. F. (2005). Theoretical Neuroscience: Computational
and Mathematical Modeling of Neural Systems.

Doya, K. (2007). Bayesian brain: Probabilistic approaches to neural coding. MIT
press.

Ernst, M. O. and Banks, M. S. (2002). Humans integrate visual and haptic
information in a statistically optimal fashion. Nature, 415(6870):429–433.

Fetsch, C. R., Pouget, A., DeAngelis, G. C., and Angelaki, D. E. (2011). Neural
correlates of reliability-based cue weighting during multisensory integration.
Nature Neuroscience, 15(1):146–154.

Fischer, B. J. and Peña, J. L. (2011). Owl’s behavior and neural representation
predicted by Bayesian inference. Nature Neuroscience, 14(8):1061–1066.

Franklin, D. W. and Wolpert, D. M. (2011). Computational mechanisms of
sensorimotor control. Neuron, 72(3):425–442.

Friston, K. (2010). The free-energy principle: a unified brain theory? Nature
Reviews Neuroscience, 11(2):127–138.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images. Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on, (6):721–741.

41

Giocomo, L., Moser, M.-B., and Moser, E. (2011). Computational Models of
Grid Cells. Neuron, 71(4):589–603.

Herzfeld, D. J., Kojima, Y., Soetedjo, R., and Shadmehr, R. (2015). Encoding of
action by the Purkinje cells of the cerebellum. Nature, 526(7573):439–442.

Hinton, G. E. (2002). Training products of experts by minimizing contrastive
divergence. Neural computation, 14(8):1771–1800.

Hwang, E. J., Donchin, O., Smith, M. A., and Shadmehr, R. (2003). A Gain-
Field Encoding of Limb Position and Velocity in the Internal Model of Arm
Dynamics. PLOS Biol, 1(2):e25.

Jaynes, E. T. (2003). Probability theory: the logic of science. Cambridge univer-
sity press.

Kanitscheider, I., Coen-Cagli, R., and Pouget, A. (2015). Origin of information-
limiting noise correlations. Proceedings of the National Academy of Sciences,
112(50):E6973–E6982.

Kawato, M., Kuroda, T., Imamizu, H., Nakano, E., Miyauchi, S., and Yoshioka,
T. (2003). Internal forward models in the cerebellum: fMRI study on grip
force and load force coupling. Progress in brain research, 142:171–188.

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

Knill, D. C. and Pouget, A. (2004). The Bayesian brain: the role of uncertainty
in neural coding and computation. TRENDS in Neurosciences, 27(12):712–
719.

Ma, W. J., Beck, J. M., Latham, P. E., and Pouget, A. (2006). Bayesian inference
with probabilistic population codes. Nature Neuroscience, 9(11):1432–1438.

Makin, J. G., Dichter, B. K., and Sabes, P. N. (2015). Learning to Estimate
Dynamical State with Probabilistic Population Codes. PLoS Comput Biol,
11(11):e1004554.

Makin, J. G., Dichter, B. K., and Sabes, P. N. (2016). Recurrent Exponential-
Family Harmoniums without Backprop-Through-Time. arXiv:1605.05799
[cs, stat]. arXiv: 1605.05799.

Makin, J. G., Fellows, M. R., and Sabes, P. N. (2013). Learning Multisensory
Integration and Coordinate Transformation via Density Estimation. PLoS
Comput Biol, 9(4):e1003035.

42

McCloskey, D. I. (1978). Kinesthetic sensibility. Physiological Reviews,
58(4):763–820.

McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I., and Moser, M.-B.
(2006). Path integration and the neural basis of the ’cognitive map’. Nature
Reviews Neuroscience, 7(8):663–678.

Meyer, T. and Olson, C. R. (2011). Statistical learning of visual transitions
in monkey inferotemporal cortex. Proceedings of the National Academy of
Sciences, 108(48):19401–19406.

Miall, R. C. and Wolpert, D. M. (1996). Forward models for physiological motor
control. Neural networks, 9(8):1265–1279.

Moser, E. I., Kropff, E., and Moser, M.-B. (2008). Place Cells, Grid Cells, and
the Brain’s Spatial Representation System. Annual Review of Neuroscience,
31(1):69–89.

Nielsen, F. and Garcia, V. (2009). Statistical exponential families: A digest with
flash cards. arXiv:0911.4863 [cs].

Paninski, L., Shoham, S., Fellows, M. R., Hatsopoulos, N. G., and Donoghue,
J. P. (2004). Superlinear population encoding of dynamic hand trajectory in
primary motor cortex. The Journal of neuroscience, 24(39):8551–8561.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of training
recurrent neural networks. ICML (3), 28:1310–1318.

