
Blind nonnegative source separation using
biological neural networks

Cengiz Pehlevan1, Sreyas Mohan1,2, and Dmitri B. Chklovskii1,3

1Center for Computational Biology, Flatiron Institute, New York,
NY

2IIT Madras, Chennai, India
3NYU Medical School, New York, NY

Abstract

Blind source separation, i.e. extraction of independent sources from
a mixture, is an important problem for both artificial and natural signal
processing. Here, we address a special case of this problem when sources
(but not the mixing matrix) are known to be nonnegative, for example,
due to the physical nature of the sources. We search for the solution to
this problem that can be implemented using biologically plausible neural
networks. Specifically, we consider the online setting where the dataset
is streamed to a neural network. The novelty of our approach is that we
formulate blind nonnegative source separation as a similarity matching
problem and derive neural networks from the similarity matching objective.
Importantly, synaptic weights in our networks are updated according to
biologically plausible local learning rules.

1 Introduction
Extraction of latent causes, or sources, from complex stimuli is essential for making
sense of the world. Such stimuli could be mixtures of sounds, mixtures of odors,
or natural images. If supervision, or ground truth, about the causes is lacking, the
problem is known as blind source separation.

The blind source separation problem can be solved by assuming a generative
model, wherein the observed stimuli are linear combinations of independent sources,
an approach known as Independent Component Analysis (ICA) (Jutten and Herault,
1991; Comon, 1994; Bell and Sejnowski, 1995; Hyvärinen and Oja, 2000). Formally,

1

ar
X

iv
:1

70
6.

00
38

2v
1 

 [
q-

bi
o.

N
C

] 
 1

 J
un

 2
01

7



the stimulus at time t is expressed as a k-component vector

xt = Ast, (1)

where A is an unknown but time-independent k×d mixing matrix and st represents
the signals of d sources at time t. In this paper we assume that k ≥ d.

The goal of ICA is to infer source signals, st, from the stimuli xt. Whereas
many ICA algorithms have been developed by the signal processing community
(Comon and Jutten, 2010), most of them cannot be implemented by biologically
plausible neural networks. Yet, our brains can solve the blind source separation
problem effortlessly (Bronkhorst, 2000; Asari et al., 2006; Narayan et al., 2007;
Bee and Micheyl, 2008; McDermott, 2009; Mesgarani and Chang, 2012; Golumbic
et al., 2013; Isomura et al., 2015). Therefore, discovering a biologically plausible
ICA algorithm is an important problem.

For an algorithm to be implementable by biological neural networks it must
satisfy (at least) the following requirements. First, it must operate in the online
(or streaming) setting. In other words, the input dataset is not available as a
whole but is streamed one data vector at a time and the corresponding output
must be computed before the next data vector arrives. Second, the output of most
neurons in the brain (either a firing rate, or the synaptic vesicle release rate) is
nonnegative. Third, the weights of synapses in a neural network must be updated
using local learning rules, i.e. depend on the activity of only the corresponding
pre- and postsynaptic neurons.

Given the nonnegative nature of neuronal output we consider a special case
of ICA where sources are assumed to be nonnegative, termed Nonnegative In-
dependent Component Analysis (NICA), (Plumbley, 2001, 2002). Of course, to
recover the sources, one can use standard ICA algorithms that don’t rely on the
nonnegativity of sources, such as fastICA (Hyvärinen and Oja, 1997; Hyvarinen,
1999; Hyvärinen and Oja, 2000). Neural learning rules have been proposed for
ICA, e.g. (Linsker, 1997; Eagleman et al., 2001; Isomura and Toyoizumi, 2016)
and references within. However, taking into account nonnegativity may lead to
simpler and more efficient algorithms (Plumbley, 2001, 2003; Plumbley and Oja,
2004; Oja and Plumbley, 2004; Yuan and Oja, 2004; Zheng et al., 2006; Ouedraogo
et al., 2010; Li et al., 2016).

While most of the existing NICA algorithms have not met the biological
plausibility requirements, in terms of online setting and local learning rules, there
are two notable exceptions. First, Plumbley (2001) succesfully simulated a neural
network on a small dataset, yet no theoretical analysis was given. Second, Plumbley
(2003) and Plumbley and Oja (2004) proposed a nonnegative PCA algorithm for a
streaming setting, however its neural implementation requires nonlocal learning
rules. Further, this algorithm requires prewhitened data (see also below), yet no
streaming whitening algorithm was given.

2



Here, we propose a biologically plausible NICA algorithm. The novelty of our
approach is that the algorithm is derived from the similarity matching principle
which postulates that neural circuits map more similar inputs to more similar
outputs (Pehlevan et al., 2015). Previous work proposed various objective functions
to find similarity matching neural representations and solved these optimization
problems with biologically plausible neural networks (Pehlevan et al., 2015; Pehle-
van and Chklovskii, 2015a, 2014; Hu et al., 2014; Pehlevan and Chklovskii, 2015b).
Here we apply these networks to NICA.

The rest of the paper is organized as follows: In Section 2, we show that
blind source separation, after a generalized prewhitening step, can be posed as a
nonnegative similarity matching (NSM) problem (Pehlevan and Chklovskii, 2014).
In Section 3, using results from (Pehlevan and Chklovskii, 2015a, 2014) we show
that both the generalized prewhitening step and the NSM step can be solved online
by neural networks with local learning rules. Stacking these two networks leads to
the two-layer NICA network. In Section 4, we compare the performance of our
algorithm to other ICA and NICA algorithms for various datasets.

2 Offline NICA via NSM
In this section, we first review Plumbley’s analysis of NICA and then reformulate
NICA as an NSM problem.

2.1 Review of Plumbley’s analysis
When source signals are nonnegative, the source separation problem simplifies.
It can be solved in two straightforward steps: noncentered prewhitening and
orthonormal rotation (Plumbley, 2002).

Noncentered prewhitening transforms x to h := Fx, where h ∈ Rd and F
is a d × k whitening matrix1, such that Ch :=

〈
(h− 〈h〉) (h− 〈h〉)>

〉
= Id,

where angled brackets denote an average over the source distribution and Id
is the d × d identity matrix. Note that the mean of x is not removed in the
tranformation, otherwise one would not be able to use the constraint that the
sources are nonnegative (Plumbley, 2003).

Assuming that sources have unit variance2,

Cs :=
〈
(s− 〈s〉) (s− 〈s〉)>

〉
= Id, (2)

1In his analysis Plumbley (Plumbley, 2002) assumed k = d (mixture channels are the same as
source channels) but this assumption can be relaxed as shown.

2Without loss of generality, a scalar factor that multiplies a source can always be absorbed
into the corresponding column of the mixing matrix

3



-6 -4 -2 0 2 4 6

0

2

4

6

Sources Mixtures Prewhitened

s1

s2

-6 -4 -2 0 2 4 6

0

2

4

6

x1

x2

-6 -4 -2 0 2 4 6

0

2

4

6

h1

h2

Figure 1: Illustration of the NICA algorithm. Two source channels (left) are
linearly transformed to a two-dimensional mixture (middle). Prewhitening (right)
gives an orthogonal transformation of the sources. Sources are then recovered by
solving the NSM problem (7). Green and red plus signs track two source vectors
across mixing and prewhitening stages.

the combined effect of source mixing and prewhitening FA (h = Fx = FAs) is an
orthonormal rotation. To see this, note that, by definition, Ch = (FA) Cs (FA)> =
(FA) (FA)> and Ch = Id.

The second step of NICA relies on the following observation (Plumbley, 2002):

Theorem 1 (Plumbley). Suppose sources are independent, nonnegative and well-
grounded, i.e. Prob(si < δ) > 0 for any δ > 0. Consider an orthonormal transfor-
mation y = Qs. Then Q is a permutation matrix with probability 1, if and only if
y is nonnegative.

In the second step, we look for an orthonormal Q such that y = Qh is nonneg-
ative. When found, Plumbley’s theorem guarantees that QFx is a permutation
of the sources. Several algorithms have been developed based on this observation
(Plumbley, 2003; Plumbley and Oja, 2004; Oja and Plumbley, 2004; Yuan and Oja,
2004).

