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A reflex is a simple closed-loop control approach that tries to minimize an
error but fails to do so because it will always react too late. An adaptive
algorithm can use this error to learn a forward model with the help of pre-
dictive cues. For example, a driver learns to improve steering by looking
ahead to avoid steering in the last minute. In order to process complex
cues such as the road ahead, deep learning is a natural choice. However,
this is usually achieved only indirectly by employing deep reinforcement
learning having a discrete state space. Here, we show how this can be di-
rectly achieved by embedding deep learning into a closed-loop system
and preserving its continuous processing. We show in z-space specifi-
cally how error backpropagation can be achieved and in general how
gradient-based approaches can be analyzed in such closed-loop scenar-
ios. The performance of this learning paradigm is demonstrated using a
line follower in simulation and on a real robot that shows very fast and
continuous learning.

1 Introduction

Reinforcement Learning (Sutton & Barto, 1998) has enjoyed a revival in re-
cent years, significantly surpassing human performance in video games
(Deng et al., 2009; Guo, Singh, Lee, Lewis, & Wang, 2014). Its success is
owed to a combination of variants of Q learning (Watkins & Dayan, 1992)
and deep learning (Rumelhart, Hinton, & Williams, 1986). This approach is
powerful because deep learning is able to map large input spaces, such as
camera images or pixels of a video game, onto a representation of future
rewards or threats, which can then inform an actor to create actions as to
maximize such future rewards. However, its speed of learning is still slow,
and its discrete state space limits its applicability to robotics.

Classical control, on the other hand operates in continuous time (Phillips
& Harbor, 2000), which potentially offers solutions to the problems en-
countered in discrete action space. Adaptive approaches in control develop
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forward models where an adaptive controller learns to minimize an error
arising from a fixed feedback controller (e.g., proportional integral deriva-
tive (PID) controllers) called “reflex” in biology. This has been shown to
work for simple networks (Klopf, 1986; Verschure & Coolen, 1991) where
the error signal from the feedback loop successfully learns forward models
of predictive (reflex) actions. In particular, there is a rich body of work in
the area of movement control and experimental psychology where a sub-
ject needs to work against a disturbance—for example, pole balancing with
hierarchical sensory predictive control (HSPC) (Maffei, Herreros, Sanchez-
Fibla, Friston, & Verschure, 2017) or grasping of different objects (Haruno,
Wolpert, & Kawato, 2001). One of the earliest models is feedback error learn-
ing (FEL), where the error is actually just the control output of the feedback
controller itself, which then computes a forward model by using a “distal”
or earlier signal such as the impact or a cue (Miyamoto, Kawato, Setoyama,
& Suzuki, 1988). However, based on biological anticipatory control, there
is mounting evidence that the brain also predicts future perceptual events
and monitors its task performance in this way (Maffei et al., 2017; Popa
& Ebner, 2018), which we will also honor in this work. Nevertheless, both
HSPC (Maffei et al., 2017) and FEL have the drawback that they employ
only single-layer networks where an error signal trains neurons with the
help of a heterosynaptic learning rule.

In a more technical context, such a network also employing sensor pre-
dictions was able to improve the steering actions of a car where a nonop-
timal hard-wired steering is then quickly superseded by a forward model
based on camera information of the road ahead (Porr & Worgotter, 2006;
Kulvicius, Porr, & Worgotter, 2007). Such learning is close to one-shot learn-
ing in this scenario because at every time step, the error signal from the PID
controller is available and adjusts the network (Porr & Worgétter, 2006). In
these learning paradigms the error signal is summed up with the weighted
activations of neurons to generate an action command for both the reflex
and learning mechanism (Porr & Worgotter, 2006). This has the advantage
that the error signal also has a behavioral meaning, but the immediate sum-
mation of the error with the activations results in the loss of information,
which means that the system is much more constrained, so it cannot be ex-
tended to deeper structures. This is reflected in Kulvicius et al. (2007) in
a dedicated chained architecture, which shows that the design of the net-
work topology is constrained because of the merging of the error signal
with the activation. Thus, so far, these fast-learning correlation-based net-
works could not easily be scaled up to arbitrary deeper structures and con-
sequently had limited scope.

Anatural step is to employ deep learning (Rumelhart et al., 1986) instead
of a shallow network to learn a forward model. If we directly learn a for-
ward model with the deep network mapping sensor inputs to actions, then
we no longer need a discrete action space. This will then allow potentially
much higher learning rates because the error feedback will be continuous as
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Figure 1: The closed-loop platform consists of an inner reflex loop (solid lines)
and an outer learning loop (dashed lines); the learning unit N(w) generates a
forward model of the environment. U; are the inputs to the network, generated
by filtering the predictive signals, P;, with a bank of low-pass filters, FB. Given
these inputs, the network generates an action Ap that combats the disturbance
D on its arrival at the reflex loop. Finally, the closed-loop error E. gives an in-
structive feedback to the learning unit on how well Ap protected the system
from D.

well. In order to achieve this, we need to define a new cost function for our
deep network, which is defined within the closed-loop framework bench-
marking the forward model in contrast to a desired output.

