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Abstract

Modeling and interpreting spike train data is a task of central importance in computational neuro-

science, with significant translational implications. Two popular classes of data-driven models for

this task are autoregressive Point Process Generalized Linear models (PPGLM) and latent State-

Space models (SSM) with point-process observations. In this letter, we derive a mathematical

connection between these two classes of models. By introducing an auxiliary history process, we

represent exactly a PPGLM in terms of a latent, infinite dimensional dynamical system, which

can then be mapped onto an SSM by basis function projections and moment closure. This repre-

sentation provides a new perspective on widely used methods for modeling spike data, and also

suggests novel algorithmic approaches to fitting such models. We illustrate our results on a phasic

bursting neuron model, showing that our proposed approach provides an accurate and efficient way

to capture neural dynamics.
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Introduction

Connecting single-neuron spiking to the collective dynamics that emerge in neural populations

remains a central challenge in systems neuroscience. As well as representing a major barrier in our

understanding of fundamental neural function, this challenge has recently acquired new saliency

due to the rapid improvements in technologies which can measure neural population activity in

vitro and in vivo at unprecedented temporal and spatial resolution (Jun et al., 2017; Maccione et al.,

2014). Such technologies hold immense promise in elucidating both normal neural functioning

and the aetiology of many diseases, yet the high dimensionality and complexity of the resulting

data pose formidable statistical challenges. In response to these needs, recent years have seen

considerable efforts to develop strategies for extracting and modeling information from large-scale

spiking neural recordings. Two of the most successful strategies that emerged in the last decade

are latent state-space models (SSMs), and autoregressive point-process generalized linear models

(PPGLMs).

Latent state-space models describe neural spiking as arising from the unobserved latent dy-

namics of an auxiliary intensity field, which can model both internal and external factors con-

tributing to the dynamics (e.g. Macke et al. 2015; Sussillo et al. 2016; Zhao and Park 2016; Yu

et al. 2009; Smith and Brown 2003). Mathematically, such models generally take the form of a

Cox process (Kingman, 1993) where the intensity field obeys some (discrete or continuous time)

evolution equations. This representation therefore recasts the analysis of spike trains within a

well-established line of research in statistical signal processing, leveraging both classical tools and

more recent developments (e.g. Smith and Brown 2003; Wu et al. 2017; Gao et al. 2016; Pfau

et al. 2013; Zhao and Park 2017; Surace et al. 2017). These models have been used in a variety of

tasks, such as describing population spiking activity in the motor system (e.g. Aghagolzadeh and

Truccolo 2014, 2016; Churchland et al. 2012; Michaels et al. 2017). However, while such models

can certainly lead to biological insights, latent state-space models remain phenomenological: the

recurrent spiking activity itself does not implement the latent state-space dynamics (Fig. 2B).

Autoregressive PPGLMs (Fig. 2A) treat spiking events from neurons as point events arising
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from a latent inhomogeneous Poisson process (Truccolo et al., 2005, 2010; Truccolo, 2010, 2017).

To fit such models, Generalized Linear Model (GLM) regression is used to map observed spik-

ing events to both extrinsic variables, like stimuli or motor output, and intrinsic spiking history

(Truccolo et al., 2005). PPGLMs are especially useful for statistical tests on sources of variability

in neural spiking (e.g. Rule et al. 2015, 2017), and benefit from a simple fitting procedure that

can often be solved by convex optimization. However, they may require careful regularization to

avoid instability (Hocker and Park, 2017; Gerhard et al., 2017), and can fail to generalize outside

of regimes in which they were trained (Weber and Pillow, 2017). Importantly, PPGLMs suffer

from confounds if there are unobserved sources of neural variability (Lawhern et al., 2010). This

is especially apparent when the recorded neural population is a small subsample of the population,

and latent state-space models can be more accurate in decoding applications (Aghagolzadeh and

Truccolo, 2016).

In this letter, we establish a mathematical connection between autoregressive PPGLMs and

SSMs based on low dimensional, low-order approximation to an exact infinite-dimensional repre-

sentation of a PPGLM. Unlike previous work, which explored mean-field limits (Gerhard et al.,

2017; Chevallier et al., 2017; Galves and Löcherbach, 2015; Delarue et al., 2015), we use Gaus-

sian moment-closure (e.g. Schnoerr et al. 2015, 2017) to capture the excitatory effects of fluc-

tuations and process autocorrelations. In doing so, we convert the auto-history effects in spiking

into nonlinear dynamics in a low-dimensional latent state space. This converts an autoregressive

point-process into a latent-variable Cox process, where spikes are then viewed as Poisson events

driven by latent states. This connection, as well as being interesting in its own right, also provides

a valuable cross-fertilization opportunity between the two approaches. For example, the issue of

runaway self-excitation in PPGLMs emerges as divergence in the moment closure ordinary dif-

ferential equations, leading to practical insights into obtaining a stabilized state-space analogue of

the autoregressive PPGLM. We illustrate the approach on the case study of the phasic bursting of

an Izhikevich (Izhikevich, 2003) neuron model (Figure 1) considered in Weber and Pillow (2017),

showing that our approach achieves both high accuracy in the mean and can capture remarkably
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well the fluctuations of the process.

