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Abstract

Stemming from information-theoretic learning, the correntropy criterion and its applications
to machine learning tasks have been extensively studied and explored. Its application to regres-
sion problems leads to the robustness enhanced regression paradigm – namely, correntropy
based regression. Having drawn a great variety of successful real-world applications, its the-
oretical properties have also been investigated recently in a series of studies from a statistical
learning viewpoint. The resulting big picture is that correntropy based regression regresses to-
wards the conditional mode function or the conditional mean function robustly under certain
conditions. Continuing this trend and going further, in the present study, we report some new
insights into this problem. First, we show that under the additive noise regression model, such
a regression paradigm can be deduced from minimum distance estimation, implying that the
resulting estimator is essentially a minimum distance estimator and thus possesses robustness
properties. Second, we show that the regression paradigm, in fact, provides a unified approach
to regression problems in that it approaches the conditional mean, the conditional mode, as
well as the conditional median functions under certain conditions. Third, we present some new
results when it is utilized to learn the conditionalmean function by developing its error bounds
and exponential convergence rates under conditional (1 + ǫ)-moment assumptions. The satu-
ration effect on the established convergence rates, which was observed under (1 + ǫ)-moment
assumptions, still occurs, indicating the inherent bias of the regression estimator. These novel
insights deepen our understanding of correntropy based regression, help cement the theoretic
correntropy framework, and also enable us to investigate learning schemes induced by general
bounded nonconvex loss functions.

1 Introduction and Preliminaries

In this paper, we are concerned with the regression problem, which aims at learning a regression
function between input and output from given observations drawn from some unknown distribu-
tion. Such a regression function could typically be the conditional mean function, the conditional
median function, or the conditional mode function, depending on the needs. To mathematically
describe a regression procedure, let us denote X as the input variable that takes value in a com-
pact subset X ⊂ R

d and Y the continuous output variable taking values in R. Assume that the
given observations z = {(xi ,yi )}ni=1 are drawn independently from a certain unknown probability
distribution ρ over X ×Y with ρX being its marginal distribution and ρY |X the conditional distribu-
tion conditioned on X. For any fixed realization of X, the goal of regression is to learn a location
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parameter of the conditional distribution ρY |X . Recall that mean, median, and mode are three
canonical location parameters of a probability distribution. And as such, typically, a regression
paradigm regresses towards the conditional mean function E(Y |X), conditional median function
median(Y |X), or the conditional mode function mode(Y |X). The resulting regression procedure
is termed as mean regression, median regression, or modal regression, respectively. In this study,
we terminologically term the three functions as location functions. Additionally, we term the con-
ditional quantile function and the conditional expectile function as generalized location functions.
Under these terminologies, learning for regression essentially learns a (generalized) location func-
tion. To further our discussion, throughout this study we consider the following general additive
noise regression model

Y = f ⋆(X) + ε, (1)

where ε is the noise centered around 0. It is obvious that by assuming thatE(ε|X) = 0,median(ε|X) =
0, or mode(ε|X) = 0, the underlying truth function f ⋆ is essentially a location function of the con-
ditional distribution ρY |X and so our purpose of regression is to learn such a location function. It
should be remarked that the above three location assumptions on the conditional noise distribu-
tion are, in fact, mild ones as otherwise, one can always translate the distributions of ε|X to fulfill
one of these assumptions.

In the statistics and machine learning literature, one of the most frequently employed ap-
proaches to learning f ⋆ is the empirical riskminimization induced by the least squares loss, which
leads to the least squares regression and can be deduced frommaximum likelihood estimation un-
der the Gaussian noise assumption. However, in the presence of misspecification of the likelihood
function, learning f ⋆ through least squares regression may not work well due to the use of the
least squares loss that amplifies large residuals. To address this problem, tremendous approaches
have been proposed in the literature, a representative one of which is M-estimation [19, 15, 23].
The idea is to consider maximum likelihood estimation of the location parameter of a distribution
based on longer-tailed distributional assumptions. Carrying over the idea to regression problems,
one arrives at various regressionM-estimators. In the literature, many other efforts have also been
made to address this problem beyond the maximum likelihood framework.

In this study, we will investigate an alternative approach that stems from information-theoretic
learning, namely, Maximum Correntropy Criterion based Regression (MCCR) [21, 24, 3], and has
been finding a wealth of applications in machine learning and data science [16, 27, 4, 2].

