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The multispike tempotron (MST) is a powersul, single spiking neuron
model that can solve complex supervised classification tasks. It is also
internally complex, computationally expensive to evaluate, and unsuit-
able for neuromorphic hardware. Here we aim to understand whether it
is possible to simplify the MST model while retaining its ability to learn
and process information. To this end, we introduce a family of general-
ized neuron models (GNMs) that are a special case of the spike response
model and much simpler and cheaper to simulate than the MST. We find
that over a wide range of parameters, the GNM can learn at least as well
as the MST does.

We identify the temporal autocorrelation of the membrane potential
as the most important ingredient of the GNM that enables it to classify
multiple spatiotemporal patterns. We also interpret the GNM as a chem-
ical system, thus conceptually bridging computation by neural networks
with molecular information processing. We conclude the letter by propos-
ing alternative training approaches for the GNM, including error trace
learning and error backpropagation.

1 Introduction

Spiking neurons have been shown to be computationally more power-
ful than standard rate-coded neurons (Maass, 1997; Giitig & Sompolin-
sky, 2006; Rubin, Monasson, & Sompolinsky, 2010). This motivates the
hope that networks of spiking neurons (SNNs) can be built smaller than
corresponding networks of rate-coded neurons while achieving the same
computational task. This would be interesting because current deep ar-
chitecture, while solving sophisticated tasks, also requires extremely large
models. Networks requiring up to a billion of weights are not uncommon—
for example, in language processing (Radford et al., 2018) or image recog-
nition (Mahajan et al., 2018).

In practice, there are difficulties, however. Spiking neurons are more ex-
pensive to simulate than nonspiking units, which may outweigh any gains
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from the reduced network size. In some cases, this problem may be circum-
vented by using specialized neuromorphic hardware (Indiveri et al., 2011;
Plana et al., 2011; Lin et al., 2018; Shahsavari, Devienne, & Boulet, 2019; Ra-
jendran & Alibart, 2016) to model SNNs. However, this is not always prac-
tical or possible (Wunderlich et al., 2019).

In most cases, it will remain necessary to simulate SNNs on general-
purpose computers. In order to be able to build efficient SNNs, we therefore
need to understand systematically the computational properties of spik-
ing neurons. Indeed, there exists a large number of variants of spiking
models vastly varying in internal complexity (Hodgkin & Huxley, 1952;
Izhikevich, 2003; Brunel & van Rossum, 2007; Gerstner, Kistler, Naud, &
Paninski, 2014). These various neuronal models are not always developed
with computational efficiency as a criterion. Particularly in computational
neuroscience, considerations of (the rather vague concept of) biological
plausibility are often more important than pure simplicity. Yet in the
context of applications of spiking neurons in artificial intelligence (AI),
biological plausibility is irrelevant, and the important criteria should be
computational cost, ease of implementation, suitability for neuromorphic
hardware, and performance. In order to be able to produce maximally
parsimonious models, it is essential to first understand the necessary
ingredients that enable computation. This will be the focus of this letter.

Concretely, here we investigate the minimal ingredients required for
a single neuron to perform a multilabel classification task. The purpose
of this task is to classify incoming spatiotemporal patterns into different
classes and distinguish them from noise. In the SNN literature, there have
been a number of attempts to solve variants of this task, including the re-
mote supervised method (ReSuMe; Ponulak, 2005), the chronotron learning
rule (Florian, 2012), or the spike pattern association neuron (Mohemmed,
Schliebs, Matsuda, & Kasabov, 2012), and the precise spike-driven synaptic
plasticity (Yu, Tang, Tan, & Li, 2013). For this letter, we focus on one of the
most recent approaches: the multispike tempotron (MST; Giitig, 2016). This
is a single neuron architecture that can be trained to distinguish fixed spa-
tiotemporal patterns from (statistically indistinguishable) noise. Crucially,
the MST can also classify patterns into different classes, where the class label
is indicated by the number of output spikes released during the duration of
the pattern. Noise is always considered as class 0—that is, the MST should
not spike when presented with noise.

The neural dynamics of the MST can be summarized as follows: (1) The
state of the neuron is defined by the value of the internal membrane po-
tential V (¢). It is updated in discrete time. Spikes are generated when V (t)
crosses a set threshold value from below. (2) The inputs to the MST neu-
ron are N (unmodelled) presynaptic neurons, spiking with a set frequency.
(3) The MST does not accept directly spiking input, but it includes a pre-
processing step whereby input spikes are converted into analog signals via
a biexponential synapse. This could be interpreted as an additional layer
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of trivial, capacitor-like buffer neurons. (4) The membrane potential update
rule of the MST takes into account the total spiking history of the presynap-
tic neurons. As a result, the future evolution of the neuron does not solely
depend on the current state and inputs; it also depends on how the current
state was reached. The update function also includes a constant decay of the
membrane potential and a “soft” exponential reset following a spike. Un-
like, for example, the leaky integrate-and-fire (LIF) neuron, the MST does
not have an immediate hard reset to the resting potential or a refractory
period.