Results

We start by recapitulating some basic notations and definitions from both PPGLMs and SSMs. We

then provide a detailed derivation of the mathematical connection between the two frameworks,

highlighting all the approximations we make in the process. We finally illustrate the performance

of the method in an application case study.

Point-process Generalized Linear Models (PPGLM)

A point process (PP) is a subset of dimension zero of a higher-dimensional space (Brillinger, 1988;

Truccolo et al., 2005). For our purposes, we will only consider PPs over the time domain, so we

will equivalently consider a realization of a PP as a series of points in time y(t), where each point

(spiking event) is a delta distribution at the event time. We can associate with a PP in time a

locally constant counting process N(t) that counts the cumulative number of events up to time t.

The process y(t) can be thought of as representing the spike train output by a neuron, while the

cumulative process N(t) provides a clearer notation for the derivations that follow:

N(t) = # events ≤ t

y(t) = d
dt N(t) =

∑
τ∈events

δ(t=τ).

We restrict our attention to PPs that can be described by an underlying intensity function λ(t); in

the simplest case, event counts between times t and t+∆ occur with a Poisson distribution, with a

mean rate given by the integral of λ(t) over the time window.

Pr (N(t+∆) − N(t) = k) ∼ Poisson
(∫ t+∆

t
λ(t)dt

)
(1)
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In the autoregressive PPGLM (Fig. 2A), one models the intensity λ(t) conditioned on the past

events, as well as extrinsic covariates x(t). Generally,

f (λ(t)) = m + F>x(t) + lim
ε→0+

∫ ∞
ε

H(τ)y(t − τ)dτ (2)

where f is called the link function, F is a matrix or operator projecting extrinsic covariates down

to the dimensionality of the point-process, m is a mean or bias parameter, and H is a history filter

function. The open integration limit ε→0+ reflects the fact that the spiking at the current time-point

t is excluded from the history filter. The inputs and bias are fixed, and can be denoted by a single

time-dependent input function I(t)=F>x(t)+m. Here we will take the link function f to be the

natural logarithm. Re-writing Eq. 2, making time-dependence implicit where unambiguous, and

denoting the history filter integral as H>y, we will explore generalized linear models of the form:

λ = exp
(
m + F>x + H>y

)
(3)

Autoregressive PPGLMs can emulate various firing behaviors of real neurons (Weber and Pillow,

2017). For example phasic bursting neurons (Fig. 1) exhibit complex autohistory dependence

on both fast and slow timescales. This dependence of the process on intrinsic history confers

additional slow dynamics, i.e. post-burst inhibition on the timescale of tens of milliseconds.
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Figure 1: Phasic bursting neuron as emulated by an autoregressive PPGLM model. An autore-
gressive PPGLM was trained on spiking output from a phasic-bursting Izhikevich neuron model
(B) with parameters a, b, c, d, dt = 0.02, 0.25,−55, 0.05, 1.0 (Weber and Pillow, 2017). Training
stimuli consisted of square current pulses ranging from 0.3 to 0.7 pA and from 10 to 500 ms
in duration, with added Ornstein-Uhlenbeck noise with a 200 ms time constant and steady-state
variance of 0.01 pA2. A Stimulus and post-spike filters exhibit ringing associated with the charac-
teristic inter-spike interval. The post-spike filter includes an additional post-burst slow-inhibitory
component, evident in the post-spike contribution to the log intensity (C). This slow post-burst in-
hibition confers additional slow-dynamics on top of the stimulus-driven response (D). E Samples
from the autoregressive PPGLMs reflect the phasic bursting neuronal response.
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Latent state-space point-process models

An alternative strategy for capturing slow dynamics in neural spike trains is to postulate a slow,

latent dynamical system responsible for bursting and post-burst inhibition. This approach is taken

by latent state-space models (SSMs), which are often viewed as functionally distinct from autore-

gressive PPGLMs (Fig. 2B).

In general, a latent state-space model (SSM) describes how both deterministic and stochastic

dynamics of a latent variable x affect the intensity λ of a point process:

dx(t) = u(x, t)dt + σ(x, t)dW

λ = v(x, t)

dN ∼ Poisson(λ · dt),

(4)

where dW is the derivative of the standard Wiener process, reflecting fluctuations. The functions u,

σ, and v describe, respectively, deterministic evolution, stochastic fluctuations, and the observation

model. In the case of, for example, the Poisson Linear Dynamical System (PLDS; Macke et al.

2011), the latent dynamics are linear with fixed Gaussian noise:

dx(t) = [Ax + I(t)]dt + σdW

λ = exp
(
m + F>x + H>y

)
dN ∼ Poisson(λ · dt),

(5)

where I(t) reflects inputs into the latent state-space, and the spiking probability depends on latent

states, history, and bias, as in Eq. 3. Latent state-space models of point-processes have been

investigated in detail (e.g. Macke et al. 2011; Smith and Brown 2003), and mature inference

approaches are available to estimate states and parameters from data (Lawhern et al., 2010; Macke

et al., 2015; Buesing et al., 2012; Rue et al., 2009; Cseke et al., 2016). However, such models are

typically phenomenological, lacking a clear physiological interpretation of the latent dynamics.

