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1 Abstract

Empirical estimates of the dimensionality of neural population activity are
often much lower than the population size. Similar phenomena are also ob-
served in trained and designed neural network models. These experimental
and computational results suggest that mapping low-dimensional dynamics to
high-dimensional neural space is a common feature of cortical computation.
Despite the ubiquity of this observation, the constraints arising from such map-
ping are poorly understood. Here we consider a specific example of mapping
low-dimensional dynamics to high-dimensional neural activity – the neural en-
gineering framework. We analytically solve the framework for the classic ring
model – a neural network encoding a static or dynamic angular variable. Our
results provide a complete characterization of the success and failure modes
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for this model. Based on similarities between this and other frameworks, we
speculate that these results could apply to more general scenarios.

2 Introduction

The activity of large neuronal populations can be described, a priori, in a space
whose dimension is comparable to the size of the population. Nonetheless,
large-scale neuronal recordings consistently exhibit low-dimensional activity
dynamics [12]. Such low dimensionality could arise if these large populations
are actually representing low-dimensional features of the external world, or if
the network dynamics is somehow constrained to be low dimensional.

Recent studies on artificial networks that were trained to solve cognitive
tasks also revealed similar low-dimensional structures [10, 11, 16, 18]. In
this case, neither the connectivity structure of the network, nor its desired
dynamics were specified ahead of time. The analyses performed on these
networks showed that this low dimensionality emerged to perform a given
task.

Classic works on task-performing neural networks focused on designing the
connectivity, rather than training it. These designs often relied upon a low-
dimensional structure of connectivity and of activity [1, 2]. This connectivity
was inspired by insightful observations, rather than relying on a systematic or
algorithmic procedure.

Both the experimental and computational results suggest that mapping
low-dimensional dynamics to high-dimensional neural space is a common fea-
ture of cortical computation [12]. Despite all this progress, most of the results
remain empirical, lacking a theoretical framework that exposes constraints
arising from such mapping (But see [15, 17]).

There are algorithmic frameworks that explicitly highlight the mapping
from low to high dimensionality. This class of models allows to specify a
desired low-dimensional dynamics, and obtain connectivity implementing these
dynamics in high-dimensional activity space [4, 6, 14]. These models can be
considered as an intermediate between trained and designed networks, and as
such natural candidates for an in-depth study of this mapping. We focus on
one concrete proposal for a mapping - Neural Engineering Framework (NEF,
[4]) - and solve it analytically for a specific task [2]. We show conditions for
success and failure of such models, and analyze the underlying causes.
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3 General framework

To describe an equivalence between dynamical systems in different spaces, we
need a mapping between these spaces. To this aim, we define a mapping from
a low d-dimensional feature vector x ∈ Rd to a high N -dimensional vector of
firing rates r̂ ∈ RN , r̂(x) = F(x) (Figure 1A). In a similar manner, we define
a mapping from rate vectors r to feature vectors x̂ ∈ Rd, x̂ = G(r).

To render the two mappings consistent with each other, we choose F and
G such that (Figure 1B)

x = x̂(r̂(x)) (1)

for relevant x values. Having defined these mappings, we turn to dynamics
(Figure 1C). We would like to construct a high-dimensional neural network
that implements a desired low-dimensional dynamical system in feature space.
In more formal terms, the two dynamical systems are:

ẋ = h(x) (2)

ṙ = −r + f(Jr) (3)

where J ∈ RN×N is the network connectivity, f is a static nonlinearity applied
element-wise representing the input-to-rate transformation of the neuron. We
would like to choose the connectivity J such that projections of r trajectories
will be equal to x trajectories. If r(0) = r̂(x(0)), then for t > 0:

x̂(r(t)) = x(t) (4)

For concreteness, we will now analyze a specific example of such an equiv-
alence - the neural engineering framework [4].

4 Neural Engineering Framework

The neural engineering framework [4] discusses how to implement a low-
dimensional dynamical system with a network of rate or spiking neurons. For
simplicity, we will consider a representative form of this framework (Figure
1D). The mapping F is given by a nonlinear function of a matrix φ ∈ RN×d

operating on the features. The nonlinearity is chosen to be identical to the
nonlinearity of the neurons in the network

r̂(x) = F(x) = f(φx) (5)
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.
The matrix φ represents the mapping from features to neuronal inputs, and

therefore f(φx) is akin to a tuning curve. For the mapping G, since d � N ,
we use a linear decoder

x̂(r) = G(r) = Wr (6)

.
With these choices Equation 1 becomes

x = Wf(φx) (7)

for all x values of interest. Note that in the original description [4], W was
defined as a least square solution, but we are interested in analytically tractable
cases where an exact equality is possible.

