
ar
X

iv
:1

80
2.

05
32

4v
1 

 [
cs

.I
T

] 
 1

4 
Fe

b 
20

18

1

Advancing System Performance with Redundancy:

From Biological to Artificial Designs

Anh Tuan Nguyen1∗, Jian Xu1, Diu Khue Luu1, Qi Zhao2, and Zhi

Yang1

1Biomedical Engineering, University of Minnesota, MN, USA.

2Computer Science and Engineering, University of Minnesota, MN, USA.

∗Email: nguy2833@umn.edu.

Keywords: Representational redundancy, entangled redundancy, precision enhance-

ment, redundant sensing, muscle redundancy, deep residual networks, bio-inspired de-

signs

Abstract

Redundancy is a fundamental characteristic of many biological processes such as those

in the genetic, visual, muscular and nervous system; yet its function has not been fully

understood. The conventional interpretation of redundancy is that it serves as a fault-
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tolerance mechanism, which leads to redundancy’s de facto application in man-made

systems for reliability enhancement. On the contrary, our previous works have demon-

strated an example where redundancy can be engineered solely for enhancing other

aspects of the system, namely accuracy and precision. This design was inspired by

the binocular structure of the human vision which we believe may share a similar op-

eration. In this paper, we present a unified theory describing how such utilization of

redundancy is feasible through two complementary mechanisms: representational re-

dundancy (RPR) and entangled redundancy (ETR). Besides the previous works, we

point out two additional examples where our new understanding of redundancy can be

applied to justify a system’s superior performance. One is the human musculoskele-

tal system (HMS) - a biological instance, and one is the deep residual neural network

(ResNet) - an artificial counterpart. We envision that our theory would provide a frame-

work for the future development of bio-inspired redundant artificial systems as well

as assist the studies of the fundamental mechanisms governing various biological pro-

cesses.

1 Introduction

Redundancy is a well-known characteristic of many biological processes from the molec-

ular to the systematic level. For example, the human’s genome is highly redundant: a

particular gene can be duplicated at various regions of DNA while multiple genes can

encode the same or similar biochemical functions and phenotype expressions. These

genetic redundancy and functional redundancy are observed in many crucial pathways
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of the developmental, signaling, and cell cycle processes (Tautz, 1992; Nowak, 1997;

Kafri, 2009). High level of redundancy can also be found in the nervous system. The

neuronal architecture and synaptic interconnections have been shown to be highly re-

dundant which allows them to facilitate complex processes of information processing,

learning, memorizing, and self-repairing. In fact, it is believed that the human brain

is at least twice the size as necessary for its function as a result of neural redundancy

(Glassman, 1987).

In many scenarios, the redundant structure of a biological system can be seen as a

consequence of the evolutionary process. Under the pressure of natural selection, living

organisms develop multiple different strategies that achieve the same goal: survival. It

is not uncommon for distinct strategies that emerge from entirely different evolutionary

pathways to resolve the same biological problem. These strategies could co-exist in

the same ecosystem or even the same organism’s genome creating observable repeated

evolutional behaviors such as functional redundancy, parallel evolution, and convergent

evolution (York, 2017). Redundancy also serves as a defence mechanism against fail-

ures which contribute to a higher survival rate. For example, gene duplication has been

shown to mitigate effects of mutations and reduce the chance of catastrophic phenotype

expression (Kafri, 2009). Redundancy also helps the human brain tolerate significant

damages and loss of mass due to injuries or diseases. Damaged neurons and brain

tissue generally do not regrow, yet their redundant structures allow reorganization of

the neuronal circuits to recover many basic brain functions (Glassman, 1987). Lastly,

redundancy increases the organism’s adaptivity. For example, genetic and functional

duplication has been shown to be the basis of phenotypic plasticity which allows an
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organism to adapt and survive rapidly-changing endogenous and exogenous environ-

mental conditions (Kafri, 2009).

