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Abstract

We propose a set of convex low-rank inducing norms for coupled ma-

trices and tensors (hereafter coupled tensors), in which information is shared

between the matrices and tensors through common modes. More specifically,

we first propose a mixture of the overlapped trace norm and the latent norms

with the matrix trace norm, and then, propose a completion model regular-

ized using these norms to impute coupled tensors. A key advantage of the
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proposed norms is that they are convex and can be used to find a globally opti-

mal solution, whereas existing methods for coupled learning are non-convex.

We also analyze the excess risk bounds of the completion model regularized

using our proposed norms and show that they can exploit the low-rankness of

coupled tensors, leading to better bounds compared to those obtained using

uncoupled norms. Through synthetic and real-data experiments, we show

that the proposed completion model compares favorably with existing ones.

1 Introduction

Learning from a matrix or a tensor has long been an important problem in ma-

chine learning. In particular, matrix and tensor factorization using low-rank in-

ducing norms has been studied extensively, and many applications have been

considered, such as missing value imputation (Signoretto et al., 2013; Liu et al.,

2009), multi-task learning (Argyriou et al., 2006; Romera-Paredes et al., 2013;

Wimalawarne et al., 2014), subspace clustering (Liu et al., 2010), and inductive

learning (Signoretto et al., 2013; Wimalawarne et al., 2016). Though useful in

many applications, factorization based on an individual matrix or tensor tends to

perform poorly under the cold start setup condition (Singh and Gordon, 2008),

when, for example, it is not possible to observe click information for new users in

collaborative filtering. It therefore cannot be used to recommend possible items for

new users. Potential ways to address this issue, are matrix or tensor factorization

with side information (Narita et al., 2011). Both have been applied to recommen-

dation systems (Singh and Gordon, 2008; Gunasekar et al., 2015) and personalized

medicine (Khan and Kaski, 2014).

Both matrix and tensor factorization with side information can be regarded

as the joint factorization of coupled matrices and tensors (hereafter coupled ten-

sors) (See Figure 1). Acar et al. (2011) introduced a coupled factorization method

based on CP decomposition, that simultaneously factorizes matrices and tensors

by sharing the low-rank structures in the matrices and tensors. The coupled fac-

torization approach has been applied to joint analysis of fluorescence and proton

nuclear magnetic resonance (NMR) measurements (Acar et al., 2014a) and joint

NMR and liquid chromatography-mass spectrometry (LCMS) (Acar et al., 2015).

More recently, a Bayesian approach proposed by Ermis et al. (2015) was applied

to link prediction problems. However, existing coupled factorization methods are

non-convex and can obtain only a poor local optimum. Moreover, the ranks of

the coupled tensors need to be determined beforehand. In practice, it is difficult

to specify the true ranks of the tensor and the matrix without prior knowledge.

Furthermore, existing algorithms are not theoretically guaranteed.

We propose in this paper, convex norms for coupled tensors that overcome the
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non-convexity problem. The norms are a mixtures of tensor norms: the overlapped

trace norm (Tomioka et al., 2011), the latent trace norm (Tomioka and Suzuki,

2013), the scaled latent norm (Wimalawarne et al., 2014), and the matrix trace

norm (Argyriou et al., 2006). A key advantage of the proposed norms is that they

are convex and thus can be used to find a globally optimal solution, whereas exist-

ing coupled factorization approaches are non-convex. Furthermore, we analyze the

excess risk bounds of the completion model regularized using our proposed norms.

Through synthetic and real-data experiments, we show that it compares favorably

with existing ones.

Our contributions in this paper are to

• Propose a set of convex coupled norms for matrices and tensors that extend

low-rank tensor and matrix norms.

• Propose mixed norms that combine features from both the overlapped norm

and latent norms.

• Propose a convex completion model regularized using the proposed coupled

norms.

• Analyze the excess risk bounds for the proposed completion model with re-

spect to the proposed norms and show that it leads to lower excess risk.

• Show through synthetic and real-data experiments, that our norms lead to

performance comparable to that of existing non-convex methods.

• Show that our norms are applicable to coupled tensors based on both the

CP rank and the multilinear rank without prior assumptions about their low-

rankness.

• Show that convexity of the proposed norms leads to global solutions, elim-

inating the need to deal with local optimal solutions as is necessary with

non-convex methods.

The remainder of the paper is organized as follows. In Section 2, we discuss

related work on coupled tensor completion. In Section 3, we present our proposed

method, first introducing a coupled completion model and then proposing a set of

norms called coupled norms. In Section 4, we give optimization methods for solv-

ing the coupled completion model. In Section 5, we theoretically analyze it using

excess risk bounds for the proposed coupled norms. In Section 6, we present the

results of our evaluation using synthetic and real-world data experiments. Finally,

in Section 7, we summarize the key points and suggest future work.
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2 Related Work

Most of the models that proposed for learning with multiple matrices or ten-

sors use joint factorization of matrices and tensors. The regularization-based

model proposed by Acar et al. (2011) for completion of coupled tensors and which

was further studied (Acar et al., 2014a,b, 2015) uses CANDECOMP/PARAFAC

(CP) decomposition (Carroll and Chang, 1970; Harshman, 1970; Hitchcock, 1927;

Kolda and Bader, 2009) to factorize the tensor and operates under the assumption

that the factorized components of its coupled mode are in common with the fac-

torized components of the matrix on the same mode. Bayesian models have also

been proposed for imputing missing values with applications in link prediction

(Ermis et al., 2015) and non-negative factorization (Takeuchi et al., 2013) which

use similar factorization models. Applications that have used collective factoriza-

tion of tensors are multi-view factorization (Khan and Kaski, 2014) and multi-way

clustering (Banerjee et al., 2007). Due to their use of factorization-based learning,

all of these models are non-convex.

The use of common adjacency graphs has more recently been proposed for in-

corporating similarities among heterogeneous tensor data (Li et al., 2015). Though

this method does not require assumptions about rank for explicit factorization of

tensors, it depends on the modeling of the common adjacency graph and does not

incorporate the low-rankness created by the coupling of tensors.

3 Proposed Method

We investigate a method for coupling a matrix and a tensor that forms when they

share a common mode (Acar et al., 2015, 2014a,b). An example of the most ba-

sic coupling is shown in Figure 1 where a 3-way (third-order) tensor is attached

to a matrix on a specific mode. As depicted, we may have a problem of predict-

ing recommendations for customers on the basis of their preferences of restaurants

in different locations and we may also have side information about the charac-

teristics for each customer. We can utilize this side information, by coupling the

customer-characteristic matrix with the sparse customer-restaurant-location tensor

of the customer mode and then impute the missing values in the tensor.

Let us consider a partially observed matrix M̂ ∈ R
n1×m and a partially ob-

served 3-way tensor T̂ ∈ R
n1×n2×n3 with mappings to observed elements in-

dexed by ΩM and ΩT , respectively, and let us assume that they are coupled on the

first mode. Our ultimate goal of this paper is to introduce convex coupled norms
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Figure 1: Illustration of information sharing between matrix and tensor in coupled

tensor, through ”Customers” mode.

‖T ,M‖cn for use in solving

min
T ,M

1

2
‖ΩM (M − M̂)‖2F +

1

2
‖ΩT (T − T̂ )‖2F + λ‖T ,M‖cn, (1)

where λ ≥ 0 is the regularization parameter. We also investigate the theoretical

properties of problem (1).

Notations: The mode-k unfolding of tensor T ∈ R
n1×···×nK is represented as

T(k) ∈ R
nk×

∏K
j 6=k nj , which is obtained by concatenating all the

∏K
j 6=k nj vectors

with dimension nk obtained by fixing all except the kth index on mode-k along its

columns. We use vec() to indicate the conversion of a matrix or a tensor into a

vector and unvec() to represent the reverse operation. The spectral norm (operator

norm) of a matrix X is the ‖X‖op that is the largest singular value of X. The Frobe-

nius norm of a tensor T is defined as ‖T ‖F =
√

〈T ,T 〉 =
√

vec(T )⊤vec(T ).
We use [M ;N ] as the concatenation of matrices M ∈ R

m1×m2 and N ∈ R
m1×m3

along their mode 1.

