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Abstract

Memory models based on synapses with discrete and bounded strengths store

new memories by forgetting old ones. Memory lifetimes in such memory sys-

tems may be defined in a variety of ways. A mean first passage time (MFPT)

definition overcomes much of the arbitrariness and many of the problems as-

sociated with the more usual signal-to-noise ratio (SNR) definition. We have

previously computed MFPT lifetimes for simple, binary-strength synapses that

lack internal, plasticity-related states. In simulation we have also seen that for

multistate synapses, optimality conditions based on SNR lifetimes are absent

with MFPT lifetimes, suggesting that such conditions may be artifactual. Here

we extend our earlier work by computing the entire first passage time (FPT)

distribution for simple, multistate synapses, from which all statistics including

the MFPT lifetime may be extracted. For this, we develop a Fokker-Planck

equation using the jump moments for perceptron activation. Two models are

considered that satisfy a particular eigenvector condition that this approach re-

quires. In these models, MFPT lifetimes do not exhibit optimality conditions,

while in one but not the other, SNR lifetimes do exhibit optimality. Thus, not

only are such optimality conditions artifacts of the SNR approach, but they

are also strongly model-dependent. By examining the variance in the FPT

distribution, we may identify regions in which memory storage is subject to

high variability, although MFPT lifetimes are nevertheless robustly positive.

In such regions, SNR lifetimes are typically (defined to be) zero. FPT-defined

memory lifetimes therefore provide an analytically superior approach and also

have the virtue of being directly related to a neuron’s firing properties.
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1 Introduction

Imposing limits on synaptic strengths turns an otherwise catastrophically for-

getting Hopfield (1982) network into a “palimpsest” memory that learns new

memories by forgetting old ones (Nadal et al., 1986; Parisi, 1986). Models

of palimpsest memory with discrete, multistate synapses using feedforward or

recurrent networks have become the subject of intensive study in recent years

(Tsodyks, 1990; Amit & Fusi, 1994, Fusi et al., 2005, Leibold & Kempter, 2006,

2008; Rubin & Fusi, 2007; Barrett & van Rossum, 2008; Huang & Amit, 2010,

2011; Elliott & Lagogiannis, 2012; Lahiri & Ganguli, 2013; Elliott, 2016a,b).

Such models may be based on “simple” synapses that lack internal, plasticity-

related states, or “complex” synapses that possess internal states that may

affect the expression of synaptic plasticity.

To be viable models of biological memory, memories in palimpsest models

must be sufficiently long-lived. Several approaches to defining palimpsest mem-

ory lifetimes exist, including the signal-to-noise ratio (SNR) (Tsodyks, 1990)

and equivalent so-called “ideal observer” variants (Fusi et al., 2005; Lahiri &

Ganguli, 2013; see Elliott (2016b) for a discussion of their complete equiva-

lence); signal detection theory (Leibold & Kempter, 2006, 2008); and retrieval

probabilities (Huang & Amit, 2010, 2011). In a feedforward setting with a

single perceptron for simplicity, we have also considered the mean first passage

time (MFPT) for the perceptron’s activation to fall below firing threshold (El-

liott, 2014). An MFPT approach to memory lifetimes overcomes many of the

difficulties of an SNR approach and shows that the latter is only asymptoti-

cally valid in the limit of a large number of synapses (Elliott, 2014). We have

also observed in simulation that conditions on the number of states of synaptic

strength that appear to optimise SNR memory lifetimes are not respected by
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MFPT lifetimes, suggesting that such optimality conditions are artifacts of the

SNR approach (Elliott, 2016a).

We may obtain exact analytical results for MFPT lifetimes for any synap-

tic model but the results are essentially useless for explicit computations. For

the specific case of simple, binary-strength synapses, we may reduce the dif-

ficulty of the calculations by considering transitions in the perceptron’s acti-

vation at successive memory storage steps (Elliott, 2014). This allows us to

derive approximation methods and reduce the dynamics of memory decay to

an Ornstein-Uhlenbeck (OU) process (Uhlenbeck & Ornstein, 1930). It is also

possible to make some progress in understanding MFPT memory lifetimes for

complex synapses with binary strengths by integrating out the internal states

and working directly in the transitions in synapses’ strengths (Elliott, 2017).

For general, multistate synapses however, whether simple or complex, we can-

not work directly in the transitions in the perceptron’s activation, as discussed

below. Here, we show that for simple synapses, we can obtain the entire first

passage time (FPT) distribution from a Fokker-Planck equation when the vec-

tor of strengths available to a synapse is an eigenvector of the stochastic matrix

governing changes in synapses’ strengths. Provided that the actual vector of

possible synaptic strengths is sufficiently close to an eigenvector, our results

give good approximations, so this eigenvector requirement is not too restrictive.

Our paper is organised as follows. In section 2 we define our general for-

malism and review the derivation of analytical results for MFPTs for simple,

binary-strength synapses. In section 3 for simple, multistate synapses we set up

a Fokker-Planck equation, derive the required jump moments, and then obtain

the FPT distribution. In section 4 we consider two different synaptic models

respecting the eigenvector requirement. In section 5, we derive SNR memory

lifetimes for the purposes of comparison with MFPT memory lifetimes. We
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examine our results in section 6, comparing analytical and simulation results,

and considering the differences between SNR and MFPT memory lifetimes, but

also considering the variance in FPT-defined lifetimes. Finally, in section 7,

we briefly discuss our approach.

2 General Formalism and Previous Results

We first summarise our general approach to studying memory lifetimes in a

feedforward, perceptron-based formulation. We then discuss the simplest pos-

sible model of synaptic plasticity for palimpsest memory. We finally briefly

review our previous analysis of MFPT memory lifetimes for simple, binary-

strength synapses. Full details may be found elsewhere (Elliott, 2014).

2.1 Perceptron Memory

A single perceptron with N synapses of strengths Si(t), i = 1, . . . , N , at time

t ≥ 0 s and input vector x with components xi has normalised total input or

activation or unthresholded output defined by

hx(t) =
1

N

N∑

i=1

xiSi(t). (2.1)

We are concerned only with whether or not hx(t) is above the perceptron’s

firing threshold, defined as θ. The synaptic strengths Si(t) take values from

a discrete set. For binary-strength synapses, these values are taken to be

Si(t) ∈ {−1,+1}. For multistate synapses with ν discrete levels of strength, so

for ν > 2, we will consider different possible choices of this set of values below.

The perceptron sequentially stores memories ξα, indexed by α = 0, 1, 2, . . .,

with components ξαi . These memories may be presented as a discrete time
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process, or more realistically for biological memory storage as a continuous

time process, which we take to be a Poisson process of rate r. The first memory

ξ0 is always presented at time t = 0− s, where we use this formal device of

t = 0− s rather than t = 0 s so that we may refer to the time immediately

after the storage of ξ0 as time t = 0 s. The components ξαi take binary values

ξαi ∈ {−1,+1} with probabilities Prob[ξαi = ±1] = g±, with g+ + g− = 1.

Any particular memory ξα is deemed to be stored at time t provided that the

perceptron’s activation upon re-presentation of the memory exceeds threshold,

hξα(t) > θ. As we will assume that θ ≥ 0, the perceptron’s output is required

to be positive for memory storage. The component ξαi is therefore the plasticity

induction signal to synapse i upon storage of memory α. Consistent with our

previous work, we set g± = 1
2
, so that potentiation (ξαi = +1) and depression

(ξαi = −1) processes are balanced.

To assess memory lifetimes, we track the fidelity of recall of the first memory

ξ0 as the later memories ξα, α > 0, are stored. The storage of these later

memories leads to changes in synaptic strengths that may affect the recall of

ξ0. We refer to memory ξ0 as the tracked memory and we define

h(t) = hξ0(t) =
1

N

N∑

i=1

ξ0i Si(t), (2.2)

and refer to h(t) as the tracked memory signal. As the memories ξα are stochas-

tic in nature and the Poisson times at which they are stored are random vari-

ables, the memory signal h(t) is a random variable governed by a probability

distribution. Its mean and variance,

µ(t) = E[h(t)], (2.3a)

σ(t)2 = Var[h(t)], (2.3b)
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are used to define the SNR SNR(t) = [µ(t)−µ(∞)]/σ(t), and the SNR memory

lifetime of any particular model is typically defined as the solution τsnr of

SNR(τsnr) = 1. Some variants of the SNR approach use σ(∞) rather than σ(t)

in the denominator of SNR(t), but this approach is less well justified from a

statistical point of view (Elliott, 2016b).

The SNR definition of memory lifetime suffers from a number of difficulties

that we have previously described (Elliott, 2014). First, there is some arbi-

trariness is defining τsnr via SNR(τsnr) = 1: we could use any other positive

number on the right-hand side instead. Second, the SNR considers only the

variance as a possible source of fluctuations that may render the memory sig-

nal indistinguishable from its equilibrium value. Third, SNR memory lifetimes

differ depending on whether memories are stored as a discrete time process or

as a continuous time process. Fourth, because the SNR mixes different signal

statistics, it is not a quantity that can be read out directly from a neuron’s

membrane potential, and so it is not a quantity of immediate relevance to the

system whose memory dynamics are being studied.

2.2 Stochastic Updater Synapses

The simplest possible model of synaptic plasticity for memory storage is based

on a simple, binary-strength synapse that expresses with probability p a change

in synaptic strength (if possible) when the synapse experiences a plasticity in-

duction signal (Tsodyks, 1990). We refer to such a synapse as a “stochastic

updater”. The strength Si(t) of synapse i is a random variable. For a binary-

strength synapse, the probability distribution of a synapse’s strength is repre-

sented by a 2-dimensional vector, where the first (respectively, second) entry

of the vector is the probability that Si(t) = −1 (respectively, Si(t) = +1). The
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stochastic transitions in a synapse’s strength in response to plasticity induction

signals are represented by 2× 2 stochastic or transition matrices given by

M+ =




1− p 0

p 1


 and M− =




1 p

0 1− p


 , (2.4)

for ξαi = ±1, respectively. Because we average over the sequence of memories

rather than consider any particular realisation, the relevant transition matrix

for the storage of the non-tracked, α > 0 memories is

M = 1
2

(
M+ +M−) . (2.5)

As t → ∞, any synapse’s strength state asymptotes to the equilibrium dis-

tribution defined by the eigenvector associated with the unit eigenvalue of M,

A = 1
2
(1, 1)T, where the superscript T denotes the transpose. The tracked

memory ξ0 is stored against the background of this equilibrium distribution

at t = 0− s. For synapses experiencing ξ0i = +1 (respectively, ξ0i = +1), their

states at t = 0 s are governed by the probability distribution M+A (respec-

tively, M−A). Because we average over the initial memory ξ0, any synapse

is initially in a state that is an equiprobable mixture of the two distributions

M±A.

At some future time t, the distribution of strengths of synapse i is given by

ert(M−I) M±A, depending on the sign of ξ0i = ±1, where I is the identity matrix.