Importantly, the point-process history is typically fit as if it were another extrinsic covariate, and
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the effects of Poisson fluctuations are either neglected or handled in mean-field limit. This obscures

the dynamical role of population spiking history and its fluctuations in the autoregressive PPGLM.

In the remainder of this paper, we illustrate that the history dependence of PPGLMs implicitly

defines a latent-state space model over moments of the process history.

The auxiliary history process of a PPGLM

The (possibly infinite) history dependence makes autoregressive PPGLMs non-Markovian dynam-

ical systems (c.f. Truccolo 2017 Eq. 6). However, a crucial insight is that, since the dependence

on history is linear, we can re-interpret the history dependence as a linear filter in time, and ap-

proximate its effect on the conditional intensity using a low-dimensional linear dynamical system.

In some PPGLM formulations, the history basis may already be defined in terms of a linear filter

impulse response, for example the exponential filters considered in Toyoizumi et al. (2009). In this

case, the history process is already Markovian. As the Markovian case has been illustrated else-

where, we show here how to convert the general non-Markovian point process into a Markovian

one.

To formalize this, let us introduce an auxiliary history process h(τ, t) that “stores” the history of

the process y(t). One can view h(τ, t) as a delay-line that tracks the signal y(t). The time evolution

of h is given by:

∂th(τ, t) = δτ=0dN(t) − ∂τh(τ, t) (6)

where δτ=0 indicates that new events y(t)=dN(t) should be inserted into the history process at τ=0,

and ∂τ is the derivative with respect to time lag τ. This converts the autoregressive PPGLM to a

stationary Markovian process over an augmented (infinite dimensional) state space:

dN(t) ∼ Poisson(λ · dt)

λ(t) = exp
(
H(τ)>h(τ, t) + I(t)

)
∂th(τ, t) = δτ=0dN(t) − ∂τh(τ, t)

(7)
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where H(τ) is the history filter introduced in equation (2). In this formulation, the history process

h(τ, t) is still a point-process. However, the interaction between history h(τ, t) and the intensity

λ(t) is mediated entirely by the projection H(τ)>h(τ, t), which averages over the process history.

To capture the relevant influences of the process history, it then suffices to capture the effects of

Poisson variability on this averaged projection.

A continuous approximation

In the limit where events are frequent, the Poisson process dN(t) can be approximated as a Wiener

process with mean and variance equal to the instantaneous point-process intensity λ(t). In the

derivations that follow, we omit explicit notation of time-dependence (e.g. λ(t), h(τ, t)) where

unambiguous:

dN ≈ λdt +
√
λdW, (8)

This approximation holds when averaging over a population of weakly-coupled neurons (Toy-

oizumi et al., 2009), or averaging over slow-timescales of a single neuron. This approximation is

inspired by the chemical Langevin equation (Gillespie, 2000), which remains accurate also in the

regime of sparse reactions (sparse counts) and is more accurate (in terms of moments) than a linear

noise approximation (Schnoerr et al., 2017; see Appendix B). We will illustrate (Fig. 3) that this

approximation can be surprisingly accurate for even a single neuron. Applying this approximation

to the driving noise term in the evolution equation for the auxiliary history process (7), we obtain

a continuous (in time, and in state) infinite-dimensional approximation of the PPGLM:

dh = (δτ=0λ − ∂τh) dt + δτ=0

√
λdW

λ = exp
(
H>h + I(t)

)
.

(9)

Because the dimensionality of the history process h(τ, t) is infinite, this is a stochastic partial dif-

ferential equation (SPDE). Importantly, this is a system of equations for the history of the process,

not the instantaneous rate λ(t).
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Gaussian moment closure

The SPDE in Eq. 9 is analytically intractable due to the exponential inverse link function, how-

ever it is possible to derive an (infinite) set of coupled moment equations for the process; we can

then close these equations by setting all cumulants of order greater than two to zero, effectively

enforcing Gaussianity of the history process h(τ, t). The (exact) equation for the process mean

µ(τ) = 〈h(τ)〉 is as follows

∂tµ = ∂t 〈h〉

= 〈δτ=0λ − ∂τh〉

= δτ=0 〈λ〉 − ∂τµ.

(10)

The log-intensity ln λ=H>h+I(t) is a linear projection of the history process h(τ, t), which we

approximate as a Gaussian process with mean µ(τ) and covariance Σ(τ, τ′). Therefore, the log-rate

is normally distributed with mean H>µ+I(t) and variance H>ΣH, and the firing rate is log-normally

distributed with mean

〈λ〉 = exp
(
H>µ + I(t) + 1

2 H>ΣH
)
. (11)

Note that this is an approximation, as in general the higher-order cumulants of the history pro-

cess will not remain zero due to to the influence of Poisson noise. Nevertheless, we will see that

this approximation accurately captures the influence of fluctuations and correlations on the mean.

This expectation incorporates second-order effects introduced by fluctuations and correlations me-

diated through the history filter, and therefore couples the time-evolution of the first moment to the

covariance.