3.1 Existing Matrix and Tensor Norms

Before we introduce our new norms, let us first briefly review the existing low-

rank inducing matrix and tensor norms. Among matrices, the matrix trace norm

(Argyriou et al., 2006) is a commonly used convex relaxation for the minimization

of the rank of a matrix. For a given matrix M ∈ R
n1×m with rank J , we can define

its trace norm as

‖M‖tr =
J
∑

j=1

σj,

where σj is the jth non-zero singular value of the matrix.
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Low-rank inducing norms for tensors have received revived attention in recent

years. One of the earliest low-rank inducing tensor norm is the tensor nuclear norm

(Liu et al., 2009) (also known as the overlapped trace norm (Tomioka and Suzuki,

2013)) which can be expressed for a tensor T ∈ R
n1×···×nK as

‖T ‖overlap =

K
∑

k=1

‖T(k)‖tr. (2)

Tomioka and Suzuki (2013) proposed the latent trace norm:

‖T ‖latent = inf
T (1)+...+T (K)=T

K
∑

k=1

‖T (k)
(k) ‖tr. (3)

The scaled latent trace norm was proposed as an extension of the latent trace

norm (Wimalawarne et al., 2014):

‖T ‖scaled = inf
T (1)+...+T (K)=T

K
∑

k=1

1√
nk

‖T (k)
(k) ‖tr. (4)

The behaviors of these two tensor norms have been studied on the ba-

sis of multitask learning (Wimalawarne et al., 2014) and inductive learning

(Wimalawarne et al., 2016). The results show that for a tensor T ∈ R
n1×···×nK

with multilinear rank (r1, . . . , rK), the excess risk is bounded above with respect

to regularization with the overlapped trace norm by O(
∑K

k=1

√
rk), the latent trace

norm by O(mink
√
rk), and the scaled latent trace norm by O

(

mink
√

rk
nk

)

.

3.2 Coupled Tensor Norms

As with individual matrices and tensors, having convex and low-rank inducing

norms for coupled tensors would be useful in achieving global solutions for cou-

pled tensor completion with theoretical guarantees. To achieve this, we propose a

set of norms for coupled tensors that are coupled on specific modes using existing

matrix and tensor trace norms. Let us first define a new coupled norm with the

format ‖.‖a(b,c,d), where the superscript a specifies the mode in which the tensor

and matrix are coupled and the subscripts b, c, d ∈ {O,L,S,−} indicate how the

modes are regularized. The notations for b, c, d are defined as

O: The mode is regularized with the trace norm. The same tensor is regularized

on other modes similarly to the overlapped trace norm.
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L: The mode is considered to be a latent tensor that is regularized using the trace

norm only with respect to that mode.

S: The mode is regularized as a latent tensor but it is scaled similarly to the scaled

latent trace norm.

−: The mode is not regularized.

Given a matrix M ∈ R
n1×m and a tensor T ∈ R

n1×n2×n3 , we introduce three

norms that are coupled extensions of the overlapped trace norm, the latent trace

norm, and the scaled latent trace norm, respectively.

Coupled overlapped trace norm:

‖T ,M‖1(O,O,O) := ‖[T(1);M ]‖tr +
3
∑

k=2

‖T(k)‖tr. (5)

Coupled latent trace norm:

‖T ,M‖1(L,L,L) = inf
T (1)+T (2)+T (3)=T

(

‖[T (1)
(1) ;M ]‖tr +

3
∑

k=2

‖T (k)
(k) ‖tr

)

. (6)

Coupled scaled latent trace norm:

‖T ,M‖1(S,S,S) = inf
T (1)+T (2)+T (3)=T

(

1√
n1

‖[T (1)
(1) ;M ]‖tr +

3
∑

k=2

1√
nk

‖T (k)
(k) ‖tr

)

.

(7)

In addition to these norms, we can also create norms as mixtures of overlapped

and latent/scaled latent norms. For example, if we want to create a norm that is

regularized using the scaled latent trace norm on the second mode while the other

modes are regularized using the overlapped trace norm, we can define it as

‖T ,M‖1(O,S,O) = inf
T (1)+T (2)=T

(

‖[T (1)
(1) ;M ]‖tr +

1√
n2

‖T (2)
(2) ‖tr

+ ‖T (1)
(3) ‖tr

)

. (8)

This norm has two latent tensors, T (1) and T (2). Tensor T (1) is regularized using

the overlapped method for modes 1 and 3 while the tensor T (2) is regularized as

7



a scaled latent tensor on mode 2. Given this use of a mixture of regularization

methods, we call the resulting norm a mixed norm.

In a similar manner, we can create other mixed norms distinguished by their

subscripts: (L,O,O), (O,L,O), (O,O,L), (S,O,O), (O,S,O), and (O,O,S).
The main advantage gained by using these mixed norms is the additional freedom

to regularize low-rank constraints among coupled tensors. Other combinations of

norms in which two modes are latent tensors such as (L,L,O) will make the third

mode also a latent tensor since overlapped regularization requires that more than

one mode be regularized of the same tensor. Though we have considered using

the latent trace norm, in practice it has been shown to be weaker in performance

than the scaled latent trace norm (Wimalawarne et al., 2014, 2016). Therefore, in

our experiments, we considered only mixed norms based on the scaled latent trace

norm.

3.2.1 Extensions for Multiple Matrices and Tensors

Our newly defined norms can be extended to multiple matrices coupled to a tensor

on different modes. For instance, we can couple two matrices M1 ∈ R
n1×m1 and

M2 ∈ R
n3×m2 to a 3-way tensor T on its first and third modes. If we regularize

the coupled tensor with the overlapped trace norm on mode 1 and mode 3 and the

scaled latent trace norm on mode 2, we obtain a mixed norm,

‖T ,M1,M2‖1,3(O,S,O) = inf
T (1)+T (2)=T

(

‖[T (1)
(1) ;M1]‖tr +

1√
n2

‖T (2)
(2) ‖tr

+ ‖[T (1)
(3) ;M2]‖tr

)

.

Coupled norms for multiple 3-mode or higher dimensional tensors could also

be designed using our proposed method. However, such extension may require

extending coupled norms further. Extensions to coupled norms for multiple tensors

are a promising area for future research.

3.3 Dual Norms

Let us now briefly look at dual norms for the above defined coupled norms. Dual

norms are useful in deriving excess risk bounds, as discussed in Section 4. Due

to space limitations we derive dual norms for only two coupled norms to better

understand their nature. To derive them, we first need to know the Schatten norm

(Tomioka and Suzuki, 2013) for the coupled tensor norms. Let us first define the

Schatten-(p, q) norm for the coupled norm ‖T ,M‖1(O,O,O) with an additional sub-
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script notation Sp/q:

‖T ,M‖1(O,O,O),Sp/q
:=

(

( r1
∑

i

σi
(

[T(1);M ]
)p
)

q

p

+

( r2
∑

j

σj
(

T(2)

)p
)

q

p

+

( r3
∑

k

σk
(

T(3)

)p
)

q

p

)
1
q

, (9)

where p and q are constants, r1, r2 and r3 are the ranks and σi, σj and σk are the

singular values for each unfolding.

The following theorem presents the dual norm of ‖T ,M‖1(O,O,O),Sp/q
(see Ap-

pendix A for proof).

Theorem 1. Let a matrix M ∈ R
n1×m and a tensor T ∈ R

n1×n2×n3 be coupled

on their first modes. The dual norm of ‖T ,M‖1(O,O,O),Sp/q
with 1/p + 1/p∗ = 1

and 1/q + 1/q∗ = 1 is

‖T ,M‖1
(O,O,O),Sp∗/q

∗ = inf
T (1)+T (2)+T (3)=T

(

( r1
∑

i

σi
(

[T
(1)
(1) ;M ]

)p∗
)

q∗

p∗

+

( r2
∑

j

σj
(

T
(2)
(2)

)p∗
)

q∗

p∗

+

( r3
∑

k

σk
(

T
(3)
(3)

)p∗
)

q∗

p∗

)
1
q∗

,

where r1, r2, and r3 are the ranks for each mode and σi, σj , and σk are the singular

values for each unfolding of the coupled tensor.