1.1 MCCR: An Information-Theoretic Learning Approach to Regression

With the n i.i.d observations z = {(xi ,yi )}ni=1, MCCR can be formulated as

fz,σ = argmax
f ∈H

1
n

n
∑

i=1

exp

(

− (yi − f (xi))
2

σ2

)

, (2)

where H is a hypothesis space chosen as a compact subset of C(X ) in this study and σ > 0 a scale
parameter. The motivation of introducing MCCR comes from the minimization of the Renyi’s
quadratic entropy of the residual, i.e., − logEpe(e) where pe is the density function of the resid-
ual variable e in regression. Notice that minimizing − logEpe(e) can be equivalently cast as the
maximization of Epe(e). Assuming a Gaussian prior on the residual and considering the empirical
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counterpart of Epe(e), one then has the MCCR formulation in (2). Such an entropy minimization
interpretation of (2) illustrates the terminology – correntropy [21, 24].

It is obvious that MCCR can be also reformulated using the language of empirical risk mini-
mization (ERM), as done recently in [11] where, by introducing the loss function ℓσ (t) = σ2(1 −
e−t

2/σ2
), the following ERM scheme is studied

fz,σ = argmin
f ∈H

1
n

n
∑

i=1

ℓσ (yi − f (xi )). (3)

It is due to this reasoning that fz,σ is traditionally viewed as an M-estimator. Recently, its theoreti-
cal properties have been explored continuously in a series of studies. For instance, inspired by the
work in [18, 9], [11] demonstrated that MCCR can deal with mean regression robustly in the sense
that only a fourth-moment condition on the response variable is needed to guarantee its conver-
gence. Such a moment condition is further relaxed to the (1+ǫ)-th ordermoment condition in [12],
encompassing the case when the noise possesses infinite variance; in [10], it is shown that MCCR
performs modal regression under certain restrictions to the noise; using Huber’s contamination
model for modeling outliers, [13] makes some efforts in order to explain the outlier-robustness
of MCCR and shows that it can be utilized to learn f ⋆ in the presence of outliers. Learning the-
ory assessments from algorithmic viewpoints are conducted in [14, 17] and assessments from an
optimization viewpoint are conducted in [26]. In addition, there are also some existing studies
in the literature investigating the penalized version of the ERM scheme (3) under bounded noise
assumptions; see e.g., [5, 22, 20]. Here, we will take a step further towards the understanding of
the correntropy based regression scheme (3) by providing new insights into it.

1.2 New Insights Brought by This Study

In this study, the following new insights will be brought to attention: first, under the additive
noise regression model (1), we show that fz,σ can be retrieved from minimum distance estimation.
Here, the distance refers to the squared distance between the two densities pε|X and pEf |X integrated
over X where pε|X is the conditional density of the noise ε and pEf |X the conditional density of the
residual variable Y − f (X) for any f : X → R. To put it simply, fz,σ is essentially a minimum
distance estimator and so may outperform other regression estimators in terms of robustness; sec-
ond, it is shown that MCCR provides a unified approach to learning location functions in that
under different location assumptions on the distributions of ε|X, f ⋆ may represent different lo-
cation functions. The adaptiveness of MCCR allows us to tune the scale parameter σ to adjust
the regression function to which the regression scheme targets; third, when mean regression is
of interest, we show that improved exponential type convergence rates of fz,σ can be established
under the conditional (1 + ǫ)-moment assumption. Moreover, the saturation effect, which is ob-
served in an existing study in [12] under a relaxed moment assumption, still occurs under the
conditional (1 + ǫ)-moment assumption. More detailed speaking, there exists a threshold value
of ǫ above which the convergence rates may be independent of ǫ. As a result, imposing stronger
moment conditions may not help improve the established convergence rates of the estimator, im-
plying the existence of an inherent bias in mean regression. These novel insights can help cement
the theoretical correntropy framework developed recently in [11, 10, 13, 12].

The rest of this paper is organized as follows. In Section 2, we report a minimum distance
estimation interpretation ofMCCR. Section 3 illustrates the unified approach thatMCCR provides
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in learning location functions. Specifically, Section 3.1 is devoted to the investigation of mean
regression under weak moment conditions. Section 3.2 is concerned with regression towards the
conditional mode function. Section 3.3 discusses the case of learning the conditional median
function under noise restrictions. Numerical validations are provided in Section 4. We conclude
the paper in Section 5 and summarize the related future studies.