In this letter, we present a new approach for direct use of deep learning in
a closed-loop context where it learns to replace a fixed feedback controller
with a forward model. We follow the line of argumentation by Maffei et al.
(2017) that anticipatory actions can be controlled by predictive sensory sig-
nals and that these are superior to motor anticipation because they can gen-
erate those actions based on predictive sensory cues alone. We show in an
analytical way how to use the Laplace/z-space to solve backpropagation
in a closed loop system. We then apply the solution first to a simulated line
follower and then to a real robot where a deep network learns fast to replace
a simple fixed PID controller with a forward model.

2 The Learning Platform

Before we introduce and explore the deep learner N, we need to establish
our closed-loop system. The configuration depicted in Figure 1 is the archi-
tecture of this learning paradigm, which provides a closed-loop platform
for autonomous learning. It consists of an inner reflex loop and an outer
predictive loop that contains the learning unit. In the absence of any learn-
ing, the reflex loop receives a delayed disturbance Dz~ T via the reflex en-
vironment Qg; this leads to the actual state S,. Given the desired state S,
the closed-loop error (E;) is generated as E. = S; — S,. This drives the agent
to take an appropriate reflex action Ag as to recover to S; and force E. to
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zero. However, the reflex mechanism, Hg, can react to the disturbance D
only after it has perturbed the system.

Hence, the aim of the learning loop is to fend off D before it has disturbed
the state of the robot. To that end, this loop receives D via the predictive en-
vironment Qp and in advance of the reflex loop. This provides the learning
unit with predictive signals P;, and given its internal parameters w, a pre-
dictive action is generated as Ap = N(P;, w).

During the learning process, Ap combined with Ag and Dz~T travels
through the reflex loop, and E. is generated. This error signal provides the
deep learner N with a minimal instructive feedback. Upon learning, Ap fully
combats D onits arrival at the reflexloop (i.e., Dz~ T); hence, the reflex mech-
anism is no longer evoked and E. is kept at zero.

3 Closed-Loop Dynamics

The aim of the learning is to keep the closed-loop error E, to zero. In
Figure 1, this signal is derived as E.(z) = S4(z) — S(z); expansion of S,(z)
yields!

Si — Qr(Dz™T + Ap)

E.=S;— Qr(Dz T + E.Hg + Ap) =
c d QR( Z + LcHAR + P) 1+HRQR

3.1)

In mathematical terms, learning entails the adjustment of the internal pa-
rameters of the learning unit o so that E; is kept at zero. To that end, the
closed-loop cost-function C. is defined as the square of absolute E.:

C. := |E.%. (3.2)
Introduction of the closed-loop cost function (C.) translates the learning

goal into adjustments of @ so that C; is minimized. This in turn ensures
that E. is kept at zero.

aC.
Jw

oE,
=2|E.|— (3.3)
Jw

: E. =0, learning goal

E. # 0, local minima '

When analyzing the weight dependency of C, in the context of closed-loop
learning, it is intuitive to separate the dynamics of the closed-loop environ-
ment and the inner working of the controller using the chain rule, where Ap
serves as the intermediate signal:

9C. _ 9C. 24p
dw  0Ap dw

= GcGy. (3.4)

'For brevity, we omit the complex frequency variable (z).
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The former partial derivative, termed closed-loop gradient G, solely relates
to the dynamics of the closed-loop platform; this is derived from equations
3.1and 3.2:

GC =

aC, JoE. —
- R _ E Tk, (3.5)
P

=2|E =2|E/|——————
0Ap | C|8 | C|1+HRQR

—Or
1+HRQr

where the resulting fraction
Tx.

is the transfer function of the reflex loop

4 Toward Closed-Loop Error Backpropagation

To be able to link open-loop backpropagation to our closed-loop learn-
ing paradigm, we need to relate our closed-loop error E, to the standard
open-loop error utilized by backpropagation. In conventional open-loop
implementations, the open-loop cost function C, and open-loop error E, are
defined at the action output of the network:

Cy = |Eo|? := |A% — Ap|?, (4.1)

where A‘f, is the desired predictive action. Minimization of C, with respect
to the internal parameters of the learning unit o gives

9C, _ G, 94r
dw  0Ap dw

= GoGn. (4.2)
The former partial derivative is termed open-loop gradient Go, from equa-
tion 4.1:

oF
=2F,—2 = —2|A% — Ap|. 4,
Go "34, |AD Pl (4.3)

Now we relate the open-loop parameters to their closed-loop counterparts.
To that end, E. can be expressed as

E. = Qr(Dz"T + E.Hg + A%) — Qr(Dz"T + E.Hg + Ap)
= Qr(A% — Ap) = QrE,. (4.4)

Given that Qg is a nonzero transfer function, the open-loop error is kept at
zero if and only if the closed-loop error is kept at zero:

Qr #0, therefore: E.=0 <= E,=0. (4.5)
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Figure 2: The computational unit shows the structure of the jth neuron in layer
£. This shows the forward propagation of the inputs (dashed arrows) and back-
propagation (dotted arrows) of the error to the deeper layers, as well as the
learning rule (solid arrows). A? is the activation of this neuron, and Af‘l is the
activation of the ith neuron in the previous layer. Ff is the linking error (I") of this
neuron, whlist Ff‘l is the linking error of the ith neuron in the previous layer.
a)f]. denotes the weight that connects the ith neuron in the previous layer to this
neuron. The dash dotted rectangle marks the correlation of the closed-loop er-
ror (E.) with the internal parameters of the neuron highlighting the update rule,
where Tk is the transfer function of the reflex loop shown in Figure 1.

Having established how the closed-loop error can be fed into an error back-
propagation framework, we are now able to present the inner workings of
the learning unit.

5 The Inner Workings of the Deep Learner

Having explored the closed-loop dynamics, we now focus on the inner
working of the learning unit. The latter partial derivative in equations 3.4
and 4.2, termed the network gradient Gy, is merely based on the inner con-
figuration of the learning unit, which in this work is a deep neural network
(DNN) with backpropagation (BP). Given that the network is situated in
the closed-loop platform, its dynamics are expressed in z-space.

The forward propagation (FP) entails feeding the filtered predictive in-
puts U; and generating the predictive action Ap. This is shown in Figure 2
with dashed arrows and is expressed as

A? = Ef;lwfjAf’l where: (:2,...,L note that: A} = zlew}ju,-,
(6.1)

where A denotes the activation of neurons,> L and I denote the total
number of hidden layers and the total number of neurons in fth layer,

2Subscripts refer to the neuron’s index, and superscripts refer to the layer containing
the neuron or weight.
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respectively. wf ; denotes the weights of the neurons in the z-domain, which

are treated as constant since their rate of change is considerably slower in
the time domain. We can formulate network gradient (Gy) with respect to
specific weights of the network using equation 5.1:

1
dAp  dAp NG 0Ap o1

=50 = YN ]
Ba)ij BAj 8a)i]. BAj

N (5.2)

dAp
YN

J
to generate the internal error and hence is termed linking error I' and is
calculated using backpropagation:

The resulting partial derivative correlates with the closed-loop error

0Ap
F? == zle(wf,jlr,f“) where: ¢:(L—1),...,1
j
note that: F]L. =1, (5.3)

where K is the total number of neurons in the (¢ 4 1)th layer. Therefore, the
Internal error @ of the neuron, measuring sensitivity of the closed-loop cost
function with respect to its activation, is given as refer to equation 3.5 and
5.3

o o e _ 9Cc dAp _

—Qr
= —— = L _24E
1AL T 947 94 |

C|1+HRQR

r;. (5.4)

The time-domain update rule for a specific weight can be expressed as the
correlation of the internal error of the neuron with the input associated with
that weight:

Awf; =n®i)A T (-2), 1< (5.5)

The small learning rate 1 ensures that the time-dependant weight change
is small compared to closed-loop dynamics. The gradient of the C. with
respect to an arbitrary weight is given as following, referring to equations
3.5,5.1, and 5.4:

d0C.  aC. OAj  —2|E|Qx

8a)f]. 3A§ 8a)f]. 1+ HrQr

Troo(w i T AT
= S (i oA (5.6)

This shows that the changes in C; with respect to an arbitrary weight de-
pends on the weighted internal error introduced in the adjacent deeper
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layer. This is the propagation of C, into the deeper layers and shows the
backpropagation in the z-domain.

This concludes the derivation and formulation of our closed-loop deep
learning (CLDL) paradigm. It is worth noting that CLDL is an online learn-
ing platform where the robot learns while driving and navigating through
the environment. This is fundamentally different from conventional offline
learning, where an agent is trained first and merely recalls the trained in-
formation when in use.

6 Results

The performance of our CLDL paradigm is tested using a line follower
in simulation and through experiments with a real robot. The learning
paradigm was developed into a bespoke low-level C++ external library
(Daryanavard & Porr, 2020a). The transfer function of the reflex loop Tz,
resulting from equation 3.5, is set to unity for the results.

6.1 Real Robot Experiments

6.1.1 Robot Configuration. The experiments with a real robot were carried
out using a Parallax SumoBot as a mechanical test-bed, a Raspberry Pi 3B+
(RPi) for computation, and an Arduino Nano as the motor controller with a
sampling rate of 33 Hz (Daryanavard & Porr, 2020b). Figure 3A shows the
configuration of the robot. The robot is placed on a white canvas measuring
100 by 120 cm, with the path printed in black. The robot has two separate
sets of sensors, where one set feeds in the reflex circuit and the other into
our CLDL algorithm. The sensor set for the reflex is equipped with a sym-
metrical array of six light sensors, [G]s, beneath the chassis and close to the
canvas. The sensor set, which feeds into CLDL, is represented by a standard
camera mounted on the robot. These are our predictors. Figure 3B shows the
camera view and the array of light sensors in relation to one another. The
six light sensors measure the intensity of the reflected light from the canvas
in the form of 8-bit unsigned integer data, with 255 referring to full bright-
ness and 0 referring to full darkness. As the robot navigates the canvas, if
the light sensors align above the black line, their reading drops from a high
value to a lower value, generating an error signal and thus indicating that
the robot has gone off the path, and then generating a steering command
sent to the servo motors adjusting the velocities of the right and left wheels
V& 1- In short, the sensors read the gray-scale value (GSV) of a small section
of the canvas immediately underneath them, generating a corrective reflex
reaction and, with that, our error signal for the CLDL algorithm.