In the special case of p = 1 and q = 1, we see that ‖T ,M‖1(O,O,O),S1/1
=

‖T ,M‖1(O,O,O). Its dual norm is the spectral norm, as shown in the following

corollary.

Corollary 1. Let a matrix M ∈ R
n1×m and a tensor T ∈ R

n1×n2×n3 be coupled

on their first mode. The dual norm of ‖T ,M‖1(O,O,O),S1/1
is

‖T ,M‖1
(O,O,O),S∞/∞ =

inf
T (1)+T (2)+T (3)=T

max
(

‖[T (1)
(1) ;M ]‖op, ‖T (2)

(2) ‖op, ‖T
(3)
(3) ‖op

)

.
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The Schatten-(p, q) norm for the mixed norm ‖ · ‖1(L,O,O) is defined as

‖T ,M‖1(L,O,O),Sp/q
= inf

T (1)+T (2)=T

(

( r1
∑

i

σi
(

[T
(1)
(1) ;M ]

)p
)

q

p

+

( r2
∑

j

σj
(

T
(2)
(2)

)p
)

q

p

+

( r3
∑

k

σk
(

T
(2)
(3)

)p
)

q

p

)
1
q

.

Its dual norm is defined by the following theorem (see Appendix A for proof).

Theorem 2. Let a matrix M ∈ R
n1×m and a tensor T ∈ R

n1×n2×n3 be coupled

on their first mode. The dual norm of the mixed coupled norm ‖T ,M‖1(L,O,O),Sp/q

with 1/p + 1/p∗ = 1 and 1/q + 1/q∗ = 1 is

‖T ,M‖1
(L,O,O),Sp∗/q

∗ =

(

(

r1
∑

i

σi
(

[T(1);M ]
)p∗
)

q∗

p∗

+

inf
T̂ (1)+T̂ (2)=T

(

( r2
∑

j

σj
(

T̂
(1)
(2)

)p∗
)

q∗

p∗

+

( r3
∑

k

σk
(

T̂
(2)
(3)

)p∗
)

q∗

p∗

))
1
q∗

,

where r1, r2, and r3 are the ranks of T(1), T̂
(1)
(2) and T̂

(2)
(3) , respectively, and σi, σj ,

and σk are their singular values.

The dual norms of other mixed norms can be similarly derived.

4 Optimization

In this section, we discuss optimization of the proposed completion model (1). The

completion model (1) can be easily solved for each coupled norm using a state of

the art optimization method such as the alternating direction method of multipliers

(ADMM) method (Boyd et al., 2011). The optimization steps for the coupled norm

‖T ,M‖1(S,O,O) are derived using the ADMM method. The optimization steps for

the other norms are similarly derived.

We express (1) using the ‖T ,M‖1(S,O,O) norm

min
T (1),T (2),M

1

2
‖ΩM (M − M̂)‖2F +

1

2
‖ΩT (T (1) + T (2) − T̂ )‖2F

+ λ

(

1√
n1

‖[T (1)
(1) ;M ]‖tr + ‖T (2)

(2) ‖tr + ‖T (2)
(3) ‖tr

)

(10)
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By introducing auxiliary variables X ∈ R
n1×m and Y ∈ R

n1×n2×n3 , we can

formulate the objective function of ADMM for (10)

min
T (1),T (2),M

1

2
‖ΩM (M − M̂)‖2F +

1

2
‖ΩT (T (1) + T (2) − T̂ )‖2F

+ λ

(

1√
n1

‖[Y (1)
(1)

;X]‖tr + ‖Y (2)
(2)

‖tr + ‖Y (2)
(3)

‖tr
)

(11)

s.t. X = M , Y(1) = T (1), Y(k) = T (2) k = 2, 3.

We introduce Lagrangian multipliers WM ∈ R
n1×m and WT (k) ∈ R

n1×n2×n3 ,

(k = 1, 2, 3) and formulate the Lagrangian as

min
T (1),T (2),M

1

2
‖ΩM (M − M̂)‖2F +

1

2
‖ΩT (T (1) + T (2) − T̂ )‖2F

+ λ

(

1√
n1

‖[Y (1)
(1) ;X]‖tr + ‖Y (2)

(2) ‖tr + ‖Y (2)
(3) ‖tr

)

+
〈

WM ,M −X
〉

+
〈

WT (1)
,T (1) − Y(1)

〉

+

3
∑

k=2

〈

WT (k)
,T (2) − Y(k)

〉

+
β

2
‖M −X‖2F

+
β

2
‖T (1) − Y(1)‖2F +

β

2

3
∑

k=2

‖T (2) − Y(k)‖2F (12)

where β is a proximity parameter. Using this Lagrangian formulation, we can

obtain solutions for unknown variables M , T (1), T (2), WM , WT (k)
(k = 1, 2, 3),

X, and Y(k) (k = 1, 2, 3) iteratively. We use superscripts [t] and [t−1] to represent

the variables at iteration steps t and t− 1, respectively.

The solutions for M at each iteration can be obtained by solving the following

sub-problem:

M [t] = unvec

(

(Ω⊤
MΩM + βIM )−1vec

(

ΩM (M̂)−WM [t−1] + βX [t−1]
)

)

.

Solutions for T (1) and T (2) at iteration step t can be obtained from the follow-

11



ing sub-problem:

[

Ω⊤
T ΩT + 2βIT IT

IT Ω⊤
T ΩT + 2βIT

] [

vec(T (1)[t])

vec(T (2)[t])

]

=









vec

(

ΩT̂ (T̂ )−∑3
k=2WT (k)[t−1] + β

∑3
k=2 Y(k)[t−1]

)

vec

(

ΩT̂ (T̂ )−∑3
k=2WT (k)[t−1] + β

∑3
k=2 Y(k)[t−1]

)









, (13)

where IM and IT are unit diagonal matrices with dimensions n1m × n1m and

n1n2n3 × n1n2n3, respectively.

The updates for X and Y(k), (k = 1, 2, 3) at iteration step t are given as

[Y
(1)[t−1]
(1) ;X [t−1]] = proxλ/(√n1β)

(

[
W

T (1)[t−1]
(1)

β
;
WM [t−1]

β
] + [T

(1)[t]
(1) ;M [t]]

)

,

(14)

and

Y
(k)[t−1]
(k) = proxλ/β

(W
T (t)[t−1]
(k)

β
+ T

(2)[t]
(k)

)

, k = 2, 3, (15)

where proxλ(X) = U(S− λ)+V
⊤ for X = USV ⊤.

The update rules for the dual variables are

WM [t] = WM [t−1] + β(M [t] −X [t]),

WT (1)[t−1] = WT (1)[t] + β(T (1)[t] − Y(1)[t]),

WT (k)[t−1] = WT (k)[t] + β(T (k)[t] − Y(k)[t]), k = 2, 3.

We can modify the above optimization procedures by replacing the variables

in (10) in accordance with the norm that is used to regularize the tensor and by

adjusting operations in (11), (13), (14), and (15). For example, for the norm ‖ ·
‖1(O,O,O), there is only a single T , so the sub-problem for (13) becomes

(

Ω⊤
T ΩT + 3βIT

)

vec(T [t]) = vec

(

ΩT̂ (T̂ )−
3
∑

k=1

WT (k)[t−1] + β

3
∑

k=1

Y [t−1]

)

,

and that for (14) becomes

[Y
(1)[t]
(1) ;X [t]] = proxλ/β

(

[
W

T (k)[t−1]
(1)

β
;
WM [t−1]

β
] + [T

[t]
(1);M

[t]]

)

,
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and

Y
(k)[t−1]
(k) = proxλ/β

(W
T (k)[t−1]
(k)

β
+ T

[t]
(k)

)

, k = 1, 2, 3.