2 MCCR: A MinimumDistance Estimation Interpretation

Under the additive noise data-generating model (1), for any measurable function f : X → R, we
denote Ef as the random variable defined by the residual between Y and f (X), i.e., Ef = Y − f (X).
Then, for any fixed realization of X, say x, the density function of Ef |X = x can be obtained by
translating that of ε|X = x horizontally f ⋆(x) − f (x) units. Consequently, the density of Ef |X = x
can be expressed as

pEf |X=x(t) = pε|X=x(t + f (x)− f ⋆(x)).

Similarly, we also have

pε|X=x(t) = pEf |X=x(t + f ⋆(x)− f (x)).

Moreover, as realized in [9],

pEf
(t) =

ˆ

X
pε|X=x(t + f (x)− f ⋆(x))dρX(x)

defines a density function of the random variable Ef , and

pε(t) =
ˆ

X
pEf |X=x(t + f ⋆(x)− f (x))dρX(x)

defines a density function of the random variable ε. In what follows, we consider only the case
where pε|X is uniformly bounded by a constant that is independent of X.

In learning for regression problems, we are concerned with the estimation of the unknown
truth function f ⋆ . If a function f is exactly the same as the function f ⋆ on X , then according to
the above statements, pEf |X would be exactly the same as pε|X pointwisely, namely, the translation
between the two densities would be zero for any fixed x. If for any fixed x, f is, pointwisely, a
good estimate of f ⋆ , then pEf |X may also mimic pε|X well. In other words, pEf |X may not departure
too much from pε|X . To measure such a deviation between the two distributions, we define the
following integrated squared density-based distance.
Definition 1 (Integrated Squared Density-based Distance). LetM be the function set that consists
of all bounded measurable functions f : X → [−M,M] with M > 0 a constant. For any f ∈ M, the
integrated squared density-based distance between pEf

and pε, dist(pEf
,pε), is defined as

dist(pEf
,pε) :=

ˆ

X

ˆ +∞

−∞
(pEf |X=x(t)− pε|X=x(t))

2dtdρX (x).

Throughout this paper, we assume that the truth function f ⋆ is bounded byM , i.e., ‖f ⋆‖∞ ≤M .
It is easy to see that the square root of dist(pEf

,pε) defines ametric between pEf
and pε. In particular,
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if f equals f ⋆ on X , then we have dist(pEf
,pε) = 0. These observations, together with Definition

1, remind us that, if one would like to find a good estimate of the unknown location function f ⋆

within a hypothesis space H, then a possible strategy is to look for a function in H, say fH, such
that

fH = argmin
f ∈H

dist(pEf
,pε). (4)

That is, one may seek the minimizer of the functional dist(pEf
,pε) with respect to f overH and use

it to approximate f ⋆ . Notice that both pEf
and pε are unknown and pε is not directly accessible

through observations due to the unknown f ⋆ . However, the following theorem reminds us that
fH defined above may still be approached empirically.
Theorem 2. Let fH be defined in (4). Then we have the following relation

fH = argmax
f ∈H

Epε|X(Y − f (X)),

where the expectation is taken jointly with respect to X and Y .

Proof. To prove the statement, we first recall that fH = argminf ∈H dist(pEf
,pε), where

dist(pEf
,pε) =

ˆ

X

ˆ +∞

−∞
(pEf |X=x(t)− pε|X=x(t))

2dtdρX (x)

=
ˆ

X

[
ˆ +∞

−∞
(pEf |X=x(t))

2dt − 2
ˆ +∞

−∞
pEf |X=x(t)pε|X=x(t)dt +

ˆ +∞

−∞
(pε|X=x(t))

2dt

]

dρX (x).

Note that the third term
ˆ

X

ˆ +∞

−∞
(pε|X=x(t))

2dtdρX(x)

is independent of f . Moreover, regarding the first term, we have the following relations

ˆ

X

ˆ +∞

−∞
(pEf |X=x(t))

2dtdρX (x)

=
ˆ

X

ˆ +∞

−∞
(pε|X=x(t + f (x)− f ⋆(x)))2dtdρX(x)

=
ˆ

X

ˆ +∞

−∞
(pε|X=x(t))

2dtdρX(x),

which imply that it is also independent of f . On the other hand, we have

fH = argmax
f ∈H

ˆ

X

ˆ +∞

−∞
pEf |X=x(t)pε|X=x(t)dtdρX (x)