The time derivative of the covariance has both deterministic and stochastic contributions. Over-

all, the deterministic contribution to the derivative of the covariance can be written as JΣ+ΣJ>,

where J=δτ=0 〈λ〉H>−∂τ (see Appendix A). The covariance also has a noise contribution Q=δτ=0 〈λ〉 δ
>
τ=0

from the spiking noise term entering at time-lag 0, with variance proportional to the expected firing
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rate. In sum, the moment equations for the history process using Gaussian moment closure are:

∂tµ = δτ=0 〈λ〉 − ∂τµ

〈λ〉 = exp
(
H>µ + I(t) + H>ΣH

)
∂tΣ = JΣ + ΣJ> + Q

J = δτ=0 〈λ〉H> − ∂τ

Q = δτ=0 〈λ〉 δ
>
τ=0

(12)

This notation resembles continuous-time Kalman-Bucy filter (Kalman and Bucy, 1961), for which

J(t) would be a Jacobian of the mean update, and Q(t) would reflect the system noise. Equations

(12) are also reminiscent of classical neural mass and neural field models (Amari 1975, 1977, 1983;

Wilson et al. 1972; e.g. Fig. 2D). Unlike neural field models, however, the moment equations (12)

do not arise from population averages, but from considering the expected behavior of the stochastic

process describing the neural spike train (Fig. 2C).

It is worth reflecting more on this analogy, and on the limitations of the moment-closure rep-

resentation. Spiking events are a dramatic all-or-nothing events that cannot be approximated by

a continuous stochastic process. Accordingly, one would expect the finite-dimensional moment

closure system to fail to capture rapid fluctuations. However, for slow timescales, this Gaussian

approximation can be accurate even for a single neuron. In contrast to the neural field interpreta-

tion, which averages over a large population at each time instant, one can average over an extended

time window, and arrive at an approximation for slow timescales (e.g. Fig. 3). A pictorial descrip-

tion of the relationship of the proposed moment closure approach to PPGLMs, SSMs and neural

field models is summarized in Figure 2.
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pendence on the history of both extrinsic covariates x(t) and the process itself y(t) are mediated
by linear filters, which are combined to predict the instantaneous log-intensity of the process. B
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Case study: the Izhikevich neuron model

We consider the effectiveness of this approach on the case study of a PPGLM emulation of the

Izhikevich neuron model, considered in Weber and Pillow (2017). We compare the accuracy of the

Gaussian moment closure with a mean-field approach (Appendix B). Figure 3 illustrates moment-

closure of a phasic-bursting Izhikevich neuron emulated with a PPGLM (Fig. 1). By averaging

over the history process, slow-timescales in the autoregressive point-process are captured in the

Gaussian moment-closure. Unlike a mean-field model, which considers the large-population limit

of weakly-coupled neurons, moment-closure is able to capture the influence of Poisson variability

on the dynamics in a single neuron.

Additionally, mean-field considers only a single path in the process history, whereas moment-

closure provides an approximation for a distribution over paths, with fluctuations and autocorre-

lations taken into account. This has the benefit that the moment-closure system is sensitive to the

combined effects of self-excitation and point-process fluctuations, and captures, for example, the

self-excitation during a burst using the second-order second moment terms. This reveals another

benefit of the moment-closure approach: runaway self-excitation (Hocker and Park, 2017; Gerhard

et al., 2017; Weber and Pillow, 2017) is detected in the moment-closure as a divergence of the mean

or second moment terms. This self-excitation, however, introduces some numerical challenges.

The Gaussian moment closure captures corrections to the mean evolution due to the second mo-

ment (Fig. 3C; Table C1), but exhibits a bias in the second moment owing to un-modeled skewness

and higher-order moments. Additionally, the self-excitation mediated by the exponential inverse

link function combines with fast-timescale post-spike inhibition to make the Gaussian moment

closure equations stiff and difficult to integrate. Skewness controls the effects of outliers on the

expected firing rate, and affects both stiffness and the errors in estimating the second moment. We

can attenuate these effects by replacing the exponential nonlinearity with a locally-quadratic ap-

proximation and performing Gaussian moment closure on this approximation, thereby stabilizing

the effect of outliers on the expected firing rate. This second-order moment-closure approach was

first outlined in the context of chemical reaction modeling by Ale et al. (2013). In the second-order
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moment closure, the mean-field λ̄ is used for the deterministic evolution of the covariance, and the

covariance correction to the mean is approximated at second-order as exp
(

1
2 H>ΣH

)
≈1+1

2 H>ΣH,

yielding the following moment equations:

∂tµ = δτ=0λ̃ − ∂τµ

λ̄ = exp
(
H>µ + I(t)

)
λ̃ = λ̄ · (1 + 1

2 H>ΣH)

∂tΣz = JΣ + ΣJ> + Q

J = δτ=0λ̄H> − ∂τ

Q = δτ=0λ̃δ
>
τ=0

(13)

This second-order Gaussian moment closure is not only more accurate in the second moment

(fig. 3D; Table C1), it is also less stiff and easier to integrate. This highlights a major benefit of

the moment closure approach: numerical issues which prove difficult or intractable in the original

GLM representation can be more readily addressed in a state-space model. Importantly, the basis-

projected moment-closure system (Appendix B) is an ordinary differential equation with a form

reminiscent of nonlinear (extended) continuous-time Kalman-Bucy filtering (Kalman and Bucy,

1961), and can be viewed as a state-space model (Eqs. 4, 5) explaining the observed point process.