For simplicity we consider the desired low-dimensional dynamics as linear
(the nonlinear case is described in Appendix A):

ẋ = −x+ Ax (8)

The evolution of the projection x̂ = Wr can be obtained from the r-
dynamics (Equation 3):

˙̂x = −x̂+Wf(Jr) (9)

Our objective is to achieve the target dynamics ˙̂x = −x̂ + Ax̂. Applying
Equation 7, we can rewrite our objective as:

dx̂

dt
= −x̂+Wf(φAWr) (10)

Thus, by defining
J = φAW, (11)

we obtain the desired dynamics for x̂, which is induced by the network dy-
namics ṙ = −r + f(Jr). To derive Equation 11 we implicitly defined the x
values of interest (and thus W ) in equality 7 as Ax, resulting in:

Ax = Wf(φAx) (12)

where we consider all x values that appear in the dynamics described by Equa-
tion 8. This condition is important, because in general it is not possible to
have a consistent mapping for all x values when using linear mappings to ap-
proximate nonlinear ones. The consequences of different choices are explored
in Appendix E.
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Figure 1: Mapping between low-dimensional feature dynamics and
high-dimensional neural activity space. (A) A low dimensional fea-
ture vector x ∈ Rd is encoded by a high dimensional rate vector r̂ ∈ RN ,
r̂(x) = F(x), where N � d. Conversely, a decoder x̂ = G(r) maps rate to
feature vectors. (B) Imposing consistency between the mappings. (C) The
dynamics of the firing rate vector r arise from a network with connectivity J .
The objective is to find a connectivity J such that the decoded feature dy-
namics will match a desired dynamics ẋ = h(x). (D) The Neural Engineering
Framework (NEF) uses the same static nonlinearity f for the neural network
dynamics and for encoding. Decoding is done via a linear readout, and feature
dynamics are linear.
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5 The ring model

The linear decoder W is usually estimated numerically, but here we wish to
study an example where it can be derived analytically. For that we consider
the well studied ring model [2], where a periodic variable ψ is represented by
neurons labeled by their preferred angle θ ∈ [−π, π]. The model is described
by the following rate dynamics:

ṙθ = −rθ + σ(Jrθ) (13)

Jθ,θ′ = J0 + J1 cos(θ − θ′) (14)

σ(z) = [z + Ie]+ (15)

with [z]+ = max(z, 0), and the external drive Ie > 0 which is required to
obtain non-zero solutions [2]. It is known that for particular combinations of
J0, J1 there exists a marginally stable ”bump” solution where the activity of
the neurons is given by

rθ ∝ [cos(θ − ψ)− cos(θC)]+ (16)

where cos θC , which determines the width of the activity bump, is a function
of J1 (Figure 2, marginal phase), defined by the relationship:

J1 = g−11 (θC) (17)

where

g1(θC) =

∫
dθ

2π
[cos θ − cos θC ]+ cos θ (18)

6 Applying the framework to the ring model

The NEF links encoding and dynamics by requiring that the same nonlinearity
f is used both in the definition of the mapping from the low-dimensional to
the high-dimensional space, and in the dynamics of the neural network.

We thus define the nonlinearity f(z) = [z+ Ie]+ exactly as in Equation 15,
and proceed to check whether we can recover the tuning curves described by
Equation 16.
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Figure 2: Ring model parameters attainable by NEF. The ring model
is characterized by a two-parameter (J0, J1) family of network connectivities.
These parameters define regions of qualitatively different solutions. Activity
decays in the homogeneous regime, diverges in the instability regime, and
forms a stable ”bump” in the marginal regime. The NEF recovers the ring
model, but with the constraints of J0 = 0 and 2 < J1 < 4 (red line).
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We are interested in the marginal phase, which has a stationary bump
solution in the periodic feature space. We thus define x ∈ R2 to be

x =

(
cosψ
sinψ

)
(19)

As in the ring model, we parameterize the neurons by an index θ, and
notice that if we define φ ∈ RN×2 as

φ =
(

cos θ sin θ
)

(20)

we obtain tuning curves similar to Equation 16:

r = [cos(θ − ψ) + Ie]+ (21)

In order for this to exactly match Equation 16, we need the external drive
to be Ie = − cos θC . For narrow bumps, θC ∈ [0, π/2], we obtain Ie < 0 in
violation of the ring model requirements. We return to this topic later.