= argmax
f ∈H

Epε|X(Y − f (X)),

where the above expectation operation is taken jointly with respect to X and Y . This completes
the proof of Theorem 2.
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Theorem 2 holds because the data-generating model (1) defines a location family. Analogously,
one can also prove that fH = argmaxf ∈HEpEf |X(Y − f ⋆(X)). While fH is not directly accessible as
mentioned above, one may use its empirical counterpart to approach it by assuming a prior distri-
bution to the noise variable ε. Assuming a Gaussian prior, one then arrives at the formulation of
the correntropy based regression scheme (2). Therefore, MCCR can be both interpreted from an
information-theoretic learning viewpoint and a minimum distance estimation viewpoint, though
the latter one requires the location model assumption. Such a minimum distance estimation inter-
pretation of MCCR can help explain its robustness merit in learning problems as the robustness
of minimum distance estimators has been extensively studied; see e.g., [8, 1].

3 MCCR: A Unified Approach to Learning Location Functions

In this section, we show that correntropy based regression provides us a unified approach to
learning the three canonical location functions, namely, the conditional mean, median, and mode
functions, which further explains its powerfulness and robustness merits in learning.

3.1 Learning with MCCR for Mean Regression

AssumingE(ε|X) = 0, we first show that MCCR can learn the conditional mean function under the
following conditional (1 + ǫ)-moment assumption and capacity assumption.
Assumption 1. There exist some constants M > 0 and ǫ > 0 such that

E(|Y |1+ǫ |X = x) ≤M, ∀x ∈ X .

Assumption 2. There exist positive constants q and c such that

logN (H,η) ≤ cη−q, ∀ η > 0,

where the covering number N (H,η) is defined as the minimal k ∈ N such that there exist k disks in H
with radius η covering H.

The above capacity condition is typical in learning theory; see e.g., [7, 25]. And the conditional
(1 + ǫ)-moment restriction in Assumption 1 is a weak one as it admits the case where light-tailed
noise is absent and even the case where the noise possesses infinite conditional variance.
Theorem 3. Suppose that Assumptions 1 and 2 hold and f ⋆ ∈ H. Let fz,σ be produced by (2) with σ > 1.
For any 0 < δ < 1, with probability at least 1− δ, it holds that

‖fz,σ − f ⋆‖22,ρ . log(2/δ)
( 1

σmin{ǫ,2} +
σ

n1/(q+1)

)

,

where ‖ · ‖22,ρ denotes the L2ρX norm and the sign . denotes that the underlying inequality holds up to an

absolute constant factor.

Theorem 3 can be proved analogously as Theorem 2 in [12]. A sketch of its proof is provided
in the appendix. Under the assumptions of Theorem 3, if we set σ = nΘǫ where

Θǫ =















1
(q+1)(ǫ+1) , if 0 < ǫ ≤ 2,

1
3(q+1) , if ǫ > 2,
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then for any 0 < δ < 1, with probability at least 1− δ, it holds that

‖fz,σ − f ⋆‖22,ρ . log(2/δ)n−min{ǫ,2}Θǫ .

Therefore, with diverging σ values, fz,σ approaches the conditionalmean function f ⋆ . Not surpris-
ingly, the established convergence rates depend on the capacity ofH and the order of the moment
condition in terms of the two indices q and ǫ. Moreover, for the case 0 < ǫ < 1 when the noise ε
possesses infinite conditional variance, exponential type convergence rates can still be obtained.
Comparing with the results in [12], with the conditional (1 + ǫ)-moment assumption, improved
convergence rates are established. It is interesting to note that when ǫ ≥ 2, imposing higher-order
conditional moment assumptions may not help improve the convergence rates of ‖fz,σ − f ⋆‖22,ρ.
This phenomenon, also observed in [12], is termed as the saturation effect in mean regression,
which is caused by the introduction of the parameter σ , and is hence the cost of robustness.