Additionally, the dual update rule with T becomes

WT (k)[t−1] = WT (k)[t] + β(T [t] − Y(k)[t]), k = 1, 2, 3.

The optimization procedures for the other norms can be similarly derived.

5 Theoretical Analysis

In this section, we analyze the excess risk bounds of the comple-

tion model introduced in (1) for the coupled norms defined in Section

3 using transductive Rademacher complexity (El-Yaniv and Pechyony, 2007;

Shamir and Shalev-Shwartz, 2014). Let us again consider matrix M and tensor

T and use them as a single structure X = T ∪M with a training sample index set

STrain and a testing sample index set STest with the total set of observed samples

S = STrain ∪ STest. We rewrite (1) with our new notations as an equivalent model:

min
W

1

|STrain|
∑

(i1,i2,i3)∈STrain

l(Xi1,i2,i3 ,Wi1,i2,i3) s.t. ‖W‖cn ≤ B, (16)

where l(a, b) = (a−b)2, W = W∪WM is the learned coupled structure consisting

of components W and WM of the tensor and matrix, respectively, B is a constant,

and ‖ · ‖cn is any norm defined in Section 3.2.

Given that l(·, ·) is a Λ-Lipschitz loss function bounded by

supi1,i2,i3 |l(Xi1,i2,i3 ,Wi1,i2,i3)| ≤ bl and assuming that |STrain| =
|STest| = |S|/2, we can obtain the following excess risk bound based on

transductive Rademacher complexity theory (El-Yaniv and Pechyony, 2007;

Shamir and Shalev-Shwartz, 2014) with probability 1− δ,

1

|STest|
∑

(i1,i2,i3)∈STest

l(Xi1,i2,i3 ,Wi1,i2,i3)

− 1

|STrain|
∑

(i1,i2,i3)∈STrain

l(Xi1,i2,i3 ,Wi1,i2,i3)

≤ 4R(W) + bl

(11 + 4
√

log 1
δ

√

|STrain|

)

, (17)
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where R(W) is the transductive Rademacher complexity defined as

R(W) =
1

|S|Eσ

[

sup
‖W‖cn≤B

∑

(i1,i2,i3)∈S
σi1,i2,i3 l(Wi1,i2,i3 ,Xi1,i2,i3)

]

, (18)

where σi1,i2,i3 ∈ {−1, 1} with probability 0.5 if (i1, i2, i3) ∈ S, or 0 otherwise

(See Appendix B for derivation).

Next we give the bounds for (18) with respect to different coupled norms. We

assume that |STrain| = |STest|, as in (Shamir and Shalev-Shwartz, 2014), but our

theorem can be extended to more general cases. Detailed proofs of the theorems in

this section are given in Appendix B.

The following two theorems give the Rademacher complexities for coupled

completion regularized using the coupled norms ‖ · ‖1(O,O,O) and ‖ · ‖1(S,S,S).

Theorem 3. Let ‖ · ‖cn = ‖ · ‖1(O,O,O); then, with probability 1− δ,

R(W) ≤ 3Λ

2|S|
[

√

r(1)(BT +BM ) +

3
∑

k=2

√
rkBT

]

max

{

C2

(√
n1 +

√

√

√

√

3
∏

j=2

nj +m

)

, min
k∈2,3

C1

(√
nk +

√

√

√

√

3
∏

j 6=k

nj

)

}

,

where (r1, r2, r3) is the multilinear rank of W , r(1) is the rank of the coupled

unfolding on mode 1, and BM , BT , C1, and C2 are constants.

Theorem 4. Let ‖ · ‖cn = ‖ · ‖1(S,S,S), then, with probability 1− δ,

R(W) ≤ 3Λ

2|S|

[

√

r(1)

n1
(BM +BT ) + min

k∈2,3

√

rk
nk

BT

]

max

{

C2

(

n1 +

√

√

√

√

3
∏

i=1

ni + n1m

)

, C1 max
k=2,3

(

nk +

√

√

√

√

3
∏

i=1

ni

)}

,

where (r1, r2, r3) is the multilinear rank of W , r(1) is the rank of the coupled

unfolding on mode 1, and BM , BT , C1, and C2 are constants.

We can see that in both of these theorems, the Rademacher complexity of the

coupled tensor is divided by the total number of observed samples of both the

matrix and the tensor. If the tensor or the matrix is completed separately, then the

Rademacher complexity is only divided by their individual samples (see Theorems
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7–9 in the Appendix B and a discussion elsewhere (Shamir and Shalev-Shwartz,

2014)). This means that coupled tensor learning can lead to better performance

than separate matrix or tensor learning. We can also see that, due to coupling, the

excess risks are bounded by the ranks of both the tensors and the concatenated

matrix of the unfolded tensors on the coupled mode. Additionally, the maximum

term on the right takes the combinations of both the tensor and the concatenated

matrix of the unfolded tensors on the coupled mode.

Finally, we consider the Rademacher complexity of the mixed norm ‖ · ‖cn =
‖ · ‖1(S,O,O).

Theorem 5. Let ‖ · ‖cn = ‖ · ‖1(S,O,O); then, with probability 1− δ,

R(W) ≤ 3Λ

2|S|

[

√

r(1)

n1
(BM +BT ) +

∑

i=2,3

√
riBT

]

max

{

C2

(

n1 +

√

√

√

√

3
∏

i=1

ni + n1m

)

, min
k=2,3

C1

(

√
nk +

√

√

√

√

3
∏

i 6=k

ni

)}

,

where (r1, r2, r3) is the multilinear rank of W , r(1) is the rank of the coupled

unfolding on mode 1, and BM , BT , C1, and C2 are constants.

We see that, for the mixed norm ‖·‖cn = ‖·‖1(S,O,O), the excess risk is bounded

by the scaled rank of the coupled unfolding along the first mode. For this norm,

we can see that the terms related to ranks are smaller in Theorem 3 and that the

maximum term could be smaller than in Theorem 4. This means that this norm can

perform better than ‖ · ‖1(O,O,O) and ‖ · ‖1(S,S,S) depending on the ranks and mode

dimensions of the coupled tensor. The bounds of the other two mixed norms can

also be derived and explained in a manner similar to Theorem 5.

6 Evaluation

We evaluated our proposed method experimentally using synthetic and real-world

data.

6.1 Synthetic Data

Our main objectives were to evaluate how the proposed norms perform depending

on the ranks and dimensions of the coupled tensors. We used simulation data based

on CP rank and Tucker rank in these experiments.
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6.1.1 Experiments Using CP Rank

To create coupled tensors with the CP rank, we first generated a 3-mode tensor

T ∈ R
n1×n2×n3 with CP rank r using CP decomposition (Kolda and Bader, 2009)

as T =
∑r

i=1 ciui ◦ vi ◦ wi where ui ∈ R
n1 , vi ∈ R

n2 and wi ∈ R
n3 and ci ∈

R
+. For our experiments, we used two approaches to create CP-rank-based tensors

in which all the component vectors ui, vi, and wi were nonorthogonal vectors or

orthogonal vectors. We coupled matrix X ∈ R
n1×m with rank r to T on mode

1 by generating X = USV ⊤ with U(1 : r, :) = [u1, . . . , ur], S ∈ R
r×r, and

V ∈ R
m×r is an orthogonal matrix. We also added noise sampled from a Gaussian

distribution with mean zero and variance of 0.01 to the elements of the matrix and

the tensor.

In our experiments using synthetic data, we considered coupled structures of

tensors with dimension 20 × 20 × 20 and matrices with dimension 20 × 30 cou-

pled on their first modes. To simulate completion, we randomly selected observed

samples with percentages of 30, 50, and 70 of the total number of elements in

both the matrix and the tensor, selected a validation set with a percentage of 10
and took the remainder as test samples. We performed coupled completion using

the proposed coupled norms of ‖ · ‖1(O,O,O), ‖ · ‖1(S,S,S), ‖ · ‖1(S,O,O), ‖ · ‖1(O,S,O),

and ‖ · ‖1(O,O,S). For all the learning models with these norms, we cross-validated

their regularization parameters ranging from 0.01 to 5.0 with intervals of 0.05. We

ran our experiments with 10 random selections and plotted the mean square error

(MSE) for the test samples.