Note that only the sources s but not necessarily the mixing matrix A must
be nonnegative. Therefore, NICA allows generative models, where features not
only add up but also cancel each other, as in the presence of a shadow in an image
(Plumbley, 2002). In this respect, NICA is more general than Nonnegative Matrix
Factorization (NMF) (Lee and Seung, 1999; Paatero and Tapper, 1994) where
both the sources and the mixing matrix are required to be nonnegative.

2.2 NICA as NSM
Next we reformulate NICA as a NSM problem. This reformulation will allow us to
derive an online neural network for NICA in Section 3. Our main departure from

4



Plumbley’s analysis is to work with similarity matrices rather than covariance
matrices and finite number of samples rather than the full probability distribution
of the sources.

First, let us switch to the matrix notation, where data matrices are formed by
concatenating data column vectors, e.g. X = [x1,x2, ...,xt] so that X ∈ Rk×t, and
S = [s1, s2, ..., st] so that S ∈ Rd×t. In this notation, we introduce a time-centering
operation δ such that, for example, time-centered stimuli are δX := X− X̄ where
X̄ := X1

t
11> and 1 is a t dimensional column vector whose elements are all 1’s.

Our goal is to recover S from X = AS, where A is unknown. We make
the following two assumptions: First, sources are nonnegative and decorrelated,
1
t
δS δS> = Id. Note that while general ICA and NICA problems are stated with

the independence assumption on the sources, for our purposes, it is sufficient that
they are only decorrelated. Second, the mixing matrix, A ∈ Rk×d (k ≥ d), is
full-rank.

We propose that the source matrix, S, can be recovered from X in the following
two steps, also illustrated in Fig. 1:

1. Generalized Prewhitening: Transform X to H = FX, where F is l×k with
l ≥ d, so that 1

t
δH δH> has d unit eigenvalues and l−d zero eigenvalues. When

l = d, H is whitened, otherwise channels of H are correlated. Such prewhitening
is useful because it implies H>H = S>S according to the following theorem.

Theorem 2. If F ∈ Rl×k(l ≥ k) is such that H = FX obeys

1
t
δH δH> = UHΛHUH>, (3)

an eigenvalue decomposition with ΛH = diag
(
1, . . . , 1︸ ︷︷ ︸

d

, 0, . . . , 0︸ ︷︷ ︸
l−d

)
, then

H>H = S>S. (4)

Proof. To see why (3) is sufficient, first note that 1
t
δH δH> = (FA) (FA)>.

This follows from the definition of H and (2). If (3) holds, then

(FA) (FA)> = UHΛHUH>. (5)

In turn, this is sufficient to prove that (FA)> (FA) = Id. To see that, assume an
SVD decomposition of (FA) = UFAΛFAVFA>. (5) implies that ΛFAΛFA> =
ΛH , i.e. that the d diagonal elements of ΛFA ∈ Rl×d are all 1’s. Then,

(FA)> (FA) = Id. (6)

This gives us the desired results H>H = S> (FA)> (FA) S = S>S.

5



Remark 1. If l > d, the channels of H are correlated, except in the special case
UH = Id. The whitening used in Plumbley’s analysis (Plumbley, 2002) requires
l = d.

2. NSM: Solve the following optimization problem:

Y∗ = arg min
Y,Y≥0

∥∥∥H>H−Y>Y
∥∥∥2

F
, (7)

where the optimization is performed over nonnegative Y := [y1, . . . ,yt] i.e.
yi ∈ Rd

+. We call (7) the NSM cost function (Pehlevan and Chklovskii, 2014).
Because inner products quantify similarities we call H>H and Y>Y input and
output similarity matrices, i.e. their elements hold the pairwise similarities
between input and the pairwise similarities between output vectors, respectively.
Then, the cost function (7) preserves the input similarity structure as much as
possible under the nonnegativity constraint. Variants of (7) has been considered
in applied math literature under the name “nonnegative symmetric matrix
factorization” for clustering applications, e.g. (Kuang et al., 2012, 2015).
Now we make our key observation. Using Theorem 2, we can rewrite (7) as

Y∗ = arg min
Y,Y≥0

∥∥∥S>S−Y>Y
∥∥∥2

F
. (8)

Since both S and Y are nonnegative, rank-d matrices, Y∗ = PS, where P is a
permutation matrix, is a solution to this optimization problem and the sources
are successfully recovered.
Uniqueness of the solutions (up to permutations) is hard to establish. While
both sufficient conditions, and necessary and sufficient conditions for uniqueness
exist, these are non-trivial to verify and usually the verification is NP-complete
(Donoho and Stodden, 2003; Laurberg et al., 2008; Huang et al., 2014). A
review of related uniqueness results can be found in (Huang et al., 2014). A
necessary condition for uniqueness given in (Huang et al., 2014) states that, if
the factorization of S>S to Y>Y is unique (up to permutations), then each row
of S contains at least one element that is equal to 0. This necessary condition is
similar to Plumbley’s well-groundedness requirement used in proving Theorem
1.
The NSM problem can be solved by projected gradient descent,

Y←− max
(
Y + η

(
YH>H−YY>Y

)
, 0
)
, (9)

where the max operation is applied elementwise, and η is the size of the gradient
step. Other algorithms can be found in (Kuang et al., 2012, 2015; Huang et al.,
2014).

6



3 Derivation of NICA neural networks from sim-
ilarity matching objectives

Our analysis in the previous section revealed that the NICA problem can be
solved in two steps: generalized prewhitening and nonnegative similarity matching.
Here, we derive neural networks for each of these steps and stack them to give a
biologically plausible two-layer neural network that operates in a streaming setting.

In a departure from the previous section, the number of output channels is
reduced to the number of sources at the prewhitening stage rather than the later
NSM stage (l = d). This assumption simplifies our analysis significantly. The full
problem is addressed in Appendix B.

3.1 Noncentered prewhitening in a streaming input set-
ting

To derive a neurally plausible online algorithm for prewhitening, we pose generalized
prewhitening, Eq. (3), as an optimization problem. Online minimization of this
optimization problem gives an algorithm that can be mapped to the operation of
a biologically plausible neural network.

Generalized prewhitening solves a constrained similarity alignment problem:

max
δH

Tr
(
δX>δX δH>δH

)
s.t. δH>δH � tIt, (10)

where δX is the k × t centered mixture of d independent sources and δH is a
d × t matrix, constrained such that tIt − δH>δH is positive semidefinite. The
solution of this objective aligns similarity matrices δX>δX and δH>δH so that
their right singular vectors are the same (Pehlevan and Chklovskii, 2015a). Then,
the objective under the trace diagonalizes and its value is the sum of eigenvalue pair
products. Since the eigenvalues of δH>δH are upper bounded by t, the objective
(10) is maximized by setting the eigenvalues of δH>δH that pair with the top d
eigenvalues of δX>δX to t, and the rest to zero. Hence, the optimal δH satisfies
the generalized prewhitening condition (3)(Pehlevan and Chklovskii, 2015a). More
formally,
Theorem 3 (Modified from (Pehlevan and Chklovskii, 2015a)). Suppose an eigen-
decomposition of δX>δX is δX>δX = VXΛXVX>, where eigenvalues are sorted
in decreasing order. Then, all optimal δH of (10) have an SVD decomposition of
the form

δH∗ = UH
√
tΛH ′VX>, (11)

where ΛH ′ is d× t with d ones on top of the diagonal and zeros on the rest of the
diagonal.

7



The theorem implies that, first, 1
t
δH∗ δH∗> = Id, and hence δH satisfies the

generalized prewhitening condition (3). Second, F, the linear mapping between
δH∗ and δX, can be constructed using an SVD decomposition of δX and (11).

The constraint in (10) can be introduced into the objective function using as a
Lagrange multiplier the Grassmanian of matrix δG ∈ Rm×t with (m ≥ d):

min
δH

max
δG

Tr
(
−δX>δX δH>δH + δG>δG

(
δH>δH− tIt

) )
, (12)

This optimization problem (Pehlevan and Chklovskii, 2015a) will be used to derive
an online neural algorithm.