3.2 Learning with MCCR for Modal Regression

MCCR can be also utilized to perform modal regression, that is, learning the conditional mode
function defined in [6] as

f
MO
(x) := argmax

t∈R
pY |X=x(t), x ∈ X . (5)

In the data generating model (1), if we assume that pε|X admits a unique global mode for any
realization of X, then f

MO
in (5) is well defined and is exactly f ⋆ . Recalling the results in Theorem

2, we have f
MO

= argmaxf ∈MEpε|X(Y − f (X)). As mentioned previously, assuming that the noise
variable ε is Gaussian and approximating Epε|X(Y − f (X)) by using its empirical counterpart, one
can arrive atMCCR. However, directly imposing such a noise assumption seems to be a brute-force
approach to learning the conditional mode. The following theorem established in [10] provides
an alternate formulation for characterizing the conditional mode function f

MO
and makes such a

learning problem practically implementable. For the sake of completeness, we also provide its
proof here.
Theorem 4. Let f : X → R be any measurable function and Ef = Y − f (X). Then, we have

f
MO

= argmax
f ∈M

pEf
(0).

Proof. From the model assumption that ε = Y − f ⋆(X), we have

ε = Ef + f (X)− f ⋆(X).

As a result, the density function of the residual variable Ef , denoted by pEf
, can be expressed as

ˆ

X
pε|X=x(·+ f (x)− f ⋆(x))dρX (x).

Moreover, we know that

pEf
(0) =

ˆ

X
pε|X=x(f (x)− f ⋆(x))dρX (x) =

ˆ

X
pY |X=x(f (x))dρX (x).

This completes the proof of Theorem 4.
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As a consequence of Theorem 4, one can approach the conditional mode function through the
maximization of the kernel density estimator of pEf

at the point 0, i.e.,

fz,σ = argmax
f ∈H

1
nσ

n
∑

i=1

exp

(

− (yi − f (xi))
2

σ2

)

. (6)

Note that the estimator produced in (6) is essentially the same as the MCCR estimator (2). In the
statistics literature, it has been well understood that the consistency of this density estimator can
be guaranteed under mild conditions, e.g., σ → 0 and nσ → +∞. However, the convergence of
fz,σ to f

MO
cannot be readily obtained from the convergence of Epε|X(Y − fz,σ (X)) to Epε|X(Y − fMO

(X))
due to the nonconvexity of the learning scheme and so calls for some special attention. In a recent
study, some efforts in this regard are made in [10] by imposing certain assumptions on the noise
variable ε. Exponential-type convergence rates of fz,σ are established there when σ := σ(n)→ 0,
which theoretically justifies the learnability of fz,σ towards the conditional mode function. It
should be remarked that here the nonconvexity may only matter in learning theory analysis of
fz,σ when deriving its convergence rates. The story may be different when assessing it from an
optimization viewpoint [26].

3.3 Learning with MCCR for Median Regression

We now provide some perspectives on learning with MCCR for median regression. Under the
regression model (1) and the zero-median assumptionmedian(ε|X) = 0, Theorem 2 tells us that as
the population version of fz,σ , fH maximizes Epε|X(Y − f (X)) overH. However, this neither implies
the convergence of fz,σ to the conditional median f ⋆ nor indicates the convergence of fH to f ⋆ .

To see that fz,σ can serve as a median regression estimator, we consider a special case when
the noise variable ε is independent of the input variable X and is symmetric stable, i.e., its char-
acteristic function φε admits the form φε(t) = e−γ |t|

α
, where γ > 0 is a constant, and 0 < α ≤ 2 is

the characteristic exponent. It is well known that, the normal distribution is stable with α = 2 and
the Cauchy distribution is stable with α = 1. When α < 2, absolute moments of order less than
α exist while those of order greater than or equal to α do not. Therefore, under the zero median
assumption, f ⋆ is, in fact, the conditional median function as the conditional mean function may
not even be defined. According to [13], in this case, MCCR can learn the conditional median func-
tion f ⋆ well in the sense that Epε|X(Y − fz,σ (X))→ Epε|X(Y − f ⋆(X)) implies fz,σ → f ⋆ with a proper
fixed σ . Moreover, fast exponential-type convergence rates can be established. However, whether
MCCR can learn the conditional median function f ⋆ under more general conditions is still yet to
be explored.

4 Numerical Validations

In this section, we conduct numerical simulations on synthetic data to validate our theoretical
finding that MCCR provides a unified approach to learning location functions.

To this end, as in [10], we consider the regression model y = f ⋆(x)+ε where x ∼U(0,1), f ⋆(x) =
2sin(πx), and the noise obeys the following two different distributions:

• Case I: ε = (1+2x)κ with κ ∼ 0.5N (−1,2.52) + 0.5N (1,0.52);
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• Case II: ε ∼ Cauchy(0,0.5).

