bioRxiv preprint doi: https://doi.org/10.1101/580522; this version posted January 15, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Generation of scale-invariant sequential activity in
linear recurrent networks

Yue Liut? and Marc W. Howard!:23

L Department of Physics, Boston University, Boston, MA 02215
2 Center for Systems Neuroscience, Boston University, Boston, MA 02215
3 Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215

Abstract

Sequential neural activity has been observed in many parts of the brain
and has been proposed as a neural mechanism for memory. The natural world
expresses temporal relationships at a wide range of scales. Because we cannot
know the relevant scales a priori it is desirable that memory, and thus the
generated sequences, are scale-invariant. Although recurrent neural network
models have been proposed as a mechanism for generating sequences, the re-
quirements for scale-invariant sequences are not known. This paper reports
the constraints that enable a linear recurrent neural network model to gener-
ate scale-invariant sequential activity. A straightforward eigendecomposition
analysis results in two independent conditions that are required for scale-
invariance for connectivity matrices with real, distinct eigenvalues. First, the
eigenvalues of the network must be geometrically spaced. Second, the eigen-
vectors must be related to one another via translation. These constraints are
easily generalizable for matrices that have complex and distinct eigenvalues.
Analogous albeit less compact constraints hold for matrices with degenerate
eigenvalues. These constraints, along with considerations on initial condi-
tions, provide a general recipe to build linear recurrent neural networks that
support scale-invariant sequential activity.

1 Introduction

The current state of the brain can carry memory for the past via history-dependent
dynamics. This memory can be used to adaptively shape behavior to anticipate the
future. However, the natural world has temporal relationships on a wide range of
timescales (e.g. Voss and Clarke, 1975). This presents a problem in the design of
the history-dependent dynamics of the brain. The world can contain behaviorally
relevant predictive information over a range of scales, but we do not necessarily know
the relevant timescales a priori. Suppose the brain’s dynamics had a single charac-
teristic scale s,. If the world contains useful information at a scale much longer than
So, this information would be invisible to the brain’s dynamics and the system would
not be able to exploit this information. Similarly, if the world contains useful infor-
mation at a scale much shorter than s,, the brain’s dynamics would not represent
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this information efficiently. One solution is a dynamic representation of the world
that is scale-invariant across time (Howard and Shankar, 2018). Indeed, a spectrum
of timescales is an essential ingredient in neural circuit models for temporal pattern
recognition (Tank and Hopfield, 1987; Hopfield and Brody, 2000; Buonomano and
Maass, 2009; Giitig and Sompolinsky, 2009).

There is empirical evidence suggesting that the brain in fact implements some-
thing like scale-invariance. Decades of research in cognitive psychology demonstrate
that human timing and memory behavior exhibit the same properties on a wide
range of timescales (Murdock, 1962; Glenberg et al., 1980; Rakitin et al., 1998;
Howard et al., 2008). Sequential neural activity has been observed in many areas
of the brain and is thought to have important cognitive functions in memory and
decision making (MacDonald et al., 2011; Harvey et al., 2012; Howard, 2018). In
light of these considerations, recently it has been proposed that “scale-invariance”
is a desirable property for neural sequences (Shankar and Howard, 2012, 2013). In a
scale-invariant neural sequence, the cells that are activated later have wider tempo-
ral receptive fields. More specifically, the responses of different cells have identical
time courses when they are rescaled in time by their peaks. The hypothesis of
scale-invariant neural sequences for time is consistent with recent electrophysiolog-
ical recordings of “time cells” during a delay period when animals are performing
various cognitive tasks (Pastalkova et al., 2008; Jin et al., 2009; MacDonald et al.,
2011; Kraus et al., 2013; Mello et al., 2015; Salz et al., 2016; Tiganj et al., 2018).
The firing fields of time cells that fire later in the delay period are wider than the
firing fields of time cells that fire earlier in the delay period.

Many researchers have studied recurrent neural networks that generate sequen-
tial activity (Goldman, 2009; Rajan et al., 2016; Wang et al., 2018), but not many
of these works considered scale-invariant sequences (but see Voelker and Eliasmith,
2018). In this paper we seek to identify general constraints on the network con-
nectivity for the generation of scale-invariant neural sequences in recurrent neural
networks. We study a linear network of interacting neurons. The f-I curve of many
neurons are observed to be largely linear (e.g. Chance et al., 2002). The learning
dynamics of linear feedforward neural networks exhibit many similarities compared
to their non-linear counterparts (Saxe et al., 2013). Therefore linear neural networks
provide a good model for studying systems-level properties of real neuronal circuits.

The paper is organized as follows. In Section 2 the network constraints for the
generation of scale-invariant neural sequences are derived analytically. The exact
constraints hold when the connectivity matrix has real, distinct eigenvalues. The
modifications to generalize them to complex and distinct eigenvalues are discussed.
Networks with degenerate eigenvalues are discussed in Appendices A.3 and A.4. To
illustrate the mathematical result, in Section 3 two example networks with different
single cell dynamics are constructed. Each of the constraints are broken to show that
they are necessary for scale-invariance. In Section 4, we compare the eigenvectors
and eigenvalues of a chaining model and a random recurrent network with those
of the examples in Section 3. It is shown that neither of these networks satisfy
the structural constraints derived from Section 2, therefore neither of them support
sequential neural activity that is scale-invariant.
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2 Derivation of the constraints for scale-invariance

In this section we derive the constraints on the connectivity matrix of a linear
recurrent network for it to support scale-invariant activity. In Section 2.1, we start
with a formal definition of scale-invariance of network activity. In Section 2.2 and
Section 2.3 we will derive the two constraints on the connectivity matrix to achieve
scale-invariance. Lastly in Section 2.4, we point out that in addition to the two
constraints, a particular initial condition is required for the subsequent network
dynamics to be scale-invariant. These constraints are sufficient and necessary for
a network to generate scale-invariant activity, but only if the network connectivity
matrix has real, distinct eigenvalues. We mention a straightforward modification
to the results when the network has complex but distinct eigenvalues. The details
are shown in Appendix A.1. We discuss the modifications to the constraints for
matrices with degenerate eigenvalues in Appendices A.3 and A.4. We also show
in Appendix A.5 that deviations from the constraints derived below will cause a
graceful degradation in the scale-invariant property of the resulting network activity.

2.1 Formulation of the problem

We consider the autonomous dynamics of a linear recurrent network with /N neurons:
X(t) = Mx(t), (1)

where x is an N-dimensional vector summarizing the activity of all the neurons in
the network and M is the N x N connectivity matrix of the network. We consider
the case where there is no input into the network since sequential neural activity is
thought to be maintained by internal neuronal dynamics (Pastalkova et al., 2008).
Scale-invariance of the network activity means that the responses of any two
neurons in the sequence are rescaled version of each other in time (Figure 1b).
Mathematically, this requirement can be written in the following form:

JZZ(t) = l’j(Oéijt), \V/Z,j S ]_, 2, ceey N. (2)

That is, for every pair of neurons ¢ and j, their responses z;(t) and z;(¢) are rescaled
in time by a factor «;;. As will be discussed below, this condition can only be
satisfied when the network connectivity has real, distinct eigenvalues. Otherwise,
only a subset of responses can be rescaled versions of each other. Therefore, in the
following sections we are going to focus on connectivity matrices with real, distinct
eigenvalues. We will derive two conditions on the connectivity matrix M necessary
for Equation 2 to hold and for the network to generate scale-invariant sequential
activity. When the connectivity matrix has complex, distinct eigenvalues, we will
state the constraints that allow it to have two distinct scale-invariant sequences. The
modifications to the constraints when the eigenvalues are degenerate are discussed
in Appendices A.3 and Appendices A.4.