Computing these two distributions explicitly and defining S̃i(t) = ξ0i Si(t), we

obtain

Prob

[
S̃i(t) = ±1

]
= 1

2

(
1± p e−prt

)
, (2.6)

regardless of the sign of ξ0i , so that all N of the S̃i(t) variables are identically
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distributed. Because the tracked memory signal h(t) in Eq. (2.2) is just a

(normalised) sum over these N tilded strength variables, it is therefore just

a (normalised) sum over N identically distributed random variables. For bal-

anced potentiation and depression processes, g± = 1
2
, the mixture of states

governed by the two distributions M±A therefore collapses in terms of their

contribution to the evolution of h(t). This result is in fact quite general for

synaptic plasticity processes that treat potentiation and depression completely

symmetrically (Elliott, 2016b) and holds not only for ν = 2, binary-strength

stochastic updater synapses but also for their generalisation below to multi-

state, ν > 2 synapses. We therefore need not consider the initial synaptic state

immediately after the storage of ξ0 to be a mixture of the two distributions

M±A but can instead consider, say, onlyM+A and work directly with the Si(t)

variables rather than their tilded forms S̃i(t), in effect simply setting ξ0i ≡ +1

for all synapses. This dramatic simplification is possible only for balanced and

symmetric processes.

2.3 MFPTs for Binary Stochastic Updater Synapses

To overcome the shortcomings in the SNR approach discussed above, we con-

sider the FPT for the perceptron’s activation to fall below threshold (Elliott,

2014). For any particular realisation of the sequence of memories ξα, h(t) will

first fall (to or) below threshold at some time τ . We average over all pos-

sible realisations of the memories to obtain the MFPT, and this defines the

MFPT memory lifetime τmfpt. The MFPT memory lifetime overcomes all the

shortcomings of the SNR memory lifetime (Elliott, 2014).

To calculate the MFPT memory lifetime for stochastic updater synapses,

we observe that the tracked memory signal h(t) is a (normalised) sum over N
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variables taking values of either +1 or −1 for binary-strength synapses. Its

value is therefore uniquely determined by the number of these variables taking

value +1: if j of them take value +1, then h(t) = [(+1)j + (−1)(N − j)]/N =

2j/N − 1. We may use this observation to compute the transition probability

for the perceptron activation between successive memory storage steps (Elliott,

2014). Let hα denote the perceptron activation immediately after the storage

of memory α. The initial distribution h0 immediately after the storage of ξ0 is

Prob

[
h0 =

2j

N
− 1

]
= NCj

(
1 + p

2

)j (
1− p

2

)N−j

, (2.7)

where NCj denotes a binomial coefficient. The transition probability between

successive values of the activation is

Prob

[
hα+1 =

2i

N
− 1

∣∣∣∣hα =
2j

N
− 1

]

=

j∑

k=0

jCk

(p
2

)k (
1− p

2

)j−k
N−jCi−j+k

(p
2

)i−j+k (
1− p

2

)N−i−k

, (2.8)

where the usual conventions regarding binomial coefficients apply. Using these

transitions in perceptron activation, we derived an expression for the MFPT

for the activation to fall (to or) below θ from an initial activation h0 > θ.

Letting τmfpt(h0) denote this MFPT, we have

τmfpt(h0) =
1

r
+
∑

h>θ

τmfpt(h)Prob[h|h0]. (2.9)

We may move to a continuum limit for h when N is large enough, in excess of

around 100. In this limit, the two distributions in Eqs. (2.7) and (2.8) may be

replaced with Gaussian distributions with matched (conditional) means and
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variances. In this limit Eq. (2.9) becomes

τmfpt(h0) =
1

r
+

∫ ∞

θ

dh τmfpt(h)K0(h|h0), (2.10)

where K0 is the continuum Gaussian kernel corresponding to Eq. (2.8). As-

suming that we can solve the equation for τmfpt(h0), then τmfpt = 〈τmfpt(h0)〉h0
,

where 〈·〉h0
denotes an average over the initial distribution for h0.

MFPT equations of the form in Eq. (2.10) are rarely soluble except for a

handful of particular kernels. Previously we replaced the Gaussian kernel K0

with a formal expansion using the Dirac delta function δ(x),

K1(h|h0) = δ(h−h0)+ p h0 δ
′(h−h0)+

1

2

(
p2h20 +

1− q2

N

)
δ′′(h−h0), (2.11)

where the primes denote differentiation with respect to the argument and we

write q = 1−p. This formal kernel has the same conditional mean and variance

as Eq. (2.8). Eq. (2.10) then becomes the differential equation

−1

r
= −p h0

d

dh0
τmfpt(h0) +

1

2

(
p2h20 +

1− q2

N

)
d2

dh20
τmfpt(h0) (2.12)

for h0 > θ and the solution τmfpt(h0) = 1/r for h0 < θ. For p small enough,

Eq. (2.12) becomes

−1

r
= −p h0

d

dh0
τmfpt(h0) +

p

N

d2

dh20
τmfpt(h0), (2.13)

which is the equation governing the MFPT for the OU process. We defer

discussion of the solutions of these equations to the next section.
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3 Fokker-Planck Approach to FPT Distribu-

tion

The ability to work directly in the transitions in the perceptron’s activation

with each memory storage event and essentially ignore the details of the un-

derlying transitions in all N synapses’ strengths is critical to our derivation

of MFPT results for binary-strength synapses. In this way, we need consider

only transition matrices that are (N + 1) × (N + 1) rather than 2N × 2N

in size. For binary-strength synapses, this is possible because the number of

synapses with (tilded) strength +1 uniquely determines the perceptron’s ac-

tivation and, conversely, the perceptron’s activation uniquely determines the

number of such synapses. For ν > 2, however, although the configuration of

synaptic strengths uniquely determines the perceptron’s activation, the percep-

tron’s activation does not in general uniquely (even up to trivial permutation

symmetries) determine the configuration of synaptic strengths. For example,

for ν = 3 and with Si(t) ∈ {−1, 0,+1}, any pair of synapses may have (tilded)

strengths of +1 and −1 (in any order) or both may have strengths of 0: both

these strength configurations contribute identically to the perceptron’s activa-

tion. This degeneracy only increases as ν increases. To determine the statistics

of the FPT process for the perceptron’s activation for general ν, we therefore

cannot directly use the transitions in the perceptron’s activation and we must

find a different method.

3.1 Fokker-Planck Formulation

Let P (h, t|h0, t0) denote the transition probability from at initial activation h0

at time t0 (here t0 = 0) to a final activation h at time t ≥ t0. The Fokker-Planck
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or forward Chapman-Kolmogorov equation is then

1

r

∂

∂t
P (h, t|h0, t0) = − ∂

∂h

[
A(h)P (h, t|h0, t0)

]
+

1

2

∂2

∂h2
[
B(h)P (h, t|h0, t0)

]
,

(3.1)

while the adjoint or backward Chapman-Kolmogorov equation is

1

r

∂

∂t
P (h, t|h0, t0) = +A(h0)

∂

∂h0
P (h, t|h0, t0)+

1

2
B(h0)

∂2

∂h20
P (h, t|h0, t0). (3.2)

The functions A(x) and B(x) are the infinitesimal jump moments,

Ml(x) =
1

r
lim
δt→0

1

δt

∫
dy (y − x)lP (y, t+ δt|x, t), (3.3)

with A(x) =M1(x) and B(x) =M2(x). Because the transitions in the percep-

tron’s activation are subject to potentially large jump processes in which the

activation can jump across the firing threshold θ, the use of the Fokker-Planck

equation constitutes a diffusion limit approximation.

If we impose the absorbing boundary condition P (θ, t|h0, 0) = 0 on the

solution of the Fokker-Planck equation, the density G(h0, t) for the system to

escape from the interval (θ,∞) for the first time at time t from an initial state

h0 > θ (at time t0 = 0) in this interval is given by

G(h0, t) = − ∂

∂t

∫ ∞

θ

dhP (h, t|h0, 0). (3.4)

Using the backward equation we obtain

1

r

∂

∂t
G(h0, t) = A(h0)

∂

∂h0
G(h0, t) +

1

2
B(h0)

∂2

∂h20
G(h0, t). (3.5)
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Since τmfpt(h0) =
∫∞
0
dt tG(h0, t), we have

−1

r
= A(h0)

d

dh0
τmfpt(h0) +

1

2
B(h0)

d2

dh20
τmfpt(h0) (3.6)

for h0 > θ. Comparing Eq. (3.6) to Eq. (2.12) for ν = 2, we see that they are

structurally identical, indicating that the use of the kernel K1(h|h0) consti-

tutes a diffusion approximation in which jump processes have been neglected.

In addition to the MFPT, we can also obtain all the FPT statistics from

Eq. (3.5). Laplace transforming this equation, with Ĝ(h0, s) denoting the

Laplace transform of G(h0, t) with transformed variable s, and using the fact

that G(h0, 0) ≡ 0 for h0 > θ, we have

s

r
Ĝ(h0, s) = A(h0)

d

dh0
Ĝ(h0, s) +

1

2
B(h0)

d2

dh20
Ĝ(h0, s). (3.7)

This equation is solved subject to the two boundary conditions Ĝ(θ, s) = 1

and Ĝ(θ∗, s) = 1 and then we take the limit θ∗ → ∞ in order to remove the

influence of the second boundary at θ∗. As the moment generating function

(MGF) of a density is just its Laplace transform up to the sign of s, Ĝ(h0,−s)

is just the MGF of the FPT distribution. To be able to determine the FPT

distribution and all its moments, we need the jump moments A(x) and B(x).

3.2 Determination of Jump Moments

With µ(t) = E[h(t)] as before and defining ϕ(t) = E[h(t)2], we can obtain the

evolution of these moments from the Fokker-Planck equation using

1

r

dµ(t)

dt
= E

[
A(h)

]
, (3.8a)

1

r

dϕ(t)

dt
= E

[
B(h)

]
+ 2E

[
hA(h)

]
. (3.8b)
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If we can derive these two evolution equations via another method, then we

can deduce the form of the jump moments A(x) and B(x).

Since h(t) = 1
N

∑N
i=1 S̃i(t), we have that

µ(t) = E
[
S̃1(t)

]
, (3.9a)

ϕ(t) =
1

N
E
[
S̃1(t)

2
]
+

(
1− 1

N

)
E
[
S̃1(t)S̃2(t)

]
, (3.9b)

where we have used the fact that all the S̃i(t) are identically distributed to

single out any particular pair of synapses, here just i = 1 and i = 2. We can also

simply set ξ0i ≡ 1 ∀i and so compute the expectation values using only strength

rather than tilded strength variables. It is a property of the synaptic plasticity

models considered below that for any choice of ν, E
[
S̃1(t)

2
]
≡ E

[
S1(t)

2
]
in

Eq. (3.9b) is independent of time. We denote by Ω the ν-dimensional vector

of possible synaptic strengths available to a multistate synapse, so that Si(t) ∈

{Ω1, . . . ,Ων}. These components are ordered weakest to strongest. Then we

will show below that

E
[
S1(t)

2
]
=

1

ν

ν∑

i=1

Ω2
i ≡ 〈Ω2〉, (3.10)

where we use the final form as convenient shorthand notation.