As benchmark methods we used the overlapped trace norm (OTN) and the

scaled latent trace norm (SLTN) for individual tensors and the matrix trace norm

(MTN) for individual matrices. For all these norms, we cross-validated the regular-

ization parameters ranging from 0.01 to 5.0 with intervals of 0.05. We compared

our results with those of advanced coupled matrix-tensor factorization ACMTF

(Acar et al., 2014b), for which the regularization parameters were selected using

cross-validation in the range 0, 0.0001, 0.001, . . . , 1. To select ranks to use with

the ACMTF method, we first ran experiments using ranks of 1, 3, 5, . . . , 19 and

selected the rank that gave the best performance. Due to the non-convex nature of

ACMTF, we ran experiments with 5 random initializations to select the best local

optimal solution.

We first ran experiments on coupled tensor completion based on CP rank in

different settings. In the first experiment, we considered coupled tensors with no

shared components. In this experiment, we created a tensor with CP rank 5 in

which the component vectors were nonorthogonal and generated from a normal

distribution. We also created a matrix of rank 5 and without any components in

common with the tensor. Figure 2 shows that the coupled norms did not perform
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better than individual matrix completion using the matrix trace norm. However, for

tensor completion, the coupled norm ‖ · ‖1(O,O,O) had performance comparable to

that of the overlapped trace norm.
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Figure 2: Completion performance of matrix with dimension 20 × 30 and rank 5
with no sharing and of tensor with dimension 20 × 20 × 20 and CP rank 5 with

nonorthogonal component vectors.

We next ran experiments on coupled tensors with some components in com-

mon and with both orthogonal and nonorthogonal component vectors. We created

coupled tensors with CP rank of 5, and both the tensor and matrix shared all compo-

nents along mode 1. We generated the tensor with orthogonal component vectors.

As shown in Figure 3, the coupled norm ‖ · ‖1(O,O,O) had good performance for

both the matrix and tensor.

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fraction of training samples

0.02

0.04

0.06

0.08

0.1

0.12

0.14

M
S

E

MTN
(O,O,O)
(S,S,S)
(O,O,S)
(O,S,O)
(S,O,O)
ACMTF

(a) Matrix Completion

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fraction of training samples

0.01

0.015

0.02

0.025

0.03

M
S

E

OTN
SLTN
(O,O,O)
(S,S,S)
(O,O,S)
(O,S,O)
(S,O,O)
ACMTF

(b) Tensor Completion.

Figure 3: Completion performance of matrix with dimension 20 × 30 and rank 5
with all components shared and of tensor with dimension 20 × 20 × 20 and CP

rank 5 with orthogonal component vectors.
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Figure 4, we shows the performance of coupled tensors with the same rank

as in the previous experiment with tensors created from nonorthogonal component

vectors. Again the coupled norm ‖·‖1(O,O,O) had better performance than individual

matrix and tensor completions.
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Figure 4: Completion performance of matrix with dimension 20 × 30 and rank of

5 with all component vectors shared and of tensor with dimension 20 × 20 × 20
and CP rank 5 and nonorthogonal component vectors.

In our final experiment, we created tensors with CP rank 5 and coupled them

with a matrix of rank 10 sharing all 5 component vectors along mode 1. Figures

5 and 6 show the results for tensors created with orthogonal and nonorthogonal

component vectors, respectively. In both cases, the coupled norms ‖ · ‖1(O,O,O) ,

‖·‖1(S,S,S), and ‖·‖1(S,O,O) had better matrix completion performance than individual

completion by the matrix trace norm. Similarly, as in the previous experiments,

both the overlapped trace norm and the coupled norm ‖ · ‖1(O,O,O) had comparable

performances.

6.1.2 Simulations Using Tucker Rank

To create coupled tensors with the Tucker rank, we first generated a tensor T ∈
R
n1×n2×n3 using Tucker decomposition (Kolda and Bader, 2009) as T = C ×1

U1 ×2 U2 ×3 U3, where C ∈ R
r1×r2×r3 was the core tensor generated from a

normal distribution specifying multilinear rank (r1, r2, r3) and component matrices

U1 ∈ R
r1×p1 , U2 ∈ R

r2×p2 , and U3 ∈ R
r3×p3 were orthogonal matrices. Next we

generated a matrix that was coupled with mode 1 of the tensor using singular value

decomposition X = USV ⊤, where we specified its rank r using diagonal matrix

S and generated matrices U and V as orthogonal matrices. For sharing between

the matrix and the tensor, we computed T(1) = UnSnV
⊤
n , and replaced the first s
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Figure 5: Completion performance of matrix with dimension 20 × 30 and rank 5
and of tensor with dimension 20 × 20 × 20 with CP rank 10 and nonorthogonal

component vectors that shared 5 components.

singular values of S with the first s singular values of Sn, replaced the first basis

vectors s of U with the first s basis vectors of Un, and computed X = USV ⊤

such that the coupled structure shared s common components. We also added

noise sampled from a Gaussian distribution with mean zero and variance 0.01 to

the elements of the coupled tensor.

As in the synthetic experiments using the CP rank, we considered coupled

structures with tensors with dimension 20× 20× 20 and matrices with dimension

20 × 30 coupled on their mode 1. We considered different multilinear ranks of

tensors, ranks of matrices, and degrees of sharing among them. We used the same

percentages in selecting the training, testing, and validation sets as we did in the

CP rank experiments. We again compared our results with those of ACMTF.

We also used an additional non-convex coupled learning model to incorporate

multilinear ranks of the coupled tensor by considering Tucker decomposition un-

der the assumption that the components of the coupled mode were shared between

both the matrix and tensor. We used the Tensorlab framework (Vervliet et al., 2016)

to implement this model. We regularized the factorized components of the tensor

(including the core tensor) and the matrix using the Frobenius norm. We used a reg-

ularization parameter selected from the range 0.01 to 50 in logarithmic linear scale

with 5 divisions (in Matlab syntax exp(linspace(log(0.01), log(50),

5))). We refer to this benchmark method as NC-Tucker. Due to the non-convex

nature of the model, we ran 5−10 simulations with different random initializations

and selected the best local optimal solution. Specifying the multilinear rank a pri-

ori for this model would be challenging in real applications, but since we knew the

rank in our simulations, we could specify the multilinear ranks to be used to create

19



0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fraction of training samples

0.06

0.08

0.1

0.12

0.14

0.16

0.18
M

S
E

MTN
(O,O,O)
(S,S,S)
(O,O,S)
(O,S,O)
(S,O,O)
ACMTF

(a) Matrix Completion

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fraction of training samples

0.01

0.015

0.02

0.025

0.03

M
S

E

OTN
SLTN
(O,O,O)
(S,S,S)
(O,O,S)
(O,S,O)
(S,O,O)
ACMTF

(b) Tensor Completion.

Figure 6: Completion performance of matrix with dimension 20 × 30 and rank

5 and of tensor with dimension 20 × 20 × 20 and CP rank 10 and orthogonal

component vectors that shared 5 components.

the tensors.

In our first simulations, we considered a coupled tensor with a matrix rank of 5
and a tensor multilinear rank (5, 5, 5) with no shared components. Figure 7 shows

that, with this setting, individual matrix and tensor completion had better perfor-

mance than that of the coupled norms. The non-convex NC-Tucker benchmark

method had the best performance for the tensor but performed poorly in matrix

completion compared to the coupled norms.
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Figure 7: Completion performance of matrix with dimension 20 × 30 and rank 5
and of tensor with dimension 20 × 20 × 20 and multilinear rank (5, 5, 5) with no

sharing.