In summary, while the MST is a powerful neuronal model, it is also inter-
nally complex. The question we address here is whether this internal com-
plexity is necessary for the ability of the MST to learn. We find that it is not.
Much simpler models can learn at least equally well. To show this, we sys-
tematically strip away features from the MST and check whether this has
an impact on its ability to learn. To this end, we propose a family of gener-
alized neuronal models (GNM), which is a special case of the well-known
spike-response model (Gerstner & Kistler, 2002a; Jolivet, Lewis, & Gerst-
ner, 2003). The GNM contains a number of readily interpretable parameters
that we vary systematically in order to explore putatively crucial features of
the model. Depending on how the parameters are set, we can approximate
the MST model or implement radically simpler models. The most impor-
tant parameters that we shall find are the spikiness of the GNM and its
memory.

Using a rigorous exploration of the GNM parameter space, we find that
most of the complexities of the MST neuron are not essential for learning. In-
deed, there is no strict need for spiking, and is the soft reset is not important.
However, we do find that a balanced amount of memory of past states—that
is, a degree of temporal autocorrelation of the membrane potential—is cru-
cial for learning. Interestingly, we identify the hard reset of the well-known
LIF neuron (Gerstner et al., 2014), which erases any memory of prespike
states, destroying the correlation of postspike and prespike membrane po-
tentials, as a hindrance to learning in the single neuron model.

Following common practice in SNN, we assume that the GNM is up-
dated in discrete time. However, we also find that a continuous time
version of the GNM can classify well. This continuous time version is theo-
retically interesting because it lends itself to an interpretation as a chem-
ical reaction network (CRN). We conclude our letter by showing how a
very simple chemical system can be trained and used to perform multilabel
classification.

2 Methods

2.1 The Generalized Neuron Model. The GNM is a parametrized fam-
ily of models that can be tuned to display varying degrees of spikiness,
temporal autocorrelation of the membrane potential, and hysteresis (see
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Figure 1: (a) Schematic outline of the GNM model. GNM has N weighted input
connections, each of which receives temporal patterns of spikes. (b) When the
readout function reaches a threshold ¥, an output spike is recorded. In this ex-
ample, three patterns are presented: red, blue, and green. The GNM responds
with a single spike to the red pattern, two spikes to the blue pattern, and three
to the green pattern. It should remain silent otherwise during a noisy phase.
(c) Membrane potential as a function of time of the GNM stimulated by sub-
threshold (dashed line) and superthreshold (solid line) continuous input, with
parameters n = 0.8, « = 0.3, = 0.1. (d) Hysteretic behavior of D(t) as a func-
tion of V(t) in the presence of superthreshold input.

Figure 1). The model is defined by the update function of the membrane
potential V(t). If updates are made in discrete time, as is usual in the SNN
literature, then the model is as follows:

V)=Vt -1)=I1t)— (qyREt-1)V({E-1)+ 1 =)Vt —1))

=D(t)

Vit —1)"

R(t)—R(t—-1)=¢
Here, I(t) := Y1, w;8(t; — 1) is the sum of weighted inputs at time , and t} is
the time of the jth spike of input i, where i runs from 1 to M; §(x) is 1if x = 0
and 0 otherwise; 0 < w; < 1is the weight of the ith input. « and y are decay
coefficients of the membrane potential, 9g is a behavioral threshold, and 0 <
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n < lis amodel choice parameter. ¢ is a rate parameter of the Hill function,
h is a Hill function coefficient, and 8 defines the decay rate of R. The model
is best understood by considering some special parameter choices.

For n = 0, the update function of the membrane potential reduces to a
leaky integrator:

V() =Vt —1)=It) —aV(t —1). (2.1b)

In this case, the membrane potential is increased by whatever the input I is
at time t, and it decays by a constant factor «. In the limiting case of @ = 0,
there is no decay at all. The opposite extreme is « = 1, which means that
at each time step all the previous membrane potential is forgotten. For the
discrete model it is not meaningful to set « > 1 or « < 0. The parameter o
determines the temporal autocorrelation of the membrane potential, or the
“memory.” We will find this to be a crucial parameter for the performance
of the GNM.

When 7 > 0, an additional time-dependent decay rate R becomes rele-
vant. R can be thought of as describing the number of ion channels that
open only after the membrane potential approaches the threshold ¥5 and
close, stochastically, with a rate g. Alternatively, this can be understood as
the simplest model that implements a soft postspike reset.

At the start of a simulation, R(0) will be set to 0. The subsequent increase
of R(t) depends on the membrane potential via a Hill-function (the first
term on the right-hand side of equation 2.1a), which is a sigmoidal acti-
vation function. As h — oo, the Hill function approaches a step—function
with a transition at the point V = 9g. Even for finite values of /, the Hill
function will be close to zero (one) when the membrane potential V(t) is
below (above) ¢g. Note that the decay rate R decays itself with a rate of B.