Many of these principles find their application in designing and engineering of arti-

ficial systems. However, almost all intentional utilization of redundancy in man-made

systems focus on enhancing reliability, which importance is often overshadowed by the

system’s performance. Also, existing methods for incorporating redundancy involves

the replication of partial or entire systems which require large resources overhead. As

a result, redundant designs such as dual modular redundancy (DMR) or triple modu-

lar redundancy (TMR) are mostly found in specialized systems that perform critical

functions such as aircraft controllers, biomedical implants, and computer servers, etc.

In this paper, we argue two counter-intuitive arguments. First, redundancy can be

engineered solely for enhancing systems’ performance regarding accuracy and preci-

sion, instead of reliability and plasticity. Secondly, a practical implementation of redun-

dancy is feasible without replication and excessive resource overhead, thus mitigating

the trade-off encountered by conventional designs. The performance boost in our pro-

posed framework is achieved by employing two complementary mechanisms, namely

RPR and ETR. RPR describes how information is redundantly encoded and processed,

while ETR allows realizing of a RPR scheme in actual applications.

In (Nguyen, 2015, 2016), we have shown a simple but practical application where

redundancy resembling the binocular structure of the human vision is applied to en-

hance the precision of a man-made sensor without incurring compromises often seen in

conventional architectures. In theory, the RPR and ETR principles utilized in our design

can be generalized to different applications, and also serve as a fundamentally structural
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characteristic of more complex systems. This argument is further asserted in this paper

by examining empirical evidence in two different systems from two distinct fields of

science and engineering. One is the HMS - a biological system where redundancy con-

tributes to generating complex and precise muscle movements; another is the ResNet

- an artificial deep learning architecture where redundancy helps accomplish superior

predicting accuracy compared to conventional methods. By understanding subtle yet

sophisticated roles of redundancy in these systems, we believe that the findings would

not only enrich our knowledge of biological processes but also inform the derivation of

new methods for advancing the performance of man-made designs.

The remains of the paper are organized as follows. Section 2 consolidates our redun-

dant model comprised of RPR and ETR mechanism. Section 3 examines the evidence

suggesting the implication of our model in biological and artificial systems, which in-

clude the proposed sensor design, the HMS, and the ResNet. Finally, section 4 con-

cludes our findings and gives discussions on the future development of the proposed

theory.

2 Advancing Performance with Redundancy

Representational redundancy: The vast majority of artificial systems are designed

upon an orthogonal scheme of information representation where each entry of informa-

tion is encoded by a unique configuration of the system. An entry of information can

be an input value, a desirable output, an intermediate instance or an operation of the

information processing pathway. Such orthogonal systems excel in efficiency because
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they allow rapidly and unambiguously acquiring, processing and storing of informa-

tion. However, any encoding/decoding scheme in practice suffers from an inevitable

level of error resulting in the limitation of its accuracy. In many computational models,

this limitation is described by Shannon’s theorem. Because of the uniqueness of the

representation scheme, any error acquired during the sampling, processing and storing

of information cannot be easily corrected without an overhead in term of resources such

as power, bandwidth, and memory, etc.

The RPR concept is designed to overcome conventional limitations by embracing

a non-orthogonal scheme of information representation. Subsequently, every entry of

information can be encoded by numerous distinct system configurations, including the

conventional one. These configurations are referred as the system’s microstates. If the

microstates are designed such that their response to error are non-homologous, in any

given instance, provided a sufficient number of distinct microstates, there exist with

asymptotic certainty one or more microstates that have a smaller error than the con-

ventional representation. Therefore, an overall RPR-system would have a theoretical

accuracy almost always superior to the conventional counterpart with similar structure.

Entangled redundancy: The number of microstates represents the information ca-

pacity - an abstract property of the design that is not necessarily proportional to its

physical size. In order to effectively deploy a RPR-system in practice, the microstates

must be designed so that they do not incur excessive resource overhead. As a result,

the statistical distribution of the microstates with respect to error cannot be indepen-

dent, but partially correlated or entangled. This concept is known as ETR. The level

of entanglement should be engineered just sufficient to create excessive redundancy
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without trading off large amounts of resource. ETR should be differentiated from the

conventional method of creating redundancy by replication where the distribution of

repeated instances are independent of each other and the resource utilization is linearly

proportional to the level of redundancy.