2.2 Constraint 1: Geometrically spaced network timescales

We start by solving Equation 1 using the standard eigendecomposition technique.
We diagonalize the connectivity matrix M as M = UAU! where A is a diagonal
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Figure 1: Scale-invariance for neural sequences and the setup of the prob-
lem. a Left: the raster plots (top) and trial-averaged firing rates (bottom) for three
neurons from MacDonald et al. (2011). The neurons were recorded in the hippocam-
pus of rats during a delay period when they were waiting to sample an odor. The
neurons that fire later in the delay period show wider responses than neurons that
fire earlier during the delay. Right: a scatter plot showing the relationship between
the width of each neuron’s response and the peak time at which that neuron fires
for all neurons recorded from Salz et al. (2016)). Neurons were recorded in the CA3
region of the rat hippocampus during the delay period of a T-maze alteration task
when the animal was running on a treadmill. b. In this work, we study the dynam-
ics of a linear recurrent network. We seek constraints on the network connectivity
matrix M (b, left) such that the activity of every pair of neurons (here for example
neurons ¢ and 7, middle) are rescaled version of each other in time (right).
4
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matrix consisting of the eigenvalues and U is a matrix whose columns are the eigen-
vectors of M. The solution of Equation 1 is then a linear combination of exponential

functions: .
zi(t) = Z Uy Aje' = Z Uyje", (3)
7 J

where the A;’s are constants determined by the initial condition and are absorbed
into the definition of the matrix U.
Imposing the scale-invariance condition (Equation 2) on Equation 3, we have

D UM =) Upe™ Vi je1,2,..,N. (4)
k k

For this equation to hold, the time-dependent parts on both sides of the equation
must be identical. This means that all the eigenvalues involved in the left hand side
of the equation should be equal to a scaled version of the eigenvalues involved in
the right hand side. In other words, for each Ay there should exist an integer § such
that A\i+s = a;;A\x. The only way to achieve this is to have a geometric progression
of eigenvalues (network timescales) (Figure 2a). For example, A\ = —1, Ay = =2,
A3 = —4, etc.. Therefore we arrive at the first constraint (as depicted in Figure 2a):

Constraint 1: For a linear recurrent network whose connectivity matrix is diag-
onalizable and has real, distinct eigenvalues to generate scale-invariant activity, the
eigenvalues must form a geometric progression.

Remarks: The above constraint needs to be slightly modified when there are
complex eigenvalues, since the eigenvalues must come in complex conjugate pairs
for the connectivity matrix M to be real. It can be shown (for details see Ap-
pendix A.1) that contrary to the definition of scale-invariance above (Equation 2),
there can at best be two scale-invariant sequences, where the responses of neurons
in different sequences are not rescaled versions of each other. For this to happen, all
the eigenvalues must be complex!. Therefore Constraint 1 in the case of complex
eigenvalues is as follows (See Appendix A.1 for details):

Constraint 1 for connectivity matrices with complex eigenvalues: For a linear re-
current network whose connectivity matrix is diagonalizable and has complex eigen-
values to generate two sequences of scale-invariant activity, the eigenvalues must all
be complex and form two geometric progressions that are complex conjugate with
each other.

In the example networks constructed in this paper, all of the eigenvalues have
negative real parts to prevent unbounded growth of network activity.

2.3 Constraint 2: Translation-invariant eigenvectors

A second constraint for Equation 4 to hold is that the rows of U must satisfy a
translation-invariant relationship. U; 45 = Uji. This way the modes that different
neurons pick out will be rescaled versions of each other. Recall from Equation 3

that Uij = U,;A;. Therefore the condition above is equivalent to the columns of the

"'When there is a mixture of real and complex eigenvalues, there will be at least 3 sequences,
which is further away from the strict definition of scale-invariance in Equation 2. Therefore we do
not consider this case in this paper.
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matrix U being translation-invariant up to a constant. For example, the different
columns could be v; = [1,-1,0,0,0], v = [0,1,—1,0,0], v = [0,0,1, —1,0], etc..
Notice that the columns of U are just the eigenvectors of M. Therefore, we reach
the second constraint (see Figure 2b for a graphical illustration):

Constraint 2: For a linear recurrent network whose connectivity matrix has real,
distinct eigenvalues to generate scale-invariant activity, the eigenvectors must consist
of the same motif (up to a scaling factor) at translated entries. In other words, the
eigenvectors must be translation-invariant.

Remarks: When the connectivity matrix has complex eigenvectors, they must
come in complex conjugate pairs to ensure that the matrix is real. In this case, it can
be shown (for details see Appendix A.1) that there can at best be two scale-invariant
sequences, contrary to the definition of scale-invariance above (Equation 2). The
responses of neurons in different sequences are not rescaled versions of each other.
For this to happen, all the eigenvalues must be complex, and Constraint 2 in the
case of complex eigenvalues is as follows (see Appendix A.1 for details):

Constraint 2 for connectivity matrices with complex eigenvalues: For a linear
recurrent network whose connectivity is diagonalizable and whose eigenvalues are
complex to generate two sequences of scale-invariant activity, each eigenvector should
either be a translated version of another eigenvector or its complex conjugate.

A motif with length L in a vector of length NV can at most be translated N — L
times. Therefore, there will be L eigenvectors that are not translated version of
the rest of the eigenvectors. In this work we are interested in large networks where
N > L. Therefore this number is negligible compared to the total number of
eigenvectors.

2.4 A note on initial conditions

Besides the constraints on the connectivity matrix, the initial condition of the net-
work also affects the scale-invariance of the network activity. Equation 3 requires
each neuron in the scale-invariant sequence to have a specific initial condition, i.e.
z;(0) = Z;Vﬂ (~]Z-j, to ensure that the dynamics that ensues are scale-invariant. This
holds regardless of the eigenspectrum of the connectivity matrix.

For example, if the network has real, distinct eigenvalues, and the sum of the
elements in the motif is 0 (which will be the case for the examples in Section 3), the
constraint on the initial condition becomes:

(t = 0) 0, ifi<N—L+1 -
€T; = = ~
Z;V:l Uij, otherwise,

where L is the length of the repeating motif. In the case where the number of neurons
in the network is much larger than the length of motif (N > L), this constraint on
initial condition states that most of the neurons in the network need to be inactive
at t = 0, whereas a few active neurons act as “input nodes” and propagate their
activity to the rest of the network.
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Figure 2: Graphical illustrations of the constraints for scale-invariance in
linear recurrent networks whose connectivity matrices are diagonalizable
and have real, distinct eigenvalues. To generate scale-invariant activity in linear
recurrent networks whose connectivity matrices are diagonalizable and have real and
distinct eigenvalues (other cases are discussed in Appendix A.1- A.4), the network
connectivity must have geometrically spaced eigenvalues (a). Furthermore, it must
have translation invariant eigenvectors (columns of the matrix U) that consist of
the same motif (in red) at translated entries (b).
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3 Examples

In this section we construct two example networks based on the analytical results
derived above and show that they allow scale-invariant sequential dynamics. The
connectivity matrices of these networks will have geometric progressions of eigen-
values and tranlation-invariant eigenvectors, as shown in Section 2. In the first
example (Section 3.1), all eigenvalues are real and the neurons in the network have
simple unimodal temporal receptive fields. In the second example (Section 3.2), all
eigenvalues are complex, which gives rise to more complicated damped oscillatory
single neuron dynamics. In this case, there will be two scale-invariant sequences, as
mentioned in Section 2. We will also show that the network activity is no longer
scale-invariant when either of the two constraints is violated. In Section 3.3, we will
discuss the relationship of our results to a previously proposed network model that
generates scale-invariant sequential activity (Shankar and Howard, 2013). In what
follows, all simulations were performed in Python 3.6 using FEuler’s method.