Whereas the optimization problem (12) is formulated in the offline setting,
i.e. outputs are computed only after receiving all inputs, to derive a biologically
plausible algorithm, we need to formulate the optimization problem in the online
setting, i.e. the algorithm receives inputs sequentially, one at a time, and computes
an output before the next input arrives. Therefore, we optimize (12) only for the
data already received and only with respect to the current output:

{δht, δgt} ←− arg min
δht

arg max
gt

Tr
(
−δX>δX δH>δH + δH>δH δG>δG− t δG>δG

)
.

(13)

By keeping only those terms that depend on δht or δgt, we get the following
objective:

{δht, δgt} ←− arg min
δht

arg max
δgt

L(δht, δgt), (14)

where

L = −2δx>t
(
t−1∑
t′=1

δxt′δh>t′
)
δht − t ‖δgt‖2

2 + 2δg>t
(
t−1∑
t′=1

δgt′δh>t′
)
δht

+
(
‖δgt‖2

2 − ‖δxt‖
2
2

)
‖δht‖2

2 .

(15)

In the large-t limit, the first three terms dominate over the last term, which we
ignore. The remaining objective is strictly concave in δgt and convex in δht. We
assume that the matrix 1

t

t−1∑
t′=1

δht′δg>t′ is full-rank. Then, the objective has a unique
saddle point :

δg∗t = WGH
t δh∗t ,

δh∗t =
(
WHG

t WGH
t

)−1
WHX

t δxt, (16)

8



where,

WHX
t := 1

t

t−1∑
t′=1

δht′δx>t′ , WHG
t := 1

t

t−1∑
t′=1

δht′δg>t′ ,

WGH
t := WHG

t

> := 1
t

t′−1∑
t′=1

δgt′δh>t′ . (17)

Hence, Ft :=
(
WHG

t WGH
t

)−1
WHX

t can be interpreted as the current estimate of
the prewhitening matrix, F.

We solve (14) with a gradient descent-ascent

dδht
dγ

= − 1
2t∇δhtL = WHX

t δxt −WHG
t gt,

dδgt
dγ

= 1
2t∇δgtL = −δgt + WGH

t δht. (18)

where γ measures “time” within a single time step of t. Biologically, this is justified
if the activity dynamics converges faster than the correlation time of the input
data. The dynamics (18) can be proved to converge to the saddle point of the
objective (15), see Appendix A.

Equation (18) describes the dynamics of a single-layer neural network with
two-populations, Fig. 2. WHX

t represents the weights of feedforward synaptic
connections, WHG

t and WGH
t represent the weights of synaptic connections between

the two populations. Remarkably, synaptic weights appear in the online algorithm
despite their absence in the optimization problem formulations (12) and (13).
Furthermore, δht neurons can be associated with principal neurons of a biological
circuit and δgt neurons with interneurons.

Finally, using the definition of synaptic weight matrices (17), we can formulate
recursive update rules:

WHX
t+1 = WHX

t + 1
t+ 1

(
δhtδx>t −WHX

t

)
,

WHG
t+1 = WHG

t + 1
t+ 1

(
δhtδg>t −WHG

t

)
,

WGH
t+1 = WGH

t + 1
t+ 1

(
δgtδh>t −WGH

t

)
. (19)

Equations (18) and (19) define a neural algorithm that proceeds in two phases.
After each stimulus presentation, first, (18) is iterated until convergence by the
dynamics of neuronal activities. Second, synaptic weights are updated according
to local, anti-Hebbian (for synapses from interneurons) and Hebbian (for all
other synapses) rules (19). Biologically, synaptic weights are updated on a slower
timescale than neuronal activity dynamics.

9



anti-Hebbian synapsesHebbian

x1

xk

. . .

x2

Principal Inter-neurons

h1

hd

g1

gm

Prewhitening NSM

y1

yd

s1

sd

s2

. . .

A

Mixing { {{

Figure 2: Biologically plausible network for blind source separation. The prewhiten-
ing stage is composed of two populations of linear neurons. The NSM stage has a
single population of rectifying neurons.

Our algorithm can be viewed as a special case of the algorithm proposed in
(Plumbley, 1996, 1994). Plumbley analyzed the convergence of synaptic weights
(Plumbley, 1994) in a stochastic setting by a linear stability analysis of the
stationary point of synaptic weight updates. His results are directly applicable to
our algorithm, and show that, if the synaptic weights of our algorithm converge to
a stationary state, they whiten the input.

Importantly, unlike (Plumbley, 1996, 1994) which proposed the algorithm
heuristically, we derived it by posing and solving an optimization problem.

3.1.1 Computing H̄

The optimization problem (12) and the corresponding neural algorithm, Eqs. (18)
and (19) almost achieve what is needed for noncentered prewhitening, but we still
need to find H̄, since for the NSM step we need H = δH + H̄. We now discuss
how H̄ can be learned along with δH using the same online algorithm.

Our online algorithm for centered-whitening is of the following form. First, a
neural dynamics stage outputs a linear transformation of the input:

δht = Ftδxt, (20)

and, second, synaptic weights and, hence, Ft are updated:

Ft+1 = Ft + δFt(t, δht, δgt,Ft). (21)

We can supplement this algorithm with a running estimate of h̄. Let the running

10



estimate of average stimulus activity be

x̄t = 1
t

t∑
t′=1

xt′ =
(

1− 1
t

)
x̄t−1 + 1

t
xt. (22)

Then,

h̄t = Ftx̄t. (23)

Alternatively, (20) and (23) can be combined into a single step:

ht = Ftxt, (24)

where the network receives uncentered stimuli and prewhitenes it. Note that
assignment (24) can still be done by iterating (18), except now the input is xt
rather than δxt. However, synaptic weights are still updated using δxt = xt − x̄t,
δht = ht − h̄t and δgt = gt − ḡt. Therefore we keep recursive estimates of the
means. Substituting (22) into (24) and using (21)

h̄t =
(

1− 1
t

)
h̄t−1 +

(
1− 1

t

)
δFt−1x̄t−1 + 1

t
ht. (25)

The term
(
1− 1

t

)
δFt−1x̄t−1 requires non-local calculations. Assuming that in the

large-t limit updates to F are small, we can ignore this term and obtain a recursion:

h̄t =
(

1− 1
t

)
h̄t−1 + 1

t
ht. (26)

Finally, a similar argument can be given for ḡt. We keep a recursive estimate of ḡt:

ḡt =
(

1− 1
t

)
ḡt−1 + 1

t
gt. (27)

To summarize, when a new stimulus xt is observed, the algorithm operates in
two steps. In the first step, the following two-population neural dynamics runs
until convergence to a fixed point:

dht
dγ

= WHX
t xt −WHG

t gt,

dgt
dγ

= −gt + WGH
t ht, (28)

The convergence proof for neural dynamics (18) given in Appendix A also applies
here. Besides the synaptic weight, each neuron remembers its own average activity

11



and each synapse remembers average incoming activity. In the second step of the
algorithm, the average activities are updated by:

x̄t =
(

1− 1
t

)
x̄t−1 + 1

t
xt,

h̄t =
(

1− 1
t

)
h̄t−1 + 1

t
ht,

ḡt =
(

1− 1
t

)
ḡt−1 + 1

t
gt. (29)

Synaptic weight matrices are updated recursively by

WHX
t+1 = WHX

t + 1
t+ 1

(
δhtδx>t −WHX

t

)
,

WHG
t+1 = WHG

t + 1
t+ 1

(
δhtδg>t −WHG

t

)
,

WGH
t+1 = WGH

t + 1
t+ 1

(
δgtδh>t −WGH

t

)
. (30)

Once the synaptic updates are done, the new stimulus, xt+1, is processed. We
note again that all the synaptic update rules are local, and hence are biologically
plausible.

3.2 Online NSM
Next, we derive the second-layer network which solves the NSM optimization
problem (7) in an online setting (Pehlevan and Chklovskii, 2014).