Figure 1 illustrates the distinction between a conventional orthogonal system (COS),

a conventional redundant system (CRS) and a proposed RPR+ETR system (RES). An

entry of information in this illustration is a processing pathway that takes an input xi

and produce a corresponding output yi (i = 1, 2, ...). In the COS, every input/output

(I/O) pair (xi, yi) is represented by a unique pathway which has a determined error that

cannot be easily removed. The pathways in the CRS are partially or entirely replicated,

which requires a proportional resource overhead. Although in practice, the replication

is mostly used for fault-tolerance, a marginal accuracy gain is feasible by selecting the

pathway with the least error for each input instance. The RES incorporates redundancy

by having the pathways of different I/O pairs share certain elements. Each (xi, yi) path-

ways can now be represented by multiple system’s pathways, i.e. microstates, which

number increases exponentially with the number of shared elements. The RES is su-

perior compared to COS because there almost always exists a pathway with a lower

error for any given I/O pair. The RES is also superior compared to CRS because an

exponential level of redundancy can be achieved with minimal additional resources.

Challenges: A proper implementation of RPR and ETR in the same architecture is

essential to achieve the performance boost. The goal is to create an excessive number

of microstates while utilizing their entanglement to allow the microstates to co-exist in

superposition thus requiring minimal additional resources as shown in Figure 1(c). Un-
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Figure 1: Illustration of the differences among a conventional orthogonal system (COS),

a conventional redundant system (CRS) and a proposed RPR+ETR system (RES). An

entry of information is a processing pathway that takes an input xi and produce a cor-

responding output yi (i = 1, 2, ...). (a) Every input/output (I/O) pair in the COS is

represented by a unique pathway. (b) The pathways in the CRS are partially or entirely

replicated which give the system fault-tolerance properties and a marginal accuracy

gain. (c) The proposed RES achieves redundancy by having different pathways share

certain elements. The entanglement allows exponential level of redundancy with min-

imal additional resources. For each I/O pair, the pathway with the least error can be

selected resulting in major accuracy enhancement.

fortunately, there is no universal solution that can be applied to all types of system. In

our proof-of-concept system described in (Nguyen, 2015, 2016), redundancy is realized

by integrating two similar binary-weighted arrays, which structure is speculated to re-
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semble the human’s binocular vision. In the subsequent sections, the HMS and ResNet

provide additional examples where redundancy elegantly emerges in entirely different

manners.

Furthermore, provided a redundant non-orthogonal structure of information repre-

sentation, there is no universal solution to identify the optimal microstate given a partic-

ular input. In fact, in almost all examples of RES, it appears to be an NP-optimization

problem that can only be resolved by the mean of approximation. Biological processes

such as the visual and musculoskeletal system overcome this challenge by harnessing

the computational capacity of the nervous system, which is exceptionally adequate at

approximation. A similar mechanism could be utilized by the ResNet which itself is a

neural network. For engineering systems such as our redundant sensor (Nguyen, 2015),

an approximation method need to be derived, which consists of a one-shot unsupervised

error estimation and a simplified calibration algorithm.