This highlights that the moment-closure state-space equations allow tools for reasoning about the

stability of ordinary differential equations to be applied to PPGLMs.

Discussion

In this letter, we have introduced a mathematical connection between PPGLMs and SSMs that

provides an explicit, constructive procedure to fit neural spike train data. Autoregressive point-

processes and state-space models have been combined before (e.g. Zhao and Park 2016; Smith

and Brown 2003; Lawhern et al. 2010; Eden et al. 2004), but so far always in a manner that treats

the latent state-space as an extrinsic driver of neural activity. Importantly, the generative, dynami-

14



0 50 100 150 200 250

Time (ms)

D Second order

2
0
 d

B

A Langevin approximation B Mean-field, LNA

0 50 100 150 200 250

Time (ms)

C Gaussian moment-closure

5
0
 m

V
5
 p

A

E Stimulus example

2
0
 d

B

F Langevin approximation

1

20

S
a
m

p
le

2
0
 d

B

G Second-order state-space model

0 100 200 300 400 500 600 700 800 900 1000

Time (ms)

1

20

S
a
m

p
le
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moment-closure (Eqs. 12, B9) captures the influence of second-order statistics on the evolution of
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order approximation (Eqs. 13, B10) better captures the second moment. E Example stimulus
(black) and Izhikevich voltage response (red). F Bursts of spiking are captured by increases in
variance in the autoregressive PPGLM (mean: black, 1σ:shaded). Spikes sampled (bottom) from
the conditionally-OU Langevin approximation (yellow) retain the phasic bursting character. G The
state-space model derived from moment-closure on the Langevin approximation retains essential
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cal effects of point-process fluctuations and process autocorrelations are not directly addressed in

previous approaches. Additionally, although PPGLMs can condition on population spiking history

during training, this conditioning addresses only a single sample-path of the process history, and

does not reflect a recurrent dynamical model in which spiking outputs and their fluctuations lead to

the emergence of collective dynamics. The moment-closure approach outlined here can be used to

incorporate auto-history effects into a latent state-space model, where conditioning on the process

history is replaced by a Bayesian filtering update which updates the moments of the history process

at each time-step.

Our results highlight the capacity of PPGLMs to implicitly learn hidden causes of neural firing

through the autoregressive history filter. For example, a collective network mode at 20 Hz may in-

duce spiking rhythmicity that is detected in the point-process history filter, even if isolated neurons

do not exhibit this oscillation. The history dependence of autoregressive PPGLMs defines a latent

variable process that captures both process auto-history effects and the influence of unobserved

hidden modes or inputs. The moments of the population spiking history can be identified with

the latent variables explaining population spiking. This interpretation replaces pairwise coupling

in a neural population in the PPGLM formulation with a coupling of single neurons to a shared

latent-variable history process.

The identification of latent states with moments of the population history opens up a new inter-

pretation connecting both PPGLMs and latent state-space models to neural field models, a rich area

of research in theoretical neuroscience (Amari, 1975, 1977, 1983; Wilson et al., 1972). It suggests

that under some conditions, neural-field models may be interpreted as latent variable models and fit

using modern techniques for latent state-space models. Conversely, this new connection illustrates

that some latent-state space models may be viewed not only as modeling hidden causes of spiking,

but also as capturing statistical moments of the population that are relevant for neural dynamics in

a neural-field sense. The precise convergence of a moment closure PPGLM to a neural field model

remains to be better explored mathematically. Convergence of moment closure approximations has

been studied extensively in the area of stochastic chemical reactions (Schnoerr et al., 2014, 2015,
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2017). Indeed, our approach was partly inspired by recent work on chemical reaction-diffusion

systems (Schnoerr et al., 2016), in which pairwise interactions between pointwise agents in space

are replaced by a coupling of single agents to a statistical field. In contrast to chemical reaction

systems however, we model self-interactions of a point-process over time, and capture also the

effects of fluctuations on the system.

Here, we employed a Gaussian moment-closure, but other distributional assumptions may lead

to even more accurate state-space formulations. Gaussian moment closure neglects the contribution

of higher moments (e.g. skewness) that may arise owing to the influence of Poisson (spiking)

noise. More generally, the expected rate (Eq. 11) is connected to the expected log-likelihood

integral for PPGLMs (Park and Pillow, 2011; Ramirez and Paninski, 2014). Other distributional

assumptions can be used to compute this integral by matching the first two moments provided

from the Gaussian moment-closure system. Alternatively, moment equations could also be derived

using an alternative parameterization of the history process, for example log-Gaussian.