The online optimization problem is:

yt ←− arg min
yt,yt≥0

∥∥∥H>H−Y>Y
∥∥∥2

F
. (31)

Proceeding as before, let’s rewrite (31) keeping only terms that depend on yt:

yt ←− arg min
yt,yt≥0

(
2y>t

(
t−1∑
t′=1

yt′y>t′
)

yt − 4h>t

(
t−1∑
t′=1

ht′y>t′
)

yt + ‖yt‖4
2 − 2 ‖ht‖2

2 ‖yt‖
2
2

)
.

(32)

In the large-t limit, the last two terms can be ignored and the remainder is a
quadratic form in yt. We minimize it using coordinate descent (Wright, 2015)
which is both fast and neurally plausible. In this approach, neurons are updated
one-by-one by performing an exact minimization of (32) with respect to yt,i until
convergence:

yt,i ←− max
∑

j

W Y H
t,ij ht,j −W Y Y

t,ij yt,j, 0
 , (33)

12



where

W Y H
t,ij =

∑t−1
t′=1 yt′,iht′,j∑t−1
t′=1 y

2
t′,i

, W Y Y
t,i,j 6=i =

∑t−1
t′=1 yt′,iyt′,j∑t−1
t′=1 y

2
t′,i

, W Y Y
t,ii = 0. (34)

For the next time step (t+ 1), we can update the synaptic weights recursively,
giving us the following local learning rules:

Dt+1,i = Dt,i + y2
t,i,

W Y H
t+1,ij = W Y H

t,ij + 1
Dt+1,i

(
yt,iht,j − y2

t,iW
Y H
t,ij

)
,

W Y Y
t+1,i,j 6=i = W Y Y

t,ij + 1
Dt+1,i

(
yt,iyt,j − y2

t,iW
Y Y
t,ij

)
, W Y Y

t,ii = 0. (35)

Interestingly, these update rules are local and are identical to the single-neuron
Oja rule (Oja, 1982), except that the learning rate is given explicitly in terms of
cumulative activity 1/Dt,i and the lateral connections are anti-Hebbian.

After the arrival of each data vector, the operation of the complete two-layer
network algorithm, Fig. 2, is as follows. First, the dynamics of the prewhitening
network runs until convergence. Then the output of the prewhitening network is
fed to the NSM network, and the NSM network dynamics runs until convergence
to a fixed point. Synaptic weights are updated in both networks for processing the
next data vector.

3.2.1 NICA is a stationary state of online NSM

Here we show that the solution to the NICA problem is a stationary synaptic
weights state of the online NSM algorithm. In the stationary state the expected
updates to synaptic weights are zero, i.e.〈

∆W Y H
ij

〉
= 0,

〈
∆W Y Y

ij

〉
= 0, (36)

where we dropped the t index, and brackets denote averages over the source
distribution.

Suppose the stimuli obey the NICA generative model, Eq. (1), and the
observed mixture, xt, is whitened with the exact (generalized) prewhitening
matrix F described in Theorem 2. Then, input to the network at time, t, is
ht = Fxt = FAst. Our claim is that there exists synaptic weight configurations for
which 1) for any mixed input, xt, the output of the network is the source vector,
i.e. yt = Pst, where P is a permutation matrix, and 2) this synaptic configuration
is a stationary state.

13



We prove our claim by constructing these synaptic weights. For each permu-
tation matrix, we first relabel the outputs such that ith output recovers the ith
source and hence P becomes the identity matrix. Then, the weights are:

W Y Y
ij = 〈si〉 〈sj〉

〈s2
i 〉

, W Y H
ij = 〈sihj〉

〈s2
i 〉

=
∑
k 6=i

(FA)jk
〈sk〉 〈si〉
〈s2
i 〉

+ (FA)ji. (37)

Given mixture xt, NSM neural dynamics with these weights converge to yt,i = st,i,
which is the the unique fixed point3. Furthermore, these weights define a stationary
state as defined in (36) assuming a fixed learning rate. To see this substitute
weights from (37) into the last two equations of (35) and average over the source
distribution. The fixed learning rate assumption is valid in the large-t limit when
changes to Dt,i become small (O(1/t), see (Pehlevan et al., 2015)).

4 Numerical simulations
Here we present numerical simulations of our two-layered neural network using
various datasets and compare the results to that of other algorithms.

In all our simulations, d = k = l = m, except in Fig. 5B where d = k > l = m.
Our networks were initialized as follows:

1. In the prewhitening network, WHX and WHG were chosen to be random
orthonormal matrices. WGH is initialized as WHG> because of its definition
in Eq. (17) and the fact that this choice guarantees the convergence of the
neural dynamics (28) (see Appendix A).

2. In the NSM network, WY H was initialized to a random orthonormal matrix
and WY Y was set to zero.

The learning rates were chosen as follows:

1. For the prewhitening network, we generalized the time-dependent learning
rate (30) to,

1
a+ bt

, (38)

and performed a grid search over a ∈ {10, 102, 103, 104} and b ∈ {10−2, 10−1, 1}
to find the combination with best performance. Our performance measures
will be introduced below.

3Proof: The net input to neuron i at the claimed fixed point is
∑
jW

Y H
ij ht,j−

∑
j 6=iW

Y Y
ij st,j .

Plugging in (37) and ht = FAst, and using (6) one gets that the net input is st,i, which is
also the output since sources are nonnegative. This fixed point is unique and globally stable
because the NSM neural dynamics is a coordinate descent on a strictly convex cost given by
1
2 y>

t

〈
ss>〉yt − h>

t

〈
hs>〉yt.

14



2. For the NSM network, we generalized the activity-dependent learning rate
(35) to,

1
D̃t+1,i

, where D̃t+1,i = min
(
ã, b̃D̃t+1,i + y2

t,i

)
, (39)

and performed a grid search over several values of ã ∈ {10, 102, 103, 104} and
b̃ ∈ {0.8, 0.9, 0.95, 0.99, 0.995, 0.999, 0.9999, 1} to find the combination with
best performance. The b̃ parameter introduces “forgetting” to the system
(Pehlevan et al., 2015). We hypothesized that forgetting will be beneficial
in the two-layer setting because the prewhitening layer output changes over
time and the NSM layer has to adapt. Further, for comparison purposes,
we also implemented this algorithm with a time-dependent learning rate
of the form (38) and performed a grid search with a ∈ {102, 103, 104} and
b ∈ {10−2, 10−1, 1} to find the combination with best performance.

For the NSM network, to speed up our simulations we implemented a procedure
from (Plumbley and Oja, 2004). At each iteration we checked whether there is
any output neuron who has not fired up until that iteration. If so, we flipped the
sign of its feedforward inputs. In practice, the flipping only occured within the
first ∼10 iterations.

For comparison, we implemented five other algorithms. First is the offline
algorithm (9), the other two are chosen to represent major online algorithm classes:

1. Offline projected gradient descent: We simulated the projected gradient
descent algorithm (9). We used variable stepsizes of the form (38) and
performed a grid search with a ∈ {104, 105, 106} and b ∈ {10−3, 10−2, 10−1}
to find the combination with best performance. We initialized elements of
the matrix, Y, by drawing a Gaussian random variable with zero mean and
unit variance and rectifying it. Input dataset was whitened offline before
passing to projected gradient descent.

2. fastICA: fastICA (Hyvärinen and Oja, 1997; Hyvarinen, 1999; Hyvärinen
and Oja, 2000) is a popular ICA algorithm which does not assume nonnega-
tivity of sources. We implemented an online version of fastICA (Hyvärinen
and Oja, 1998) using the same parameters except for feedforward weights. We
used the time-dependent learning rate (38) and performed a grid search with
a ∈ {10, 102, 103, 104} and b ∈ {10−2, 10−1, 1} to find the combination with
best performance. fastICA requires whitened and centered input (Hyvärinen
and Oja, 1998) and computes a decoding matrix that maps mixtures back
to sources. We ran the algorithm with whitened and centered input. To
recover nonnegative sources, we applied the decoding matrix to noncentered
but whitened input.