3.1 Simple unimodal temporal receptive fields

In this example we constructed a network that generates sequentially-activated cells
with a scale-invariant property. The network consists of N = 10 cells. Each cell
will have a simple unimodal temporal receptive field, similar to what was observed
in electrophysiological recordings of “time cells” (Pastalkova et al., 2008; Jin et al.,
2009; MacDonald et al., 2011; Kraus et al., 2013; Mello et al., 2015; Salz et al., 2016;
Tiganj et al., 2018).

We constructed the connectivity matrix from its eigendecomposition M = UAU ™.
According to Constraint 1 (Section 2.2), the network must have geometrically spaced
eigenvalues. We hence let A be a diagonal matrix whose diagonal elements are ge-
ometrically spaced between -0.1 and -5.12.

01 0 0
0 —022 0

A= | o (6)
0 0 ... =512

According to Constraint 2, the eigenvectors of the connectivity matrix M must
consist of the same motif. Equivalently, we constructed the matrix U such that
its rows consist of the same motif. In this example we constructed the motif to be
(1, —1). Therefore the matrix U was given by

1 -1 0 0
0 1 =1 ... 0
U=| | . - (7)
Unvi Un2 Unsz ... Unnw

As mentioned in Section 2.3, since the motif in the eigenvectors can at most be
translated N — 2 times, the Nth neuron will not be part of the scale-invariant
sequence. Therefore, we chose the last row in U to be arbitrary numbers such
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that U is invertible. In this example they were sampled from A/(0,1). Finally the
connectivity matrix of the network M was computed from M = UAU L.

The simulated activity of the network is shown in Figure 3a (top left). The initial
condition was specified to satisfy Equation 5. The bottom left of Figure 3a shows
the network activity rescales along the time axis according to the peak times of each
neuron. It is evident that the activations of the neurons are rescaled version of each
other, confirming that the constraints derived above indeed lead to scale-invariant
sequential activity.

We also broke each of the two constraints above and showed that the resulting
activity became no longer scale-invariant (Figure 3a, right two panels). To break
Constraint 1 (geometrically spaced eigenvalues), linearly spaced eigenvalues in the
same range were used in constructing the matrix A instead of geometrically spaced
eigenvalues. To break Constraint 2 (translation-invariant eigenvectors), a random
vector was added to each row of the matrix U where each entry was sampled from
N(0,1), making each motif different. As a result, both manipulations generated
activity that was no longer scale-invariant (Figure 3a, bottom right two panels).

3.2 Complicated single-cell tuning curves

Temporal coding needs not result in a simple unimodal sequential code. Instead,
it could also be embedded in the collective activity of neuronal populations where
single neurons may exhibit highly complex dynamics (e.g. Machens et al., 2010).
In this subsection we show that the framework we presented above is sufficiently
rich to allow for more complex single cell dynamics. In the previous example, the
connectivity matrix has real eigenvalues. Therefore it can only give rise to single
cell dynamics that are linear combinations of exponential functions. On the other
hand, in this subsection we will show that more complicated temporal dynamics can
be generated if the connectivity matrix has complex eigenvalues.

Following a similar procedure as detailed in Section 3.1, the connectivity matrix
with NV = 20 neurons was set up so that all of its eigenvalues were complex, and
their real and imaginary parts both formed geometric progressions with the same
real common ratio (see Appendix A.2 for details). As mentioned in Section 2.2, 2.3
and in more detail in Appendix A.1, the eigenvalues and eigenvectors form complex
conjugate pairs, and the network activity contains two distinct scale-invariant se-
quences. The simulated and rescaled activity are shown in Figure 3b (left). The
neural activity exhibits more complicated dynamics but at the same time maintains
scale-invariance for each sequence.

We also broke each of the two constraints using similar protocols as in the pre-
vious example. To break Constraint 1, eigenvalues with linearly spaced real and
imaginary parts in the same range were used instead of geometrically spaced ones.
To break Constraint 2, multiplicative noise sampled from N (0, 1) was used, so that
each matrix element U;; becomes U;;(1 + €;;) where each ¢; was sampled from
N(0,1). As shown in Figure 3b (right two panels), the resulting neural activity is
no longer scale-invariant.


https://doi.org/10.1101/580522
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/580522; this version posted January 15, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a.
Real eigenvalues Break Constraint 1 Break Constraint 2
0.15 [}
=l 06 0.15
S l
: I i
S
>
_-&;-' |
= ‘
+—
O ‘
< 7000 7000 7000
Timesteps
0.15
0.15 0.15
3
- 8
QL >
4
S |
v 0
@ @© |
7000 7000 7000
Rescaled Timesteps
b.
Complex eigenvalues Break Constraint 1 Break Constraint 2
Sequence 1 Sequence 1 Sequence 1
0.0 Sa— 0.50 0.00 | .
— o2 }’ 025 [‘g \ ~0as| |\
i o4 W 0.00 = ~0.50
— 7000 7000 7000
> Sequence 2 Sequence 2 Sequence 2
2 2 = 0.5 S
E 0.0 y S \ 00 | | T
O 0.0 — \
< -02 ‘V ‘ -0.25 N
7000 Timesteps 7000 7000
y Sequence 1 Sequence 1 sequence 1
. \/¥ 0.50 :2 0.00 W
. -0.2 0.25
. -0.25
35 -04 0.00
7000 -0.50

7000
Sequence 2 7000

Sequence 2
0.00
-0.25

) 7000
Rescaled Timesteps 7000

Sequence 2

0.2

0.0

-0.2

Rescaled
Activity (a.

!
;

7000

Figure 3: Generating scale-invariant neural sequences with simple (a) and com-
plicated (b) single neuron dynamics. Using the analytical result, we constructed net-
works with specific connectivity matrices so that they generate scale-invariant sequential
activity (left column). We also broke each of the two constraints derived in Section 2
and showed that the resulting network activity breaks scale-invariance (middle and right
columns) a. The network with real eigenvalues gives rise to simple unimodal single cell
temporal receptive fields (a, left top, each line represents the activity of one neuron in the
network). The activity of different neurons overlap with each other when rescaled accord-
ing to their peak times (left bottom). The network activity becomes not scale-invariant
when Constraint 1 was broken by choosing linearly spaced eigenvalues or Constraint 2 was
broken by adding noise to the motifs (a, middle and right columns, see text for details). b.
The network with complex eigenvalues gives rise to two sequences of neuronal responses
with more complex temporal dynamics (b left top, see text and Appendix A.2 for details).
The responses of cells in each sequence are rescaled version of each other in time (b left
bottom). When each of the two constraints is broken, the network activity becomes not
scale-invariant (right two columns). 10
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3.3 A special case: Laplace and inverse Laplace transforms

It should be noted that the geometric progression of time constants required by
Constraint 1 does not necessarily have to be an emergent property of the network,
but can instead be driven by physiological properties of single cells (Loewenstein and
Sompolinsky, 2003; Fransén et al., 2006; Tiganj et al., 2015; Liu et al., 2019). Con-
sequently, scale-invariant sequential activity could also be generated by feedforward
networks where the neurons in the first layer receive inputs and decay exponentially
with a spectrum of geometrically-spaced intrinsic time constants, and the neurons
in the second layer are driven by the first layer via translation-invariant synaptic
weights, implementing the eigendecomposition in Equation 3 explicitly.

One such model has been proposed by Shankar and Howard (Shankar and Howard,
2013). It is a two-layer feedforward neural network. In that model, the first layer
neurons F encode the Laplace transform of the input and have exponentially decay-
ing firing rates with a spectrum of decay constants.

dFi(t)
dt

= —NE(), i=12..,N. (8)

The activity of the first layer constitutes a scale-invariant sequential activity (see
Equation 2). It is also the basis functions that make up any general scale-invariant
sequential activity (see Equation 3). ~

To generate sequential neural activity, the neurons in the second layer f compute
the inverse Laplace transform of the first layer under the Post approximation (Post,
1930). 2

f = L,F, 9)

where F is the activity vector of all the first layer neurons and f is that of the second
layer neurons. The matrix Lj, is a discretized approximation of the inverse Laplace
transform of the kth order (Shankar and Howard, 2013).