6.1.2 Closed-Loop Error. The closed-loop error signal is defined as a
weighted sum of the output of the light sensors array, [G] = Gr 12,3 and
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Figure 3: (A) The configuration of the robot and the canvas on which it navi-
gates. A battery bank is placed on the chassis that powers the Raspberry Pi 3B+
(RPi) and provides power to the array of light sensors [G]s and the motors. The
camera provides a view of the path ahead from point @ to @. The star sign
marks a disturbance in the path, such as a bend. (B) The view of the path ahead
as a matrix of segments of the vision, [I],,,,, as well as the array of six light sensors
[G] = Gr23 and Gp 1.23. This shows the minimum and maximum time differ-
ence between the farthest and nearest predictors and the error signal. (C) The
temporal relationship between impulse-shaped disturbances Py, and P, and
a light sensor E.. It shows how filtering of the predictors P, and P,.,, by the fil-
ter bank Fy, ..., F; causes appropriate delays so as to optimize their correlation
with the error signal E. derived from the light sensors.

Gr,12,3. The positioning and configuration of these sensors are shown in
Figures 3A and 3B. The error signal is calculated as

Ec=2-(Gr1 —Gr1) +3- (G2 — Gr2) +5- (Gr3 — Grs)  [GSV]. (6.1)

The greater the deviation of the robot from the path (i.e., a nonzero (Gr3 —
Grs)), the greater the error signal, depending on the weighting of the sen-
sor pairs. This results in a more informative error signal that is fed to the
network for learning, and a smoother steering action is generated in return.
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6.1.3 Predictors. The camera provides a view of the path ahead, which
is divided into a matrix of 8 by 12 segments, [I],, ,, as shown in Figures 3A
and 3B. Predictive signals, P;, are extracted from this matrix as

P =1L, — Ly, where n* is the sensor index symmetrical to j. (6.2)

This results in 48 predictive signals that are used for learning.

6.1.4 Filter-Bank. The predictive signals are filtered so as to cause the cor-
rect delay for optimum correlation with the closed-loop error signal. The
specifications of these filters depend on environmental parameters and are
obtained through a simple experiment. The robot is placed on a straight
path with a disturbance ahead (a bend), which is shown as a star sign in
Figures 3A and 3B. The robot is switched on and moves forward with a con-
stant velocity of Vy = 5[%*] with the steering ability deactivated. The distur-
bance first appear, at position @ at time fy and is sensed by the predictor
farthest from the robot, Pg,,. The disturbance next appears at position @ and
is picked up by a the predictor nearest the robot, Py, at time #;. Finally, in
position, © the disturbance is sensed by the light sensors, which generate
an error signal E at time f,. These signals, Psy, Puear, and E. are shown in
a timeline in Figure 3C. In order to cause an optimum correlation between
the predictors and the error signal a maximum delay of Tn.x =t —tp and
a minimum delay of Tryin = t1 — fo is needed. These time delays are deter-
mined by the number of samples between the events, and given the sam-
pling rate of 33 Hz we find that Tryax = 0.4[s] and Tyin = 0.2[s], as shown
in Figure 3C. Thus, a bank of five second-order low-pass filters, FB, is de-
signed with damping coefficients of Q = 0.51 and impulse responses with
peaks from 0.2 to 0.4 seconds.

6.1.5 CLDL Algorithm. Figure 4 shows the configuration of our deep neu-
ral network used for experiments. This is a feedforward network composed
of fully connected layers that performs backpropagation. The filtering stage
of the 48 predictors is also illustrated in this figure, resulting in 240 filtered
inputs U; to the network. Thus, the network consists of an input layer with
240 neurons, as well as 11 hidden layers with 11 neurons in each, and fi-
nally an output layer with 3 neurons, giving a total of 364 neurons in the
network.

Although the line-following task may not use the power of a deep neural
network, this serves purely to benchmark the practicality and flexibility of
our CLDL algorithm for use in both shallow (as will follow in the simula-
tions section) and deep neural networks. An increase in the number of hid-
den layers is often associated with vanishing and exploding gradients that
hinder the learning and adversely affect the performance of the network
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Figure 4: Architecture of the neural network: a feedforward network composed
of fully connected layers. This shows the filtering stage of the predictors with a
filter-bank FB resulting in delayed inputs U; to the network. There are 240 neu-
rons in the input layer, 11 neurons in each of the 11 hidden layers, and 3 neurons
in the output layer. AL, AL, and A} are the outputs of the network allowing for
slow, moderate, and fast steering.