There are two major benefits of the moment-closure representation of PPGLMs. First, au-

toregressive time dependencies are converted to a low-dimensional system of ordinary differential

equations, re-interpreting the PPGLM as a dynamical latent-state space model of a similar form

as phenomenological latent-dynamics models and population neural field models. Second, mo-

ment closure equations open up new strategies for estimating PPGLMs. A major challenge to

fitting PPGLMs to large populations is the challenges in estimating a large number of pairwise

interactions. Our work suggests a different avenue toward estimating such large models: a low-

dimensional latent-variable stochastic process with a suitable nonlinearity and Poisson noise can

be interpreted as a process governing the moments of an PPGLM model. This allows the ex-

tensive methodological advancements toward identifying low-dimensional state-space models to

be applied to autoregressive point-processes. For example, efficient estimation methods exist for

recurrent linear models (Pachitariu et al., 2013), which can be thought of as a discrete-time mean-

field limit of the system derived here. The interaction of the moment-closure formulation with

recent advances for estimating PPGLMs (Sahani et al., 2016; Ramirez and Paninski, 2014) also
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remains to be explored. In addition to establishing a formal connection to the stochastic process

defined by PPGLMs, moment-closure a provides second-order model of fluctuations and corre-

lations. This could be especially useful in systems in which the spiking output, and fluctuations

therein, influences the population dynamics.

Another challenge in estimating PPGLMs is ensuring that the fitted model accurately captures

dynamics (Hocker and Park, 2017; Gerhard et al., 2017). The moment-closure equations outlined

here allow process moments to be estimated, along with model likelihood, using Bayesian filter-

ing. In addition to filtering over a distribution of paths in the process history, filtering can also

average over models, and thus implicitly capture both fluctuation effects and model uncertainty.

However, it remains the subject of future work to apply the moment-closure approach in inference.

Other methods, such as particle filtering, may be useful in situations where the latent state-space

distribution is highly non-Gaussian.
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Appendix

Appendix A: time evolution of the second moment

We work with the time evolution of the covariance Σ rather than the second moment
〈
hh>

〉
, for

improved stability in numerical implementations.

Σ =
〈
hh>

〉
− 〈h〉 〈h〉> (A1)

Differentiating the covariance:

∂tΣ = ∂t
(〈

hh>
〉
− 〈h〉 〈h〉>

)
= ∂t

〈
hh>

〉
− ∂t

(
〈h〉 〈h〉>

)
=

〈
(∂th)h>

〉
+

〈
h(∂th>)

〉
−

(
∂t 〈h〉

)
〈h〉> − 〈h〉

(
∂t 〈h〉>

) (A2)

This expression consists of two sets of symmetric terms arising from the product rule. Examine

one set of terms, and substitute in the delay-line evolution Eq. 6:

〈
(∂th)h>

〉
−

(
∂t 〈h〉

)
〈h〉> =

〈
[δτ=0λ − ∂τh]h>

〉
− [δτ=0 〈λ〉 − ∂τ 〈h〉] 〈h〉>

= δτ=0
[〈
λh>

〉
− 〈λ〉 〈h〉>

]
− ∂τ

[〈
hh>

〉
− 〈h〉 〈h〉>

] (A3)

This expression is linear in the first two moments, except for the expectation
〈
λh>

〉
. This ex-

pectation is taken over the Gaussian history process with mean 〈h〉 and covariance Σ, and can be

computed by completing the square using m= 〈h〉+ΣH in the Gaussian integral:

〈
λh>

〉
=

〈
h>eH>h+I

〉
= eI(t)

∫
dh

heH>h 1
√
|2πΣ|

e−
1
2 (h−〈h〉)>Σ−1(h−〈h〉)

= eI(t)e
1
2 (m>Σ−1m−〈h〉>Σ−1〈h〉)

· m>

= eH>〈h〉+I(t)+ 1
2 H>ΣH

· m>

= 〈λ〉 (〈h〉 + ΣH)> .

(A4)
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Substituting the above expression into Eq. A3 and simplifying yields the deterministic contribution

to the evolution of the covariance:

〈
(∂th)h>

〉
−

(
∂t 〈h〉

)
〈h〉> = δτ=0

(
〈λ〉 (〈h〉 + ΣH)> − 〈λ〉 〈h〉>

)
− ∂τΣ

=
(
δτ=0 〈λ〉H> − ∂τ

)︸                ︷︷                ︸
J

Σ
(A5)
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Appendix B: basis projection

0 150
0.0

0.5
Original basis

0 150
0.0

0.5
Approximated (filtered) basis

Figure B1: Basis projection of the history process yields a linear filter approximating the orig-
inal history basis elements. Left: History dependence in autoregressive point-process models is
typically regularized by using a finite history basis. Right: To convert history basis elements into
a linear dynamical system, one projects the infinite-dimensional delay-line (Eq. 6) onto the low-
dimensional basis. The resulting linear system has response functions that approximate the history
basis. Note, however, the ringing introduced by the approximation.