From Equation 8 and Equation 9, the feedfoward dynamics above is equivalent
to linear recurrent dynamics involving only the second layer neurons f:

%? — L, SL;'f = Myyof, (10)
where S is a diagonal matrix consisting of the single cell time constants \;’s in
Equation 8.

Therefore the dynamics of the neurons in the second layer are equivalent to the
one generated by a linear recurrent network with connectivity matrix My r. Be-
cause the matrix representation of the inverse Laplace transform Ly is approximated
by taking derivatives of nearby nodes, it has the same motif across columns (for de-
tails see Shankar and Howard, 2013). Therefore, the model in Shankar and Howard
(2012), although a feedforward network, is a special case in the family of linear recur-
rent networks that can generate scale-invariant sequential activity. It might be the
case that that the exponentially decaying basis functions are indeed maintained by
a separate population of neurons, and the downstream neurons consititute a “dual”

2Note that this transformation is written as L,;l in other papers.
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population. Such exponentially decaying cells have recently been identified in lateral
entorhinal cortex (Tsao et al., 2018; Bright et al., 2019), whose downstream regions
have been identified as locations for time cells (Pastalkova et al., 2008; MacDonald
et al., 2011; Kraus et al., 2013; Salz et al., 2016).

4 Comparison with common network models

Scale-invariance puts stringent constraints on the architecture of recurrent neural
networks. To illustrate this, in this section we consider two widely-used neural
network models that do not generate scale-invariant sequential activity. Section 4.1
considers a simple chaining model; the following section considers a random network.
We will see that the connectivity matrices for these two widely-used models violate
the constraints derived above in Section 2 and that these models do not support
scale-invariant sequential activity. We will compare these two networks with the
two scale-invariant example networks described previously. All the networks in this
section are simulated with N = 20 neurons.

4.1 Simple Feedforward Chaining Model

The simplest possible model to generate sequential activity is a simple feedforward
chaining model, which will be analyzed in this subsection. The connectivity matrix
of the studied model is non-diagonalizable, therefore the constraints derived above
in Section 2.2 and 2.3 do not apply exactly. However, as discussed in Appendix A .4,
the distinct eigenvalues should still form a geometric progression even when the con-
nectivity is non-diagonalizable to allow scale-invariant activity. We will demonstrate
that a chaining model composed of elements with the same time constant cannot
meet this requirement for scale-invariant sequential activity.

In this simple model the activity of the kth neuron in a chain of N neurons obeys

(11)

dxy, I Bt 9” + Tp_1, 1<k<N
dt | -, k=1
Note that all of these neurons have the same time constant which is here set to 1.
Because an activation in the first unit spreads gradually across the network, this
model generates sequential activity. Each neuron does not respond instantaneously
to its input but has some finite integration time resulting in a spread of activity
across time. As the activation spreads across the chain, the spread in time accu-
mulates. However, as can be shown via the Central Limit theorem, this sequential
activity is not scale-invariant because the peak time of the kth unit goes up linearly
in k& but the width of the peak goes up with vk (Liu et al., 2019). Here we show
that the eigenspectrum of the connectivity matrix of this simple model (Eq. 11) does
not satisfy the constraints derived from Section 2.

Figure 4a (left) shows the connectivity matrix of the chaining model described
in Eq. 11. This connectivity matrix has a simple motif that repeats across rows; the
self-interaction term gives a —1 on the diagonal and the chaining term gives a +1
on the off-diagonal. This connectivity matrix is non-diagonalizable and has a single
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degenerate eigenvalue of -1 (Figure 4a, middle left). According to Appendix A.4, the
distinct eigenvalues of a non-diagonalizable connectivity matrix should still follow
a geometric progression for the network to allow scale-invariant activity. The con-
nectivity matrix of the chaining model violates this condition. Therefore, although
the network generates sequential activity (Figure 4a, middle right), the activity of
different neurons are not rescaled versions of each other (Figure 4a, right).

For contrast, Figure 4b illustrates the connectivity matrix, eigenvalues and eigen-
vectors for the scale-invariant network with real eigenvalues described previously in
Section 3.1. In illustrating the connectivity matrix, we have ordered the neurons
according to the order in which they are activated and we have only included the
neurons in the sequence (the same for the complex example below). Recall that this
matrix was constructed to obey the two constraints and has already been shown
to generate scale-invariant sequential activity. Consequently, by construction, the
eigenvalues are geometrically spaced and the eigenvectors are translated versions of
one another (Figure 4b, middle left and middle panels). Although the connectivity
matrix clearly has a rich structure, the rows of the connectivity matrix are certainly
not translated versions of one another. The entries above the diagonal tend to be
more negative, indicating that the connections from neurons later in the sequence to
the neurons earlier in the sequence tend to be more inhibitory than the connections
in the opposite direction (Figure 4b, leftmost panel). It is not at all obvious why
this specific connectivity matrix yields scale-invariant sequential activity. This is
much more clear from examining the eigenvalues and eigenvectors.

4.2 Random recurrent networks

Nonlinear neural networks with random connectivity matrices are able to generate
chaotic activity (Sompolinsky et al., 1988). With appropriately trained weights,
they are also able to generate sequential neural activity similar to that obtained
in actual recordings (Rajan et al., 2016). However, generic linear random neural
networks without training cannot produce scale-invariant, sequential activity due to
the conflict with the two constraints derived above in Section 2.

Random neural networks have eigenvalue spectrums that are uniformly dis-
tributed inside a unit disc in the complex plane (Rajan and Abbott, 2006; Girko,
1985), therefore not geometrically spaced as required by scale-invariance (Section 2.2).
We simulated the activity of an instance of a linear network with a random con-
nectivity matrix and computed its eigenvalues and eigenvectors (Figure 4c). The
network dynamics is described by

dx(t)

— = —x(t) + Mx(t) = (M~ Dx(b), (12)

where each element in M was sampled from a Gaussian distribution with mean 0
and variance %

The connectivity matrix M — I is shown in Figure 4c (left). The eigenvalues
of the connectivity matrix are approximately uniformly distributed in a unit disc
centered at (-1,0) (Figure 4c, middle left), confirming the results from Rajan and

Abbott (2006) and Girko (1985). The eigenvectors also apparently do not have any
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translation-invariant structure (Figure 4c, middle). Consequently, the network ac-
tivity does not have the scale-invariant property (Figure 4c, right two panels). In
contrast, the network constructed in the same way as in Section 3.2 has two geo-
metric progressions of complex eigenvalues (Figure 4d, middle left) that are complex
conjugates of each other, and each half of the eigenvectors consist of the same motif
(Figure 4d, middle). Consequently, it allows two sequences of scale-invariant activity
(Figure 4d, right two panels).

5 Discussion

In this paper we study the constraints on the connectivity of a linear network for it
to generate scale-invariant sequential neural activity. It is analytically shown that
two conditions need to hold for the structure of the connectivity matrix when it has
real, distinct eigenvalues. First of all, it must have geometrically-spaced eigenvalues.
Second, its eigenvectors must contain the same motif with a translation-invariant
structure. Intuitively, the same motif in different eigenvectors pick out different
timescales by the same proportion, and the geometric spacing of timescales further
ensures the activity of different cells are rescaled with each other. The generated
activity is highly dynamic, providing a possibility for the dynamic coding of work-
ing memory (Stokes, 2015). It was also shown that a straightforward generalization
leads to the constraints for networks with complex eigenvalues (for details see Ap-
pendix A.1). Analogous but more complicated constraints hold for networks with
degenerate eigenvalues (Appendices A.3 and A.4).