15



3. Infomax ICA: Bell and Sejnowski (1995) proposed a blind source separation
algorithm that maximizes the mutual information between inputs and outputs,
namely the Infomax principle (Linsker, 1988). We simulated an online
version due to Amari et al. (1996). We chose cubic neural nonlinearities
compatible with sub-Gaussian input sources. This differs from our fastICA
implementation where the nonlinearity is also learned online. Infomax ICA
computes a decoding matrix using centered, but not whitened, data. To
recover nonnegative sources, we applied the decoding matrix to noncentered
inputs. Finally, we rescaled the sources so that their variance is 1. We
experimented with several learning rate parameters for finding optimal
performance.

4. Linsker’s network: Linsker (1997) proposed a neural network with local
learning rules for Infomax ICA. We simulated this algorithm with cubic
neural nonlinearities and preprocessing and decoding done as in our Infomax
ICA implementation.

5. Nonnegative PCA: Nonnegative PCA algorithm (Plumbley and Oja, 2004)
solves the NICA task and makes explicit use of the nonnegativity of sources.
We use the online version given in (Plumbley and Oja, 2004). To speed
up our simulations we implemented a procedure from (Plumbley and Oja,
2004). At each iteration we checked whether there is any output neuron
who has not fired up until that iteration. If so, we flipped the sign of its
feedforward inputs. For this algorithm, we again used the time-dependent
learning rate of (38) and performed a grid search with a ∈ {10, 102, 103, 104}
and b ∈ {10−2, 10−1, 1} to find the combination with best performance.
Nonnegative PCA assumes whitened, but not centered input (Plumbley and
Oja, 2004).

Next, we present the results of our simulations on three datasets.

4.1 Mixture of random uniform sources
The source i.i.d. samples were set to zero with probability 0.5 and sampled
uniformly from iterval [0,

√
48/5] with probability 0.5. The dimensions of source

vectors were d = {3, 5, 7, 10}. The mixing matrices are given in Appendix C. 105

source vectors were generated for each run. For a sample of the original and mixed
signals, see Fig 3A.

The inputs to fastICA and Nonnegative PCA algorithms were prewhitened
offline, and in the case of fastICA they were also centered. We ran our NSM
network both as a single layer algorithm with prewhitening done offline, and as a
part of our two-layer algorithm with whitening done online.

16



0
2
4

0
2
4

 99980  99990 100000
Sample Number

0
2
4

0
1
2

-2
0
2

 99980  99990 100000
Sample Number

0
2
4

0
2
4

0
2
4

 99980  99990 100000
Sample Number

0
2
4

Sources RecoveredMixtures

-2
0
2

-2
0
2

 99980  99990 100000
Sample Number

-2
0
2

Whitened
A

B
d=5

d=7 d=10

Er
ro

r
Er

ro
r

Sample # or Gradient Step

10 0 10 1 10 2 10 3 10 4 10 5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

10 0 10 1 10 2 10 3 10 4 10 5

10 0 10 1 10 2 10 3 10 4 10 5 10 0 10 1 10 2 10 3 10 4 10 5

Online fastICA

Nonnegative PCA

Two layer network

d=3

10 -5

Offline projected gradient descent

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

10 -5

Sample # or Gradient Step

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

10 -5

Infomax ICA
Linsker’s network

NSM (activity-dependent)
NSM (time-dependent)

Figure 3: Performance of our algorithms when presented with a mixture of random
uniform sources: A) Sample source, mixture, whitened and recovered signals for
a d = 3 task, performed by our two-layer algorithm. The whitened signal is the
output of the first layer, while the recovered signal is the output of second layer.
B) Performance comparison of the online algorithms presented in this paper with
projected gradient descent, Online fastICA, Infomax ICA, Linsker’s network and
Nonnegative PCA. Curves show averages over 10 simulations. Error bars not
shown for visual clarity. Learning rate parameters are given in Appendix D.

17



To quantify the performance of tested algorithms, we used the mean-squared-
error:

Et = 1
t

t∑
t′=1
‖st′ −Pyt′‖2

2 , (40)

where P is a permutation matrix that is chosen to minimize the mean-squared-error
at t = 105. The learning rate parameters of all networks were optimized by a grid
search using E105 as the performance metric.

In Fig. 3B, we show the performances of all algorithms we implemented. Our
algorithms perform as well or better than others, especially as dimensionality of
the input increases. Offline whitening is better than online whitening, however,
as dimensionality increases, online whitening becomes competitive with offline
whitening. In fact, our two-layer and single-layer networks perform better than
Online fastICA and Nonnegative PCA for which whitening was done offline.

We also simulated a fully offline algorithm by taking projected gradient descent
steps until the residual error plateaued (Fig. 3B). The performance of the offline
algorithm quantifies two important metrics. First, it establishes the loss in per-
formance due to online (as opposed to offline) processing. Second, it establishes
the lowest error that could be achieved by the NSM method for the given dataset.
The lowest error is not necessarily zero due to the finite size of the dataset. This
method is not perfect because the projected gradient descent may get stuck in a
local minimum of Eq. (7).

We also tested whether the learned synaptic weights of our network match our
theoretical predictions. In Fig. 4A, we show examples of learned feedforward and
recurrent synaptic weights at t = 105, and what is expected from our theory (37).
We observed an almost perfect match between the two. In Fig. 4B, we quantify the
convergence of simulated synaptic weights to the theoretical prediction by plotting
a normalized error metric defined by Et = ‖Wt,simulation −Wtheory‖2

F / ‖Wtheory‖2
F .

4.2 Mixture of random uniform and exponential sources
Our algorithm can demix sources sampled from different statistical distributions.
To illustrate this point, we generated a dataset with two uniform and three
exponential source channels. The uniform sources were sampled as before. The
exponential sources were either zero (with probability 0.5) or sampled from an
exponential distribution, scaled so that the variance of the channel is 1. In Fig.
5A, we show that the algorithm succesfully recovers sources.

To test denoising capabilities of our algorithm, we created a dataset where
source signals are accompanied by background noise. Sources to be recovered were
three exponential channels, which were sampled as before. Background noises
were two uniform channels which were sampled as before, except scaled to have

18



A

Theory 
(Eq. (36))

Simulation 
(t = 105)




−0.2526 −0.0202 1.1012
−0.6795 0.6217 0.6637
0.1800 0.7107 0.8583







−0.2558 −0.0227 1.1005
−0.6768 0.6228 0.6545
0.1845 0.7179 0.8473




WYH WYY

B




0 0.3742 0.3742
0.3742 0 0.3742
0.3742 0.3742 0







0 0.3742 0.3702
0.3670 0 0.3736
0.3604 0.3709 0




Er
ro

r

Er
ro

r

10 -2

10 -1

10 0

10 -2

10 -1

10 0

Sample #

10 0 10 1 10 2 10 3 10 4 10 5

Sample #

10 0 10 1 10 2 10 3 10 4 10 5

d=3
d=5
d=7
d=10

WYH WYY

Figure 4: Theoretical predictions of learned synaptic weights match simulations:
A) Example synaptic weight matrices predicted from theory (37) compared to
results from an example simulation (t = 105). B) Convergence of simulated network
synaptic weights to theoretical predictions. For this figure, inputs were whitened
offline and the NSM network was run with time-dependent learning rates. Shaded
bars show standard error over 10 simulations.

19



Er
ro

r

10 0 10 1 10 2 10 3 10 4 10 5

Sample #

10 0 10 1 10 2 10 3 10 4 10 5

Sample #

10 -1

10 0

10 1

10 -3

10 -2

10 -1

10 0

10 1
A B

Figure 5: Performance of our two layer algorithm when presented with a mixture
of random uniform and exponential sources. A) Recovery of a mixture of three
exponential and two uniform sources. B) Recovery of three exponential sources
corrupted by two background noise channels. Learning rate parameters are given
in Appendix D.

variance 0.1. To denoise the resulting five dimensional mixture, the prewhitening
layer reduced its five input dimensions to three. Then, the NSM layer succesfully
recovered sources, Fig. 5B. Hence, the prewhitening layer can act as a denoising
stage.