(Pascanu, Mikolov, & Bengio, 2013; Bengio, Simard, & Frasconi, 1994; Ben-
gio, Frasconi, & Simard, 1993). The issues that emerge from these gradients
are often resolved by deliberate normalization of the weights and inputs,
as well as careful manipulation of the computational units (neurons) (Pas-
canu et al., 2013). In this work we aim to present a convincing and authentic
benchmark without reliance on such manipulation. Thus, we have experi-
mentally arrived at a square-like structure for the deep network (containing
11 neurons in each 11 hidden layer) that combats the effect of vanishing and
exploding gradients with no internal tuning of the weights.

6.1.6 Steering. The navigation of the robot is facilitated through the ad-

justment of velocities of the right and left wheels. This is done using the
closed-loop error signal and the output of the network,

VR =Vo+ (Ec+Ap) and: Vp =V — (E.+ Ap), (6.3)
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where Ap is the predictive action previously shown in Figure 1 and is calcu-
lated here as a weighted sum of the three outputs of the network as shown
in Figure 4

Ap=1-Af+3 A5 +5-Aj, (6.4)

where Al is the activation of the ith output neuron, which was formulated in
equation 5.1. The weighting of the outputs means that each output neuron
can learn to generate one of fast, moderate, or slow steering commands,
resulting in a smooth navigation of the robot.

6.1.7 Reflex Trial. To be able to evaluate the performance of our algo-
rithm, we need to first test the baseline performance without learning. We
ran pure reflex trials where the robot navigated using its reflex mechanism
only and in the absence of any learning. More specifically, this is when Ap
is set to zero in equation 6.3. Figure 5A shows an example of such trial. It
can be seen that the error signal is very persistent in its occurrence and am-
plitude. In this setting, the robot can only generate an appropriate steering
command retrospectively, after an error has occurred. This sets a benchmark
for evaluation of the deep learner.

6.1.8 Learning Trials. In a learning trial, the robot navigates using both
the reflex and the predictive action of the network, as formulated in equa-
tion 6.3. In the context of learning, “success” refers to a condition where
the closed-loop error shows a minimum of 75% reduction from its aver-
age value during reflex trials, for three consecutive seconds (or 100 sam-
ples). Figure 5B shows the error signal during one learning trial where
(n = 2-1071Y); this shows a strong reduction of the error signal over the first
50 seconds, where the learning is achieved rapidly. The closed-loop error
acts as a minimal instructive feedback for the deep learner.

Figure 5C shows the final distribution of the weights in the first layer as-
signing different strength to different predictor signals. This is an 11 by 240
matrix of weights in the first layer showing the input index U; on the x-axis
and the neuron index on the y-axis (refer to Figure 4 for the configuration
of the input layer). The inputs that are generated from each row of predic-
tors are organized into blocks separated by vertical lines (refer to Figure 3B
for the location of these predictors). The six predictors in each row are fil-
tered by a bank of five filters, which results in 30 inputs, and a total of 330
weights in each block. It can be seen that the weight distribution closely fol-
lows the positioning of predictors with weights assigned to the outermost
column of predictors, Ps 12,.. 42,43, having high values (black) and weights
assigned to the innermost column of predictors, P 7, 3743, having small
values (white) to allow for a combination of abrupt and subtle steering,
respectively.
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Figure 5: Real robot results for learning rate of n = 2 - 10~. (A) The closed-loop
error when robot navigates with reflex mechanism only. This sets a benchmark
for evaluating the performance of the learning. Note the high amplitude and
persistence of this signal. (B) The closed-loop error when the learning mecha-
nism governs the navigation of the robot. Note the significant reduction of the
error signal compared to the reflex data showing fast learning. (C) A greyscale
map of the weight distribution in the first layer after the learning is completed.
The x-axis shows the filtered inputs, and the y-axis shows the index of neuron
in the first layer (refer to Figure 4). From the gradient, it can be seen that the far-
ther the predictor is from the center line, the greater is the steering action (refer
to Figure 3B). (D) The Euclidean distance of the weights in each layer during
learning. It shows a stable convergence of all hidden layers with no vanishing
or exploding gradients.

Figure 5D shows the weight change in each hidden layer. The purpose of
this is to closely inspect the contribution of each hidden layer to the overall
stability and convergence of the network. All layers show a stable increase
in their weight change before they converge to their final value. The weight
distance changes noticeably over the first 50 seconds, dictated by the closed-
loop error, but arrives at a stable plateau as the error signal remains at
zero.