5.1 Plausibility for a geometric progression of timescales

Geometrically spaced network eigenvalues can generically emerge from multiplicative
cellular processes (Amir et al., 2012). Mechanistically, a spectrum of timescales could
be generated by positive feedback in recurrent circuits. It could also be an inherent
property of single neurons (Loewenstein and Sompolinsky, 2003; Fransén et al.,
2006; Tiganj et al., 2015; Liu et al., 2019). In wvitro slice experiments and modeling
works have shown that a spectrum of slow timescales can be obtained in single
cells by utilizing the slow dynamics of calcium-dependent currents (Loewenstein
and Sompolinsky, 2003; Egorov et al., 2002; Fransén et al., 2006; Mongillo et al.,
2008; Tiganj et al., 2015; Liu et al., 2019). In vivo experiments also showed a
spectrum of timescales in cortical dynamics. Bernacchia et al. (2011) showed that in
monkey prefrontal, cingulate and parietal cortex, reward modulates neural activity
multiplicatively with a spectrum of time constants (Bernacchia et al., 2011).

5.2 Weber-Fechner Law

The constraints for diagonalizable matrices with real unique eigenvalues suggest a
deep connection to the Weber-Fechner law. The Weber-Fechner law relates internal
psychophysical scales to external physical variables. A quantity is said to obey the
Weber-Fechner law if a psychological quantity p is related to a physical quantity S
as p = klog S for an appropriate choice of units. The Weber-Fechner law is perhaps
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Figure 4: Comparison with common network models. a, b. Comparison
between the simple feedforward model (a) and a network constructed from Sec-
tion 3.1 that generates scale-invariant sequential activity (scale-invariant network
[real], b). For the simple feedforward chaining model, its connectivity matrix is
non-diagonalizable. Because the eigenvalues of its connectivity matrix are not ge-
ometrically spaced (a, middle left), the network activity does not have the scale-
invariant property (a, right two panels). In contrast, the scale-invariant network
has eigenvalues that are geometrically spaced (b, middle left) and eigenvectors that
consist of the same motif (b, middle, aside from the boundary effect), resulting in
the connectivity that consists of excitation from neurons earlier in the sequence to
the ones later in the sequence and inhibition in the opposite direction (b, left, only
neurons in the sequence are shown. Same below). Consequently, it allows scale-
invariant sequential activity (b right two panels). ¢, d. Same comparison between
an instance of a random recurrent network (c) and a network constructed from Sec-
tion 3.2 (scale-invariant network [complex|, d). The eigenvalues of the connectivity
of a random network are not geometrically spaced (c, middle left). The eigenvectors
do not consist of the same motif (c, middle). Consequently its activity is not scale-
invariant (c, right two panels). In contrast, the connectivity of the scale-invariant
network has two geometric progression of eigenvalues that are complex conjugate
with each other (d, middle left). Its eigenvectors also contain complex conjugate
pairs, each with a repeating motif (d, middle). Consequently the scale-invariant
network can generate two scale-invariant sequences (d, right two panels).
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the oldest quantitative relationship in psychology (Fechner, 1912) and holds at least
approximately for a wide range of physical variables.

Consider a set of receptors responding to some physical variable S with a recep-
tive field center s;. If the receptive field centers follow a geometric progression, a
logarithmic mapping between receptor number and S naturally results. Logarith-
mic spacing of receptive fields seems to be a common property of receptive fields
in sensory systems (Merzenich et al., 1973; Van Essen et al., 1984; Schwartz, 1977).
However, analogous logarithmic spacing is also observed for receptive fields over
non-sensory variables such as numerosity (Nieder and Miller, 2003; Nieder and De-
haene, 2009). The receptive fields of time cells in multiple brain regions are certainly
compressed (Mello et al., 2015; Kraus et al., 2013; Tiganj et al., 2018), but it has
not been quantitatively established that this compression is logarithmic (Howard,
2018).

The constraints for diagonalizable matrices with unique real eigenvalues devel-
oped here are closely analogous to the requirements for a Weber-Fechner scale.
The geometric progression of eigenvalues places the eigenvalues on a logarithmic
scale such that the nth eigenvalue goes up exponentially with n. The requirement
that the eigenvectors are translated versions of the same motif is analogous to an
translation-invariant tiling along some dimension. Thus, scale-invariance in linear
recurrent networks can be interpreted as a translation-invariant tiling of receptors
along a logarithmic scale.

5.3 The eigenvectors of scale-invariant networks are local-
ized

The second constraint we derived requires that connectivity matrices with real, dis-
tinct eigenvalues should have eigenvectors that consist of the same motif localized at
different entries. It is hard to imagine how this kind of translation-invariant eigen-
vectors could arise generically in neural circuits. However the eigenvectors that
satisfy this constraint are a special case of “localized eigenvectors”, which have been
studied extensively first in condensed matter physics and later in theoretical neuro-
science. Anderson first argued that the eigenvectors of matrices whose elements are
random and concentrated on the diagonal are exponentially localized (Anderson, P.,
1958). Later numerical and analytical studies confirmed that localized eigenvectors
indeed arise in neural networks in the presence of a gradient in the strength of the
local interactions (Chaudhuri et al., 2014) or global inhibition, as in the case of
ring attractor networks (Tanaka and Nelson, 2019). However, it should be pointed
out that the procedures described in this paper do not necessarily generate local
interactions where the elements M;; decays with |i — j|, as can be seen in Figure 4b.
Furthermore, our constraint on the eigenvectors is more stringent than only requir-
ing them to be localized: the different localized “patches” need to be the same as
well.
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5.4 Scale-invariant sequence gives logarithmic growth in cu-
mulative dimensionality

In a recent study, Cueva et al. (2019) showed that the cumulative dimensionality of
the population activity during working memory increases with a decreasing speed
(Cueva et al., 2019). This is consistent with the network activity generated by linear
networks that satisfy the two constraints we derived. Translation-invariant eigenvec-
tors ensure that each eigenmode contributes one unique dimension to the activity.
Geometrically spaced eigenvalues ensure that one eigenmode would be suppressed
per unit time on a logarithmic scale. Therefore the cumulative dimensionality of
scale-invariant sequential activity would increase with the logarithm of time. Fur-
thermore, notice that any affine transformation on the neural trajectory would not
change the cumulative dimensionality. Therefore the same relationship for cumula-
tive dimensionality would hold even if the eigenvectors are not translation-invariant.
A geometric progression of eigenvalues is sufficient to generate linear dynamics whose
cumulative dimensionality increases with the logarithm of time.

5.5 Chaining models

Goldman (2009) proposed a class of linear network models that are able to generate
sequential activity. In these networks, the feedforward dynamics are constructed
by building up feedforward interactions between orthogonal Schur modes and are
hidden in the collective network dynamics (Goldman, 2009). Thanks to the hidden
feedforward dynamics, the networks can sustain its activity far longer than the
timescale constrained by the eigenvalue spectrum of the network. The example
studied in Section 4.1 is the simplest model proposed in Goldman (2009). Although
this simple model does not allow scale-invariant sequential activity, this does not
argue that any network constructed in the way in Goldman (2009) cannot generate
scale-invariant activity.

5.6 Non-normal networks

Because the eigenvetors in a scale-invariant network are translated versions of each
other, they do not form an orthonormal basis. Therefore, the networks that gener-
ate scale-invariant sequential activity naturally belong to the family of non-normal
networks (White et al., 2004; Ganguli et al., 2008; Goldman, 2009). Non-normal net-
works have been shown to have many desired properties such as extensive memory
capacity where the number of timesteps over which the network state retains infor-
mation about the past stimuli scales linearly with the size of the network (White
et al., 2004; Ganguli et al., 2008). The current work shows that scale-invariance
could be another potential computational benefit for non-normal networks.