The evolution of the quantities on the right-hand sides of Eq. (3.9) involve

only the dynamics of a single synapse via the mean µ(t) = E[S1(t)] and the joint

dynamics of a pair of synapses via the correlation function ψ(t) = E[S1(t)S2(t)].

For general ν ≥ 2, let the general ν × ν transition matrix for a synapse’s

strength be M, which for ν > 2 will generalise the particular form of M in

Eq. (2.5). Let P 1(t) denote the probability distribution of any single synapse’s

strength and let P 2(t) denote the joint probability distribution of any pair of
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synapses’ strengths. Since µ(t) ≡ ΩTP 1(t) and ψ(t) ≡
(
ΩT ⊗ΩT

)
P 2(t), we

obtain

1

r

dµ(t)

dt
= ΩTMP 1(t)− µ(t), (3.11a)

1

r

dψ(t)

dt
=
(
ΩT ⊗ΩT

)
(M⊗M)P 2(t)− ψ(t). (3.11b)

which follow directly from the evolution equations for P 1(t) and P 2(t).

For ν = 2, Ω = (−1,+1)T is a left eigenvector of M in Eq. (2.5). For ν = 2,

the right-hand sides of Eq. (3.11) therefore simplify, generating a closed system

of equations for µ(t) and ψ(t) from which A(x) and B(x) follow. For general

ν ≥ 2, unless Ω is a left eigenvector of M, the right-hand sides of Eq. (3.11)

do not close. To make progress, we must assume that Ω is a left eigenvector

of M,

ΩTM = λΩΩ
T, (3.12)

where λΩ is the eigenvalue of M associated with its left eigenvector Ω. In

the following section we construct models of synaptic plasticity satisfying this

eigenvector requirement.

With the exact eigenvector requirement on M and Ω, we obtain

1

r

dµ(t)

dt
= − (1− λΩ)µ(t), (3.13a)

1

r

dϕ(t)

dt
= −

(
1− λ2Ω

) [
ϕ(t)− 1

N
〈Ω2〉

]
, (3.13b)

with explicit solutions

µ(t) = µ(0) e−r(1−λΩ)t, (3.14a)

ϕ(t) =
1

N
〈Ω2〉+

(
1− 1

N

)
µ(0)2 e−r(1−λ2

Ω)t, (3.14b)
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where the initial mean memory signal µ(0) immediately after the storage of

ξ0 depends on the details of the model of synaptic plasticity. We will write

µ0 = µ(0) throughout for convenience. By comparing Eqs. (3.8) and (3.13) we

can read off the expectation values of the jump moments,

E
[
A(h)

]
= − (1− λΩ)µ(t), (3.15a)

E
[
B(h)

]
= −

(
1− λ2Ω

) [
ϕ(t)− 1

N
〈Ω2〉

]
− 2E

[
hA(h)

]
, (3.15b)

from which we finally deduce that

A(x) = − (1− λΩ) x, (3.16a)

B(x) = (1− λΩ)
2 x2 +

1− λ2Ω
N

〈Ω2〉. (3.16b)

For ν = 2, λΩ = 1−p and 〈Ω2〉 = 1, so these jump moments reduce identically

to the coefficients of the MFPT equation in Eq. (2.12) for binary synapses.

Although the eigenvector requirement in Eq. (3.12) may appear to be very

strong, in general even if Ω is not an exact left eigenvector of M but is suffi-

ciently close to one, say e, then we would expect to obtain a good approxima-

tion by using Ω as an approximate eigenvector of M. If a symmetric M has a

complete set of orthonormal eigenvectors êm, with say ê
1 ∝ e and Ω is close

to e, then we can write

Ω =

(
eTΩ

eTe

)
e+

ν∑

m=2

(
ê

mTΩ
)
ê

mT . (3.17)

If the contribution from the first term involving e dominates the contributions

from the other eigenvectors, then we can write Ω ≈
(
eTΩ/eTe

)
e with ΩTM ≈

λeΩ
T, where λe is the eigenvalue associated with the closest eigenvector e.
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In general, then, provided that M has an eigenvector close enough to the

actual vector of possible synaptic strengths Ω, we would expect to obtain good

quantitative agreement between our analytical results below, where we assume

that Ω is an exact left eigenvector of M, and numerical or simulation-based

results, for which we may relax this assumption.

3.3 Extraction of FPT Distribution

Although it is possible to obtain the FPT distribution for the full forms of

A(x) and B(x) in Eq. (3.16), we may consider a simpler form for B(x) and

obtain extremely good agreement with the full results. Specifically, we write

B(x) only to first order in 1− λΩ, so that

B(x) ≈ 2(1− λΩ)

N
〈Ω2〉. (3.18)

This is equivalent to considering an OU limit; for ν = 2, λΩ = 1− p, so this is

just the small p limit. Below we frequently refer to dynamics for large enough

N . By this we only mean N large compared, say, to 100, but not so large

that the simpler form for B(x) is invalidated. Biologically, large N means N

of order 104 or 105; larger values are irrelevant. In this OU limit, Eq. (3.7)

becomes

s

r(1− λΩ)
Ĝ(h0, s) = −h0

d

dh0
Ĝ(h0, s) +

〈Ω2〉
N

d2

dh20
Ĝ(h0, s). (3.19)

The parameter ν enters in two ways. First, through a rescaling of the rate r

via 1 − λΩ as λΩ will depend on ν. Both r and 1 − λΩ rescale the time t; we

define ρ = r(1− λΩ) and write s′ = s/ρ. Second, through a rescaling of N via

the quantity 〈Ω2〉 to generate an effective number of synapses N ′ = N/〈Ω2〉.
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We can then rewrite Eq. (3.19) as

s′ Ĝ(h0, s
′) = −h0

d

dh0
Ĝ(h0, s

′) +
1

N ′
d2

dh20
Ĝ(h0, s

′). (3.20)

The solution of this equation, subject to the boundary conditions at h0 = θ

and h0 = θ∗ > θ and taking θ∗ → ∞, is

Ĝ(h0, s
′) =

H−s′
(
h0
√
N ′/2

)

H−s′
(
θ
√
N ′/2

) , (3.21)

where H−a(y) is a Hermite polynomial of possibly non-integer order.

In general, we cannot invert Eq. (3.21), although we can expand as a power

series in s′ to obtain the moments of the FPT distribution. However, for

the particular case of θ = 0 we can explicitly write down the solution of

the original Fokker-Planck equation in the OU limit satisfying the absorbing

boundary condition P (θ, t|h0, 0) = 0. If f(h, h0; t) is the standard OU solution

of the Fokker-Planck equation in the absence of an absorbing boundary, then

a standard image construction gives P (h, t|h0, 0) = f(h,+h0; t) − f(h,−h0; t)

with h0 > 0 as the solution for h ≥ 0 satisfying the boundary condition. From

Eq. (3.4) we then obtain

G(h0, t) = ρ

√
2N ′

π

h0 e
−ρ t

(1− e−2ρ t)3/2
exp

[
−N

′

2

(h0 e
−ρ t)

2

(1− e−2ρ t)

]
(3.22)

as an explicit form of the FPT distribution for θ = 0.

Expanding Eq. (3.21) to second order in s′ we obtain expressions for the

lowest order statistics of the FPT distribution. Defining τ(x) via

ρ τ(x) = 1
2

[
π erfi

(
x
√
N ′/2

)
−N ′x2 2F2

(
{1, 1}, {3/2, 2}, N ′x2/2

)]
, (3.23)
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where erfi(x) is the imaginary error function and 2F2 is a hypergeometric func-

tion, the MFPT is

τmfpt(h0) = τ(h0)− τ(θ). (3.24)

We have derived this form before for ν = 2 (Elliott, 2014), but Eq. (3.24)

generalises the result to ν ≥ 2. For the mean squared FPT, and thence the

variance denoted by σ2
fpt(h0), we can obtain exact results, but they are in

general very messy and we do not reproduce them here. However, for h0
√
N ′

large enough, the results for both τmfpt(h0) and σ
2
fpt(h0) simplify dramatically.

They differ qualitatively between θ > 0 and θ = 0 because µ(t) → 0 as t→ ∞,

so θ = 0 is a special case tuned precisely to match the asymptotic mean memory

signal (Elliott, 2014). For h0
√
N ′ large enough and for θ > 0, we obtain

ρ τmfpt(h0) ∼ loge(h0/θ), (3.25a)

ρ2σ2
fpt(h0) ∼ 0, (3.25b)

while for θ = 0,

ρ τmfpt(h0) ∼ 1
2

[
γ + loge 2 + loge(N

′h20)
]
, (3.26a)

ρ2σ2
fpt(h0) ∼ π2

8
, (3.26b)

where γ ≈ 0.577 is Euler’s constant. For θ = 0, the behaviour of the MFPT is

logarithmic in N for large enough N , but for θ > 0 the N -dependence drops

out. The variance in the FPT for θ > 0 approaches zero as N increases; for

θ = 0, it approaches a non-zero constant. Eqs. (3.25a) and (3.26a) generalise

our previous results for ν = 2, but we have not derived results for σ2
fpt before.

The results above are averaged over all realisations of the later memories ξα,

α > 0, but they have a fixed initial value h0 > θ. For the FPT distribution also
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averaged over the tracked memory ξ0, we must evaluate
〈
Ĝ(h0, s

′)
〉
h0

, where

we average over the initial distribution of h0 with h0 > θ. From Eq. (3.14)

this distribution has mean µ0 and variance σ(0)2 =
[
〈Ω2〉 − µ2

0

]
/N , and for N

large enough the distribution is Gaussian. For the models of synaptic plasticity

that we consider below, we can typically assume that µ2
0 ≪ 〈Ω2〉. For ν = 2,

for example, this is just the requirement that p2 ≪ 1. Thus, it is convenient

although not necessary to make the approximation σ(0)2 ≈ 1/N ′. We write

〈
Ĝ(h0, s

′)
〉
h0

=
√

N ′

2π

∫ ∞

θ

dx
H

−s′

(
x
√

N ′/2
)

H
−s′

(
θ
√

N ′/2
)e−N ′[x−µ0]2/2

=
√

1
2π

∫ ∞

θ′
dy

H
−s′

(
y/

√
2
)

H
−s′

(
θ′/

√
2
) e−(y−µ′)2/2, (3.27)

where we have defined the scaled forms µ′ = µ0

√
N ′ and θ′ = θ

√
N ′. For

θ > 0, it does not appear to be possible to evaluate this integral in terms of

known functions, so we must resort to numerical or approximation methods in

this case. For θ = 0, the integral can be evaluated, but we may also explicitly

average Eq. (3.22) over the distribution of h0 with h0 > 0, giving

〈
G(h0, t)

〉
h0

=
ρ

π
e−ρ t

{
e−

1

2
µ′ 2

√
1− e−2ρ t

+

√
π

2
µ′ e−

1

2(µ′e−ρ t)
2

[
1 + erf

(
µ′

√
1− e−2ρ t

2

)]}
, (3.28)

where erf is the error function. We may then obtain τmfpt = 〈τmfpt(h0)〉h0
and

the variance in the FTP, which we denote by σ2
fpt or 〈σfpt(h0)〉2h0

, where we use

this latter as a convenient shorthand for 〈σfpt(h0)〉2h0
= 〈t2(h0)〉h0

−〈τmfpt(h0)〉2h0
,

where t2(h0) is the second moment of the FPT distribution for a definite value

of h0. The full results for θ = 0 are fairly simple but unenlightening. However,

for either small µ′ or large µ′, retaining just the first few terms in the expansions
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they reduce to

ρ τmfpt ∼





1
2
loge 2 +

1√
2π
µ′ + 1

8
µ′ 2 for µ′ small

1
2
(γ + loge 2 + loge µ

′ 2) for µ′ large
, (3.29)

and

ρ2σ2
fpt ∼





1
24

(
π2 + 6 log2e 2

)
+ 1√

2π
(2− loge 2)µ

′ for µ′ small

π2

8
for µ′ large

. (3.30)

These statistics averaged over h0 for large µ′ coincide with those for a definite

value of h0 for large enough h0
√
N ′ in Eq. (3.26) when we replace h0 by µ0.