In our next simulation, we considered coupling of tensors and matrices with

some degree of sharing among them. We created a matrix of rank 5 and a tensor
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of multilinear rank (5, 5, 5) and let them share all 5 singular components along

mode 1. Figure 8 shows that the coupled norm ‖ · ‖1(O,O,O) had the best perfor-

mance among the coupled norms for both matrix and tensor completion. Individ-

ual tensor completion with the overlapped trace norm had the same performance

as ‖ · ‖1(O,O,O). The NC-Tucker method performed better than the coupled norms

for tensor and matrix completion.
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Figure 8: Completion performances of completion of matrix with dimension 20×
30 and rank 5 and of tensor with dimension 20 × 20 × 20 and multilinear rank

(5, 5, 5) that shared 5 components.

In our next simulation, we considered a matrix of rank 5 and a tensor of mul-

tilinear rank (5, 15, 5) that shared all 5 singular components along mode 1. Figure

9 shows that, with this setting, although the coupled norm ‖ · ‖1(O,O,S) had the

best performance among the coupled norms and individual tensor completion, it

was outperformed by the NC-Tucker method. However, the NC-Tucker method

performed poorly in matrix completion compared to the coupled norms. For the

matrix completion, individual matrix completion by the matrix trace norm had the

best performance while coupled norms ‖·‖1(O,O,S) and ‖·‖1(S,O,O) had the next best

performance.

For our final simulation, we created a coupled matrix with rank 5 and a tensor

with multilinear rank (15, 5, 5), all sharing 5 singular components along mode 1.

Figure 10 shows that the mixed coupled norms ‖·‖1(O,S,O) and ‖·‖1(O,O,S) performed

equally and had better performance for tensor completion than the individual ten-

sor completion. The NC-Tucker method had better performance than the coupled

norms for tensor completion, while the performance was comparable for matrix

completion. For matrix completion when the percentage of training samples was

small, coupled norms ‖ · ‖1(O,O,O) and ‖ · ‖1(S,O,O) had better performance. As the

percentage of training samples was increased, the performance of individual ma-
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Figure 9: Completion performance of matrix with dimension 20 × 30 and rank

5 and of tensor with dimension 20 × 20 × 20 and multilinear rank (5, 15, 5) that

shared 5 components.

trix completion improved while those of ‖ · ‖1(O,S,O) and ‖ · ‖1(O,O,S) were close but

second best.

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fraction of training samples

0

0.2

0.4

0.6

0.8

1

1.2

1.4

M
S

E

MTN
(O,O,O)
(S,S,S)
(O,O,S)
(O,S,O)
(S,O,O)
ACMTF
NC-Tucker

(a) Matrix Completion

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fraction of training samples

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

M
S

E

OTN
SLTN
(O,O,O)
(S,S,S)
(O,O,S)
(O,S,O)
(S,O,O)
ACMTF
NC-Tucker

(b) Tensor Completion.

Figure 10: Completion performance of completion of matrix with dimension 20×
30 and rank 5 and of a tensor with dimension 20 × 20 × 20 and multilinear rank

(15, 5, 5) that shared 5 components.

The results of these simulations show that the ACMTF performed poorly com-

pared to our proposed methods.

6.2 Real-World Data

As a real-world data experiment, we applied our proposed method to the UCLAF

dataset (Zheng et al., 2010), which consists of GPS data for 164 users in 168 lo-

cations performing 5 activities, resulting in a sparse user-location-activity tensor
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T ∈ R
164×168×5. This dataset also has a user-location matrix X ∈ R

164×168,

which we used as side information coupled to the user mode of T . Using similar

observed element percentages as in the synthetic data simulations we performed

completion experiments on T . We considered all the elements of the user-location

matrix as observed elements and used them as training data. We repeated the eval-

uation for 10 random sample selections. We cross-validated the regularization pa-

rameters from 0.01 to 500 divided into 50 in logarithmic linear scale. As a base-

line method, we again used the ACMTF method (Acar et al., 2014b) with CP rank

5. Additionally, we used the coupled (Tucker) method (Ermis et al., 2015) and

the NC-Tucker method with multilinear rank (3, 3, 3), where we selected the best

performances among 5 random initializations. Figure 10 shows the completion

performances for the coupled tensor.
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Figure 10: Completion performance for UCLAF data.

We can see that the best performance among coupled norms was that of mixed

coupled norm ‖ · ‖1(S,O,O), indicating that learning with side information as a cou-

pled structure improves tensor completion performance compared to completion

using only tensor norms. This also indicates that mode 1 may have a lower rank

than the other modes and that mode 2 and 3 may have ranks closer to each other.

The non-convex coupled (Tucker) method and the NC-Tucker method had better

performance than ‖ · ‖1(S,O,O) when the number of observed samples was less than

70 percent of the total elements.
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7 Conclusion and Future Work

We have proposed a new set of convex norms for the completion problem of cou-

pled tensors. We restricted our study to coupling a 3-way tensor with a matrix and

defined low-rank inducing norms by extending trace norms such as the overlapped

trace norm and scaled latent trace norm of tensors and the matrix trace norm. We

also introduced the concept of mixed norms, which combines the features of both

overlapped and latent trace norms. We looked at the theoretical properties of our

convex completion model and evaluated it using synthetic and real-world data. We

found that the proposed coupled norms perform comparably with existing non-

convex ones. However, our norms lead to global optimal solutions and eliminate

the need for specifying the ranks of the coupled tensors beforehand. While there

are still many aspects to be studied, we believe that our work is the first step in

modeling convex norms for coupled tensors.

Although coupling can occur among many tensors with different dimensions

and multiple matrices on different modes, this study focused on a 3-mode tensor

and a single matrix. The methodology used to create coupled norms can be ex-

tended to any of those settings, but mere extensions may not lead to the optimal

design of norms for those settings. Particularly, the square tensor norm (Mn et al.,

2014) has shown to be better suited to tensors beyond three modes and thus can

also be used to model novel coupled norms in the future. Furthermore, theoretical

analysis using methods such as the Gaussian width (Amelunxen et al., 2014) may

provide deeper understanding of coupled tensors, which should enable design of

better norms. Such studies could be interesting directions for future research.
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Appendices

A Proofs of Dual Norms

We first provide the proofs of the dual norms of Theorems 1 and 2.

Proof of Theorem 1. We use Lemma 3 of (Tomioka and Suzuki, 2013)

to prove the duality. Consider a linear operator Φ such that Φ(T ,M) =
[vec(M); vec(T(1)); vec(T(2)); vec(T(3))] ∈ R

d1+3d2 , where d1 = n1m and d2 =
n1n2n3. We define

‖z‖∗ =
(

‖[Z(1)
(1) ;X]‖qSp

+

3
∑

k=2

‖Z(k)
(k)‖

q
Sp

)1/q
, (19)

where Z(k) is the inverse vectorization of elements z(d1+(k−1)d2+1):(d1+kd2) and X
is the inverse vectorization of z1:d1 . The dual of the above norm is expressed as

‖z‖∗∗ =
(

‖[Z(1)
(1) ;X]‖q∗Sp∗

+

3
∑

k=2

‖Z(k)
(k)‖

q∗

Sp∗

)1/q∗

.

Let

Φ⊤(z) = {T ,M} =

{

3
∑

k=1

Z(k),X

}

,
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then following the Lemma 3 of (Tomioka and Suzuki, 2013), we write

|||[T ,M ]|||∗(Φ) = inf ‖z‖ s.t Φ⊤(z) = {T ,M}.

Given that

|||[T ,M ]|||∗(Φ) := ‖[T ,M ]‖1(O,O,O),Sp/q
,

and following Lemma 3 in (Tomioka and Suzuki, 2013) we obtain the dual of

‖[T ,M ]‖1(O,O,O),Sp/q
as ‖[T ,M ]‖1

(L,L,L),Sp∗/q∗
. �

Proof of Theorem 2. We can apply Theorem 1 to latent tensors T (1) and T (2) as

well as the dual of the overlapping norm to T . First consider the dual with respect

to T (1) and T (2); by applying Theorem 1, we obtain

‖T ,M‖1
(L,O,O),Sp∗/q

∗ =

(

(

r1
∑

i

σi
(

[T(1);M ]
)p∗
)

q∗

p∗

+ ‖T ‖(−,O,O),S∗
p

)
1
q∗

.