5.7 Locally-interacting integral transform networks

Shankar studied a model where the activity of individual nodes can be effectively
described by a filtered input through a set of scale-invariant kernel functions with
different timescales (Shankar, 2015). It was shown that if this transformation were to
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be implemented by a network involving only local (possibly non-linear) interactions
between nodes with similar timescales, the forms of the kernel functions are strongly
constrained: they can only be given by a linear combination of the inverse Laplace
transforms (c.f. Section 3.3). In this work we consider a slightly different problem:
the interactions between different nodes are constrained to be linear, but non-local
interactions are also allowed since the connectivity matrix is not constrained to be
local. In this case, the activity given by the inverse Laplace transform (Equation 10)
covers a subspace of all possible solutions. It is still notable that these two related
approaches converge on similar results.
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A Appendix

The constraints derived in Section 2 are the sufficient and necessary conditions
for generating scale-invariant activity in a linear recurrent network, but only when
the network connectivity matrix has real, distinct eigenvalues. In this series of
appendices we discuss the modifications to the constraints when the connectivity
matrix does not meet this requirement. We start out by discussing matrices with
complex, distinct eigenvalues (Appendix A.1). The results from this appendix have
already been stated in the main text. We then use these results to describe the
setup of the example network in Section 3.2 in Appendix A.2. The case when the
network connectivity has degenerate eigenvalues and is diagonalizable is discussed in
Appendix A.3. The case when it is non-diagonalizable is discussed in Appendix A.4.
Finally in Appendix A.5 we discuss the sensitivity of the scale-invariant property to
perturbations in the initial condition and the network connectivity.

A.1 Connectivity matrices with complex eigenvalues

We consider the case when all the eigenvalues are complex. It will be become obvious
below that a mixture of real and complex eigenvalues will make the network activity
further deviate from being strictly scale-invariant (c.f. Equation 2), therefore we do
not consider this case in this paper.

Since network connectivity matrices are real, their complex eigenvalues and
eigenvectors come in conjugate pairs. Consequently, the two constraints in Section 2
should be stated in a slightly different way. The activity of cell 7 is still

;(t) = Z Ui (), (A1)

where the modes are
2 (t) = a;eM’, (A.2)

18


https://doi.org/10.1101/580522
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/580522; this version posted January 15, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

except that the eigenvalues \; are now complex. Therefore the derivation in Section 2
carries over. However, since the eigenvectors form complex conjugate pairs, the
matrix U in the diagonalization procedure M = UAU~! should be of the following

form:
[« b 0 . a* b* 0 . 0 i
0 a b e 0 a* b* e 0
U= 201 22 23 202 PAPRE 2212 2N
5+11 5+1,2 5+1.3 5+l,5 S+L5+1 5+1,5+2 S+1LN
| UN71 UN72 UN,3 UN,% UN,%+1 UN,%+2 UN7N ]
(A.3)

where the motif is (a,b). Notice that the lower half of the matrix is not determined.
This is due to the constraint that there has to be a complex conjugate for every
eigenvector, and therefore the motif can only be translated % — L times, rather
than N — L times as in the case of real eigenvalues (c.f. Section 2.3). The bottom
half of the matrix cannot simply repeat the upper half as this will make U not
invertible. Therefore, it is not possible to satisfy the scale-invariant condition in
the main text that any pair of responses are rescaled version of each other (c.f.
Equation 2). Instead, the network can only have half of its cells be scale-invariant
(cells 1 to & — L+ 1).

But we can do a little better if we allow the bottom half of the matrix to repeat
the structure of the upper half, only with a different motif:

a b 0 b 0 0
0 a b 0 a’ b* 0
0 c d 0 c d 0

_UN,1 Unz Unsz ... UN,% UN,%-H UNv%"'Q Un.n -

This way, the network will generate two different scale-invariant sequences. Cells
within each sequence has responses that are rescaled version of each other, but cells
in different sequences are not rescaled version of each other. This is the way the
example network in Section 3.2 was constructed.

To summarize, linear recurrent networks with connectivity matrices whose eigen-
values are all complex cannot generate scale-invariant activity in the strict sense as
defined by Equation 2. The closest scenario is to have two different scale-invariant
sequences, each composed of half of the cells in the network. In this case, the
constraint on the eigenvalues is that they form two geometric progressions that
are complex conjugate with each other, with the same real common ratio for both
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the real and imaginary parts. The constraint on the eigenvectors is that each of
the eigenvector should either be a translated version of another eigenvector or its
complex conjugate. We applied these results to construct the example network in
Section 3.2, as detailed in the next appendix.

Finally, it is not hard to see that if there is a mixture of real and complex eigen-
values, the network can at best generate three distinct scale-invariant sequences.
Since this scenario is even further from the strict definition of scale-invariance (c.f.
Equation 2), we do not consider this case in this paper.

A.2 The setup of the example network with complex eigen-

values

For the example in Section 3.2, the real and imaginary parts of the eigenvalues were
both chosen to be geometrically spaced between -0.15 and -0.48 (-0.15, -0.17, ...,
-0.48), and the complex conjugates were also included. Therefore, the matrix A in
the diagonalization procedure M = UAU! is

[—0.15(1 + )
—0.17(1 4 14)

—0.48(1 + 1)

—0.15(1 — i)

—0.17(1 — 4)

—0.48(1 — )
(A.5)

To satisfy the constraint that the eigenvectors form complex conjugate pairs, we
constructed the motif so that the matrix U is in the form of Equation A.4 with two
repeating motifs, where a = 144, b= —-1—14,c=1—1, d = —1+ 1. In other words

the matrix U is

[(1+i —1—1 0
0 1+: —1—1

Uni  Una Un3s

-1+ 0
1—7 =14
Usya Vgye
—1—1 0

o O

Un N

(A.6)

where the unspecified elements are chosen randomly from a uniform distribution

from [0,1].
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A.3 Diagonalizable connectivity matrices with degenerate
eigenvalues

A matrix with degenerate eigenvalues could be diagonalizable or non-diagonalizable
(defective). The modifications to the constraints are different for these two cases.
In this appendix we discuss these modifications when the network connectivity is
diagonalizable and in the next appendix we focus on non-diagonalizable matrices. In
both cases, degeneracy in the eigenvalues decreases the number of distinct responses
in the scale-invariant sequence because this number is equal to the number of distinct
eigenvalues of the connectivity. In both this and the next appendices, we assume
that the eigenvalues of the connectivity matrix are all real. It is straightforward to
generalize the results to the case of complex eigenvalues based on the discussions in
Appendix A.1.

For diagonalizale matrices with degenerate eigenvalues, the activity of cell 7 is
still

z;(t) = Z Ui (t), (A7)

where the modes are
Zi(t) = a;eM’, (A.8)

except that some of the eigenvalues \; could be the same. Therefore, for scale-
invariance to hold, the modes that contribute to the summation in Equation A.7 for
any pair of cells should have eigenvalues that are a multiple of each other (e.g. for
cell 1, the eigenvalues that contribute to the summation in Equation A.7 are {-1,
-1, -2, -4}, then for cell 2 they could be {-2, -2, -4, -8}, etc.). A necessary condition
for this to hold is that the distinct eigenvalues of the connectivity matrix form a
geometric progression. Therefore, the constraint on the eigenvalues is as follows:

For a linear recurrent network whose connectivity matrix is diagonal-
izable with degenerate, real eigenvalues to generate scale-invariant ac-
tivity, the distinct eigenvalues must form a geometric progression (c.f.
Section 2.2).