The effect of this additional decay mode is that the membrane poten-
tial may decay faster after having crossed a threshold value 9. This in-
troduces a memory about past spike events into the model. The duration
of the reset depends on the value of 8 and continues even if the membrane
potential falls back below the threshold. Thus, the model has hysteresis (see
Figure 1d).

Before continuing, it is useful to discuss briefly the relation between the
GNM model and other well-known neuronal models. Unlike the MST, the
update rule of the GNM is purely state dependent. The n parameter can be
seen as regulating the “spikiness” of the model. The soft reset of the MST
can be simulated in the GNM when 7 > 0 and the values of the parame-
ters B, ¢ are set appropriately. The well-known LIF neuron behaves like the
GNM model withh = 00,{ =1,y =1/n,and 0 < 5 < 1, up to reaching the
behavioral threshold ¥, including the postspike reset. However, following
the reset, the LIF undergoes a deterministic refractory period, during which
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it remains insensitive to inputs. This type of fixed refractory period cannot
be simulated by the GNM.

In addition to the discrete time dynamics of equation 2.1a, we also show
simulations of the full continuous time dynamics. In order to describe the
continuous dynamics, we need to convert the difference equations, equa-
tion 2.1a into proper differential equations, thus obtaining:

d
av(t) =I(t) — myROV () + (1 —n)aV(t)),
=D(t)
d vy |
ER(t) = CW — BR;i(t). (2.1¢0)

In the differential equation model, the parameters «, g, y, { become rates
and are restricted to be positive, although they may be greater than 1. The
model choice parameter, however, remains restricted to 0 < n < 1. (See Fig-
ure 1a for a graphical representation of the model.)

In the case of n = 0 (i.e., no spikiness) the full model, equation 2.1c, re-
duces to:

V=I-aV. (2.1d)

2.2 Quantifying “Spikes”. In the discrete time version of the GNM,
“spikes” are determined by counting how often the membrane potential
V(t) (or decay D(t)) crosses the readout threshold vr from below. In mul-
tilabel classification, this value indicates class membership. In the case of a
single pattern, we require it to cross the threshold exactly once. The error
is then simply the difference between a target number of output spikes and
the actual number of spikes during M time bins of a pattern.

In the continuous time case, we need to use a different way to quantify
spiking based on the integral of the GNM membrane potential when it ex-
ceeds Vg

T
s::/ OV (t) — 9R)V (t) dt. 2.2)
0

where ® denotes the Heaviside function, 9y is a readout threshold, and T
is the length of the trial. The error is then defined as the difference between
the actual and the desired spike output (see Figure 2).

2.3 Training Algorithms. We use three different training algorithms to
compare the GNM with the MST. First, we use a version of the eligibility-
based ALL algorithm proposed by Giitig (2016), adapted to the GNM. We
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Figure 2: Example of pattern representations learned in a continuous-time
GNM trained in an aggregate label setup. The integral of superthreshold mem-
brane potential S is marked in blue. In this case, the continuous spike integral
totals at ~0.81 for the red pattern and ~1.98 for the green pattern. In order to
determine the spike indicator, we integrate the membrane potential when it is
above a threshold. The total integral then indicates the number of spikes. In
the case of the red pattern, the membrane potential crosses the threshold three
times, but the total integral is ~1; hence it indicates a single spike (rather than
three spikes).

also show that there are alternative algorithms that can be applied to the
GNM and provide better performance.

2.3.1 Aggregate-Label Learning (ALL). We first describe the eligibility-
based learning algorithm similar to the one that Giitig (2016) proposed. We
update the weights after a trial during which the neuron is shown target pat-
terns and noise for a given period of time. Depending on what was shown,
a target spiking number is then determined. After the trial is finished, we
then set the error to a negative value if the neuron spiked too many times
during this trial, to a positive value if it did not spike enough, and otherwise
we do not update. Note that the algorithm does not provide any feedback
about the degree to which the output was wrong, only about the “sign” of
the error. The learning step proceeds by updating the weights in this way:

4+ if & > D9
Aw; = . ,
0 if &; < Dg

T
€ = /0 L)V () dt. (2.3)

Here, A denotes the learning rate, which is positive when the error is posi-
tive and negative otherwise, and Dy represents the ninth decile (top 10%) of
the most eligible synapses. The variable ¢; is the eligibility of a presynaptic
neuron i toward the postsynaptic neuron. It quantifies the extent to which
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the presynaptic neuron i has contributed to a spike of the postsynaptic
neuron.

2.3.2 Error Trace Learning (ET). Second, we introduce an additional new
training approach that uses precise information about the timing of erro-
neous spikes, as well as when and which feature patterns should have been
recognized. The weight updates are calculated the same as in the ALL algo-
rithm, except that now we base the eligibility and the error on the values of
the integral at the time when each of the patterns was presented rather than
after an entire episode of patterns and noise sequences. Thus, the algorithm
obtains more detailed information about which weights caused erroneous
spiking. This means that in response to a pattern with a target of two spikes,
the neuron is supposed to cross the readout threshold exactly twice during
the duration of the presented pattern. We calculate the error for each indi-
vidual synapse by correlating its inputs with the error trace:

Aa)i = )»8,',

T
g = /0 L(HE(t) dt, (2.4)

where 1 is again the learning rate and E(t) denotes the error trace. Here, the
variable ¢; should be understood as “error blame” of a presynaptic neuron i
toward the postsynaptic neuron. It quantifies the extent to which the presy-
naptic neuron 7 has contributed to the erroneous activity of the postsynaptic
neuron.