Pouget, A., Beck, J. M., Ma, W. J., and Latham, P. E. (2013). Probabilistic brains:
knowns and unknowns. Nature Neuroscience, 16(9):1170–1178.

Pouget, A., Dayan, P., and Zemel, R. (2000). Information processing with pop-
ulation codes. Nature Reviews Neuroscience, 1(2):125–132.

Pouget, A., Dayan, P., and Zemel, R. S. (2003). Inference and computation
with population codes. Annual review of neuroscience, 26(1):381–410.

Pouget, A. and Sejnowski, T. J. (1997). Spatial transformations in the parietal
cortex using basis functions. Journal of cognitive neuroscience, 9(2):222–237.

Roberts, G. O. and Polson, N. G. (1994). On the geometric convergence of the
Gibbs sampler. Journal of the Royal Statistical Society. Series B (Methodolog-
ical), pages 377–384.

43

Roe, A., Chelazzi, L., Connor, C., Conway, B., Fujita, I., Gallant, J., Lu, H., and
Vanduffel, W. (2012). Toward a Unified Theory of Visual Area V4. Neuron,
74(1):12–29.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning repre-
sentations by back-propagating errors. Nature, 323(6088):533–536.

Salinas, E. and Thier, P. (2000). Gain modulation: a major computational
principle of the central nervous system. Neuron, 27(1):15–21.

Sejnowski, A. P. T. J. (1995). Spatial representations in the parietal cortex may
use basis functions. Advances in Neural Information Processing Systems 7,
7:157.

Smolensky, P. (1986). Information processing in dynamical systems: Founda-
tions of harmony theory.

Sutskever, I. (2013). Training recurrent neural networks. PhD thesis, University
of Toronto.

Sutskever, I., Hinton, G. E., and Taylor, G. W. (2009). The Recurrent Temporal
Restricted Boltzmann Machine. In Koller, D., Schuurmans, D., Bengio, Y.,
and Bottou, L., editors, Advances in Neural Information Processing Systems
21, pages 1601–1608. Curran Associates, Inc.

Särkkä, S. (2013). Bayesian filtering and smoothing. Number 3. Cambridge
University Press.

Talbott, W. (2015). Bayesian Epistemology. In Zalta, E. N., editor, The Stanford
Encyclopedia of Philosophy. Summer 2015 edition.

Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic robotics. MIT press.

Todorov, E. and Jordan, M. I. (2002). Optimal feedback control as a theory of
motor coordination. Nature neuroscience, 5(11):1226–1235.

Wainwright, M. J. and Jordan, M. I. (2008). Graphical models, exponential
families, and variational inference. Foundations and Trends R© in Machine
Learning, 1(1-2):1–305.

Welling, M., Rosen-Zvi, M., and Hinton, G. E. (2004). Exponential family har-
moniums with an application to information retrieval. In Advances in neural
information processing systems, pages 1481–1488.

44

Werbos, P. J. (1990). Backpropagation through time: what it does and how to
do it. Proceedings of the IEEE, 78(10):1550–1560.

Zemel, R. S., Dayan, P., and Pouget, A. (1998). Probabilistic interpretation of
population codes. Neural computation, 10(2):403–430.

Zipser, D., Andersen, R. A., et al. (1988). A back-propagation programmed
network that simulates response properties of a subset of posterior parietal
neurons. Nature, 331(6158):679–684.

45

	1 Introduction
	2 Inference
	2.1 Bayes' Rule
	2.2 Poisson Neurons
	2.3 Linear Probabilistic Population Codes
	2.4 Stimulus-Independent Total Rate
	2.5 Neural Bayes' Rule

	3 Dynamics
	3.1 Dynamic Poisson Populations
	3.2 Bayesian Filtering
	3.3 Closed-Form Solutions
	3.4 Optimal Filtering in Neural Circuits

	4 Learning
	4.1 Approximate Filtering in Neural Circuits
	4.2 Computing the Gradient
	4.3 Approximating the Harmonium Expectations

	5 Simulations
	5.1 Methods
	5.1.1 Population Parameters
	5.1.2 Prediction Network and Training Procedure
	5.1.3 Validation

	5.2 Results
	5.2.1 Colour Sequence Learning
	5.2.2 Self-Localization
	5.2.3 Proprioception

	6 Discussion
	6.1 Related Computational Work
	6.2 Neuroscience Applications
	6.3 Future Directions

	References