This reflects the fact that when N is large enough,
〈
G(h0, t)

〉
h0

can be replaced

by its mean field form G(〈h0〉h0
, t) ≡ G(µ0, t).

4 Simple Synapses Satisfying an Eigenvector

Constraint

We now construct two models of synaptic plasticity satisfying the requirement

ΩTM = λΩΩ
T. In the first, we pick Ω to be an eigenvector of M where M

is a generalised form of the transition matrix given in Eq. (2.5) for ν = 2. In

the second, we modify M so that it has as an eigenvector Ω an arrangement

of synaptic strengths that is uniformly spaced.

4.1 Modifying Ω

The simplest generalisation of the ν = 2 stochastic updater synapse is one that

expresses plasticity with fixed probability p regardless of its strength state

(unless saturated at its upper or lower value). The 2 × 2 matrices M± in
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Eq. (2.4) then become the ν × ν matrices

M+ = diag{q, . . . , q︸ ︷︷ ︸
ν−1

, 1}+ diagl{p, . . . , p︸ ︷︷ ︸
ν−1

}, (4.1a)

M− = diag{1, q, . . . , q︸ ︷︷ ︸
ν−1

}+ diagu{p, . . . , p︸ ︷︷ ︸
ν−1

}, (4.1b)

where diagu and diagl refer to the upper and lower diagonals, respectively. The

superposed matrix M = 1
2

(
M+ +M−) can then be written as

M = I+ pC, (4.2)

where the matrix C is

C = 1
2

(
diag{−1,−2, . . . ,−2︸ ︷︷ ︸

ν−2

,−1}+ diagu{+1, . . . ,+1︸ ︷︷ ︸
ν−1

}+ diagl{+1, . . . ,+1︸ ︷︷ ︸
ν−1

}
)
.

(4.3)

We use the symbol “C” (for constant) because its defining off-diagonal elements

are all the same constant. The spectrum of C is standard (e.g., Elliott, 2016a),

so we just state its eigenvalues,

λm = cos
mπ

ν
− 1, m = 0, . . . , ν − 1, (4.4)

and its orthonormal eigenvectors êm with components êmi , i = 1, . . . , ν,

êmi =





√
1
ν

for m = 0
√

2
ν
cos
[
mπ
2 ν

(2 i− 1)
]

for m = 1, . . . , ν − 1
. (4.5)

These eigenvectors of C are of course also eigenvectors of M, with eigenvalues

1 + p λm, and as M is symmetric, its left and right eigenvectors are identical.

The eigenvector with eigenvalue unity, corresponding to m = 0, is the equilib-
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rium eigenvector. Defining the vector ν = (1, . . . , 1)T, a ν-dimensional vector,

the equilibrium distribution is just A = 1
ν
ν.

For a multistate synapse it is standard to consider a uniformly spaced

sequence of synaptic strengths. We define the vector L (for linear) to have

components

Li = −1 + 2
i− 1

ν − 1
, (4.6)

which are uniformly spaced in [−1,+1]. Except for ν = 2 and ν = 3, however,

L is not an eigenvector of M. We require instead an eigenvector of M whose

components monotonically increase (with a change in sign if necessary) and are

antisymmetrically arranged around zero. The requisite eigenvector is ê
1 and

we define the vector S ∝ ê
1 (for sigmoidal or sinusoidal) to have components

Si = −cos π
2ν
(2 i− 1)

cos π
2ν

. (4.7)

For ν = 2 and ν = 3, L ≡ S. Viewed from the middle of the strength range,

for ν > 3 this arrangement is sinusoidal, effecting saturation-like dynamics at

the lower and upper ends of its range. In many respects, such dynamics may

be considered to be more desirable than uniformly spaced strengths.

For this standard form of M, we therefore set Ω = S and we have λΩ =

1− p
(
1− cos π

ν

)
. We find that 〈S2〉 = 1

2
sec2 π

2ν
. To compute the initial signal

µ0, we require M+A = 1
ν
(1 − p, 1, . . . , 1, 1 + p)T, in which only the first and

last components are modified compared to A. Since S
TA ≡ 0, we have the

initial signal µ0 = S
TM+A = 2p/ν. We note that because of the structure of

M+A, the initial signal is 2p/ν whether the strength vector is S or L.

We must verify that E
[
S1(t)

2
]
≡ 〈Ω2〉, independent of t. First, we write

M+A = A + B, where B is antisymmetric, or Bi = −Bν+1−i for any i. We
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then observe that because M = 1
2
(M++M−), if the vector B is antisymmetric,

then so is the vector MB. Thus, the distribution of any synapse’s strengths

at time t can be written as A+B(t) with B(t) antisymmetric. Then

E
[
S1(t)

2
]
=

ν∑

i=1

Ai Ω
2
i +

ν∑

i=1

Bi(t) Ω
2
i ≡ 〈Ω2〉+

ν∑

i=1

Bi(t) Ω
2
i = 〈Ω2〉. (4.8)

This confirms the stated result in Eq. (3.10) for this model.

Finally, we consider relaxing the requirement that Ω = S by examining

the overlap between the eigenvectors of M and the linear strength vector L.

Specifically, we compute the overlap L
Tê

m for m 6= 1 relative to that for

m = 1, corresponding to ê
1 ∝ S. We obtain

L
Tê

m

L
Tê

1 =

(
1− (−1)m

2

)(
tan π

2 ν

tan mπ
2 ν

)(
sin π

2 ν

sin mπ
2 ν

)
→
(
1− (−1)m

2

)
1

m2
,

where the limit is taken for ν → ∞. In this limit the maximum relative overlap

occurs for m = 3, giving a factor of 1/9, or about 11%, and the total relative

overlap over all m 6= 1 gives π2

8
− 1, or about 23%. These relatively small

contributions to the expansion in Eq. (3.17) suggest that using Ω = L instead

of the exact eigenvector S should incur an error of at most around 25%. In

fact, we find that the error is typically much smaller.

4.2 Modifying M

Above we retained the standard form of M and modified Ω, setting Ω = S.

Now we consider retaining Ω = L and instead modifying M. We write M± =

I+pQ±, where p is the parameter that controls the overall probability that any

given change in synaptic strength is expressed. Then M = 1
2
(M+ +M−) =

I+ pQ, where we write Q = 1
2
(Q+ +Q−). We require a matrix Q that treats
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potentiation and depression processes symmetrically; that has A = 1
ν
ν as a

right eigenvector so that the equilibrium distribution of synaptic strengths is

uniform; and that also has the vector L as a left eigenvector. Writing

Q+ = −diag{a1, . . . , aν}+ diagl{a1, . . . , aν−1}, (4.9a)

Q− = −diag{aν , . . . , a1}+ diagu{aν−1, . . . , a1}, (4.9b)

where aν = 0, the structures of Q± ensure that potentiation and depression

are treated symmetrically. The vector A is always a left eigenvector of Q

and the easiest way to ensure that it is also a right eigenvector is for Q to

be symmetric, requiring ai = aν−i. The simplest non-constant form for ai is

therefore ai ∝ (ν − i) i + c for some constant c, and aν = 0 forces c = 0. By

setting

ai =
(ν − i) i

ν − 1
(4.10)

for i = 0, . . . , ν, we may confirm that L is also an eigenvector of Q. The overall

normalisation is chosen so that Q ≡ C for ν = 2 and ν = 3 since L ≡ S for

these special cases. The off-diagonal elements of Q are arranged quadratically,

hence our use of the symbol “Q” (for quadratic), in contrast to C above.

Let the eigenvalues ofM be λm,m = 1, . . . , ν, with associated un-normalised

(but orthogonal) eigenvectors em having components emi . We write fm(z) =

∑ν
i=1 e

m
i z

i for the generating function of these components and then derive an

equation for fm(z). Because of the natural boundaries at i = 0 and i = ν at

which ai = 0, we may extend the sum defining fm(z) over all i. After lengthy

but straightforward algebra, the eigenvalue equation 2(ν−1)Q em = λme
m for

the eigenvalues λm of the scaled matrix 2(ν − 1)Q can then be written as the
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differential equation

λmfm(z) = ν
[
(1− z)2f ′

m(z)− z−1(1− z)fm(z)
]

−
[
z(1− z)2f ′′

m(z)− (1− z2)f ′
m(z) + z−1(1− z)fm(z)

]
, (4.11)

where primes denote differentiation with respect to z. Demanding a terminat-

ing power series solution determines the eigenvalues as λm = −m(m− 1) and

hence

λm = 1− p
m(m− 1)

2(ν − 1)
, (4.12)

and the corresponding power series solution is

fm(z) =
(
ν−1Cm−1

)−1
z (1− z)m−1

ν−m∑

i=0

m−1+iCm−1
ν−1−iCm−1 z

i. (4.13)

Clearly f1(z) =
∑ν

i=1 z
i so that e1 ∝ A, and explicitly evaluating f2(z), we

find f2(z) = −∑ν
i=1 Li z

i, or e2 = −L, so that L is indeed an eigenvector of

M, as advertised. Its eigenvalue is 1− p/(ν − 1).

Because M is a stochastic matrix, its elements must be non-negative. The

diagonal elements of M take the form 1− 1
2
p (ai + aν+1−i) = 1− 1

2
p (ai + ai−1)

for i = 1, . . . , ν. We therefore require

ν ≤





1
p

(
2 +

√
4− 4 p+ 2 p2

)
≈ 4

p
− 1 for even ν

4
p
− 1 for odd ν

. (4.14)

For any given choice of p, we must have ν / 4/p− 1, restricting the number of

states of strength available to a synapse; conversely, for any given choice of ν,

p cannot exceed an upper limit. From a biological perspective, we can circum-

vent this bound by imposing a non-linearity on the matrices pQ± so that the
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elements ±p ai are replaced by ±min(1, p ai). This is equivalent to potentia-

tion or depression being inevitable in certain synaptic strength states. Math-

ematically, determining the spectrum of M with such a non-linearity would in

general be difficult, so for simplicity we restrict to the above bound on ν for

convenience, but with the understanding that in principle there is no obstacle

to larger values.