2.3.3 Error Trace Backpropagation. Finally, unlike traditional spiking mod-
els, where backpropagation can only be applied indirectly (Neftci, Mostafa,
& Zenke, 2019; Tavanaei & Maida, 2017), the activation function of the GNM
is differentiable and backpropagation can in principle be applied with no
constraints. The temporal precision of error signaling in ET enables us to
further extend it to training multilayered networks of GNMs. By way of
demonstrating this, we show the network’s ability to solve the multilabel
classification task using an architecture of layered GNMs consisting of 10
hidden neurons (see Figure 3 for the architecture details).

2.4 Momentum Heuristic. In order to improve the speed of learning,
we also use a momentum heuristic. During each learning step, we add a
fraction of previous synaptic change to the update value:

Awlgurrent = w; + yAw}:vrevious (25)

where y is the momentum parameter; in all experiments it is set to 0.2.
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Figure 3: Error backpropagation in multilayered network of the GNM. We in-
troduce an intermediate layer of 10 hidden neurons. The hidden neurons have
the same neural dynamics as the output neuron and connect to the input source
in all-to-all fashion. It is worth noting that the output of the hidden neurons is
presented to the output neuron as a sum of decaying currents in the continuous
form. In order to successfully solve this task, we need to be able to propagate
the error back through the network and correctly adjust the weights for both
the output neuron and the hidden layer. The hidden layer neurons in the red
dashed box are subject to continuous lateral inhibition.

3 Results

3.1 Aggregate Label Learning in the GNM. We first tested how well
the discrete GNM can learn a single spatiotemporal pattern. Such a pattern
is a temporal sequence of M binary strings of length N. Throughout this let-
ter, we have kept N = 100 and M = 50. Patterns were generated randomly
by drawing each of the bits from a Bernoulli distribution with p(1) = 0.005.
In addition to randomly generated but fixed patterns, we expose the neuron
to a stream of noisy background activity. The random activity is generated
in the same way as the patterns, but unlike it, the noise is produced at each
time bin. As a consequence, the statical properties of noise and pattern are
identical in this setup.

The first task we set is as follows: GNM should respond with exactly
one spike if the input is a pattern and should stay inactive otherwise (i.e.,
if presented with noise). Unlike the MST, the GNM does not have discrete
output spikes. In order to interpret the output of the GNM, we thus need
to set an (arbitrary) readout threshold value 9r. The response of the GNM
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is determined by the number of times membrane potential V(t) (or decay
D(t)) crosses ¥r from below within the duration of the pattern (see Figure
1b). This number is used to indicate class membership. In the case of a single
pattern, we require it to cross the threshold exactly once.

We train the neuron using the ALL algorithm (see section 2.3.1). We first
test the performance of the GNM on the task of learning a single pattern.
Here, the neuron is presented with a random number of spatiotemporal pat-
terns embedded into noisy background activity at random times. At the end
of a trial, the GNM receives feedback indicating whether it has released too
many or too few spikes. In all experiments, we use the following parame-
ters: $ = 0.3,¢ =1, y = 1, which allow the neuron to exhibit a postspike re-
set closely resembling that of the MST. For each target pattern, we sampled
41 different values of both « and 1 parameters (altogether 1681 parameter
combinations) in order to test the performance of the GNM. We varied sys-
tematically the model choice parameter 1 from 0 (no spikiness) to 1 (com-
plete spikiness) and the decay rate « from 0 (complete memory) to 1 (no
memory). For each combination of parameters, we trained the GNM over
60,000 epochs (trials consisting of a random number of patterns embedded
into randomly generated noisy background activity) with a learning rate
A = 0.0001.

In order to determine the quality of learning, we subjected the trained
GNM to a stream of noise with randomly interspersed target patterns. If
the GMM is working correctly, it should respond not to the noise but to the
pattern. In practice, GNMs will not function perfectly. In order to quantify
the classification reliability of the neuron, we recorded the number of ran-
dom inputs given to the GNM before the GNM failed and averaged this
number over 100 repetitions. We henceforth refer to this as the noisy perfor-
mance measure and use it as an indicator of the quality of the GNM solution.
Here, a higher noisy performance is better.

Figure 4 summarizes the noisy performance of the GNM averaged over
five different patterns representing altogether 8405 different training itera-
tions of the GNM. The graphical representation reveals a qualitative struc-
ture of the parameter space, which we find to be generic for any number of
patterns.