3 From Biological to Artificial Systems

3.1 Redundant Sensing

The work of (Nguyen, 2015) shows a proof-of-concept implementation of a RPR+ETR

system: a sensor that converts analog to digital signals. A entry of information is a

digital code xD ∈ {0, 1, ..., 2N − 1} (N = resolution) representing an input analog

voltage. In practice, each code is generated by assembling a set of components which

are miniature capacitors embedded on a silicon chip which number is proportional to the

required physical resources and cost. The random error occurred during the fabrication
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Figure 2: Illustration of the RPR and ETS properties of the proposed redundant sensing

(RS) architecture (Nguyen, 2015). The device converts an analog input to a digital

output by assembling a set of physical components. While utilizing the same number

of unit-components (2N − 1 = 7, N : sensor’s resolution) as a conventional design, the

component set of a RS architecture allows each digital code to be created by multiple

different assemblies, i.e. microstates. By selecting the microstate with the least error for

every code, a significant boost of the accuracy can be achieved. This example illustrates

a simplified case of N = 3. The RS is most effective for high resolution because the

number of microstates increases exponentially with N .

process of these capacitors, i. e. mismatch error, has been shown to be a major factor

limiting the device’s accuracy.

Figure 2 compares the differences between a conventional and a RS architecture in

a simplified case of N = 3. The conventional system utilizes a binary-weighted set of

components which is the most efficient encoding scheme yet vulnerable to mismatch
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error. On the other hand, the proposed RS architecture employs a non-orthogonal com-

ponent set which satisfies both RPR and ETR requirements. With the name number of

unit-component (2N − 1 = 7), RS allows each digital code to be generated by multiple

different component assemblies, i.e. microstates. The number of microstates increases

exponentially with N resulting in major accuracy enhancement of high-resolution de-

vices.

Interestingly, the RS component set resembles exchanging and integrating the in-

formation between two smaller conventional binary-weighted sub-arrays, which is in-

spired by the binocular structure of the human visual system. Thus, we ask the question:

whether RPR and ETR are fundamental properties that facilitate visual acuity? The spa-

tial distribution of photoreceptors on the retina is notably irregular, which echoes the

impact of mismatch error. It is therefore conjectured that binocular vision effectively

creates a form of static redundancy allowing the brain to collect sufficient information

to remedy the error and produce the images we perceive. In fact, the binocular vision

has been shown to help differentiation of fine details, even exceeding the diffraction

limit of the photoreceptors - a phenomenon known as hyperacuity (Beck, 1979). Our

theory is further supported by the fact that human and many higher-order animals only

have two eyes. During the development of our RS sensor, we found out that the amount

of computational power required to process redundant information increases rapidly

with the number of sub-arrays. Two sub-arrays or two eyes is the minimum number

necessary to create a redundant structure. Despite dedicating 30-60% of its mass for

visual processing, the brain simply lacks the capacity to process information from three

or more eyes.
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Furthermore, as a complement to the binocular structure, we conjecture that eyes’

micro-fixational movement or microsaccade (Martinez-Conde, 2013) creates a form of

dynamic redundancy. During microsaccades, the field of vision of each eye is sampled

multiple times by different spatial configurations of photoreceptors, which resemble en-

tangled redundant microstates and facilitate visual acuity. This observation is supported

by both experiments with human subjects (Hicheur, 2013) and mathematical modeling

(Hennig, 2004) where microsaccades have been shown to play an important role in the

visual precision and could lead to hyperacuity.

3.2 Muscle Redundancy

The HMS has more muscles and joints than the necessary mechanical degrees-of-

freedom even though are energetically expensive to produce and maintain. This para-

doxical phenomenon of muscle redundancy (MS) presents a long-standing problem in

human kinesiology of understanding how and why the human brain coordinates all

muscles and joints to achieve complex movements with precision (Bernstein, 1967).

By examining this biological process from the perspective of our model, we hope to

unravel the principles underlying the behavior of MS.

A conventional interpretation would suggest that redundancy contributes to the re-

liability of the HMS allowing compensation for the loss or dysfunction of individual

muscles. However, emerging empirical evidence suggests this is not true. Even a mild

dysfunction of a few critical muscles due to disorders, injuries or aging can signifi-

cantly weaken the force production and overall functions of the whole HMS (Forssberg,

1991; Schreuders, 2006). The results are supported by Kutch & Valero-Cuevas works
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Figure 3: (a, b) A sagittal view of a human leg’s mechanical model consisting of 14

muscles and muscle groups (Kutch & Valero-Cuevas, 2011). (c) Any specific move-

ment trajectory and force can be achieved by multiple distinct muscles and joints com-

binations. Also, different muscles have overlapping but not exclusive mechanical func-

tions, and all contribute with different degrees in generating force and movement. These

characteristics resemble a RPR+ETR system.