The history process h(τ, t) is infinite dimensional. To make inference and simulation practical,

one represents the continuous history filter H(τ) by a finite collection of basis functions B(τ) =

{B1(τ), .., BK(τ)} (Fig. B1). A common choice is to use a cosine basis, for example from Weber

and Pillow (2017):

B j(t) = 1
2 cos(a log[t + c] − φ j) + 1

2

Where parameters a and c select the base and offset of the functions in log-time, respectively,

and φ j are offsets in integer multiples of π/2. This basis projection moves us from an infi-

nite dimensional history h(τ, t) to a finite state space z(t)={z1(t), .., zk(t)} defined by the projection

B(τ)= {B0(τ), .., Bk(τ)} of h(τ, t).

zi(t) =
∫

Bi(τ)h(τ, t)dτ (B1)

B should be normalized so that volume is preserved at every time τ, i.e. ∀τ,
∑

i Bi(τ)=1, so that the

history basis features can be treated as Poisson random variables. In practice the history will not

extend for infinite time, and the final basis functions may be omitted. The continuous history filter
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H(τ) is replaced by discrete weights βi=
∫
τ

H(τ)Bi(τ):

H(τ)>h(τ, t) =
∫ ∞

0
H(τ)h(τ, t)dτ

≈
∑

i βi

∫
Bi(τ)h(τ, t)dτ.

(B2)

The time-evolution of z(t) can be written in terms of h(τ, t):

∂tz(t) = ∂tBh(τ, t)

= B∂th(τ, t)

= −B∂τh(τ, t) + Bδτ=0y(t)

(B3)

We can approximately recover the state of the delay line h(τ, t) from the basis projection using the

Moore-Penrose pseudoinverse of the basis B+:

h(τ, t) ≈ B+z(t) =
∑

i zi(t)Bi(t − τ) (B4)

This yields a closed approximate dynamical system for computing the convolution of the history

basis B with a signal y(t)

∂tz ≈ ∂tz̃ = −B∂τB+z̃ + Bδτ=0y(t) (B5)

This is a finite-dimensional linear system z̃ that approximates the history using basis projection.

∂tz̃ = Cy(t) − Az̃,

A = B∂τB+

C = Bδτ=0

(B6)

In silico, the differentiation ∂τ and Dirac delta δτ=0 operators are implemented as matrices repre-

senting the discrete derivative and a point mass over one time-step, respectively. The above basis

projection then yields low-dimensional linear operators defining a dynamical system. The resulting
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process is:

y(t) ∼ Poisson(λ)

λ(t) = exp
(
β>z̃(t) + I(t)

)
∂tz̃(t) = Cy(t) − Az̃(t)

(B7)

The basis projections integrate over an extended time-window. If the intensity λ(t) is ap-

proximately constant during this time window, then the basis-projected history variables z(t) =

(z1(t), .., zk(t)) are Poisson variables with rate and variance zi(t). These projections, by virtue of

integrating over longer timescales, can be approximated as Gaussian. Fluctuations that are far

from Gaussian in the point process y(t) can be well approximated as Gaussian (with mean equal to

variance) projections of the history process. In this case, we may approximate the Poisson process

as a Wiener process that is continuous in time:

dz(t) = [Cλ(t) − Az(t)] dt + C
√
λ(t)dW

λ(t) = exp
(
β>z(t) + I(t)

) (B8)

Analogously to the moment-closure for the infinite-dimensional system (Eq. 12; Fig. 3C), one can

derive a Gaussian moment-closure for the low-dimensional basis-projected system. In the equa-

tions that follow, denote the deterministic mean rate (without covariance corrections) as λ̄= exp(β>µz+I(t)).

Using a Gaussian moment closure, the equations for the evolution of the mean and second moment

in the finite basis projection are:

∂tµz = C 〈λ〉 − Aµz

〈λ〉 = λ̄ exp
(

1
2β
>Σzβ

)
∂tΣz = JΣz + ΣzJ> + Q

J = C 〈λ〉 β> − A

Q = C 〈λ〉C>.

(B9)
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Similarly, the second-order moment closure (Eq. 13; Fig. 3D) in the basis projection is given by:

∂tµz = Cλ̃ − Aµz

λ̃ = λ̄ · (1 + 1
2β
>Σzβ)

∂tΣz = JΣz + ΣzJ> + Q

J = Cλ̄β> − A

Q = Cλ̃C>.

(B10)

For comparison, a simpler alternative to moment-closure is the Linear Noise Approximation

(LNA; Fig. 3B), which uses a deterministic mean λ̄ obtained in the limit of a large, weakly-coupled

population for which the effect of fluctuations on the mean is negligible (Toyoizumi et al., 2009;

Schnoerr et al., 2017). The LNA describes the second moment as a function of this mean, but does

not correct for the influence of fluctuations. In the finite basis, the LNA about the deterministic

mean-rate λ̄ is:
∂tµz = Cλ̄ − Aµz

∂tΣz = JΣz + ΣzJ> + Q

J = Cλ̄β> − A

Q = Cλ̄C>

(B11)
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Appendix C: numerical implementation

The basis-projected moment equations (Eqs. B9–B11) can be integrated using forward Euler or

other integration methods, and code for integrating the moment equations and generating the fig-

ures in this paper is published online (Rule, 2018). We can also convert them to a form resembling

the discrete-time extended Kalman-Bucy filter (Kalman and Bucy, 1961) by integrating the locally-

linearized system forward one time step via exponentiation. Consider, for example, a discrete-time

version of the Gaussian moment-closure system (Eq. B9):

µt+∆t = Fµt + C 〈λ〉∆t

Σt+∆t = GΣtG> + Q∆t,
(C1)

where F= exp(−A ·∆t) is the discrete-time mean update, which is constant in time, and G= exp(J ·

∆t) is the discrete-time covariance update, in which J is the Jacobian as in Eqs. B9–B11, and

which depends on the current mean.