For o, n ~ 0, corresponding to the top left corner, noisy performance is
low (i.e., the GNM does not classify well). The reason for the poor classifi-
cation can be understood easily. In this region, the decay of the membrane
potential V (t) is low and the GNM integrates over all past events. The mem-
brane potential remains in a permanent superthreshold state and thus is
unable to cross the threshold ¥r from below (or indeed from above).

Allowing some leak by increasing o while keeping 1 at 0 (i.e., going
down the left-most column in Figure 4) improves the performance dramat-
ically. For example, « is adjusted from 0.05 to just 0.08, the noisy perfor-
mance increases from approximately O to the global best. As « approaches
1, the performance decreases again. Therefore, for the subfamily of GNM
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Figure 4: Mean noisy performance averaged over five training iterations as a
function of & and 7. The value reported is the average number of epochs a neu-
ron can withstand without making an error, capped at (a) 1000, and (b) 10,000
time bins. Each simulation was trained for 60,000 epochs. The corresponding
MST performance averaged at ~377 epochs and is marked on the color bar
in blue. The red mark indicates the maximum value in the heat map. (b) The
dashed line shows the estimated optimal line (see main text for explanation).
(c) Noisy performance as a function of . The red line indicates = 0, and the
blue lines show 40 other 7 settings.

models with = 0, there must be a value of « that optimizes the learning, al-
though this optimum is not well resolved. Note that in region n = 0, which
we have considered so far, the neural dynamics is reduced to V;(t + 1) =
V(t) +1— aVi(t). As such, it lacks entirely the features that are usually as-
sociated with spiking neurons, including discrete spikes and an activation
threshold.

A behavioral threshold ¥ is introduced to the GNM by increasing the
spikiness parameter 1. Figure 4 reveals that high performance of the model
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concentrates along a fuzzy line of combinations of « and 7; we henceforth
refer to this as the optimal line (see Figure 4b). However, performance along
this line does not significantly increase for n > 0 relative to the nonspiking
case of 7 = 0. Indeed, we can see that the GNM performance drops for ex-
treme values of 7 ~ 1. In this regime, the threshold dynamics dominates,
and the membrane potential is constrained to a small range of values, mak-
ing learning impossible. Based on this, we conclude that at least for the case
of a single pattern, introducing spikiness does not bring any benefits. Glob-
ally best performance can be achieved for n =0 ato >~ 0.3.

There is also an appealing conjecture for the origins of the optimal line.
We observe from equation 2.1a that the decay is effectively reduced by
(1 — 7). The optimal line can then be interpreted as a consequence of there
being an optimal value for the parameter «. To see this, assume that this
optimal value is given by o = a*. Assume further that the actual value of «
is set to o’ > a*. A suitable choice of n satisfying (1 — ) = o™/’ can effec-
tively offset the nonoptimal choice of o back to the optimal value. If that is
true, it would generate precisely the observed optimal line in the parameter
space portrait. Beyond this correction of the decay parameter, an increased
spikiness has no apparent benefit.

3.2 Multipattern Learning in the GNM. So far, we have tested only
how the GNM learns a single pattern. The key achievement of the MST is
that a single neuron can learn to recognize multiple patterns and multiple
classes of patterns. For example, there may be a set of patterns to which the
MST responds with one spike and a set of patterns to which it responds
with two spikes and so on. We now test whether the GNM can do the same.
Similar to before, we interpret the GNM as “spiking” n times if during the
presentation of the pattern, the membrane potential crosses the readout
threshold ¥ from below n times.

Using this convention, we found that the multipattern case shows a qual-
itatively similar picture in parameter space as the single pattern case (see
Figure 5), including an optimal line. Altogether, however, the noisy perfor-
mance of the GNM dropped quickly with the number of pattern classes. For
example, in the case of four different classes, the GNM responds to noise,
and thus fails, after approximately 200 time bins on average, in the best
case (see Figure 5c). Again, as in the single class case, there does not ap-
pear to be any benefit in increasing n above 0. While for some patterns the
performance of the GNM with 1 > 0 is better, there was no consistent best
value of 7, and the best model with n = 0 was always comparable to the
globally best result (see Figures 5b and 6). In order to understand this in
more detail, we plot the noisy performance residuals graph (see Figure 6b
and supplementary information S2). Here, we define residuals as a perfor-
mance difference of the best « for any given  with the best performer from
n = 0. In simple terms, for each column in a heat map, we select the best
row and compare it to = 0. Thus, negative values of the y-axis (i.e., points
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Figure 5: Same as Figure 4, but for (a) two, (b) three, and (c) four classes of
patterns.

below the dashed line) indicate that the best performer for a particular »
was worse than that of 7 = 0, for a given set of feature patterns. We found
that most of the points fall under the dashed line, indicating that n =0 is
competitive. One of the training simulations has exceeded the line. Given
that the setup is identical for all simulations, apart from the random seed
and the pattern, we take this as an indication that there is no fundamen-
tal performance difference between the parameters with 7 = 0 and those
with a positive 7. In summary, we found that the GNM can perform well on
the multilabel classification task with performance comparable to the more
complicated MST model (indicated by the blue line on the color bars in Fig-
ures 4 and 5). Intriguingly, we also found that it is sufficient to consider the
simplest nonspiking case of the GNM corresponding to n = 0.