Next, by applying Lemma 1 of (Tomioka and Suzuki, 2013) to ‖T ‖(−,O,O), we

obtain

‖T ,M‖1
(L,O,O),Sp∗/q

∗ =

(

(

r1
∑

i

σi
(

[T(1);M ]
)p∗
)

q∗

p∗

+ inf
T̂ (1)+T̂ (2)=T

(

(

r2
∑

j

σj
(

T̂
(1)
(2)

)p∗
)

q∗

p∗

+
(

r3
∑

k

σk
(

T̂
(2)
(3)

)p∗
)

q∗

p∗

))
1
q∗

.

This completes the proof. �

B Proofs of Excess Risk Bounds

Here we derive the excess risk bounds for the coupled completion problem.

From previous work (El-Yaniv and Pechyony, 2007;

Shamir and Shalev-Shwartz, 2014), we know that for a loss function l(·, ·) that is

a Λ-Lipschitz loss function and bounded as supi1,i2,i3 |l(Xi1,i2,i3 ,Wi1,i2,i3)| ≤ bl
and with the assumption that |STrain| = |STest| = |S|/2, we have the fol-

lowing bound for (16) based on transductive Rademacher complexity theory

(El-Yaniv and Pechyony, 2007; Shamir and Shalev-Shwartz, 2014) with probabil-
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ity 1− δ,

1

|STest|
∑

(i1,i2,i3)∈STest

l(Xi1,i2,i3 ,Wi1,i2,i3)

− 1

|STrain|
∑

(i1,i2,i3)∈STrain

l(Xi1,i2,i3 ,Wi1,i2,i3)

≤ 4R(W) + bl

(11 + 4
√

log 1
δ

√

|STrain|

)

,

where R(W) is transductive Rademacher complexity defined as

R(W) =
1

|S|Eσ

[

sup
‖W‖cn≤B

∑

(i1,i2,i3)∈S
σi1,i2,i3l(Wi1,i2,i3 ,Xi1,i2,i3)

]

(20)

where σi1,i2,i3 ∈ {−1, 1} with probability 0.5 if (i1, i2, i3) ∈ S, or 0 otherwise.

We can rewrite (20) as

R(W) =
1

|S|Eσ

[

sup
‖W‖cn≤BM+BT

∑

(i1,i2,i3)∈S
σi1,i2,i3 l(Wi1,i2,i3 ,Xi1,i2,i3)

]

≤ Λ

|S|Eσ sup
‖W‖cn≤BM+BT

∑

(i1,i2,i3)∈S
σi1,i2,i3Wi1,i2,i3 (Rademacher contraction)

≤ Λ

|S|Eσ sup
‖W‖cn≤BM+BT

‖W‖cn‖Σ‖cn∗ (Holder′s inequality)

,

where we have used that ‖W‖F ≤ BT and ‖WM‖F ≤ BM , and Σ is of dimen-

sions of the coupled tensor consisting Rademacher variables (Σi1,i2,i3 = σi1,i2,i3 if

(i1, i2, i3) ∈ S, else Σi1,i2,i3 = 0).

Proof of Theorem 3: Let W = W∪WM , where W and WM are the completed

tensors of T and M , and let Σ = ΣT ∪ ΣM , where ΣT and ΣM consist of the

corresponding Rademacher variables (σi1,i2,i3) for T and M . Since we use an

overlapping norm, we have ‖W‖cn = ‖W,WM‖1(O,O,O) from which we obtain

‖W,WM‖1(O,O,O) = ‖[W(1);WM ]‖tr +
3
∑

k=2

‖W(k)‖tr

≤√r(1)(BT +BM ) +
3
∑

k=2

√
rkBT ,
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where (r1, r2, r3) is the multilinear rank of W and r(1) is the rank of the con-

catenated matrix of unfolding tensors on mode 1. To obtain the above inequality,

we used the fact that, for any matrix U with rank r, we have ‖U‖tr ≤ √
r‖U‖F

(Tomioka and Suzuki, 2013).

Using Latała’s Theorem (Latała, 2005; Shamir and Shalev-Shwartz, 2014) for

the mode k unfolding, we can bound ‖ΣT (k)‖op

E‖ΣT (k)‖op ≤ C1

(

√
nk +

√

√

√

√

3
∏

j 6=k

nj +
4

√

|ΣT (k)|
)

,

and since 4

√

|ΣT (k)| ≤ 4

√

∏3
i=1 ni ≤ 1

2

(

√
nk +

√

∏3
j 6=k nj

)

, we have,

E‖ΣT (k)‖op ≤ 3C1

2

(

√
nk +

√

√

√

√

3
∏

j 6=k

nj

)

.

Similarly, using the Latała’s Theorem, we obtain

E‖[ΣT (1); ΣM ]‖op ≤ 3C2

2

(

√
n1 +

√

√

√

√

3
∏

j=2

nj +m

)

.

To bound E‖ΣT ,ΣM‖1(O,O,O)∗ , we use the duality relationship from Theorem 1

and Corollary 1

‖ΣT ,ΣM‖1(O,O,O)∗ =

inf
Σ

(1)
T +Σ

(2)
T +Σ

(3)
T =ΣT

max
{

‖[Σ(1)
T (1); ΣM ]‖op, ‖Σ(2)

T (2)‖op, ‖Σ
(3)
T (3)‖op

}

.

Since we can take any Σ
(k)
T to be equal to ΣT , the above norm can be upper

bounded:

‖ΣT ,ΣM‖1(O,O,O)⋆ ≤ max
{

‖[ΣT (1); ΣM ]‖op,min
{

‖ΣT (2)‖op, ‖ΣT (3)‖op
}

}

.

Taking the expectation leads to

E‖ΣT ,ΣM‖1(O,O,O)∗ ≤ Emax
{

‖[ΣT (1); ΣM ]‖op,min
{

‖ΣT (2)‖op, ‖ΣT (3)‖op
}

}

≤ max
{

E‖[ΣT (1); ΣM ]‖op,min
{

E‖ΣT (2)‖op,E‖ΣT (3)‖op
}

}

.
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Finally, we have

R(W) ≤ 3Λ

2|S|
[

√

r(1)(BT +BM ) +

3
∑

k=2

√
rkBT

]

max

{

C2

(√
n1 +

√

√

√

√

3
∏

j=2

nj +m

)

, min
k∈2,3

C1

(√
nk +

√

√

√

√

3
∏

j 6=k

nj

)

}

.

�

Before we give the excess risk bound for the ‖·‖1(S,S,S), in the following theorem

we give the excess risk of coupled completion with the ‖ · ‖1(L,L,L).

Theorem 6. Let ‖ · ‖cn = ‖ · ‖1(L,L,L); then, with probability 1− δ

R(W) ≤ 3Λ

2|S|

[

√

r(1)BM +min
(

√

r(1), min
k=2,3

√
rk

)

BT

]

max

{

C2

(

√
n1 +

√

√

√

√

3
∏

j=2

nj +m

)

,max
k=2,3

{

C2

(

√
nk +

√

√

√

√

3
∏

j 6=k

nj

)

}

}

,

where (r1, r2, r3) is the multilinear rank of W , r(1) is the rank of the coupled

unfolding on mode 1 and BM , BT , C1, and C2 are constants.

Proof : Again, let W = W∪WM , where W and WM are the completed tensors

of T and M , and Σ = ΣT ∪ ΣM , where ΣT and ΣM consist of the corresponding

Rademacher variables. We can see that

‖W‖1(L,L,L) = inf
W(1)+W(2)+W(3)=W

(

‖[W (1)
(1) ;WM ]‖tr +

3
∑

k=2

‖W (k)
(k) ‖tr

)

,

which can be bounded as

‖W‖1(L,L,L) ≤
√

r(1)(BM +BT ) + min
k=2,3

√
rkBT ,

where the last term is derived by considering the infimum with respect to W(2) and

W(3).