4.3 Mixture of natural scenes
Next, we consider recovering images from their mixtures, Fig. 6A, where each
image is treated as one source. Four image patches of size 252× 252 pixels were
chosen from a set of images of natural scenes which were previously used in
(Hyvärinen and Hoyer, 2000; Plumbley and Oja, 2004). The preprocessing was
as in (Plumbley and Oja, 2004): 1) Images were downsampled by a factor of 4
to obtain 63 × 63 patches, 2) Pixel intensities were shifted to have a minimum
of zero and 3) Pixel intensities were scaled to have unit variance. Hence, in this
dataset, there are d = 4 sources, corresponding image patches, and a total of
63×63 = 3969 samples. These samples were presented to the algorithm 5000 times
with randomly permuted order in each presentation. The 4 × 4 mixing matrix,
which was generated randomly, is given in Appendix C.

In Fig. 6B, we show the performances of all algorithms we implemented in this
task. We see that our algorithms, when compared to fastICA and Nonnegative

20



A
Source Images Mixtures Recovered Images

B

10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8
10 -1

10 0

10 1

10 2

Online fastICA
Nonnegative PCA
NSM (activity-dependent)
Two layer network

Sample #

Figure 6: Performance of our algorithm when presented with a mixture of natural
images: A) Sample source, mixture, and recovered images, performed by our
two-layer algorithm. B) Performance comparison of our online algorithms with
Online fastICA and Nonnegative PCA. Shaded bars show standard error over 10
simulations. Learning rate parameters are listed in Appendix D.

PCA, perform much better.

5 Discussion
In this paper we presented a new neural algorithm for blind nonnegative source
separation. We started by assuming the nonnegative ICA generative model
(Plumbley, 2001, 2002) where inputs are linear mixtures of independent and
nonnegative sources. We showed that the sources can be recovered from inputs by
two sequential steps, 1) generalized whitening and 2) NSM. In fact, our argument
requires sources to be only uncorrelated, and not necessarily independent. Each
of the two steps can be performed online with single-layer neural networks with
local learning rules (Pehlevan and Chklovskii, 2014, 2015a). Stacking these two
networks yields a two-layer neural network for blind nonnegative source separation
(Fig. 2). Numerical simulations show that our neural network algorithm performs

21



well.
Because our network is derived from optimization principles, its biologically

realistic features can be given meaning. The network is multi-layered, because
each layer performs a different optimization. Lateral connections create com-
petition between principal neurons forcing them to differentiate their outputs.
Interneurons clamp the activity dimensions of principal neurons (Pehlevan and
Chklovskii, 2015a). Rectifying neural nonlinearity is related to nonnegativity of
sources. Synaptic plasticity (Malenka and Bear, 2004), implemented by local
Hebbian and anti-Hebbian learning rules, achieves online learning. While Heb-
bian learning is famously observed in neural circuits (Bliss and Lømo, 1973; Bliss
and Gardner-Medwin, 1973), our network also makes heavy use of anti-Hebbian
learning, which can be interpreted as the long-term potentiation of inhibitory
postsynaptic potentials. Experiments show that such long-term potentiation can
arise from pairing action potentials in inhibitory neurons with subthreshold depo-
larization of postsynaptic pyramidal neurons (Komatsu, 1994; Maffei et al., 2006).
However, plasticity in inhibitory synapses does not have to be Hebbian, i.e. require
correlation between pre- and postsynaptic activity (Kullmann et al., 2012).

For improved biological realism, the network should respond to a continuous
stimulus stream by continuous and simultaneous changes to its outputs and synaptic
weights. Presumably, this requires neural time scales to be faster and synaptic
time scales to be slower than that of changes in stimuli. To explore this possibility,
we simulated some of our datasets with limited number of neural activity updates
(not shown) and found that ∼10 updates per neuron is sufficient for successful
recovery of sources without significant loss in performance. With a neural time
scale of 10ms, this should take about 100ms, which is sufficiently fast given that,
for example, the temporal autocorrelation time scale of natural image sequences is
about 500ms (David et al., 2004; Bull, 2014).

It is interesting to compare the two-layered architecture we present to the
multilayer neural networks of deep learning approaches (LeCun et al., 2015). 1)
For each data presentation, our network performs recurrent dynamics to produce
an output, while the deep networks have feedforward architecture. 2) The first
layer of our network has multiple neuron types, principal and interneurons, and
only principal neurons project to the next layer. In deep learning, all neurons
in a layer project to the next layer. 3) Our network operates with local learning
rules, while deep learning uses backpropagation, which is not local. 4) We derived
the architecture, the dynamics, and the learning rules of our network from a
principled cost function. In deep learning, the architecture and the dynamics of a
neural network are designed by hand, only the learning rule is derived from a cost
function. 5) Finally, in building a neural algorithm, we started with a generative
model of inputs, from which we inferred algorithmic steps to recover latent sources.
These algorithmic steps guided us in deciding which single-layer networks to stack.

22



In deep learning, no such generative model is assumed and network architecture
design is more of an art. We believe starting from a generative model might lead
to a more systematic way of network design. In fact, the question of generative
model appropriate for deep networks is already being asked (Patel et al., 2016).

Acknowledgments

We thank Andrea Giovannucci, Eftychios Pnevmatikakis, Anirvan Sengupta and
Sebastian Seung for useful discussions. DC is grateful to the IARPA MICRONS
program for support.

23



A Convergence of the gradient descent-ascent
dynamics

Here we prove that the neural dynamics (18) converges to the saddle point of the
objective function (15). Here we assume that WHG is full-rank and l = d. First,
note that the optimum of (15) is also the fixed point of (18). Since the neural
dynamics (18) is linear, the fixed point is globally convergent if and only if the
eigenvalues of the matrix [

0 −WHG

WGH −I

]
(41)

have negative real parts.
The eigenvalue equation is[

0 −WHG

WGH −I

] [
x1
x2

]
= λ

[
x1
x2

]
, (42)

which implies

−WHGx2 = λx1, WGHx1 = (λ+ 1) x2. (43)

Using these relations, we can solve for all the d+m eigenvalues. There are two
cases:

1. λ = −1. This implies that WGHx1 = 0 and WHGx2 = x1. x1 is in the
null-space of WGH . Since WGH is m×d with m ≥ d, the null-space is m−d
dimensional, and one has m− d degenerate λ = −1 eigenvalues.

2. λ 6= −1. Substituting for x2 in the first equation of (43), this implies that
WHGWGHx1 = −λ (λ+ 1) x1. Hence, x1 is an eigenvector of WHGWGH .
For each eigenvalue λw of WHGWGH , there are two corresponding eigenvec-
tors λ = −1

2 ±
√

1
4 − λw. x2 can be solved uniquely from the first equation

in (43).

Hence, there are m− d degenerate λ = −1 eigenvalues and d pairs of conjugate
eigenvalues λ = −1

2 ±
√

1
4 − λw, one pair for each eigenvaleue λw of WHGWGH .

Since {λw} are real and positive (we assume WHG is full-rank and by definition
WHG = WGH>), real parts of all {λ} are negative and hence the neural dynamics
(18) is globally convergent.

24



B Modified objective function and neural net-
work for generalized prewhitening

While deriving our online neural algorithm, we assumed that the number of output
channels is reduced to the number of sources at the prewhitening stage (l = d).
However, our offline analysis did not need such reduction, one could keep l ≥ d for
generalized prewhitening. Here we provide an online neural algorithm that allows
l ≥ d.

First, we point out why the prewhitening algorithm given in the main text
is not adequate for l > d. In Appendix A, we proved that the neural dynamics
described by (18) converges to the saddle point of the objective function (15).
This proof assumes that WHG is full-rank. However, if l > d, this assumption
breaks down as the network learns because perfectly prewhitened δH has rank
d (low-rank) and a perfectly prewhitening network would have WHG = δHδG>
which would also be low-rank. We simulated this network with l > d and observed
that the condition number of WHGWGH increased with t and the neural dynamics
took longer time to converge. Even though the algorithm was still functioning well
for practical purposes, we present a modification that fully resolves the problem.