3.3 Comparison to Other Training Methods and Neural Models. We
have found that the GNM is competitive with the MST. However, the com-
parison is unfair because we compared a large number of simulations to just
a single parameter setting of the MST. We now investigate the performance
of the GNM relative to other models with more rigor.

To do this, we conducted 50 training simulations for the task of recogniz-
ing two patterns and discovered that MST outperformed the GNM (trained
using ALL) only three times, for fixed parameters of the GNM—n, = 0.0 and
o = 0.3—and MST: 7, = 20, and 7; = 5 (see Figure 7). This allows us to sug-
gest that the GNM is not only simpler to implement but also learns better.

Next, we performed the same comparison with the LIF neuron. The LIF
neuron is similar to the GNM, and it is reasonable to conjecture that it can be
trained to perform multilabel classification as well. The MST and the GNM
differ from the LIF in two features: they do not have a refractory period, and
their reset function following a spike is exponential, rather than an absolute
reset to the resting potential. We compared the ability of the LIF neuron to
recognize patterns with the GNM assuming n = 0 and « = 0.3 (see Figure
8). We used the same parameters for the LIF neuron and varied the length
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Figure 6: (a) Noisy performance as a function of « for same data as in Fig-
ure 5. The red line indicates n = 0, and the blue lines show 40 other 7 settings.
(b) Noisy performance residuals for each of five training simulations as a func-
tion of  in a range from 0.025 to 0.6. Residuals as a performance difference of the
best « for any given n with the best performer from n = 0. The deviation from
the dashed line indicates the difference in performance in comparison to n = 0.
Negative values indicate that the best training for a particular n was worse than
n = 0 (see supplementary information S2 for the same graph for one, two, and
four classes of patterns). We find that only in a single run was n = 0 subopti-
mal, thus conclude that there is a variation of performance that depends on the
random seed given for pattern generation.

of the refractory period from 0 to 25. We contrast the two neural models by
calculating the noisy performance ratio, which is the average noisy perfor-
mance of the LIF neuron divided by that of the GNM in the same task. For
a single pattern, the LIF neuron performs comparably to or slightly worse
than the MST and the GNM, and the performance tends to increase with
the length of refractory period (see Figure 8). However, for more than one
pattern, the LIF neuron normally yielded a worse noisy performance than
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Figure 7: Comparison of the noisy performance measure in the task involving
classification of two classes of patterns for MST, GNM trained using ALL, GNM
trained using ET, and multilayered network of GNMs trained using BP. Neu-
ron models have been trained for 60,000 epochs with the following parameters:
GNM:« =0.3,n=0,8=0.3; MST: 7,, = 20, and 7, = 5.
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Figure 8: Noisy performance ratio of the GNM with n = 0 with a corresponding
LIF neuron on the task of learning one and three classes of patterns. The noisy
performance ratio is defined as the average noisy performance of the LIF neuron
divided by that of the GNM (ALL). Both neuron models have been trained for
60,000 epochs with the following parameters: GNM:« = 0.3, = 0, 8 = 0.3; LIF:
a = 0.3, and varied length of the refractory period.

both MST and GNM. In this case, the performance drops with the increase
in refractoriness. This shows that the period of forced inactivity hinders the
multi-spike response. Note that for a refractory period of 0 the LIF neuron is
identical to the GNM with the exception of the hard reset following a spike,
but still performs worse on multilabel classifications. This suggests that the
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hard reset hinders multilabel classification and is the reason for reduced
performance of the LIF model. This is consistent with our conjecture that
the temporal autocorrelation of membrane potential is important for learn-
ing. We see from Figure 8 that the noisy performance increases with the
refractory period. This is a consequence of the fact that during that period,
the LIF neuron remains insensitive to inputs.

In addition to comparing the GNM to other neural models trained using
the same algorithm, we also contrasted the performance of the original ALL
algorithm with training techniques involving more information about the
time of the error (i.e., error trace learning; see section 2.3.2). We find that the
error trace learning algorithm has consistently outperformed ALL (see Fig-
ure 7). Out of 50 training simulations that we conducted (for a GNM neuron
with parameters n = 0, « = 0.3), 46 achieved a better result in terms of noisy
performance when using the ET method. This tells us that despite the fact
that the ALL is an elegant and simple training rule, it is also suboptimal.

Moreover, we propose an extension of the ET rule to setups of multilayer
networks. The error backpropagation algorithm (see section 2.3.3) can be
applied directly to the GNM (see Figure 7). However, for the present task,
we could not find any benefits in applying backpropagation. This is not to
say that for more complex problems, backpropagation may be beneficial in
SNNs. Exploring this is beyond the scope of this letter, and we leave it to
future research.