The constraint on the eigenvectors is more complicated due to the degeneracy
of eigenvalues. We here offer a compact statement for a sufficient condition on the
eigenvectors: During the diagonalization of the matrix M = UAU ™!, if we rearrange
the eigenvalues in the diagonal form of the connectivity A such that they form blocks
of distinct eigenvalues (e.g. A\j = —1, s = =2, A3 = =4, \y = —1, A5 = —2, etc.),
then at the block level, the matrix U would satisfy the original constraint that
its columns (i.e. the eigenvectors) consist of the same motif (c.f. Section 2.2) at
translated entries. In general, the eigenvectors would at least to be localized.

A.4 Non-diagonalizable connectivity matrices

A non-diagonalizable (or defective) matrix can be transformed into a block-diagonal
matrix called its Jordan normal form by a similarity transformation. We will show
that when the connectivity matrix is non-diagonalizable, its distinct eigenvalues still
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need to form a geometric progression. However, as for diagonalizable matrices with
degenerate eigenvalues (Appendix A.3), the constraint on the eigenvectors is more
complicated. In what follows, we assume all eigenvalues are real. It is straighforward
to generalize the results to the case of complex eigenvalues based on the discussions
in Appendix A.1.

To reach this conclusion, we first review some basic results about the Jordan
normal form. A non-diagonalizable connectivity matrix M can be transformed into
a block-diagonal matrix via a similarity transformation: M = U~1JU. The columns
of U are called the generalized eigenvectors of M and J is called the Jordan normal
form of M. J is a block-diagonal matrix where the diagonal elements of each block
is an eigenvalue A of the matrix M. It also has off-diagonal elements 1 to the
right of each diagonal element, i.e. J;;41 = 1, except for the last row of each
block. Consequently, it is not hard to see that the activity of each cell is a linear
combination of modes

zi(t) = Z Uiy aar, (1), (A.9)
Ak

where we use x\,(t) to represent the mode corresponding to the kth last row of the
block with eigenvalue A. Here, the modes will not all be exponential functions, but
a product of a polynomial and an exponential

/ 1 —
l’)\k(t) = mtk 1€>\t. (AlO)

Based on Equations A.9 and A.10 above, it is quite straightforward to come up
with the constraints on scale-invariance in the case of non-diagonalizable matrices.
For any pair of cells, the modes that contribute to their activity should have series
of eigenvalues A that are a multiple of each other as well as the same sequence of
k. For example, if there are two modes contributing to the activity of cell 1, with
(k1,A\1) = (1,—1) and (k2, A2) = (2, —2), then the two contributing modes for cell 2
could have (k1, A1) = (1,—2) and (ko, A2) = (2, —4), and similar relationships hold
for any pair of cells. As a special case, for diagonalizable connectivity matrices, the
contributing modes for any cell have kK = 1 for all A. The necessary condition for
the contributing eigenvalues for different cells to be a multiple of each other is that
the distinct eigenvalues of the connectivity form a geometric progression. Therefore,
the constraint on the eigenvalues is as follows:

For a linear recurrent network whose connectivity matrix is non-diagonalizable
and has real eigenvalues to generate scale-invariant activity, the distinct
eigenvalues of the connectivity matrix should form a geometric progres-

sion (c.f. Section 2.2).

However, the constraint on the eigenvectors is harder to state in a compact
manner because of the degeneracy of the eigenvalues. The best we can say is that
each eigenvector would have to be localized, i.e. the range of the non-zero elements
would have to be narrow.

22


https://doi.org/10.1101/580522
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/580522; this version posted January 15, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A.5 Robustness to noise

In this appendix we show that deviations from the constraints derived in Section 2
causes a graceful degradation in scale-invariance. We performed numerical exper-
iments where we perturbed the connectivity matrix of the network in Section 3.1
using Gaussian multiplicative noise: M;; — M;; (1 + eN0, 1]) and the initial con-
dition with Gaussian additive noise: x;(t = 0) — x;(t = 0) + eN(0,1). We chose
an additive noise for the initial condition because a multiplicative noise would only
rescale the initial state for the example in Section 3.1. The degree of scale-invariance
was measured in terms of the ratio of the peak times between successive cells in the
sequence. If the sequence is scale-invariant, this ratio should equal to the common
ratio of the geometric progression of eigenvalues for all pairs of successive cells.

Figure A.1a and d show the distributions of the ratio obtained by 100 realizations
of the perturbation on the connectivity and the initial condition, respectively. As
can be seen, the distributions become more spread out around the noiseless values
as the noise amplitudes € are increased. Figure A.1b and e show that the deviation
from scale-invariance as measured by the average difference from the noiseless ratio
increases linearly with the noise amplitude e. Figure A.1c and f show the raw and
rescaled activity for two realizations of the perturbation with different noise levels.
These results show that the degree of scale-invariance decreases linearly with the
level of noise in both the initial condition and the connectivity matrix. Generally,
a small perturbation to a matrix changes its eigenvalues and eigenvectors by an
amount linear in the perturbation, and a small deviation in the initial condition
of a linear dynamical system causes the subsequent trajectory to diverge from the
original trajectory by an amount linear in the deviation. Therefore it is expected
that the deviation from scale-invariance increases linearly with noise strength.
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Figure A.1: Degree of scale-invariance decreases gracefully with noise. We
perturbed the connectivity and the initial condition with Gaussian multiplicative
and additive noise respectively for 100 independent runs (see texts for details) and
measured the deviation from scale-invariance by the spread of the distribution of the
ratio between peak times for successive cells in the sequence. For the perturbation
on the connectivity matrix, the distribution of the ratio is more spread out for
larger noise (a). The mean difference from the noiseless ratio increases linearly with
the noise amplitude (b). c. The raw (left) and rescaled (right) activity for two
example runs with different noise levels are shown. d-f. The same results for the
perturbation on the initial condition. Since in both cases the deviation from scale-
invariance is linear in noise strength, scale-invariance does not depend on fine-tuning
the connectivity matrix or the initial condition.

24


https://doi.org/10.1101/580522
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/580522; this version posted January 15, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Chance, F. S., Abbott, L. F., and Reyes, A. D. (2002). Gain modulation from
background synaptic input. Neuron, 35(4):773-82.

Chaudhuri, R., Bernacchia, A., and Wang, X. J. (2014). A diversity of localized
timescales in network activity. eLife, 3:e01239.

Cueva, C. J., Marcos, E., Saez, A., Genovesio, A., Jazayeri, M., Romo, R., Salzman,
C. D., Shadlen, M. N.; and Fusi, S. (2019). Low dimensional dynamics for working
memory and time encoding. bioRxiv.

Egorov, A. V., Hamam, B. N., Fransén, E., Hasselmo, M. E., and Alonso,
A. A. (2002). Graded persistent activity in entorhinal cortex neurons. Nature,
420(6912):173-8.

Fechner, G. (1860/1912). Elements of Psychophysics. Vol. 1. Houghton Mifflin.

Fransén, E., Tahvildari, B., Egorov, A. V., Hasselmo, M. E., and Alonso, A. A.
(2006). Mechanism of graded persistent cellular activity of entorhinal cortex layer
V neurons. Neuron, 49(5):735-46.

Ganguli, S., Huh, D., and Sompolinsky, H. (2008). Memory traces in dynamical
systems. Proceedings of the National Academy of Sciences of the United States of
America, 105(48):18970-18975.

Girko, V. L. (1985). Circular law. Theory of Probability & Its Applications,
29(4):694-706.

Glenberg, A. M., Bradley, M. M., Stevenson, J. A., Kraus, T. A., Tkachuk, M. J.,
and Gretz, A. L. (1980). A two-process account of long-term serial position effects.
Journal of Experimental Psychology: Human Learning and Memory, 6:355-369.