(Kutch & Valero-Cuevas, 2011; Valero-Cuevas, 2015). Using both computational mod-

els and empirical experiments with cadaver specimens, the authors point out that less

than 5% of the feasible forces and movements in their models are robust to a loss of any

muscle, so it is clear that reliability is not an inherited characteristic of MS.

Figure 3 presents a sagittal view of a human leg’s mechanical model used by Kutch

& Valero-Cuevas (Kutch & Valero-Cuevas, 2011) which consists of 14 muscles and
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muscle groups1. At the kinematic and muscular level, any specific movement trajec-

tory and force can be achieved by virtually infinite combinations of muscles and joints.

While at the control level, each muscle consists of numerous units that can be acti-

vated by different motor neurons and patterns while resulting in the same behavior.

Furthermore, the muscles have overlapping but not exclusive mechanical functions, and

all contribute with different degrees in generating force and movement. Clearly, these

characteristics of the HMS resemble ones of a RPR+ETR system, thus our model pre-

dicts that MR plays a major role in enhancing the accuracy and precision of muscle

movements.

Indeed, the hypothesis is supported by a number of studies. In (Cleather, 2010),

the authors examine two different muscular models, namely Delp and Horsman, in pre-

dicting the patellofemoral force during standing, jumping, and weightlifting. They con-

clude that higher level of redundancy in the Horsman model contributes to its higher

predictive accuracy and closer realistic approximation in all activities. The authors’

conjecture is consistent with our theory which implies redundancy effectively increases

the variability and number of independent musculoskeletal movements (i.e. microstates),

so an optimal solution is more likely to be found. The argument is further strengthened

in (Moissenet, 2016) where an increased level of redundancy correlates to a better pre-

1List of 14 muscles/muscle groups and their abbreviation: (1) gluteus medialis and minimus

(glmed/min); (2) gluteus maximus (glmax); (3) semimembranoseus, semitendenosis and biceps femoris

long head (hamstr); (4) biceps femoris short head (bfsh); (5) medial and lateral gastrocnemius (gas-

troc); (6) tibialis posterior (tibpost); (7) soleus (soleus); (8) peroneus brevis (perbrev); (9) tibialis anterior

(tibant); (10) vastus intermedius, lateralis and medialis (vasti); (11) tensor facia lata (tensfl); (12) rectus

femoris (rectfem); (13) adductor longus (addlong); (14) iliacus (iliacus).

14



dicting accuracy of tibiofemoral contact forces in all gait patterns.

3.3 Deep Residual Networks

Input Layer 1 … Output Layer 2 Layer 

Layer 1 … Output Layer 2 Layer 

Layer 1 Layer 2

Layer 1

Layer 1

Input 

(a) Conventional feedforward network

(b) Deep residual network

Layer 1Input … Output Layer 2 Layer 

= skip connection/identity mapping

(c) “Unraveled” deep residual network

No. of distinct paths 2

Figure 4: (a) A conventional feedforward DNN produces a prediction by convoluting

the input through multiple feature layers. (b) A ResNet achieves superior predictive ac-

curacy with the incorporation of skip connections/identity mappings which allow infor-

mation to bypass an entire layer. (c) It has been shown that the behavior of the ResNet

is similar to a collection of shallower networks, resembling a RPR+ETR system (Veit,

2016).