To calculate the initial signal µ0, we require

M+A =
1

ν

(
1− p(a1 − a0), 1− p(a2 − a1), . . . , 1− p(aν − aν−1)

)T
. (4.15)

Because ai−1 − ai = Li, we have M+A = A+ p
ν
L, and so

µ0 = L
TM+A =

p

ν
L

T
L =

p

3

ν + 1

ν − 1
, (4.16)

since 〈L2〉 = (ν+1)/[3(ν−1)]. Unlike µ0 for M = I+pC, here for M = I+pQ,

µ0 does depend on whether the strength vector is L or S. For S, µ0 in

Eq. (4.16) would become µ0 =
p
ν
S

T
L = p

ν(ν−1)
cosec2 π

2ν
. The antisymmetry of

L in M+A = A + p
ν
L also immediately establishes E

[
S1(t)

2
]
= 〈Ω2〉 by the

same arguments as above, and as required by Eq. (3.10).

Finally, we examine the relative overlap between the sinusoidal strength

vector S and the normalised eigenvectors ê
m, m = 1, . . . , ν, of this modified

form of M, where ê
2 ∝ L. We cannot obtain useful expressions for general

even m (for odd m the overlap vanishes), so we state results only for small

even m, for which the overlap is greatest. For large ν, we obtain

S
Tê

m

S
Tê

2 →





−2
√
21 (10− π2) /π2 for m = 4

+5
√
33 (1008− 112 π2 + π4) /π4 for m = 6

−28
√
5 (308880− 35640 π2 + 450 π4 − π6) /π6 for m = 8

.
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These evaluate to approximately −0.121, 3.95 × 10−3 and −5.97 × 10−5, re-

spectively, and for m = 10, we get approximately 5.21× 10−7. For m = 4, the

relative overlap is around 12%, for m = 6 under 0.5% and all other values are

negligible. Again, then, we expect our analytical results for Ω = L to provide

good quantitative agreement with simulation results obtained using Ω = S.

4.3 Summary of Both Plasticity Models

M = I+ pC M = I+ pQ

Ω S L

λΩ 1− p
(
1− cos π

ν

)
1− p 1

(ν−1)

〈Ω2〉 1
2
sec2 π

2ν
1
3
ν+1
ν−1

µ0
2 p
ν

p
3
ν+1
ν−1

νmax ∞ 4
p
− 1

Table 1: Summary of key quantities for the two models of synaptic plasticity

satisfying an eigenvector constraint. Here νmax refers to an upper limit on ν.

In Table 1 we assemble for convenience the key quantities in the two models of

synaptic plasticity above that satisfy the eigenvector condition ΩTM = λΩΩ
T.

In Fig. 1, we explicitly illustrate the key properties of the vectors L and S

and the matrices C and Q for the particular choice, ν = 21 states of synaptic

strength. The saturation-like behaviour of S is apparent compared to L, al-

though in practice these two vectors are quite similar. The quadratic behaviour

of the off-diagonal elements of Q is transparent, showing that the expression of

synaptic plasticity has greatest overall probability for synaptic strengths that

are of intermediate sizes, while those at the extremes of the interval [−1,+1]

have lowest overall probability. In contrast, for C the probability of the ex-

pression of plasticity is independent of synaptic strength.
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Figure 1: Illustration of major features of synaptic strengths and transition

matrices, for ν = 21. (A) Synaptic strengths Li and Si plotted against i. (B)

Off-diagonal elements of C and Q, enumerated down the off-diagonal indexed

by i.

5 µ(t) and σ(t)2 for General Ω

Consider any symmetric stochastic matrix M that treats potentiation and de-

pression processes symmetrically and that has a complete set of orthonormal

eigenvectors êm with associated eigenvalues Λm. Then because

µ(t) = ΩTer(M−I)t M+A, (5.1a)

ψ(t) =
(
ΩT ⊗ΩT

)
er(M⊗M−I⊗I)t

(
M+A⊗M+A

)
, (5.1b)

the spectral decomposition of M allows us to write

µ(t) =
∑

m

(
ΩTê

m
) (

ê
mT

M+A
)
e−r(1−Λm)t, (5.2a)

ψ(t) =
∑

m1,m2

(
ΩTê

m1
) (

ΩTê
m2
) (

ê
m1T M+A

)(
ê

m2T M+A
)
e−r(1−Λm1

Λm2
)t.

(5.2b)
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Using ψ(t) and µ(t) we may write down σ(t)2. We now consider the two explicit

forms for M above for general Ω, and then we may write down SNR memory

lifetimes for a variety of models.

5.1 Results for M = I + pQ

For this form of M, we have M+A = A + p
ν
L, where both A and L are

eigenvectors of M. The sums over eigenvectors in Eq. (5.2) therefore collapse

to just sums involving m = 1 for ê 1 ∝ A and m = 2 for ê 2 ∝ L, regardless

of Ω. However, ΩTA ≡ 0 always, since we assume that the vector of possible

synaptic strengths Ω is antisymmetric, while A is symmetric. Hence, the sums

collapse to only m = 2. We are then left with

µ(t) =
p

3

ν + 1

ν − 1

(
ΩT

L

L
T
L

)
e−r(1−Λ)t, (5.3a)

ψ(t) = µ2
0 e

−r(1−Λ2)t, (5.3b)

for any Ω, where Λ = 1− p/(ν − 1). We have written the expression for µ(t)

in a form so that we transparently recover µ0 = µ(0) in Table 1 as the initial

memory signal when Ω = L. Strikingly, only a single eigenmode contributes

to these statistics, regardless of the vector of possible synaptic strengths Ω.

This eigenmode is, moreover, the most slowly decaying mode. This remarkable

behaviour is entirely due to the very special form of the synaptic configuration

immediately after the storage of ξ0.

5.2 Results for M = I + pC

The spectral decomposition of C is given explicitly in Eqs. (4.4) and (4.5).

Because M+A = A+ p
ν
v, where v = (−1, 0, . . . , 0,+1)T is not an eigenvector
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of M except for ν = 2 and ν = 3, the sums over eigenvectors in Eq. (5.2) do

not collapse for general Ω. However, for the specific choice Ω = S, the sums

do collapse down to just m = 1, corresponding to ê
1 ∝ S. In general, however,

since we are interested in memory lifetimes, we are interested specifically in the

large-time behaviour of µ(t) and ψ(t). We may therefore simplify by consider-

ing an approximation that includes just the most slowly decaying eigenmode,

which also corresponds to the m = 1 mode and thus S. Asymptotically, this

approximation becomes exact. We then obtain

µ(t) ∼=
S

2 p

ν

(
ΩT

S

S
T
S

)
e−r(1−Λ)t, (5.4a)

ψ(t) ∼=
S

[
2 p

ν

(
ΩT

S

S
T
S

)]2
e−r(1−Λ2)t, (5.4b)

where Λ = 1−p
(
1− cos π

ν

)
and where we use the symbol “∼=

S

” to indicate that

we have equality for Ω = S (exact equality for all times t) and asymptotic

equality otherwise (asymptotic equality only at large times).

5.3 SNR Memory Lifetimes

We use these results to obtain SNR memory lifetimes for either choice of M

and for either choice of Ω, giving four combinations. As τsnr is the solution of

µ(τsnr) = σ(τsnr), in general it must be obtained numerically, but for large τsnr

we may approximate σ(t)2 ≈ 〈Ω2〉/N = 1/N ′. We write Eqs. (5.3a) and (5.4a)

in the common form µ(t) ∼= E e−r(1−Λ)t, where E depends on the choice of M

and Ω. We have exact equality in this equation for three combinations, for

which E ≡ µ0, and asymptotic equality for the remaining combination. We

then obtain

r(1− Λ)τsnr ≈ 1
2
loge(N

′E2). (5.5)
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This result is identical, up to additive constants, to the asymptotic form for

τmfpt(h0) in Eq. (3.26a) for θ = 0 with h0 = E, where E ≡ µ0 for three

combinations. In Table 2, we give the explicit results for rτsnr for all four

combinations, in the full form for any ν and for large ν. We note that 768/π4 ≈

7.88 ≈ 8 and therefore also 32/π4 ≈ 0.33 ≈ 1/3, so these SNR lifetimes are

quite insensitive to the choice of Ω. We have obtained the results for C & L

before (Elliott, 2016a). The C & L model has also been extensively studied

by previous authors, although purely in an SNR context. For example, Amit

& Fusi (1994) derived, up to overall numerical factors, expressions essentially

equivalent to our own for τsnr; see Elliott (2016a) for a fuller discussion.

Model Full ν form Large ν form

C & L
1

2p(1−cos π

ν )
loge

48Np2 cot4 π

2 ν

ν4(ν2−1)
ν2

pπ2 loge
768Np2

π4ν2

C & S
1

2p(1−cos π

ν )
loge

8Np2 cos2 π

2 ν

ν2
ν2

pπ2 loge
8Np2

ν2

Q & L
ν−1
2p

loge
Np2

3
ν+1
ν−1

ν
2p
loge

Np2

3

Q & S
ν−1
2p

loge
2Np2 cot2 π

2 ν
cosec2 π

2 ν

ν2(ν−1)2
ν
2p
loge

32Np2

π4

Table 2: Results for rτsnr for the four combinations of C or Q and L or S, in

the full form for any ν and for large ν.

6 Results: Analysis and Simulation

We now examine memory lifetimes using the above analytical results. We also

compare these results to data obtained from simulation. Details of simulation

protocols may be found elsewhere (Elliott & Lagogiannis, 2012; Elliott, 2014).

To obtain good statistics, we average simulations over multiple runs. Typically

we average over 105 runs, but forN = 105 we use 104 runs for speed. Simulation
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results produce both the mean and variance in the memory signal and the

MFPT memory lifetime and its variance.

We first exhibit the mean memory signal µ(t) and the SNR σ(t)/µ(t) in

Fig. 2. In Fig. 2A, we plot analytical results for µ(t) against time for the

C&L and C&S models. For the former we show the exact result including

all eigenmodes and the asymptotic result with just the slowest eigenmode. We

also show simulation data, confirming agreement with analytical results for

sufficient runs. The behaviour of the exact form of the C&L model interpo-

lates between its asymptotic form at large times and the C&S model at small

times. The initial signal for both exact C models is 2 p
ν
, so as ν increases, µ0

decreases, and in the limit it drops to zero. Conversely, the dominant eigen-

mode is governed by pπ2

2ν2
, so as ν increases, this mode is increasingly longer

lived. Fig. 2B shows similar results for the Q&S and Q&L models, although

there is no equivalent of the asymptotic form of the C&L model. The initial

signals of these models are proportional to p
3
ν+1
ν−1

(with equality for Q&L),

so as ν increases, these signals remain non-zero, in radical contrast to the C

model. The dominant eigenmode is now governed by p
ν
, so although this goes

to zero more slowly than pπ2

2ν2
as ν increases (i.e. the mode dies faster with t),

the memory signal is still increasingly longer lived as ν increases.