We propose a modified offline objective function (Pehlevan and Chklovskii,
2015a) and a corresponding neural network. Consider the following:

min
δH

max
δG

Tr
(
−δX>δX δH>δH + δH>δH δG>δG + αt δH>δH− t δG>δG

)
,

(44)

where δX is a k × t centered mixture of d independent sources, δH is now an
l × t matrix with l ≥ d, δG is an m × t matrix with m ≥ d and α is a positive
parameter. Notice the additional α-dependent term compared to (12). If α is less
than the lowest eigenvalue of 1

t
δXδX>, optimal δH is a linear transform of X

and satisfies the generalized prewhitening condition (3)(Pehlevan and Chklovskii,
2015a). More precisely,

Theorem 4 (Modified from (Pehlevan and Chklovskii, 2015a)). Suppose an eigen-
decomposition of δX>δX is δX>δX = VXΛXVX>, where eigenvalues are sorted
in order of magnitude. If α is less than the lowest eigenvalue of 1

t
δXδX>, all

optimal δH of (12) have an SVD decomposition of the form

δH∗ = UH
√
tΛH ′VX>, (45)

where ΛH ′ is l × t with ones at top d diagonals and zeros at rest.

Using this cost function, we will derive a neural algorithm which does not
suffer from the described convergence issues, even if l > d. On the other hand, we

25



now need to choose the parameter α, and for that we need to know the spectral
properties of δX.

To derive an online algorithm, we repeat the steps taken before:

{δht, δgt} ←− arg min
δht

arg max
δgt

L(δht, δgt), (46)

where

L = −2δx>t
(
t−1∑
t′=1

δxt′δh>t′
)
δht − t ‖δgt‖2

2 + 2δg>t
(
t−1∑
t′=1

δgt′δh>t′
)
δht + αt ‖δht‖2

2

+
(
‖δgt‖2

2 − ‖δxt‖
2
2

)
‖δht‖2

2 .

(47)

In the large-t limit, the first four terms dominate over the last term, which we
ignore. The remaining objective is strictly concave in δgt and strictly convex in
δht. Note that (15) was only convex in δht but not strictly convex. The objective
has a unique saddle point, even if 1

t

t−1∑
t′=1

δht′δg>t′ is not full-rank:

δg∗t = WGH
t δh∗t ,

δh∗t =
(
αI + WHG

t WGH
t

)−1
WHX

t δxt, (48)

where W matrices are defined as before and I is the identity matrix.
We solve (46) with gradient descent-ascent

dδht
dγ

= − 1
2t∇δhtL = −αδht + WHX

t δxt −WHG
t gt,

dδgt
dγ

= 1
2t∇δgtL = −δgt + WGH

t δht. (49)

where γ is time measured within a single time step of t. The dynamics (18) can
be proved to converge to the saddle point (48) modifying the proof in Appendix
A4. Synaptic weight updates are the same as before (19). Finally, this network
can be modified to also compute H̄ following the steps before.

4The fixed point is globally convergent if and only if the eigenvalues of the matrix[
−αI −WHG

WGH −I

]
(50)

have negative real parts. One can show that l − d eigenvalues are −α, m− d eigenvalues are −1,
and for each positive eigenvalue, λw of WHGWGH one gets a pair − 1+α

2 ±
√

(1+α)2

4 − α− λw.
All eigenvalues have negative real parts.

26



C Mixing matrices for numerical simulations
For the random source dataset, the d = 3 mixing matrix was:

A =

 0.031518 0.38793 0.061132
−0.78502 0.16561 0.12458

0.34782 0.27295 0.67793

 , (51)

We do not list the mixing matrices for d = {5, 7, 10} cases for space-saving purposes,
however they are available from authors upon request.

For the natural scene dataset, the mixing matrix was

A =


0.33931 0.3282 0.41516 −0.1638

−0.077079 −0.29768 0.076562 −0.28153
−0.14119 −0.41709 0.14842 0.57009
−0.40483 0.21922 0.082336 0.18027

 . (52)

27



D Learning rate parameters for numerical simu-
lations

For Figs. 3, 4, 5 and 6 the following parameters were found to be best performing
as a result of our grid search:

fastICA NPCA NSM (activity) NSM (time)
d = 3 (10, 0.01) (10, 0.1) (10, 0.8) (10, 0.1)
d = 5 (100, 0.01) (10, 0.01) (10, 0.9) (10, 0.01)
d = 7 (100, 0.01) (100, 0.01) (10, 0.9) (10, 0.1)
d = 10 (100, 0.01) (1000, 0.01) (10, 0.9) (10, 0.01)
Images (104, 0.01) (1000, 0.01) (100, 0.9) NA

Two-layer Offline Infomax ICA Linsker’s Algorithm
d = 3 (100, 1, 10, 0.8) (106, 0.001) (1000, 0.2) (1000, 0.2)
d = 5 (100, 1, 10, 0.9) (106, 0.001) (1000, 0.2) (1000, 0.2)
d = 7 (100, 1, 10, 0.9) (106, 0.01) (1000, 0.2) (1000, 0.2)
d = 10 (100, 1, 10, 0.9) (106, 0.01) (1000, 0.2) (1000, 0.2)
Images (100, 1, 100, 0.9) NA NA NA

28



References
Amari, S., Cichocki, A., and Yang, H. (1996). A new learning algorithm for blind

signal separation. Advances in neural information processing systems, 8:757–763.

Asari, H., Pearlmutter, B. A., and Zador, A. M. (2006). Sparse representations for
the cocktail party problem. Journal of Neuroscience, 26(28):7477–7490.

Bee, M. A. and Micheyl, C. (2008). The cocktail party problem: what is it? how
can it be solved? and why should animal behaviorists study it? Journal of
comparative psychology, 122(3):235.

Bell, A. J. and Sejnowski, T. J. (1995). An information-maximization approach to
blind separation and blind deconvolution. Neural computation, 7(6):1129–1159.

Bliss, T. V. and Gardner-Medwin, A. (1973). Long-lasting potentiation of synap-
tic transmission in the dentate area of the unanaesthetized rabbit following
stimulation of the perforant path. The Journal of physiology, 232(2):357.

Bliss, T. V. and Lømo, T. (1973). Long-lasting potentiation of synaptic transmission
in the dentate area of the anaesthetized rabbit following stimulation of the
perforant path. The Journal of physiology, 232(2):331–356.

Bronkhorst, A. W. (2000). The cocktail party phenomenon: A review of research
on speech intelligibility in multiple-talker conditions. Acta Acustica united with
Acustica, 86(1):117–128.

Bull, D. R. (2014). Communicating pictures: A course in Image and Video Coding.
Academic Press.

Comon, P. (1994). Independent component analysis, a new concept? Signal
processing, 36(3):287–314.

Comon, P. and Jutten, C. (2010). Handbook of Blind Source Separation: Indepen-
dent component analysis and applications. Academic press.

David, S. V., Vinje, W. E., and Gallant, J. L. (2004). Natural stimulus statistics
alter the receptive field structure of v1 neurons. Journal of Neuroscience,
24(31):6991–7006.

Donoho, D. and Stodden, V. (2003). When does non-negative matrix factorization
give a correct decomposition into parts? In Advances in neural information
processing systems, page None.

29



Eagleman, D. M., Coenen, O. J.-M. D., Mitsner, V., Bartol, T. M., Bell, A. J.,
and Sejnowski, T. J. (2001). Cerebellar glomeruli: Does limited extracellular
calcium implement a sparse encoding strategy? In Proceedings of the 8th Annual
Joint Symposium on Neural Computation.

Golumbic, E. M. Z., Ding, N., Bickel, S., Lakatos, P., Schevon, C. A., McKhann,
G. M., Goodman, R. R., Emerson, R., Mehta, A. D., Simon, J. Z., et al. (2013).
Mechanisms underlying selective neuronal tracking of attended speech at a
“cocktail party”. Neuron, 77(5):980–991.