Goldman, M. S. (2009). Memory without feedback in a neural network. Neuron,
61(4):621-634.

Giitig, R. and Sompolinsky, H. (2009). Time-warp-invariant neuronal processing.

PLoS Biology, 7(7).

Harvey, C. D., Coen, P., and Tank, D. W. (2012). Choice-specific sequences in
parietal cortex during a virtual-navigation decision task. Nature, 484(7392):62-8.

Hopfield, J. J. and Brody, C. D. (2000). What is a moment? Transient synchrony as
a collective mechanism for spatiotemporal integration. Proceedings of the National
Academy of Sciences of the United States of America, 98(3):1-6.

Howard, M. W. (2018). Memory as perception of the past: Compressed time inmind
and brain. Trends in Cognitive Sciences, 22(2):124 — 136.

Howard, M. W. and Shankar, K. H. (2018). Neural scaling laws for an uncertain
world. Psychological review, 125(1):47.

25


https://doi.org/10.1101/580522
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/580522; this version posted January 15, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Howard, M. W., Youker, T. E., and Venkatadass, V. (2008). The persistence of mem-
ory: Contiguity effects across several minutes. Psychonomic Bulletin & Review,
15(PMC2493616):58-63.

Jin, D. Z., Fujii, N., and Graybiel, A. M. (2009). Neural representation of time in

cortico-basal ganglia circuits. Proceedings of the National Academy of Sciences,
106(45):19156-19161.

Kraus, B. J., Robinson, 2nd, R. J., White, J. A., Eichenbaum, H., and Hasselmo,
M. E. (2013). Hippocampal ”time cells”: time versus path integration. Neuron,
78(6):1090-101.

Liu, Y., Tiganj, Z., Hasselmo, M. E., and Howard, M. W. (2019). A neural micro-
circuit model for a scalable scale-invariant representation of time. Hippocampus,
29(3):260-274.

Loewenstein, Y. and Sompolinsky, H. (2003). Temporal integration by calcium
dynamics in a model neuron. Nature Neuroscience, 6(9):961-7.

MacDonald, C. J., Lepage, K. Q., Eden, U. T., and Eichenbaum, H. (2011). Hip-
pocampal “time cells” bridge the gap in memory for discontiguous events. Neuron,
71(4):737 — 749.

Machens, C. K., Romo, R., and Brody, C. D. (2010). Functional, But Not Anatom-
ical, Separation of "What” and ”When” in Prefrontal Cortex. Journal of Neuro-
science, 30(1):350-360.

Mello, G. B., Soares, S., and Paton, J. J. (2015). A scalable population code for
time in the striatum. Current Biology, 25(9):1113-1122.

Merzenich, M. M., Knight, P. L., and Roth, G. L. (1973). Cochleotopic organization
of primary auditory cortex in the cat. Brain Research, 63:343-6.

Mongillo, G., Barak, O., and Tsodyks, M. (2008). Synaptic theory of working
memory. Science, 319(5869):1543-1546.

Murdock, B. B. (1962). The serial position effect of free recall. Journal of Ezperi-
mental Psychology, 64:482-488.

Nieder, A. and Dehaene, S. (2009). Representation of number in the brain. Annual
Review of Neuroscience, 32:185-208.

Nieder, A. and Miller, E. K. (2003). Coding of cognitive magnitude: compressed scal-
ing of numerical information in the primate prefrontal cortex. Neuron, 37(1):149-
57.

Pastalkova, E., Itskov, V., Amarasingham, A., and Buzsaki, G. (2008). In-
ternally generated cell assembly sequences in the rat hippocampus. Science,
321(5894):1322-7.

26


https://doi.org/10.1101/580522
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/580522; this version posted January 15, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Post, E. (1930). Generalized differentiation. Transactions of the American Mathe-
matical Society, 32:723-781.

Rajan, K. and Abbott, L. F. (2006). Eigenvalue spectra of random matrices for
neural networks. Physical Review Letters, 97(18):188104.

Rajan, K., Harvey, C. D., and Tank, D. W. (2016). Recurrent Network Models of
Sequence Generation and Memory. Neuron, 90(1):128-142.

Rakitin, B. C., Gibbon, J., Penny, T. B., Malapani, C., Hinton, S. C., and Meck,
W. H. (1998). Scalar expectancy theory and peak-interval timing in humans.
Journal of Experimental Psychology: Animal Behavior Processes, 24:15-33.

Salz, D. M., Tiganj, Z., Khasnabish, S., Kohley, A., Sheehan, D., Howard, M. W.,
and Eichenbaum, H. (2016). Time cells in hippocampal area CA3. Journal of
Neuroscience, 36:7476-7484.

Saxe, A. M., McClelland, J. L., and Ganguli, S. (2013). Exact solutions to the
nonlinear dynamics of learning in deep linear neural networks.

Schwartz, E. L. (1977). Spatial mapping in the primate sensory projection: analytic
structure and relevance to perception. Biological Cybernetics, 25(4):181-94.

Shankar, K. H. (2015). Generic construction of scale-invariantly coarse grained
memory. Lecture Notes in Artificial intelligence, 8955:175—184.

Shankar, K. H. and Howard, M. W. (2012). A scale-invariant internal representation
of time. Neural Computation, 24(1):134-193.

Shankar, K. H. and Howard, M. W. (2013). Optimally fuzzy temporal memory.
Journal of Machine Learning Research, 14:3753-3780.

Sompolinsky, H., Crisanti, A., and Sommers, H.-J. (1988). Chaos in random neural
networks. Physical review letters, 61(3):259.

Stokes, M. G. (2015). ‘activity-silent’'working memory in prefrontal cortex: a dy-
namic coding framework. Trends in cognitive sciences, 19(7):394-405.

Tanaka, H. and Nelson, D. R. (2019). Non-hermitian quasilocalization and ring
attractor neural networks. Physical Review E, 99(6):062406.

Tank, D. and Hopfield, J. (1987). Neural computation by concentrating information
in time. Proceedings of the National Academy of Sciences, 84(7):1896-1900.

Tiganj, Z., Cromer, J. A., Roy, J. E., Miller, E. K., and Howard, M. W. (2018).
Compressed timeline of recent experience in monkey lateral prefrontal cortex.
Journal of cognitive neuroscience, pages 1-16.

Tiganj, Z., Hasselmo, M. E., and Howard, M. W. (2015). A simple biophysically
plausible model for long time constants in single neurons. Hippocampus, 25(1):27—
37.

27


https://doi.org/10.1101/580522
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/580522; this version posted January 15, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Tsao, A., Sugar, J., Lu, L., Wang, C., Knierim, J. J., Moser, M.-B., and Moser, E. .
(2018). Integrating time from experience in the lateral entorhinal cortex. Nature,
561(7721):57.

Van Essen, D. C., Newsome, W. T., and Maunsell, J. H. (1984). The visual field rep-
resentation in striate cortex of the macaque monkey: asymmetries, anisotropies,
and individual variability. Vision Research, 24(5):429-48.

Voelker, A. R. and Eliasmith, C. (2018). Improving spiking dynamical networks:
Accurate delays, higher-order synapses, and time cells. Neural computation,
30(3):569-609.

Voss, R. F. and Clarke, J. (1975). 1/f noise in music and speech. Nature, 258:317—
318.

Wang, J., Narain, D., Hosseini, E. A., and Jazayeri, M. (2018). Flexible timing by
temporal scaling of cortical responses. Nature neuroscience, 21(1):102.

White, O. L., Lee, D. D., and Sompolinsky, H. (2004). Short-term memory in
orthogonal neural networks. Physical Review Letters, 92(14):148102.

28


https://doi.org/10.1101/580522
http://creativecommons.org/licenses/by-nc-nd/4.0/