These differences between the initial signals and the decay rates of the rel-

evant eigenmodes in the C and Q models can be seen in Figs. 2C and 2D,

showing the SNR µ(t)/σ(t), with σ(t)2 determined exactly. The SNRs for the

asymptotic C&L and exact C&S models in Fig. 2C are virtually indistin-

guishable, as are those for the Q&L and Q&S models in Fig. 2D. With the
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Figure 2: Evolution of mean memory signal µ(t) and SNR µ(t)/σ(t) over

time. (A) Exact analytical results for µ(t) for the C&S and C&L models

and for the most slowly decaying mode of the C&L model (“asym”), for

different choices of ν, as indicated. (B) Same as A, except for the Q model;

the exact results only contain a single decay mode. In both A and B, all results

for ν = 2 are identical, so only a single line is visible. Simulation results, shown

as points, are shown only for ν = 20 for clarity. (C) and (D) Same as A and B,

respectively, but showing µ(t)/σ(t) instead of µ(t). A thin line corresponding

to µ(t)/σ(t) = 1 is also shown. In all panels with have set p = 0.1 and in C

and D, we have set N = 104.
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approximation σ(t)2 ≈ 〈Ω2〉/N , we obtain

[µ(t)/σ(t)]Q&S

[µ(t)/σ(t)]Q&L

=
[µ(t)/σ(t)]asymp

C&L

[µ(t)/σ(t)]C&S

= cosκ, (6.1)

where κ is the angle between the L and S vectors, with cosκ ≥ 4
√
6

π2 ≈ 0.993

for ν ≥ 2. Hence, these ratios are very close to unity, explaining the near-

indistinguishability of the SNRs in Figs. 2C and 2D. Also, because the exact

form for the C&L model approaches its asymptotic form, their SNRs must be-

come indistinguishable and so nearly indistinguishable from the C&S model’s

SNR. All C models will thus have nearly identical SNR memory lifetimes;

similarly for both Q models. This is clear from the intercepts of the µ(t)/σ(t)

curves with unity, defining τsnr, in Figs. 2C and 2D.

We explore the SNR memory lifetime τsnr is more detail in Fig. 3. We again

determine σ(t)2 exactly, but with σ(t)2 ≈ 〈Ω2〉/N the results are virtually

indistinguishable. In Figs. 3A and 3B we plot τsnr as a function of N . For the

C model in Fig. 3A, thick lines show results for the C&L model including

all eigenmodes, while thin lines show results for the C&S model, which are

indistinguishable from the asymptotic form of the C&L model. For large

enough N all results are indistinguishable, while for smaller N the results for

the exact form of the C&L model differ slightly from the other results. For

the Q models in Fig. 3B, both sets of results are indistinguishable. In all cases,

we see a bifurcation-like phenomenon with the rapid onset of τsnr > 0 for N

above some critical value. Taking the large ν forms in Table 2, these critical

values can be read off as

N >





ν2

8p2
for C&S (6.2a)

3
p2

for Q&L (6.2b)
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for the two simplest cases. For the C model this critical value scales quadrati-

cally with ν, but for the Q model it exhibits no dependence on ν in the limit

of large ν. Away from this limit there is mild sensitivity to ν, but even for

ν = 10 and ν = 20, the critical values are very similar.

This striking difference between the C andQmodels is further illustrated by

plotting τsnr as a function of ν rather than N , in Figs. 3C and 3D. The trade-off

between the rapid fall in the initial signal 2 p
ν

and the increasingly longer-lived

eigenmode governed by pπ2

2ν2
for the C model gives rise to a maximum in τsnr

for a particular value of ν. Beyond this maximum there are differences in the

lifetimes for the various C models because for shorter lifetimes and larger ν,

more eigenmodes in the C&L model must be considered. For the asymptotic

form of the C&L model or the exact form of the C&S model, we determine

the value of ν, call it νopt, that optimises τsnr, giving

νopt =





p

√
768

π4e

√
N for C&L (6.3a)

p

√
8

e

√
N for C&S. (6.3b)

The numerical factors are virtually identical. These give optimal SNR memory

lifetimes, respectively, of 0.294 pN/r and 0.298 pN/r. SNR optimality condi-

tions have been studied by previous authors (e.g., Amit & Fusi, 1994); see

Elliott (2016a) for a fuller discussion and a critique of the relevance of such

conditions. In contrast to the behaviour for the C model, in the Q model τsnr

grows monotonically with ν because its initial signal is bounded from below

by p
3
rather than collapsing as ν increases. Indeed, from the τsnr results in Ta-

ble 2, and as seen in the shaded region in Fig. 3D, the Q model’s SNR memory

lifetimes would grow unboundedly as ν increases, although ν is restricted to

ν / 4
p
− 1.
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Figure 3: SNR memory lifetime τsnr as a function of N and ν, for p = 0.1.

(A) Memory lifetimes for the C&L (thick lines) and C&S (thin lines) models

for different choices of ν, as a function of N . (B) Same as A, except for the

Q&L model; results for the Q&S model are virtually identical and are not

shown. (C) Same as A, except results are shown for different choices of N , as

a function of ν. (D) Same as B, except results are shown for different choices

of N , as a function of ν. We have shaded the region for ν > 39 because for

p = 0.1, the Q matrix ceases to be a stochastic matrix here.
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Having examined SNR memory lifetimes, we turn to FPT-defined memory

lifetimes. Before explicitly considering the FPT statistics, we first plot the

FPT distribution itself as a function of time in Fig. 4. For simplicity we set

θ = 0 so that we may use Eqs. (3.22) and (3.28), and we consider only the

C&S model as results for the Q&L model are qualitatively identical. For

each choice of N and for fixed h0, G(h0, t) is roughly-speaking rather log-

normal-like in appearance. As h0 increases, the peak in the FPT distribution

shifts to larger t, with the distribution broadening over a wider range of t; the

distributions for fixed N also become increasingly similar as h0 increases. For

N large enough, the averaged distribution 〈G(h0, t)〉h0
is essentially identical to

its mean field form G(µ0, t) over the shown range of t, where for the parameters

used, µ0 = 0.04. For small t, 〈G(h0, t)〉h0
∼ 1

π

√
ρ
2 t
e−

1

2
µ′ 2

, with the divergence

reflecting the presence of the absorbing boundary at h0 = θ. For N = 103 in

Fig. 4A, we see the onset of this divergence in 〈G(h0, t)〉h0
for small t, but as

N increases the factor e−
1

2
µ′ 2

, where µ′ = µ0

√
N ′, is increasingly suppressed,

requiring very small t for 〈G(h0, t)〉h0
to start growing.

We now consider the FPT statistics. In Figs. 5 and 6 for the C&S and

Q&L models, respectively, we consider the mean τmfpt(h0) and standard de-

viation σfpt(h0) as a function h0. In Figs. 5A and 6A, we plot τmfpt(h0) for

various choices of ν for θ = 0, showing results using the full form of the jump

moments and using their OU form. They differ by no more than 0.5% and

are indistinguishable in these figures, so the OU form constitutes an extremely

good approximation. We also show the asymptotic form of τmfpt(h0) for θ = 0

given in Eq. (3.26a). This form is valid for either large enough N or large

enough h0. For large enough h0, τmfpt(h0) behaves logarithmically, but for

smaller h0 it grows initially linearly with h0. As the asymptotic form induces a

bifurcation-like process completely equivalent to that seen for τsnr, we deduce
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Figure 4: First passage time distributions G(h0, t) and 〈G(h0, t)〉h0
as func-

tions of time t for the C&S model. We set θ = 0, p = 0.1 and ν = 5. Solid

lines show G(h0, t) for h0 = 0.01, . . . , 0.07 in increments of 0.01 moving left to

right in all four panels. Thick dashed lines show 〈G(h0, t)〉h0
. Each panel, (A)

to (D), is distinguished by a particular choice of N , as indicated.
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that SNR memory lifetimes are only asymptotically valid, giving misleading

results for smaller N . Further, while the behaviours of SNR memory lifetimes

for the C and Q models are very different, MFPT memory lifetimes for small

h0 (and so for smaller N) for these models exhibit no such differences. Hence,

not only are SNR memory lifetimes asymptotic approximations, but they ex-

hibit a strong model-dependence that is not seen in MFPT memory lifetimes.

Figs. 5B and 6B show the equivalents of Figs. 5A and 6A but for σfpt(h0).

These figures confirm Eq. (3.26b), that for θ = 0 the variance in the FPT

distribution is independent of h0 for h0 large enough.

In Figs. 5C and 6C we consider τmfpt(h0) for θ > 0, and Figs. 5D and 6D

consider σfpt(h0). For τmfpt(h0), the results using the full jump moments are

indistinguishable from their OU form, although for σfpt(h0) for θ > 0 we begin

to see small discrepancies at larger values of h0, but the OU form remains

a qualitatively excellent and quantitatively very good approximation. As h0

increases, the OU form of σfpt(h0) asymptotes to a constant (the full form

exhibits a very slow rise), with this constant reducing as θ increases. Fur-

thermore, τmfpt(h0) systematically falls as θ increases, although for fixed N , it

continues to asymptote to logarithmic behaviour for large h0. Again, we see

no qualitative difference in the behaviours of the C and Q models for θ > 0.

We now turn to examining the FPT statistics averaged over the distribution

of h0 rather than as a function of h0. Because we average over simulations in

which the tracked memory varies between simulations, we automatically obtain

〈τmfpt(h0)〉h0
and 〈σfpt(h0)〉h0

, so we may directly compare simulation results to

analytical results. Analytical FPT results are available only for the C&S and

Q&L models, but we may simulate all four models by implementing either

choice of Ω for either choice of M.

Fig. 7 shows for θ = 0 both 〈τmfpt(h0)〉h0
and its mean field form τmfpt (µ0)

41



100

101

102

103

104

10-3 10-2 10-1

A

ν=5  

ν=10

ν=20

rτ
m

fp
t(h

0)

h0

Full
Asym

100

101

102

103

104

10-3 10-2 10-1

B

ν=5  

ν=10

ν=20

rσ
fp

t(h
0)

h0

Full
Asym

100

101

102

103

10-3 10-2 10-1

C

θ=0.00

θ=0.01

θ=0.02

rτ
m

fp
t(h

0)

h0

100

101

102

103

10-3 10-2 10-1

D

θ=0.00

θ=0.01

θ=0.02

rσ
fp

t(h
0)

h0

Full
OU

Figure 5: First passage time statistics τmfpt(h0) and σfpt(h0) as a function

of the initial perceptron output h0, for the C&S model. (A) τmfpt(h0) for

different choices of ν and with firing threshold θ = 0, computed exactly (“full”),

using the OU form of the FPT distribution (results indistinguishable from full

form), or using the asymptotic (logarithmic) form of the OU result for large h0

(“asym”) in Eq. (3.26a). (B) Same as A, except results are shown for σfpt(h0),

the asymptotic form of which is given in Eq. (3.26b). (C) τmfpt(h0) for different

choices of firing threshold θ and with ν = 20. Both the full and OU forms are

plotted but are indistinguishable. (D) Same as C, except results are shown for

σfpt(h0). Now the full and OU forms are just distinguishable. In all panels we

have set p = 0.1 and N = 104.
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Figure 6: First passage time statistics τmfpt(h0) and σfpt(h0) as a function

of the initial perceptron output h0, for the Q&L model. The format of this

figure is otherwise identical to Fig. 5.
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and is directly comparable to Fig. 3 showing τsnr. In Figs. 7A and 7B for the

C and Q models, respectively, we plot memory lifetimes against N . For larger

values of N , 〈τmfpt(h0)〉h0
is indistinguishable from τmfpt (µ0), but for smaller

values, they separate. For the C model, the region where the separation occurs

as a function of N depends strongly on the value of ν, while for the Q model, it

is quite insensitive to ν. Unlike SNR lifetimes, MFPT lifetimes do not exhibit

bifurcation-like dynamics at critical values of N , and they are substantially

non-zero even when τsnr = 0. We note that 〈τmfpt(h0)〉h0
and τmfpt (µ0) separate

in the vicinity of the bifurcation-like dynamics in τsnr.