Figure 6 shows another example of a learning trial similar to that in Fig-
ure 5 but with a smaller learning rate, n =2 - 107°. Figure 6A shows the
predictive action for this trial. This is the contribution of the deep learner
to the resultant differential speed of the robot (refer to equation 6.3). This
quantity is initially small and inaccurate at the start of the trial, where the
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Figure 6: Real robot results for learning rate of n = 2 - 1073, (A) The action of
the network Ap. This is the contribution of the learning to the steering of the
robot in anticipation of a disturbance (turn in the path). Note that as the learn-
ing improves, the amplitude of the steering increases and becomes more precise.
(B) The closed-loop error when the learning mechanism governs the navigation
of the robot. Note that the error is continuously reduced over time as the learn-
ing progresses. (C) A greyscale map of the weight distribution in the first layer
after the learning is completed, as explained in Figure 5C, though with a cruder
distribution. (D) The Euclidean distance of the weights in each layer during
learning. All layers show a stable convergence, though with a more gradual
convergence compared to that of Figure 5D.

reflex mechanism governs the navigation of the robot; however, the contri-
bution of the learner grows larger and more precise over time as the learner
begins to dominate the navigation. This transition from reflex-dominated
to learning-dominated navigation is also seen in Figure 6B, where the er-
ror signal E; decreases gradually toward a successful learning. Figure 6C
shows the final distribution of the weights in the first layer, showing a simi-
lar trend but a cruder distribution compared to that of Figure 5C. Figure 6D
shows the weight change in each hidden layer during this learning trial. The
weight distance in all layers increases stably; however, they show a more
gradual change compared to the learning trial with n =2 -107! shown in
Figure 5D.

6.1.9 Tracking. The OptiTrack Infrared (IR) motion capture system was
used to track the robot position in real time. It consists of 18 IR cameras and
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Figure 7: Real robot data. (A) The time taken until the success condition is met
for five different random seed for weight initialization. Note that the random
initialization of weights plays no significant role in the learning and success
time. (B) The effect of learning rate on the time taken until the success condi-
tion is met. The data show a significant exponential decrease in the time taken
before a successful learning is achieved. In other words, the learning is signifi-
cantly faster for higher learning rates as it varies from 2.1073 to 2.107!. (C) The
trajectory of the robot for a reflex trial. The robot mostly resides off the path with
crossovers marked with a star sign. (D) The robot’s trajectory for a learning trial
which shows that the robot mostly remains on and aligned with the path.

provides millimeter tracking resolution. Figure 7C shows the trajectory of
the robot for a reflex trial, and Figure 7D shows this data for a learning trial.
These are two independent trials with the reflex showing the navigation
of the robot in the absence of learning and the learning trial showing the
trajectory of the robot in the presence of learning from the start to the end
of this trial. Figure 7C shows that when the learning is off, the path taken by
the robot almost always remains outside the track, with multiple crossover
points indicated by a star, whereas Figure 7D shows that with learning (n =
2-1071), the trace of robot is aligned with the track.

6.1.10 Statistics and Reproducibility. The performance of the deep learner
was repeated with five different random weight initializations using dif-
ferent random seeds srand(i) where i = {0, 1, 2, 3, 4}. The learning rate was
kept constant for these trials, n =2 - 10~!. Figure 7A shows that different
random initialization of the weights makes no significant difference to the
time that it takes for the learner to meet the success condition. The learning
trial was repeated with five learning rates n : {2-1073,2-10725,2.1072,2 -
1071%,2.1071} ; each experiment was repeated five times for reproducibil-
ity. Figure 7B shows the time taken for the robot to meet the success con-
dition for these trials. This data show an exponential decay of the success
time as the learning rate is increased.
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Figure 8: (A) Schematic of the virtual robot and its environment. The robot is
composed of a body with two wheels with speeds of V, and V; and two ground
sensors G, and G;, from which the closed-loop error E. is generated. The robot
is placed on a track and has a view of the path ahead through 16 symmetrical
ground light sensors I; from which the predictors P; are obtained. (B) The C-
shaped path on which the robot navigates beginning from the star point and in
a loop. (C) The shows the output layer of the network used for simulations that
consists of one neuron only. The rest of the network is the same as the one used
for the real robot experiments shown in Figure 4.

6.2 Simulations with Virtual Robot. A virtual robot was designed us-
ing a simulation environment developed using QT5 and coded in C++ (Porr
& Daryanavard, 2020). This allowed rapid verification of a variety of algo-
rithm parameters, which show that in the simulated noise-free environment
a shallow network is sufficient. Most important, a virtual robot allowed us
to statistically infer the success of the learning paradigm through a large
number of runs, which would have been impractical using the real robot.

6.2.1 The Virtual Robot. Figure 8A shows the configuration of the robot
for the simulations that is placed on a track, as shown in Figure 8B. The
robot is equipped with two light sensors, which function in the same way as
the real robot experiments, measuring the GSV of the track underneath. The
robot also has an array of light sensors placed in front and ahead of the body
to obtain predictive signals. Note that the pyramidal shape of these sensors
is simply set up to prevent spurious correlations arising from the adjacent
path going in the opposite direction. Given that the network is purely corre-
lation based, such high-level information cannot be learned by the network,
and even in a correlation-based framework, the temporal credit assignment
is far too long. The navigation of the robot is facilitated through the right
and left velocities.