The ring model has a stationary bump, corresponding to ψ̇ = 0 , implying
A = I in Equation 8. It is now possible to find W that will fulfill equation 12.
In our case the solution is described by two equations:

cosψ = N−1
∑

W1,θ[cos(θ − ψ)− cos θC ]+ (22)

sinψ = N−1
∑

W2,θ[cos(θ − ψ)− cos θC ]+ (23)

In the limit ofN →∞, we can replace the sum with an integral, and replace
the two equations with a single one for a complex variable w(θ) = W1,θ+iW2,θ:

eiψ =

∫
dθ

2π
w(θ)g(θ − ψ) (24)

where g(z) = f(cos z). Equation 24 is a convolution, and hence lends itself to
a solution in Fourier space:

δk,1 = wkg̃k (25)

In general, we expect g̃k 6= 0 for all k. However, choosing W with minimal
norm would lead to:

wk = δk,1g̃
−1
k (26)

which, when transformed back from Fourier space results in:
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W =
1

g̃1

(
cos θ
sin θ

)
(27)

where g̃1(θC) =
∫

dθ
2π

[cos θ − cos θC ]+ cos θ. Note this is exactly the same g1
of the ring model (Equation 18). Finally, using Equation 11, the resulting
connectivity is

Jθ,θ′ = g−11 (θC) cos(θ − θ′) (28)

We thus recover the original ring model (Equation 14), but with the pa-
rameter J0 = 0 determined by this procedure. The stability of the ring
model is known for all values of J0 and J1. In particular, for J0 = 0, a
stable bump exists (marginally stable regime, solid red line in Figure 2) for
g−11 (π) < J1 < g−11 (π/2). Since θC is a function of J1 (Equation 17), having
narrow bumps requires J1 > 4. This is also consistent with the definition of Ie
above. We now see that the solution provided by NEF prohibits the framework
from generating a ring attractor with narrowly tuned neurons.

7 Mapping between dynamical systems

In the neural engineering framework, tuning curves for each neuron obey the
relationship r = f(φx). If the activity of the neurons always maintains this
relationship, then a trajectory x(t) ∈ Rd should correspond to a d-dimensional
manifold r(t) = f(φx(t)). To assess whether this holds, we assume a slight
deviation from this manifold at a certain time t (Figure 3):

r(t) = f(φx(t)) + ε(t) (29)

We then follow the dynamics of this deviation by considering the simulta-
neous evolution of the low-dimensional and high-dimensional dynamics:

dx

dt
= −x+ Ax (30)

dr

dt
= −r + f(Jr) (31)

dε

dt
=

dr

dt
− f ′(φx)φ

dx

dt
(32)

For small ε, we arrive at:

9



Figure 3: Mapping between dynamical systems. A desired low-
dimensional trajectory x(t) is mapped to a manifold f(φx(t)), but the high-
dimensional dynamics r(t) might deviate from this manifold.
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dr

dt
= −r + f(Jf(φx)) + f ′(Jf(φx))Jε (33)

dε

dt
= [−1 + f ′ (Jf(φx)) J ] ε+

[
f (Jf(φx))− f(φx)− f ′(φx)φ

dx

dt

]
(34)

The dynamics of the deviation from the manifold is given by two terms –
one that depends on ε, and one that doesn’t. If the second term is nonzero,
then the manifold cannot be stable. There are two special cases in which this
term vanishes. For the case of a fixed point dynamics dx/dt = 0, we have
A = I and thus the identity 12 becomes x = Wf(φx). Since J = φAW , this
causes the second term to vanish, and stability is given by the first one. The
other case is a linear f (we assume f(x) = x without loss of generality), for
which the identity 12 implies Wφ = I. In this case, even for dx/dt 6= 0, the
second term vanishes. Since the second term only vanishes for a linear f or
fixed point dynamics, we expect deviations from the manifold for almost all
cases.

8 Applying the framework to the dynamic ring

model

The above arguments were not specific for the ring model. We now examine
their implications in that specific case. First, the Jacobian is given by:

− δθ,θ′ + f ′(φx)J (35)

We can calculate the Jacobian for our choice of φ and f , around a point x
characterized by ψ = 0 :

− δθ,θ′ +
1

g1
H (cos θ − cos θC) cos(θ − θ′) (36)

where H is the heaviside function. The eigenvalues are (see Appendix B):

λ1 = 0 (37)

λ2 = −1 +
θC + 1/2 sin 2θC
θC − 1/2 sin 2θC

(38)

λk = 0 for k > 2 (39)
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We see that indeed for wide tuning curves (θC > π/2) we have λ2 <
0 leading to marginal stability of the manifold. In this case, this is just a
restatement of the stability of the ring model, and the eigenvalues are identical
to those of the J0 = 0 case [3].