Plotting memory lifetimes against ν instead of N in Figs. 7C and 7D,

for the C model 〈τmfpt(h0)〉h0
and τmfpt (µ0) are indistinguishable for smaller

values of ν but separate for larger values, with the separation region depending

on N . For the Q model 〈τmfpt(h0)〉h0
and τmfpt (µ0) are indistinguishable for

larger choices of N for all values of ν, while for N = 103 there is a very small,

systematic difference that is essentially independent of ν. Unlike SNR lifetimes,

the MFPT lifetimes in Fig. 7C do not exhibit an optimal value of ν at which

MFPT lifetimes are maximised as a function of ν. We again note that the

separation of 〈τmfpt(h0)〉h0
and τmfpt (µ0) occurs near the value of ν at which

SNR lifetimes are optimised for the C model. For the Q model, neither SNR

nor MFPT lifetimes exhibit such optimality.

In Eq. (3.29) we saw that 〈τmfpt(h0)〉h0
and τmfpt (µ0) coincide for large µ

′ =

µ0

√
N ′. To determine what constitutes large µ′, we integrate the analytical

large µ′ form of 〈G(h0, t)〉h0
over time, obtaining erf(µ′/

√
2). This must be

close to unity. Since µ′ = 2 gives 95% agreement, large µ′ means µ′ ' 2. We

also saw from Eqs. (3.26) and (5.5) that the expressions for τmfpt(µ0) for large

µ′ and for τsnr are identical up to additive constants. Therefore, 〈τmfpt(h0)〉h0

and τsnr are similar only when τmfpt (µ0) is similar to 〈τmfpt(h0)〉h0
, for µ′ ' 2.
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Figure 7: MFPT memory lifetime 〈τmfpt(h0)〉h0
as a function of N and ν, for

p = 0.1. Also shown for comparison is τmfpt(µ0), so with τmfpt(h0) evaluated

as the mean initial memory signal. The format of this figure is essentially

identical to Fig. 3, except that thick lines show 〈τmfpt(h0)〉h0
while thin lines

show τmfpt(µ0); analytical results are shown (and available) only for the C&S

and Q&L models; and simulation results are also shown as points.
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For µ′ / 2, qualitative differences between 〈τmfpt(h0)〉h0
, τmfpt (µ0) and τsnr

will emerge and become significant for small µ′, i.e. µ′ < 1 or µ′ ≪ 1. For

the C&S model, µ′ = 2
√
2N p

ν
cos
(

π
2 ν

)
∼ 2

√
2N p

ν
for large ν, while for the

Q&L model, µ′ = p
√

N
3

ν+1
ν−1

∼ p
√

N
3
. Computing the parameter values for

which µ′ ≈ 2 in Fig. 7 we obtain: in Fig. 7A, N ≈ 1400, 5100 and 20,000

for ν = 5, 10 and 20, respectively; in Fig. 7B, N ≈ 800, 1000 and 1100 for

ν = 5, 10 and 20; and in Fig. 7C, ν ≈ 4, 14 and 44 for N = 103, 104 and 105,

respectively. In Fig. 7D, for N = 105, µ′ ' 18.7 and for N = 104, µ′ ' 5.9,

so in excess of 2; and for N = 103, µ′ ranges from 3.2 to 1.9 for ν between

2 and 39 with µ′ = 2 for ν = 11, so µ′ is either large enough or close to

being so. These parameter values are in good agreement with the locations of

the separation of τmfpt (µ0) from 〈τmfpt(h0)〉h0
in Figs. 7A–C and explain their

indistinguishability or closeness in Fig. 7D. They therefore also indicate when

SNR lifetimes will start to significantly differ from MFPT lifetimes.

For the C model, µ′ → 0 as ν → ∞, so that the small µ′ form for

〈τmfpt(h0)〉h0
in Eq. (3.29) holds. For the Q model, µ′ is usually large enough

that the large µ′ form holds. In both cases, these results prove that 〈τmfpt(h0)〉h0

increases indefinitely as ν increases, unlike τsnr for the C model. We conclude

that not only do SNR lifetimes incorrectly predict a minimum value of N

for successful memory storage, but they also incorrectly predict a maximum

possible memory lifetime for some particular choice of ν in the C model.

Comparing analytical and simulation results in Fig. 7, we see very good

agreement. First, simulation results for Ω = S and Ω = L for the C or Q

models are typically extremely similar and often indistinguishable. For smaller

N , the difference can be 10%, but for larger N , the difference reduces. For the

C model, it can be as much as 4% for larger N but is typically around 1%; for

the Q model, it can be up to 2% but is again typically under 1%. These dif-
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ferences are better than our estimates above of the errors incurred in using the

“wrong” eigenvector, which were around 25% and 12% for the C and Q models.

Thus, while the FPT calculations require that Ω is an appropriate eigenvector

of M, in general the results are only mildly sensitive to the actual choice of Ω.

Second, comparing simulation and analytical results for 〈τmfpt(h0)〉h0
, we again

see very good agreement, with small discrepancies only for smaller N . The

continuum limit underlying the Fokker-Planck analysis requires larger N , with

some discrepancies arising when binomial distributions are replaced by Gaus-

sian distributions. Also, the Fokker-Planck analysis ignores jump processes,

which will be more significant for smaller N and so for shorter MFPTs.

Fig. 7 considers only the MFPT 〈τmfpt(h0)〉h0
. In Fig. 8, we examine

〈σfpt(h0)〉h0
by plotting the one standard deviation region around 〈τmfpt(h0)〉h0

.

To avoid clutter, we do this only for ν = 10 in Figs. 8A and 8B and only for

N = 104 in Figs. 8C and 8D. The small and large µ′ results in Eq. (3.30) provide

good agreement with the exact form in their appropriate regions of validity. We

also see good agreement between analytical and simulation results, although

we shall consider this agreement in more detail later. For comparison, we also

plot τsnr in Fig. 8. Although τsnr qualitatively tracks 〈τmfpt(h0)〉h0
−〈σfpt(h0)〉h0

quite closely, we stress that 〈τmfpt(h0)〉h0
is the mean first passage time and

is thus explicitly an average over all possible sources of fluctuations that can

drive the perceptron’s activation below the firing threshold. The standard de-

viation 〈σfpt(h0)〉h0
by definition gives a measure of the range of the FPTs that

arise. The FPT distribution can have a positive mean but with a large stan-

dard deviation, indicating that memory storage in these parameter regimes is

subject to a high degree of variability. In contrast, τsnr = 0 merely gives the im-

pression that memory storage is impossible without, as it were, any “nuance”.

Fig. 8 indicates that where memory storage is weak, SNR lifetimes are zero,
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whereas positive MFPT memory lifetimes are subject to a high degree of vari-

ability, reflecting this weak encoding. We have made preliminary observations

of this variability in FPT memory lifetimes before, but only in simulations of

a filter-based model of synaptic plasticity (Elliott, 2016a).

Finally, in Fig. 9 we plot 〈τmfpt(h0)〉h0
and 〈σfpt(h0)〉h0

separately for dif-

ferent choices of θ. For the parameters used, for the C model (for both S

and L) µ0 = 0.02; for the Q&L model µ0 ≈ 0.041; and for the Q&S model

µ0 ≈ 0.045. We vary θ from 0 to 0.03 in increments of 0.005. For θ = 0 in

Figs. 9A and 9B, 〈τmfpt(h0)〉h0
asymptotes to logarithmic growth in N , reflect-

ing its approach to its mean field form τmfpt (µ0) from Eq. (3.29). In Fig. 9A for

0 < θ < µ0 = 0.02 and in Fig. 9B for all choices of θ > 0, however, 〈τmfpt(h0)〉h0

asymptotes to an N -independent constant as N increases, with the asymptote

coinciding again with the mean field value τmfpt(µ0) in Eq. (3.25a) and being

attained for N between 104 and 105. In constrast, for the C model for θ > µ0,

〈τmfpt(h0)〉h0
tends to zero as N increases. This occurs because the distribution

of h0 becomes tightly focused around µ0 as N increases, and for µ0 < θ most of

the distribution therefore falls below θ. Identical behaviour would also occur

for the Q model when µ0 < θ. For 〈σfpt(h0)〉h0
in Figs. 9C and 9D, we again

see a difference between θ = 0 and θ > 0. For θ = 0, 〈σfpt(h0)〉h0
asymptotes

to a non-zero constant independent of N as N increases, but for any θ > 0,

〈σfpt(h0)〉h0
asymptotes to zero as N increases.

Comparing analytical and simulation results in Fig. 9, we see good qualita-

tive agreement, but with numerical differences for increasing θ and differences

in trends between results for 〈τmfpt(h0)〉h0
and 〈σfpt(h0)〉h0

. For 〈τmfpt(h0)〉h0
,

simulation results for the C&S and Q&L models agree closely with their re-

spective analytical results, but with expected differences for smaller N , as dis-

cussed above. For the C model, simulation results with Ω = L systematically
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Figure 8: MFPT memory lifetime 〈τmfpt(h0)〉h0
and one standard deviation

(schematically 〈σfpt(h0)〉h0
) in the FPT distribution around it as a function of

N and ν, for p = 0.1 and θ = 0. Solid lines show analytical results for FPT

statistics while the dashed lines show for comparison the SNR memory lifetime

τsnr; data points correspond to simulation results. The one standard deviation

region around 〈τmfpt(h0)〉h0
is shaded for clarity. (A) Analytical FPT statistics

for the C&S model for ν = 10 as a function of N . (B) Same as A, except

for the Q&L model. (C) Analytical FPT statistics for the C&S model for

N = 104 as a function of ν. (D) Same as C, except for the Q&L model. The

invalid region ν > 39 is shaded.
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Figure 9: First passage time statistics 〈τmfpt(h0)〉h0
and 〈σfpt(h0)〉h0

as func-

tions of N for different choices of θ, for ν = 10 and p = 0.1. Moving from top

to bottom in all panels, lines correspond to θ = 0.000, θ = 0.005, θ = 0.010,

θ = 0.015, θ = 0.020, θ = 0.025 and θ = 0.030; line styles alternate be-

tween solid and dashed for clarity. Simulation data points are shown only for

θ = 0.000, θ = 0.010, θ = 0.020 and θ = 0.030 and so correspond only to the

solid lines. (A) and (B) Analytical results for 〈τmfpt(h0)〉h0
for, respectively,

the C&S and Q&L models. (C) and (D) Same and A and B, except for

〈σfpt(h0)〉h0
.
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underestimate those with Ω = S, with increasing differences for increasing

θ. For the Q model, however, simulation results with Ω = S systematically

overestimate those with Ω = L, with the same trend in θ. From Fig. 9A

for θ = 0.03, these differences increase as N increases and so 〈τmfpt(h0)〉h0
de-

creases, while in Fig. 9B for θ = 0.03, the differences asymptote as 〈τmfpt(h0)〉h0

asymptotes. These differences therefore reflect differences in the escape dynam-

ics between models with Ω = S and with Ω = L when the escape times are

shorter rather than when θ is larger per se. Models with Ω = L have shorter

escape times compared to models with Ω = S.