Hu, T., Pehlevan, C., and Chklovskii, D. B. (2014). A hebbian/anti-hebbian
network for online sparse dictionary learning derived from symmetric matrix
factorization. In Asilomar Conference on Signals, Systems and Computers, pages
613–619. IEEE.

Huang, K., Sidiropoulos, N., and Swami, A. (2014). Non-negative matrix factoriza-
tion revisited: Uniqueness and algorithm for symmetric decomposition. Signal
Processing, IEEE Transactions on, 62(1):211–224.

Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for independent
component analysis. IEEE transactions on Neural Networks, 10(3):626–634.

Hyvärinen, A. and Hoyer, P. (2000). Emergence of phase-and shift-invariant
features by decomposition of natural images into independent feature subspaces.
Neural computation, 12(7):1705–1720.

Hyvärinen, A. and Oja, E. (1997). A fast fixed-point algorithm for independent
component analysis. Neural computation, 9(7):1483–1492.

Hyvärinen, A. and Oja, E. (1998). Independent component analysis by general
nonlinear hebbian-like learning rules. Signal Processing, 64(3):301–313.

Hyvärinen, A. and Oja, E. (2000). Independent component analysis: algorithms
and applications. Neural networks, 13(4):411–430.

Isomura, T., Kotani, K., and Jimbo, Y. (2015). Cultured cortical neurons can
perform blind source separation according to the free-energy principle. PLoS
Comput Biol, 11(12):e1004643.

Isomura, T. and Toyoizumi, T. (2016). A local learning rule for independent
component analysis. Scientific Reports, 6.

Jutten, C. and Herault, J. (1991). Blind separation of sources, part i: An adaptive
algorithm based on neuromimetic architecture. Signal processing, 24(1):1–10.

30



Komatsu, Y. (1994). Age-dependent long-term potentiation of inhibitory synaptic
transmission in rat visual cortex. Journal of Neuroscience, 14(11):6488–6499.

Kuang, D., Park, H., and Ding, C. H. (2012). Symmetric nonnegative matrix
factorization for graph clustering. In SDM, volume 12, pages 106–117. SIAM.

Kuang, D., Yun, S., and Park, H. (2015). Symnmf: nonnegative low-rank ap-
proximation of a similarity matrix for graph clustering. Journal of Global
Optimization, 62(3):545–574.

Kullmann, D. M., Moreau, A. W., Bakiri, Y., and Nicholson, E. (2012). Plasticity
of inhibition. Neuron, 75(6):951–962.

Laurberg, H., Christensen, M. G., Plumbley, M. D., Hansen, L. K., and Jensen, S. H.
(2008). Theorems on positive data: On the uniqueness of nmf. Computational
intelligence and neuroscience, 2008.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature,
521(7553):436–444.

Lee, D. D. and Seung, H. S. (1999). Learning the parts of objects by non-negative
matrix factorization. Nature, 401(6755):788–791.

Li, Y., Liang, Y., and Risteski, A. (2016). Recovery guarantee of non-negative
matrix factorization via alternating updates. arXiv preprint arXiv:1611.03819.

Linsker, R. (1988). Self-organization in a perceptual network. Computer, 21(3):105–
117.

Linsker, R. (1997). A local learning rule that enables information maximization
for arbitrary input distributions. Neural Computation, 9(8):1661–1665.

Maffei, A., Nataraj, K., Nelson, S. B., and Turrigiano, G. G. (2006). Potentiation
of cortical inhibition by visual deprivation. Nature, 443(7107):81–84.

Malenka, R. C. and Bear, M. F. (2004). Ltp and ltd: an embarrassment of riches.
Neuron, 44(1):5–21.

McDermott, J. H. (2009). The cocktail party problem. Current Biology,
19(22):R1024–R1027.

Mesgarani, N. and Chang, E. F. (2012). Selective cortical representation of attended
speaker in multi-talker speech perception. Nature, 485(7397):233–236.

31

http://arxiv.org/abs/1611.03819


Narayan, R., Best, V., Ozmeral, E., McClaine, E., Dent, M., Shinn-Cunningham,
B., and Sen, K. (2007). Cortical interference effects in the cocktail party problem.
Nature neuroscience, 10(12):1601–1607.

Oja, E. (1982). Simplified neuron model as a principal component analyzer. J
Math Biol, 15(3):267–273.

Oja, E. and Plumbley, M. (2004). Blind separation of positive sources by globally
convergent gradient search. Neural Computation, 16(9):1811–1825.

Ouedraogo, W. S. B., Souloumiac, A., and Jutten, C. (2010). Non-negative
independent component analysis algorithm based on 2d givens rotations and a
newton optimization. In Latent Variable Analysis and Signal Separation, pages
522–529. Springer.

Paatero, P. and Tapper, U. (1994). Positive matrix factorization: A non-negative
factor model with optimal utilization of error estimates of data values. Environ-
metrics, 5(2):111–126.

Patel, A. B., Nguyen, M. T., and Baraniuk, R. (2016). A probabilistic framework
for deep learning. In Advances in Neural Information Processing Systems, pages
2550–2558.

Pehlevan, C. and Chklovskii, D. (2014). A hebbian/anti-hebbian network derived
from online non-negative matrix factorization can cluster and discover sparse
features. In Asilomar Conference on Signals, Systems and Computers, pages
769–775. IEEE.

Pehlevan, C. and Chklovskii, D. (2015a). A normative theory of adaptive di-
mensionality reduction in neural networks. In Advances in Neural Information
Processing Systems, pages 2260–2268.

Pehlevan, C. and Chklovskii, D. (2015b). Optimization theory of hebbian/anti-
hebbian networks for pca and whitening. In 2015 53rd Annual Allerton Confer-
ence on Communication, Control, and Computing (Allerton), pages 1458–1465.
IEEE.

Pehlevan, C., Hu, T., and Chklovskii, D. (2015). A hebbian/anti-hebbian neural
network for linear subspace learning: A derivation from multidimensional scaling
of streaming data. Neural Computation, 27:1461–1495.

Plumbley, M. (1994). A subspace network that determines its own output dimension.
Tech. Rep.

32



Plumbley, M. (1996). Information processing in negative feedback neural networks.
Network-Comp Neural, 7(2):301–305.

Plumbley, M. (2002). Conditions for nonnegative independent component analysis.
Signal Processing Letters, IEEE, 9(6):177–180.

Plumbley, M. D. (2001). Adaptive lateral inhibition for non-negative ica. In
Proceedings of the international Conference on Independent Component Analysis
and Blind Signal Separation (ICA2001), pages 516–21.

Plumbley, M. D. (2003). Algorithms for nonnegative independent component
analysis. Neural Networks, IEEE Transactions on, 14(3):534–543.

Plumbley, M. D. and Oja, E. (2004). A "nonnegative pca" algorithm for independent
component analysis. Neural Networks, IEEE Transactions on, 15(1):66–76.

Wright, S. J. (2015). Coordinate descent algorithms. Mathematical Programming,
151(1):3–34.

Yuan, Z. and Oja, E. (2004). A fastica algorithm for non-negative independent
component analysis. In Independent Component Analysis and Blind Signal
Separation, pages 1–8. Springer.

Zheng, C.-H., Huang, D.-S., Sun, Z.-L., Lyu, M. R., and Lok, T.-M. (2006).
Nonnegative independent component analysis based on minimizing mutual
information technique. Neurocomputing, 69(7):878–883.

33


	1 Introduction
	2 Offline NICA via NSM
	2.1 Review of Plumbley's analysis
	2.2 NICA as NSM

	3 Derivation of NICA neural networks from similarity matching objectives
	3.1 Noncentered prewhitening in a streaming input setting
	3.1.1 Computing 

	3.2 Online NSM
	3.2.1 NICA is a stationary state of online NSM


	4 Numerical simulations
	4.1 Mixture of random uniform sources
	4.2 Mixture of random uniform and exponential sources
	4.3 Mixture of natural scenes

	5 Discussion
	A Convergence of the gradient descent-ascent dynamics
	B Modified objective function and neural network for generalized prewhitening
	C Mixing matrices for numerical simulations
	D Learning rate parameters for numerical simulations