3.4 Interpreting GNM as a System of Chemical Reactions. A common
assumption in the SNN literature, including the MST, is that the input chan-
nels are clocked that is, the model is updated in discrete time. It is straight-
forward to extend the GNM model to the continuous case (corresponding to
equation 2.1c). We found that training the model in continuous time yielded
qualitatively the same results as the discrete time case. We demonstrate
the feasibility of this interpretation by training a continuous-time version
of the GNM to recognize two classes of patterns (see Figure 2). The exten-
sion to the continuous case is interesting because then the GNM model with
n = 0 (see equation 2.1d) can be interpreted as the description of a molecu-
lar species V that decays with a rate of «. The input I is then mathematically
equivalent to N different input chemical species I;, each decaying to V with
a rate of w;C and to a null species with a rate of (1 — w;)C. In this case, the
constant C sets the time scale of the decay and could be the same for all
presynaptic neurons. Having interpreted the GNM as a chemical system,
we can then test its ability to recognize patterns by solving the differential
equation 2.1d.

An underlying assumption of the differential equation models is that the
number of molecules involved in the system is very large (technically infi-
nite), such that V can be described as a concentration. In any real system,
the number of particles is finite. Indeed, in many biological information pro-
cessing tasks, there may only be a small number of particles involved in the
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Figure 9: Membrane potential of a deterministic continuous-time GNM neu-
ron trained to recognize two classes of patterns (black line) and equivalent
stochastic chemical reaction network simulations with an input “spike” equiv-
alent to 25, 100, and 500 molecules. For parameters n =0, « = 0.2, § = 0.3. The
presynaptic spikes were encoded as an instantaneous increase of corresponding
presynaptic “species” by N, where tj. is the time of the jth spiking event of the
ith presynaptic neuron, and N = 25, 100, 500 is the number of particles that is
added to the presynaptic species i at time t/. C was set to 10.

computation. In this case, the system will exhibit noise around the exact so-
lution of equation 2.1d (see Figure 9 for a comparison of the stochastic and
the deterministic solution). A concrete consequence of this is that the out-
put of the neuron becomes stochastic with more or less frequent incorrect
outputs, depending on the number of particles.

4 Discussion

In this letter, we have probed the minimal ingredients necessary for neu-
ral computation in the context of multilabel classification of spatiotemporal
patterns. We introduced the GNM, which can solve multilabel classifica-
tion tasks at least as well as the MST, while being purely state based. The
model also has a conservation of membrane potential built in. This does not
preclude leakage of membrane potential, but it prevents its creation out of
nothing. In that sense, the model is physically plausible, which allows it to
be interpreted in terms of concrete implementations (see below).

The dynamics of the GNM are simple and its parameters easily inter-
pretable, which supports an intuitive understanding of what precisely it is
that makes single neuron classification work. The parameter « can be inter-
preted as a memory. It determines how much membrane potential is leaked
between two update steps. In the extreme case of « = 1, the neuron is re-
set during each time step and has no memory of past inputs. In this limit,
the GNM is reduced to a standard rate-coding neuron. The performance
of the GNM is substantially decreased, but some learning is still possible.
For o = 0, the neuron integrates over all past events and never forgets. It
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is clear from both basic considerations and our simulation results that this
latter limit does not allow the GNM to recognize patterns. In between those
two extremes is an optimal value for the memory of the GNM. Figures 4c
and 6a suggest that the model is not particularly sensitive to the memory
parameter, at least not for intermediate values. Interestingly, however, our
simulations also suggest that at the lower end of the parameter range, there
is a critical value of « that separates almost perfect ability to learn from
complete nonperformance.

The second key parameter is the model choice parameter 7. It controls
the extent to which the neural dynamics is affected by an internal thresh-
old and hysteresis—in short, how much spikiness the neural dynamics ex-
hibits. For n = 0, the internal dynamics is a simple exponential decay with
time constant «. No thresholds are defined internally, and there is no spik-
ing whatsoever. Note, however, that the use of the neuron still requires an
evaluation threshold ¥r to be set in order to be able to interpret the mem-
brane potential of the GNM as indicating the pattern class.

Increasing 5 introduces an additional behavioral threshold parameter,
¥, which now does have an impact on the internal dynamics of the GNM.
As the membrane potential nears ¥, an additional decay term R becomes
relevant, such that after crossing the threshold, the decay may be higher
than before crossing the threshold. This endows the GNM a spikiness and,
most of all, with a time-limited memory of past spiking events

We found that model performance was consistently best along an off-
center diagonal in the lower left quadrant of the heat maps (see Figures
4 and 5). Crucially, however, there is no consistent evidence for an optimal
point along this diagonal. The conclusion to draw from this is that it is suffi-
cient to consider the reduced parameter space corresponding to n = 0—the
case of no spikes. Put differently, there does not appear to be any benefit in
spiking.