For Case I, with simple computations, we know that the conditional mean function is E(Y |X) =
2sin(πx), and the conditional mode function is approximately mode(Y|X) = 2sin(πx) + 1+ 2x. For
Case II, it is obvious that median(Y |X) = 2sin(πx).

In our experiments, 200 observations are drawn from the above data-generating model for
training and the size of the test set is also 200. The hypothesis space H is chosen as a subset
of the Gaussian reproducing kernel Hilbert space by using Tikhonov regularization. The band-
width of the Gaussian kernel and the regularization parameter are selected through five-fold
cross-validation under the least absolute deviation criterion. Three experiments are conducted,
respectively, in order to show that fz,σ can approach the three different location functions with
different σ values. The learned functions from the three experiments are plotted in Figs. 1-3. For
each experiment, the σ value is set to be fixed and is specified in the captions of the three fig-
ures. Clearly, from the experiments, we see that with different choices of σ values, fz,σ can indeed
approach the three location functions, which consequently demonstrates our theoretical finding
empirically.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

Figure 1: Experimental results of Case I: the red curve with square marks denotes the conditional
mode function. The black curve with plus marks gives the conditional mean function. The blue
curve with ⊗marks represents the learned estimator fz,σ with σ = 0.05.

5 Conclusion and Future Work

In this paper, we studied the correntropy based regression by drawing some novel insights into it.
We first concluded that the resulting regression estimator can be viewed as aminimumdistance es-
timator, which helps understand its robustness property. Moreover, this finding indicates its prac-
tical applicability as it simultaneously enjoys the nice properties of both information-theoretic
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

4

Figure 2: Experimental results of Case I: the red curve with square marks denotes the conditional
mode function. The black curve with plus marks gives the conditional mean function. The blue
curve with ⊗marks represents the learned estimator fz,σ with σ = 10.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 3: Experimental results of Case II: the red curve with square marks denotes the conditional
median function. The black curve with plus marks represents the learned estimator fz,σ with
σ = 0.01.
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learning and minimum distance estimation. We then showed that the regression estimator can
work effectively in learning the unknown truth function as it is capable of learning different lo-
cation functions under certain noise restrictions by tuning the scale parameter adaptively. When
learning the mean regression function, the established exponential type convergence rates under
weak conditional moment assumptions remind us of the existence of the saturation effect caused
by some inherent bias. These insights widen our understanding of the regression scheme, help
cement the theoretic correntropy framework, and also enable us to investigate learning schemes
induced by general bounded nonconvex loss functions.

Yet, there are still several problems that need to be addressed in order to paint a complete
picture of the regression paradigm. Here we exemplify several of the problems. First, the sat-
uration effect reported in this study limits the learnability of the resulting regression estimator.
This is because even in the presence of light-tailed noise, e.g., skewed Gaussian, the established
convergence rates in mean regression can only be up to O(n−2/3) which are not even comparable
with those of least squares regression estimators in the same situation. Therefore, further efforts
should be made to debias when implementing correntropy based mean regression. Second, we
discussed above only a specific case when correntropy based regression regresses towards the
conditional median function by requiring that the noise is symmetric stable. It is still unknown
whether one could further relax such a stringent restriction on the noise or what kind of σ values
one should choose. Third, we only investigated here the problem of learning location functions
through MCCR. It would be also interesting to investigate the problem of learning generalized
location functions using similar approaches. In addition, in the present study, we only consider
the hypothesis space in which all functions are uniformly bounded. In practice, the hypothesis
space is typically automatically chosen by a penalized ERM scheme where functions are generally
no longer uniformly bounded. It is still unclear in this case how to derive exponential-type con-
vergence rates of the correntropy based regression estimators without imposing light-tailed noise
assumptions on the noise. The above-exemplified research problems illustrate our future work on
this topic.

Appendix

In this appendix section, we provide a sketch of the proof of Theorem 3, which is accomplished
by using similar arguments as in the proof of Theorem 2 in [12]. The key difference is that, in the
present study, with the conditional (1 + ǫ)-moment restriction stated in Assumption 1, one can
obtain refined variance estimates for ξ defined below, which lead to improved convergence rates.

Before proving the theorem, we first introduce some notation. For any measurable function
f : X → R, we denote

Rσ (f ) = Eℓσ (Y − f (X))

as its generalization error and denote its empirical generalization error as

Rσ
z (f ) =

1
n

n
∑

i=1

ℓσ (yi − f (xi )).