6.2.2 Reflex Error. The closed-loop error E. is calculated using the right
and left ground sensors shown in Figure 8A as
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E.=Gp —Gg. (6.5)
This is the instructive signal that is used for learning.

6.2.3 Predictors. For the purpose of learning, the predictors P; are gen-
erated using an array of 16 light sensors placed ahead of the robot in a
pyramid structure as shown in Figure 8A. This results in eight predictive
signals:

P;=1; — I, where j*is the sensor index symmetrical to j. (6.6)

6.2.4 Filter-Bank. The predictors are then filtered using a bank of five
second-order low-pass filters (F;), with damping coefficients of Q = 0.51
and impulse responses with appropriate delays, with their peaks occurring
at 0.1 to 0.3 seconds (3 to 10 samples with sampling rate of 33 Hz), so as
to cause the maximum correlation between predictors and the error signal.
The specifications of these filters were obtained using a simple experiment
as described for the real robot experiments.

6.2.5 The Shallow Learner. Afeedforward network composed of fully con-
nected layers was used in the same way as Figure 4, with only two hidden
layers and with the output layer consisting of one output neuron, as shown
in Figure 8C. The eight predictors are filtered as shown in Figure 4, resulting
in 40 inputs to the network. Therefore, the network is configured with 40
input neurons, 2 hidden layers with 12 and 6 neurons, respectively, and a
neuron in the output layer, giving a total of 59 neurons. The performance of
the algorithm for deep neural networks was demonstrated in section 6.1; in
this section, we show that this algorithm can also be applied to shallow net-
works; in particular, it is sufficient in noise-free simulation environments.

6.2.6 Steering. The steering of the robot is facilitated through adjust-

ments of the left and right wheel velocities (see Figure 8A). The predictive
action of the network is simply

Ap = AL, (6.7)
where Al is the activation of the output neuron shown in Figure 8C and
was formulated in equation 5.1. The navigation of the robot is dictated by
the closed-loop error and the predictive action

Vr =Vo+ (@E. + BAp) and: Vi =V, — («E; + BAp), (6.8)

where Vj, «, and B are experimental tuning parameters set to 40 [%], 200,
and 100 respectively.
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Figure 9: Simulation results with a learning rate of n = 1072. (A) The closed-
loop error signal when navigating by reflex mechanism only. Note the high am-
plitude with RMS = 0.09 (refer to Figure 10A) and frequent occurrence of the
error while the learning is off. (B) The closed-loop error signal when navigating
by reflex and learning mechanism. Note that with learning, both the amplitude
and the occurrence of the error have reduced significantly (RMS = 0.02) com-
pared to that of reflex only. (C) A greyscale map of the weight distribution in
the first layer after the learning is completed. The x-axis shows the filtered in-
puts, and the y-axis shows the index of neuron in the first layer (see Figure 4).
Note that the weight distribution closely follows the location of predictors (see
Figure 8A). (D) The Euclidean distance of the weights in each layer during this
learning trial and a stable convergence of the network with no vanishing or ex-
ploding gradients.

6.2.7 Reflex Trial. The simulation environment is shown in Figure 8B,
where the robot follows the C-shaped path, beginning from the start point,
in a loop for 30 seconds (1000 iterations). Figure 9A shows the closed-loop
error when the learning is off (n = 0). This is when the robot navigates with
no learning, using only its fixed feedback controller (reflex); this serves as a
benchmark and a visual aid to better comprehend and appreciate the per-
formance of the fast online learner.

6.2.8 Learning Trial. For evaluation of the deep learner, a learning trial
is designed to be one where the robot navigated using the predictive ac-
tion, beginning from the start point and for the same number of samples as
the reflex trials (30 seconds). Figure 9B, which illustrates the performance
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Figure 10: Virtual robot data. (A) The effect of learning rate on RMS value of
closed-loop error E.. Note the significant reduction of the closed-loop error in
the presence of learning compared to that of reflex only, as well as the grad-
ual improvement of learning (faster learning) with an exponential increase of
the learning rate 5 from 107> to 10~!. Examples of these trials are shown in
Figures 9A and 9B for reflex and learning with n = 1072, respectively. (B) The
trajectory of the robot for a reflex trial, showing a poor, uneven trace. (C) The
trajectory of the robot for a learning trial showing a smooth and even trace.

of the deep learner, shows the closed-loop error when the learning is on
(n = 1-1072). This is when the robot learns while navigating. The robot ex-
hibits very fast learning (2 seconds), where the error signal is kept at, or
close to, zero. Figure 9D shows the Euclidean distance of the weights in each
layer from their initial random value. This shows a gradual increase from
zero to its maximum during the course of one trial. Since the error signal
is propagated as a weighted sum of the internal errors, all layers show a
similar weight change.