For 〈σfpt(h0)〉h0
in Figs. 9C and 9D, we again see extremely good qualita-

tive agreement between analytical and simulation results and between the two

sets of simulation results. However, for θ = 0, we see a roughly 5% discrep-

ancy between analytical results and the corresponding simulation results, even

for large N . This discrepancy reduces as θ increases and N increases, likely

because 〈σfpt(h0)〉h0
goes to zero in this regime. Higher-order FPT statistics

are inevitably much more sensitive to the precise details of the dynamics that

drive escape through the threshold θ. The approximations in ignoring jump

processes are thus more significant for higher-order statistics. To confirm this,

when we run simulations with p = 0.01 (for say N = 105 and ν = 10), reducing

the affect of jump processes, the discrepancy between analytical and simulation

results for 〈σfpt(h0)〉h0
falls to 0.5% (data not shown). Thus, it is not surprising

to find these small discrepancies at the level of 〈σfpt(h0)〉h0
, especially for larger

choices of p. Nevertheless, we have extremely good qualitative agreement and

good quantitative agreement.
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7 Discussion

In this paper we have continued our study of FPT-defined memory lifetimes in

palimpsest memory models by extending our earlier analytical work on simple,

binary-strength synapses (Elliott, 2014) to consider simple but general multi-

state synapses with ν states of synaptic strength. In order to push through

these calculations in the general case, we have needed to assume that the vector

of possible strengths Ω is a (left) eigenvector of the strength transition matrix

M, although we have seen that this requirement may be relaxed if Ω is suffi-

ciently close to an eigenvector of M. For ν = 2 and ν = 3 for standard choices

of Ω and M, this eigenvector condition is automatically satisfied. In this way,

we have been able to derive the full FPT distribution for the perceptron’s

activation to fall (to or) below firing threshold, which enables us to examine

not only the MFPT memory lifetime but also the variance in the FPT-defined

memory lifetime.

Although studying the dynamics of palimpsest memory lifetimes using a

FPT approach is analytically considerably harder than the SNR method, the

FPT approach has many advantages. From a purely theoretical perspective,

the FPT approach avoids much of the arbitrariness that is inevitably associated

with an SNR definition of memory lifetimes. Furthermore, FPT-defined life-

times are independent (up to a trivial scaling factor of the rate, r) of whether

we consider a discrete time or a continuous time formulation, in contrast to

SNR lifetimes, which depend strongly on the formulation. Perhaps most im-

portant, for the purposes of defining a measure that gauges memory lifetimes

in real, biological systems, FPT memory lifetimes relate directly and immedi-

ately to a neuron’s firing or membrane potential properties. In contrast, the

SNR represents the view of an “ideal observer” and mixes up statistics of dif-
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fering orders. A neuron or indeed any non-ideal observer does not have access

to the required statistics. Memory lifetimes defined via MFPTs require only a

direct read-out of a neuron’s membrane potential: is it above or below firing

threshold? This is the only relevant determinant of whether or not a neu-

ron’s synaptic connections currently store a memory. The fine details of the

relaxation of a neuron’s mean memory signal back to equilibrium, especially

when this signal is already extremely close to equilibrium, are for all practical

purposes entirely irrelevant. This is demonstrated sharply by the catastrophic

breakdown of the logarithmic growth of memory lifetimes when a perceptron’s

firing threshold cuts off such dynamics. Moreover, the membrane potential is

in fact maintained in neurons with only a finite number of channels, and thus

has only a finite rather than an infinite representational resolution. Single

channel opening would typically be expected to generate a change in mem-

brane potential of around 0.5 mV (Sigworth, 1980), so resolution below this

limit is impossible. Therefore, any approach that implicitly requires incredibly

fine, almost infinitesimal discriminations between a neuron’s current membrane

potential and its equilibrium potential imposes demands that cannot ever in

practice be met. That is, the membrane potential has only a finite, discrete

resolution, and this necessarily destroys any approach that tacitly requires an

infinite representational capacity.

These issues aside, we have also seen that a FPT definition of memory life-

times reveals serious limitations in the SNR approach. SNR lifetimes exhibit

a pseudo-bifurcation, giving a minimum number of synapses, N , below which

memory storage is (defined to be) unsuccessful. MFPT lifetimes exhibit no

such dynamics and memory lifetimes are positive even for small values of N .

Related to this, the logarithmic growth in SNR memory lifetimes is seen to

be only asymptotically valid, and so valid only for large N . Extrapolating to
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small N gives the misleading bifurcation-like behaviour on which the apparent

minimum value of N is based. In addition, the use of SNR memory lifetimes

can suggest optimality conditions, giving optimal parameter choices (e.g., an

optimal value of ν) that maximise memory lifetimes. This is observed in com-

plex models of synaptic plasticity (Elliott, 2016a) and also for a simple model

(the C model) considered here. However, with MFPT memory lifetimes, no

such optimality is observed. Previously we saw this only in simulation (Elliott,

2016a) and so we could not be certain that the trends seen in simulation data

would continue indefinitely. However, our analysis here demonstrates beyond

doubt that MFPT memory lifetimes in the C model do not exhibit the opti-

mality seen with SNR memory lifetimes. Further, by examining the variance in

the FPT-defined memory lifetimes, we see that where SNR memory lifetimes

are small or zero, and so memory storage is defined to be unsuccessful, MFPT

memory lifetimes are positive (and can be significantly so) but are subject to a

high degree of variability. This variability indicates regimes of relatively weak

rather than unsuccessful memory encoding, but even in such regions, we have

argued before that at least a minimum of 16% of storage events occur robustly

(Elliott, 2016a). Finally, as mentioned, a non-zero firing threshold (for bal-

anced potentiation and depression processes) destroys the logarithmic growth

in SNR memory lifetimes.

Given the analytical simplicity of the SNR approach to memory lifetimes

compared to the considerably harder FPT approach, it is natural to wonder

whether there are circumstances under which SNR memory lifetimes, despite

all these shortcomings, are acceptable surrogates for FPT lifetimes. Analyt-

ically, we have seen that for θ = 0, τsnr and the asymptotic mean field form

τmfpt(µ0) of the full MFPT form 〈τmfpt(h0)〉h0
are identical up to additive con-

stants. For θ > 0, we can extend the SNR definition to include an accessibility
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criterion (Elliott, 2014), which states that τsnr is defined as the solution of

µ(τsnr) = θ + σ(τsnr), so that the mean memory signal at time t = τsnr must

be above the standard deviation in the signal by the perceptron’s threshold.

Eq. (5.5) is then modified to r(1 − Λ)τsnr = 1
2
loge

[
N ′E2/ (1 + θ′)2

]
, where

θ′ = θ
√
N ′. For θ > 0, the asymptotic solution is just r(1−Λ)τsnr = loge (E/θ),

which is precisely τmfpt(h0) in Eq. (3.25a) for h0 = µ0. In general, then, τsnr is

an acceptable surrogate for 〈τmfpt(h0)〉h0
precisely when the full MFPT lifetime

〈τmfpt(h0)〉h0
is well approximated by its mean field form τmfpt(µ0). This is the

case for N large enough, when the distribution of h0 is tightly focused around

µ0. However, precisely how large N must be to be “large enough”, or how close

〈τmfpt(h0)〉h0
and τmfpt(µ0) must be, are very model- and parameter-dependent.

In particular, from Eqs. (3.29) and (3.30), we saw that the relevant parameter

that controls the approach of 〈G(h0, t)〉h0
to its mean field form G(µ0, t) is

µ′ = µ0

√
N/〈Ω2〉. While 〈Ω2〉 does not vary too much for the models consid-

ered here, µ0 varies significantly for the C&S model. As µ0 drops to zero as

ν increases, N must be taken larger and larger for µ′ to remain large enough

for the asymptotic limit to be achieved, although N cannot be taken much in

excess of 105 and continue to be biologically relevant. However, for the Q&L

model, µ0 does not fall to zero as ν increases, so µ′ is typically large enough for

most parameters. In summary, τsnr is an acceptable surrogate for 〈τmfpt(h0)〉h0

when the latter is well approximated by τmfpt(µ0), and this occurs for large N

in general but for large µ′ = µ0

√
N/〈Ω2〉 in particular, so that the realisation

of this limit for biologically relevant values of N can be strongly parameter-

and model-dependent.

A perennial problem with palimpsest models of memory is that attempts

to enhance memory lifetimes have appeared inevitably to lead to a decrease

in the strength of the initial memory encoding. This Gordian knot is partially
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although by no means completely severed in models based on integrative fil-

tering mechanisms (Elliott & Lagogiannis, 2012; Elliott, 2016a). It is therefore

surprising that in constructing the Q model above purely for the purposes of

writing down a transition matrix M = I + pQ with eigenvector Ω = L with

uniformly spaced synaptic strengths, entirely by accident we also happen to

write down a model in which µ0 =
p
3

ν+1
ν−1

> p
3
. I.e. the initial signal µ0 does not

collapse to zero as ν increases, in radical contrast to the C model. Further-

more, memory storage in the Q model is always robust as ν increases, with

low variability as revealed by the variance in the FPT distribution. It may

be argued that as a biological model, changes in synaptic strength that are

themselves strength-dependent, as required by the Q matrix, are unnatural

or implausible. However, there is ample evidence that the degree of synaptic

plasticity can depend on synaptic strength (see, e.g., van Rossum et al. (2000)

and references therein). The Q matrix does impose an upper limit on ν for

technical reasons, so ν cannot be increased arbitrarily to produce any desired

MFPT memory lifetime. For reasons of analytical tractability, we have not

considered truncating the elements of Q so that it remains a stochastic matrix

when ν exceeds what would otherwise be its upper limit of around 4
p
− 1. It

will, however, be fascinating to explore the dynamics of this model as it moves

into this regime, in order to determine how memory lifetimes are modified.

The extension of our present analysis from simple to complex multistate

synapses is a question of particular interest. It is possible to extend the anal-

ysis of simple, binary-strength synapses to complex, binary-strength synapses

by integrating out the internal synaptic states and working purely in strength-

change processes (Elliott, 2017). This is possible because for binary-strength

synapses, we can continue to focus on the transitions in perceptron activation.

Critical to our present analysis of simple multistate synapses was the freedom
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to modify either Ω or M so that the jump moments for changes in the percep-

tron activation could be determined even if we cannot reduce these changes for

multistate synapses to a Markov process. With complex multistate synapses,

the strength transition matrices become memory storage step-dependent and

their spectra also become step-dependent. Whether it is possible to modify

the approach here and make it work for complex multistate synapses remains

to be seen.
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