We further denote fH,σ as the population version of fz,σ in H, that is,
fH,σ := argmin

f ∈H
Rσ (f ).
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We also denote fH as the “best" function inH when approximating f ⋆ in the following sense

fH = argmin
f ∈H
‖f − f ⋆‖22,ρ.

Under Assumption 1, Theorem 1 in [12] tells us that for any measurable function f : X → R with
‖f ‖∞ ≤M and σ > 1, it holds that

∣

∣

∣

∣

[

Rσ (f )−Rσ (f ⋆)
]

− ‖f − f ⋆‖22,ρ
∣

∣

∣

∣
≤ cH,ǫ

σθǫ
, (7)

where, for any fixed ǫ, the constant θǫ is given by θǫ = min{ǫ,2}, and cH,ǫ is an absolute constant
independent of f or σ .

To prove the theorem, for any f ∈ H, we denote ξ(x,y) as the following random variable

ξ(x,y) = ℓσ (y − f (x))− ℓσ (y − f ⋆(x)), (x,y) ∈ X ×Y .

We can bound the variance of the random variable ξ by considering two different cases of the ǫ
values. When ǫ ≥ 1, we have

var(ξ) ≤ Eξ2 ≤ E

(

ℓσ (y − f (x))− ℓσ (y − f ⋆(x))
)2

≤ E

(

(y − f (x))2 − (y − f ⋆(x))2
)2

≤ c1‖f − f ⋆‖22,ρ,

where c1 = 18M2, the third inequality is obtained by applying the mean value theorem. When
0 < ǫ < 1, the variance of ξ can be bounded as follows

var(ξ) ≤ Eξ2 ≤ E

(

ℓσ (y − f (x))− ℓσ(y − f ⋆(x))
)2

≤ σ1−ε‖f − f ⋆‖1−ǫ∞ E

∣

∣

∣ℓσ (y − f ⋆(x))− ℓσ(y − f (x))
∣

∣

∣

1+ǫ

≤ σ1−ǫ((3M)1+ǫ +3ǫE|Y |1+ǫ)‖f − f ⋆‖2∞ ≤ c2σ
1−ǫ,

where c2 = 2M2((3M)1+ǫ+3ǫE|Y |1+ǫ), and the third and the fourth inequalities are again obtained
by applying the mean value theorem. Then, using the similar arguments as in the proof of Theo-
rem 2 in [12], one can accomplish the proof through the following key steps.

First, under Assumption 1 and σ > 1, for any γ ≥ cH,ǫσ
−θǫ , with probability at mostN

(

H,γσ−1
)

e
− nγ

c3σ ,
it holds that

sup
f ∈H















∣

∣

∣[Rσ (f )−Rσ (f ⋆)]− [Rσ
z (f )−Rσ

z (f
⋆)]

∣

∣

∣

√

Rσ (f )−Rσ (⋆) + 2γ















> 4
√
γ,

where c3 is a positive constant independent of σ . This probability ratio inequality is established
by applying the one-sided Bernstein inequality and utilizing the compactness as well as the com-
plexity assumption of the hypothesis space H.

Second, denoting

γ0 =
1

σθǫ
+ log

(2
δ

)

σ

n1/(q+1)
,
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then one can prove that for any 0 < δ < 1, with probability at least 1− δ/2, it holds that

[Rσ (fz,σ )−Rσ (f ⋆)]− [Rσ
z (fz,σ )−Rσ

z (f
⋆)]− 1

2
[Rσ (fz,σ )−Rσ (f ⋆)]. γ0,

and that

[Rσ
z (fH,σ )−Rσ

z (f
⋆)]− [Rσ (fH,σ )−Rσ (f ⋆)]− 1

2
‖fH − f ⋆‖22,ρ . γ0.

Third, combining the above two estimates, with simple computations, it can be shown that for
any 0 < δ < 1, with probability at least 1− δ, one has

‖fz,σ − f ⋆‖22,ρ . ‖fH − f ⋆‖22,ρ + log(2/δ)
( 1

σθǫ
+

σ

n1/(q+1)

)

.

Recalling that f ⋆ ∈ H, we have ‖fH − f ⋆‖22,ρ = 0 and thus arrive at the desired error bound. This
gives a sketch of the proof of Theorem 3.
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