Moreover, Figure 9C shows the final distribution of the first layer’s
weights in the form of a normalized grayscale map on completion of the
learning, as shown Figure 5C. This shows a 12 (neurons) by 40 (inputs) ma-
trix of weights in the first layer. The inputs generated to form each predic-
tor sensor are grouped in blocks separated by vertical lines (see Figure 8A
for the positioning of these predictors). Each predictor was filtered with a
bank of five filters resulting in five inputs on the x-axis and 60 weights in
the area of each block. The weights show an organized distribution, with
greater weights (black) assigned to the outer predictors, P, 5, and smaller
weights (white) assigned to the inner predictors, P47 5. This facilitates a
sharper steering for the outer predictors, ensuring a smooth steering.

6.2.9 Tracking. The x- and y-coordinates of the robot were recorded dur-
ing trials. Figure 10B show the trajectory of the robot over the course of a
reflex trial, and Figure 10C shows data during a learning trial. These fig-
ures show that in the presence of learning, the steering is of an anticipatory
nature and exhibits a smooth trajectory, whereas in the absence of learning,
the steering is reactive and hence generates an abrupt response.
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6.2.10 Statistics and Reproducibility. A set of simulations was carried out
with five learning rates: n : {107°,107%, 1073, 102, 10~!}. Each of the scenar-
ios was repeated 10 times. Figure 10A shows the root mean square (RMS) of
the error signal for each learning trial, as well as that of the reflex trials for
comparison. All learning scenarios show a significantly smaller RMS error
when compared to the reflex behavior; the error is reduced from around
9.1072 to around 2 - 1072 and lower. There is a gradual decrease in this
value as the learning rate is increased. Smaller values of RMS error indicate
both the reduction in the amplitude and the recurrence of the error signal.

7 Discussion

In this letter we have presented a learning algorithm that creates a forward
model of a reflex employing a multilayered network. Previous work in this
area used shallow (Kulvicius et al., 2007), usually single-layer, networks to
learn a forward model (Nakanishi & Schaal, 2004; Porr & Worgotter, 2006),
and it was not possible to employ deeper structures. Model-free RL has been
using more complex network structures such as deep learning by combin-
ing it with Q-learning, where the network learns to estimate an expected
reward (Guo et al., 2014; Bansal, Akametalu, Jiang, Laine, & Tomlin, 2016).
On first sight, this looks like two competing approaches because both use
deep networks with error back-propagation. However, they serve different
purposes, as discussed in Dolan and Dayan (2013) and Botvinick and We-
instein (2014), which lead to the idea of hierarchical RL, where RL provides
a prediction error for an actor, which can then develop forward models.

In deep RL (Guo et al., 2014) and in our algorithm, we employ error
backpropagation, a mathematical trick where an error/cost function is ex-
panded with the help of partial derivatives (Rumelhart et al., 1986). This
approach is appropriate for open-loop scenarios but for closed-loop ap-
proaches, one needs to take into account the endless recursion caused by
the closed loop. In order to solve this problem, we have switched to the
z-domain in which the recursion turns into simple algebra. A different ap-
proach has been taken by long short-term memory (LSTM) networks, where
the recursion is unrolled and backpropagation in time is used to calcu-
late the weights (Hochreiter & Schmidhuber, 1997), which is done offline,
whereas in our algorithm the weights are calculated while the agent acts in
its environment.

Deep learning is generally a slow-learning algorithm, and deep RL tends
to be even slower because of the sparsity of the discrete rewards. Purely
continuous or sampled continuous systems can be very fast because they
have continuous error feedback so that in terms of behavior nearly one-shot
learning can be achieved (Porr & Worgotter, 2006). However, this comes
at the price of forward models being learned from simple reflex behaviors
wherein sophisticated planning can be achieved. For that reason, combining
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the model-free deep RL with model-based learning to have a slow and a fast
system has been suggested (Botvinick et al., 2019).

Still, our new approach is a deep architecture, and though we have
demonstrated it through a line follower robot, it inherits all advantages
from standard deep learning, such as convolutional layers and the devel-
opment of high-level features (Deng et al., 2009), such as receptive fields.
These features can then be used to create much more specific anticipatory
actions than simple single-layer networks used in motor control to date
(Maffei et al., 2017).

Forward models play an important role in robotic and biological motor
control (Wolpert & Kawato, 1998; Wolpert, Ghahramani, & Flanagan, 2001;
Haruno et al., 2001; Nakanishi & Schaal, 2004), where forward models guar-
antee an optimal trajectory after learning. With our approach, this offers
opportunities to learn more complex forward models with the help of deep
networks and then combine them with traditional Q-learning to planning
those movements.

In the context of forward models, we should note that our model, like
the ones by Miyamoto et al. (1988), Porr and Worgétter (2006), and Maf-
fei et al. (2017) learn the forward model for only one situation but would
fail when different forward models were required, for example, being able
to manipulate different objects. This has been addressed by the MOSAIC
Model by Haruno et al. (2001) where multiple pairs of forward and inverse
controllers were learned. However, this is beyond the scope of this work.
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