31



Using the duality result given in Theorem 1 (Corollary 1) and Latała’s Theo-

rem, we obtain

‖ΣT ,ΣM‖1(L,L,L)∗ ≤ max
{

E‖[ΣT (1); ΣM ]‖op,E‖ΣT (2)‖op,E‖ΣT (3)‖op
}

≤ 3

2
max

{

C2

(

√
n1 +

√

√

√

√

3
∏

j=2

nj +m

)

,

max
k=2,3

{

C1

(

√
nk +

√

√

√

√

3
∏

j 6=k

nj

)

}

}

.

Finally, we have

R(W) ≤ 3Λ

2|S|

[

√

r(1)(BM +BT ) + min
k=2,3

√
rkBT

]

max

{

C2

(

√
n1 +

√

√

√

√

3
∏

j=2

nj +m

)

,max
k=2,3

{

C1

(

√
nk +

√

√

√

√

3
∏

j 6=k

nj

)

}

}

.

�

Proof of Theorem 4: By definition, we have

‖W‖1(S,S,S) = inf
W(1)+W(2)+W(3)=W

( 1√
n1

‖[W (1)
(1) ,WM ]‖tr +

∑

k=2,3

1√
nk

‖W (k)
(k) ‖tr

)

,

which results in

‖W‖1(S,S,S) ≤
√

r(1)

n1
(BM +BT ) + min

k∈2,3

√

rk
nk

BT .

Using the duality result given in Theorem 1 and Latała’s Theorem, we obtain

E‖ΣT ,ΣM‖1(S,S,S)∗ = Emax

{√
n1‖[ΣT (1); ΣM ]‖op,

√
n2‖ΣT (2)‖op,

√
n3‖ΣT (3)‖op

}

≤ 3

2
max

{

C2

(

n1 +

√

√

√

√

3
∏

i=1

ni + n1m

)

, C1 max
k=2,3

(

nk +

√

√

√

√

3
∏

i 6=k

ni

)}

.

Finally, we have

R(W) ≤ 3Λ

2|S|

[

√

r(1)

n1
(BM +BT ) + min

k∈2,3

√

rk
nk

BT

]

max

{

C2

(

n1 +

√

√

√

√

3
∏

i=1

ni + n1m

)

, C1 max
k=2,3

(

nk +

√

√

√

√

3
∏

i=1

ni

)}

.
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Proof of Theorem 5: First let us look at ‖W‖1(S,O,O), which is expressed as

‖W‖1(S,O,O) = inf
W(1)+W(2)=W

( 1√
n1

‖[W (1)
(1) ;WM ]‖tr + ‖W (2)

(2) ‖tr + ‖W (2)
(3) ‖tr

)

.

This norm can be upper bounded

‖W‖1(S,O,O) ≤
√

r(1)

n1
(BM +BT ) +

∑

i=2,3

√
riBT .

Now we are left with bounding ‖ΣT ,ΣM‖1(S,O,O)∗ . Using Theorem 2, we obtain

‖ΣT ,ΣM‖1(S,O,O)∗ ≤ max
(√

n1‖[ΣT (1); ΣM ]‖op,min
(

‖ΣT (2)‖op, ‖ΣT (3)‖op
)

)

,

We then have

E‖ΣT ,ΣM‖1(S,O,O)∗ ≤ 3

2
max

{

C2

(

n1+

√

√

√

√

3
∏

i=1

ni + n1m

)

, min
k=2,3

C1

(

√
nk+

√

√

√

√

3
∏

i 6=k

ni

)}

,

The final resulting bound is

R(W) ≤ 3Λ

2|S|

[

√

r(1)

n1
(BM +BT ) +

∑

i=2,3

√
riBT

]

max

{

C2

(

n1 +

√

√

√

√

3
∏

i=1

ni + n1m

)

, min
k=2,3

C1

(

√
nk +

√

√

√

√

3
∏

i 6=k

ni

)}

.

�

In addition to the above transductive bounds for completion with coupled

norms, we also provide the bounds for individual tensor completion with tensor

norms such as the overlapped trace norm, the latent trace norm, and the scaled

latent trace norm. We can consider (16) only for a matrix or a tensor without cou-

pling and with low-rank regularization. Therefore, we may have the transductive

bounds for a matrix M ∈ R
n1×m (Shamir and Shalev-Shwartz, 2014) as

R(WM ) ≤ c
BMΛ

|SM |
√
r̂

(√
n1 +

√
m

)

, (21)

where SM is the index set of observed samples of matrix M , r̂ is the rank induced

by matrix trace norm regularization, and c is a constant.
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Next we can consider the transductive bounds for tensor T ∈
R
n1×n2×n3 with regularization using norms such as the overlapped trace norm

(Tomioka and Suzuki, 2013), the latent trace norm (Tomioka and Suzuki, 2013)

and the scaled latent trace norm (Wimalawarne et al., 2014) in the following three

theorems. We denote the index set of observed sample of T by ST .

Theorem 7. Using the overlapped trace norm regularization given as

‖W‖overlap = ‖W‖(O,O,O), we obtain

R(W) ≤ c1
BT Λ
|ST |

( 3
∑

k=1

√

r̂k

)

min
k

(√
nk +

√

√

√

√

3
∏

j 6=k

nj

)

,

for some constant c1; (r̂1, r̂2, r̂3) is the multilinear rank of W .

Proof : Using the same procedure as for Theorem 3, we obtain

E‖ΣT ‖overlap∗ ≤ Emin
k

‖ΣT (k)‖op ≤ min
k

E‖ΣT (k)‖op ≤ 3c1
2

min
k

(√
nk+

√

√

√

√

3
∏

j 6=k

nj

)

.

Since ‖W‖overlap ≤
(

∑3
k=1

√
r̂k

)

BT , where ‖W‖F ≤ BT

(Tomioka and Suzuki, 2013), we have

R(W) ≤ c1
BT Λ
|ST |

( 3
∑

k=1

√

r̂k

)

min
k

(√
nk +

√

√

√

√

3
∏

j 6=k

nj

)

.

�

Theorem 8. Using the latent trace norm regularization given by ‖W‖latent =
‖W‖(L,L,L), we obtain

R(W) ≤ c2ΛBT
mink

√
r̂k

|ST | max
k

(√
nk +

√

√

√

√

3
∏

j 6=k

nj

)

,

for some constant c2; (r̂1, r̂2, r̂3) is the multilinear rank of W .

Proof :Using the duality result from (Wimalawarne et al., 2014), we have

‖ΣT ‖latent∗ = max
k

‖ΣT (k)‖op.
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Using Latała’s Theorem, we obtain

E‖ΣT ‖latent∗ ≤ 3c2
2

max
k

(√
nk +

√

√

√

√

3
∏

j 6=k

nj

)

.

Finally, using the known bound ‖W‖latent ≤ mini
√
r̂iBT

(Wimalawarne et al., 2014), where ‖W‖F ≤ BT , we obtain the excess risk:

R(W) ≤ 3c2ΛBT mini
√
r̂i

2|ST | max
k

(√
nk +

√

√

√

√

3
∏

j 6=k

nj

)

.

�

Theorem 9. Using the scaled latent trace norm regularization given by

‖W‖scaled = ‖W‖(S,S,S), we obtain

R(W) ≤ 3c3ΛBT
2|ST | min

i

(

√

r̂i
ni

)

max
k

(

nk +

√

√

√

√

3
∏

j=1

nj

)

.

for some constant c3; (r̂1, r̂2, r̂3) is the multilinear rank of W .

Proof : From previous work (Wimalawarne et al., 2014), we can derive

‖ΣT ‖scaled∗ = max
k

√
nk‖ΣT (k)‖op.

Using an approach similar to that for Theorem 8 with the additional scaling of
√
nk

and using the Latała’s Theorem, we arrive at the following bound:

R(W) ≤ 3c3ΛBT
2|ST | min

i

(

√

r̂i
ni

)

max
k

(

nk +

√

√

√

√

3
∏

j=1

nj

)

.
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