There exist several prominent uses of redundancy for enhancing classification accu-

racy in machine learning. In a “committee machine” or “ensemble learning”, multiple

predictions are generated simultaneously by a collection of discrete instances that are

based on the same or distinct predictive models. Because each instance produces a re-
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sult with a different degree of error, an appropriate integration of these outcomes could

lead to a higher overall accuracy (Bishop, 2006). Another approach involves replica-

tion of individual neurons or sub-circuits of an artificial neural network (ANN). Using

mathematical models, (Izui, 1990; Tanaka, 1988) conclude that replication can funda-

mentally alter the computation carried out by an ANN resulting in quantitative enhance-

ment of convergence speed, solution accuracy, interconnection stability. The findings

were utilized to design redundant ANNs simulating a robotic arm grasping an object

in 2D space and a pattern-classification task with improved accuracy and convergence

time (Medler, 1994b,a). These are prime examples of CRS as shown in Figure 1(b).

Even though a marginal accuracy boost can be accomplished, the replication-based im-

plementation prevents these systems from effectively employing redundancy without

incurring excessive resource overhead.

Recently, deep learning has emerged as a leading field of machine learning (LeCun,

2015). A feedforward deep neural network (DNN) produces a prediction by convolut-

ing the inputs through various feature layers encoding the acquired knowledge (Figure

4(a)). One of the breakthroughs in DNN design - the ResNet (He, 2016a,b) - modifies

the conventional structure by including “skip connections” or “identity mapping” that

allow information to occasionally bypass an entire layer (Figure 4(b)). Empirical ex-

periments have demonstrated the superior predictive accuracy of ResNet compared to

conventional networks with the same number of layers and parameters (He, 2016a,b;

Huang, 2016; Wu, 2016; Zagoruyko, 2017).

Although the advantage of ResNet is evident, many are baffled by how a subtle yet

critical modification of the DNN could fundamentally alter its properties. It becomes
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clear as Veit et al. (Veit, 2016) show that the ResNet’s behaviors resemble characteris-

tics of an ensemble of shallower networks. As illustrated in Figure 4(c), the network can

be “unraveled” as a sum of smaller sub-circuits where information can flow through any

one of the 2N distinct pathways (N : number of layers) and is integrated at the last step.

The structure resembles a proposed RPR+ETR system where each of pathway corre-

sponds to a microstate. Because of the entanglement among microstates, an excessive

level of redundancy which is exponentially proportional to the number of layers can be

formulated without compromising the size of the network. Therefore, we argue that by

including the skip connections, the conventional DNN has been transformed into a re-

dundant system with both RPR and ETR properties which leads to major enhancement

of performance.

Discussion & Conclusion

Although redundancy is no doubt an essential property of many biological processes,

there are reasons to believe that its functions have not been fully appreciated resulting

in the absence in artificial designs. While the conventional interpretation ties redun-

dancy with fault-tolerance, we propose a new model arguing that it can be engineered

to advance the performance regarding accuracy and precision. Our theory highlights

two fundamental mechanisms enabling such function: (i) RPR facilitates redundant en-

coding of information, and (ii) ETR facilitates practical implementation of redundancy.

Besides suggesting the presence of these mechanisms in biological processes such as the

human visual and musculoskeletal systems, we present two state-of-the-art man-made
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designs, the RS sensor (Nguyen, 2016) and the ResNet (He, 2016a), where redundancy

is successfully employed.

Clearly, there are future works needed to be done to demonstrate the feasibility of

such redundant architectures. Firstly, under the guidelines of our framework, new en-

gineering solutions should be derived to integrate redundancy into other designs for

accuracy and precision enhancement. Although the principles of RPR and ETR are

universal, their actual implementations vary drastically. The examples in electrical en-

gineering and computer pointed out in this paper are merely the tip of the iceberg.

Secondly, a new technique should be investigated to evaluate the information capacity

of redundant systems which correlates to its upper bound of performance. A brute force

approach utilized in the RS design (Nguyen, 2016) certainly cannot be applied to more

complex systems such as the ResNet. Finally, new methods should be developed to har-

ness the full capacity of redundant systems. Redundant representation of information

is irrelevant without an effective way to extract the optimal configuration. In almost all

examples shown in this work, they present NP-optimization problems which solutions

can be adequately obtained by the mean of approximation.
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