We assess the accuracy of approximations to the original PP-GLM as a stochastic process by

comparing the single-time marginals for the mean log rate, the log mean-rate, and the standard

deviation of the log rate (Table C1). Ground truth estimates of these moments are sampled from

the “true” PPGLM using Monte Carlo sampling (10K samples), and compared to the predictions

from the LNA, Langevin approximation, Gaussian moment closure, and second-order moment

closure. Of the moment equations, the second-order moment closure best recovers the variance,

and the Gaussian moment closure best recovers the mean.

Model likelihoods are also a widely-used measure of model fit in the point process literature

(see e.g. Fernandes et al., 2013; Ramirez and Paninski, 2014); these are appropriate for the singly-

stochastic interpretation of the PPGLMs, which treats the latent log-intensity as a deterministic,

non-stationary parameter. However, the true likelihood of the PPGLM as a doubly-stochastic pro-

cess in principle would result from a computationally intractable marginalization of the latent vari-

ables, and it is thus not readily accessible. As a coarse approximation, however, moment equations
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Normalized RMSE
Langevin MF/LNA Gaussian MC Second Order

log mean-rate 0.30 0.36 0.34 0.31
mean log-rate 0.33 0.93 0.42 0.47

log-rate σ 0.41 0.90 0.86 0.53

Table C1: Moment-closure methods capture process moments more accurately than mean-field
with LNA (MF/LNA). Accuracy of various methods compared to Monte-Carlo sampling (10K sam-
ples) of the autoregressive PPGLM model for a phasic bursting neuron, simulated at dt=1 ms.
Error is reported as Root-Mean-Squared-Error (RMSE) divided by the standard deviation of the
relevant signal. The mean rate is captured with similar accuracy for all methods (first row, error
computed on the logarithm of the mean rate), with the Langevin and second-order moment equa-
tions being the best. The average log-rate is captured best by Gaussian moment closure (Gaussian
MC), whereas the log mean-rate and standard deviation of the log rate are handled more accurately
by the second-order moment equations. Errors were computed using a stimulus with a baseline
inhibitory current of -0.5 pA and with of 49 current pulses, amplitudes ranging from 0.5 to 1.0
pA and durations ranging from 50 to 500 ms, with added OU noise with a steady-state variance of
1 pA2 and time-constant of 100 ms.

(B9–B11) allow us to estimate a likelihood penalty related to slow dynamics (Table C2). We esti-

mated likelihood penalties via Bayesian filtering on the moment equations as a state-space model,

handling the non-conjugate log-Gaussian Poisson measurement update via moment matching. All

three moment approximations broadly agreed on the magnitude of the likelihood penalty. This

slow-timescale likelihood estimate could potentially be merged with fast dynamics to build robust,

dynamically-accurate, estimators for autoregressive PPGLM models, and approximation methods

for the likelihood of the doubly-stochastic interpretation of the PPGLM remain to be explored in

future work.
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Log-Likelihood
GLM MF/LNA Gaussian MC Second Order

l.l. (bits/ms) 0.055 0.024 0.013 0.020
penalty (bits/ms) - 0.031 0.042 0.034
relative penalty - 1.09 1.51 1.23

Table C2: Moment-closure methods interpret the PPGLM as a doubly-stochastic process, intro-
ducing a penalty for incorrectly modeled dynamics. Here, we use Bayesian filtering to estimate
the log-likelihood of a PPGLM model (reported as normalized log-likelihood “l.l.” in bits/ms, first
row; c.f. Ramirez and Paninski, 2014). The model is originally fit using maximum-likelihood
GLM regression (first column), which neglects the dynamical effects of fluctuations. All three mo-
ment approximations broadly agree on a likelihood penalty (0.031–0.042 bits/sample), the relative
size of which (last row; c.f. Fernandes et al., 2013) is on the same order as the distance between
the GLM estimated likelihood and the theoretical maximum “saturated” normalized log-likelihood
of 0.083 bits/ms.
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mean-field self-excitation. application to neuronal networks. Stochastic Processes and their

Applications, 125(6):2451–2492.

Eden, U. T., Frank, L. M., Barbieri, R., Solo, V., and Brown, E. N. (2004). Dynamic analysis of

neural encoding by point process adaptive filtering. Neural computation, 16(5):971–998.

Fernandes, H. L., Stevenson, I. H., Phillips, A. N., Segraves, M. A., and Kording, K. P. (2013).

Saliency and saccade encoding in the frontal eye field during natural scene search. Cerebral

Cortex, 24(12):3232–3245.
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