The existence of the optimal line provides some insights into the neces-
sary ingredients for spiking networks in that it points to the memory pa-
rameter « as the main determinant of performance. The optimal line, albeit
not very well defined in our models, is the line of constant memory, because
the factor (1 — n) effectively reduces the memory parameter «. Therefore, it
appears from our simulations that there is an optimal memory for the per-
formance of the GNM which lies in between the extreme and nonperform-
ing cases of « = 0 and « = 1 corresponding to no forgetting and no memory
at all. However, note that the model is not particularly sensitive to the pre-
cise value of «, such that there is a range of values for which performance
is good.

The conclusion that the GNM can perform with no spiking opens an in-
teresting perspective. For n = 0, the GNM model, equation 2.1d, looks for-
mally like the time evolution of the concentration V' of a molecular species

. o . . .
subject to decay, V — @, plus occasional instantaneous increases of V,
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V — kV. Fundamentally, such a chemical system is an extremely simple
system that can be implemented easily in (wet) experiments. Yet as we
show, this simple system is sufficiently rich in its dynamics in order to per-
form the multilabel classification as well as the specialized MST model. All
the chemical system retains in common with the MST is the temporal cor-
relation of the input. This leads us to conjecture that this temporal autocor-
relation is a crucial element for multilabel classification of spatiotemporal
patterns.

This formal equivalence of GNM and chemical systems begs the ques-
tion whether there actually are man-made or naturally occurring chemical
systems that recognise spatiotemporal patterns. An obvious place to look
for such systems are biochemical networks. It is conceivable that multilabel
classification is exploited by gene regulatory networks to control gene ex-
pression by means of sequences of gene expression events.

Having shown that very simple systems can perform multilabel classifi-
cation, it is instructive to compare the GNM and MST to another very sim-
ple model of a spiking neuron: the LIF neuron. The LIF neuron is different
from both the GNM and the MST in that it has a hard reset following a
spike and typically undergoes a refractory period. The refractory period,
together with lateral inhibition, is a useful feature in the context of STDP
learning (Feldman, 2012; Gerstner & Kistler, 2002b), which can be used to
facilitate a winner-takes-all dynamics in multilayer SNN networks, which
in turn is important to prevent all postsynaptic neurons from learning the
same parts of the input. Beyond that, it is unclear whether there is a com-
putational benefit in the refractory period.

Our simulations showed (see Figure 8) that the LIF has a comparable
performance to the MST/GNM when classifying a single pattern, but its
ability to learn drops for multipattern classification. This is understandable
because the refractory period effectively shortens the time the LIF is able to
react to incoming signals, thus making it hard for the neuron to activate sev-
eral times during a limited period. Yet as our simulations show (see Figure
8), the performance of the LIF neuron is worse even for a refractory period
of length 0. Once the refractory period is removed, the only remaining dif-
ference between the LIF and the GNM is the hard reset. Note that this hard
reset effectively destroys the temporal autocorrelation of the membrane po-
tential. Hence, the observation that the LIF neuron performs worse than
the GNM supports further our conclusion that a balanced memory of the
membrane potential is required for good performance on multilabel clas-
sification of spatiotemporal signals. This now raises the question whether
of biological neurons, which clearly do have a refractory period, are sub-
optimal components. We do not believe that this conclusion can be made
because brains operate in a different context from the restricted problem
set that we considered here. Moreover, the refractory period in real neurons
may well be a reflection of some resource limitations or physical constraints
that we have not considered here, thus making a comparison invalid.
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Throughout this letter we have evaluated the GNM assuming an ag-
gregate label delayed feedback learning rule during training. This training
method is mainly motivated by its biological plausibility. In applications
of the GNM/MST in the context of Al, biological plausibility is not a rel-
evant criterion. We found, perhaps rather unsurprising, that dropping the
requirement of aggregate label delayed feedback in favor of more immedi-
ate and information-rich feedback led to increased model performance (see
section 3.3).

Once we allow such direct error feedback, we can extend it to
backpropagation-based training methods in networks of GNMs. We
demonstrate the feasibility of this approach by solving the multilabel clas-
sification task using a layered network of GNMs with 10 hidden neurons
(see Figures 3 and 7). Deep learning with SNNs could lead to substantive
benefits in terms of smaller models and more efficient hardware if only it
is possible to transfer established deep learning techniques to spiking ar-
chitectures. We leave it to future research to establish whether the GNM
or similar spiking architectures could indeed be a credible alternative for
existing deep architectures.

5 Conclusion and Outlook

Giitig’s multispike tempotron is a powerful single neuron model that can
classify spatiotemporal patterns into multiple classes. The model is also
complicated to implement. Here, we showed that the much simpler GNM
neuronal model can achieve the same performance as the MST. Our results
indicate that the important feature of neuronal models is the temporal au-
tocorrelation of the membrane potential; that is, how quickly the neuron
forgets about past inputs. We found that for intermediate values, the model
performance is maximized. It remains an open question for future research
whether this conclusion is specific to the particular task we considered, or
whether the optimal memory emerges as the crucial parameter in all appli-
cations. If the power of SNNs is to be leveraged in practical Al applications,
then it will be necessary to understand the minimal spiking neuron that is
sufficient for a particular task so as to be able to build resource-efficient
systems.
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