To assess the contribution of the second term of Equation 34, we expand
the model to include a bump moving with a velocity v, giving rise to the
following dynamics:

dx

dt
= −x+

(
1 v
−v 1

)
x (40)

With this modification, equation 24 becomes:

(1− iv)eiψ =

∫
dθ

2π
w(θ)h(θ − ψ) (41)

with

h(z) = f(cos z + v sin z) (42)

leading to (see Appendix D)

Jθ,θ′ ∝ [cos(θ − θ′) + v sin(θ − θ′)] (43)

As noted above, the second term in equation 34 will vanish for a linear
f , but is not expected to vanish in general. Figure 4 shows a simulation of a
wide bump with nonzero velocity that indeed deviates from the manifold. The
initial condition is on the manifold (blue curve, Figure 4A), but with time the
deviation from the manifold, ε, grows and the activity of the neurons cannot
be written as r = f(φx) for any x (red curve, Figure 4A). By construction,
the framework guarantees that the desired x dynamics are still obtained, as
shown in Figure 4B,C.

9 Deformation of the manifold

The example above illustrated the instability of the high-dimensional manifold.
Despite this instability, the activity converged to a stable limit cycle. This
suggests that perhaps the target manifold should be defined in a different
manner. Indeed, in the original ring model with a moving bump, the same
asymmetric tuning profile arises [3]. This is because the input to a neuron is
still cosine shaped, but it is passed through a nonlinearity and then low-pass
filtered by the dynamics.
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We thus define a new desired manifold:

dr̄

dt
= −r̄ + f(φAx) (44)

and the deviation from it:

ε̄ = r − r̄ (45)

dε̄

dt
= −ε̄+ f(Jr)− f(φAx) (46)

= −ε̄+ f(φAx̂)− f(φAx) (47)

= −ε̄+ f ′(φAx)φAδ (48)

where δ = x̂ − x is the deviation of the low-D dynamics. Since, by the NEF
construction, x̂ and x follow the same dynamics, δ can only deviate by a phase
shift along the bump trajectory. This implies that ε̄ decays to zero, and the
high-D dynamics are stable to perturbations around r̄. We thus see that the
dynamics modifies the tuning curves of neurons, but in a predictable manner.

10 Discussion

We provide the first solvable example of the neural engineering framework
(NEF). This framework allows to specify desired tuning curves of the neurons
to a feature of interest. NEF then provides a numerical solution for the con-
nectivity between neurons that will implement the desired feature dynamics
by the neural network. We show analytically NEF’s ability to recover the well
known ring model, which describes how a periodic feature can be encoded by
a recurrent neural network. We then show NEF’s limitations when the feature
is either static or dynamic. The synaptic connectivity arising from NEF is
identical to that of the ring model, but limited to a subset of parameter val-
ues. This subset translates to a limitation on the type of tuning curves that
can be implemented by NEF – narrow tuning curves are unstable.

Introducing dynamics in the low-D feature gives rise to a second form of in-
stability. Namely, even if the provided tuning curves can be stably maintained
for a static feature, the shape of the tuning curves changes as the feature be-
comes dynamic. We show, however, how the modified tuning curves can be
predicted.

It should be stressed that we study a specific variant of NEF. The full
framework is much richer, and has been shown to successfully implement a
wide range of challenging dynamics [7, 9]. Additional aspects that we neglected
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Figure 4: Deviation from desired dynamics. Implementing a moving
bump with the NEF gives rise to a deviation in the high-dimensional space. A
Snapshots of population activity that starts on the desired manifold (blue), and
eventually converges to a different profile (red). B,C Desired low-D trajectory
(blue) vs. the actual one (red), showing no deviation in the low-dimensional
dynamics.
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in our derivation, such as noise injections, might rescue the instabilities we
describe here.

For instance, the limitation to wide tuning curves resulted from a lack of
global inhibition. Obtaining global inhibition through the NEF would require
artificially increasing the dimensionality of the represented feature (Appendix
C). However, this solution is only apparent after analyzing the instability aris-
ing from the specific mapping under consideration.

Nevertheless, our study sheds light on properties of the general problem of
mapping dynamical systems in this framework. Specifically, the instability of
the manifold in the case of dynamic features was derived for the general case,
and not just for the ring model. This indicates that tuning curve limitations
and discrepancies may be a more general phenomenon.

Beyond the neural engineering framework, our results could apply to other
scenarios. The neural engineering approach was recently adapted by directly
using spike timing for both linear [8] and nonlinear [14] systems. Similar
mappings of dynamical systems were also used in different contexts [13]. It
would be interesting to study whether the same qualitative instabilities are
observed in these frameworks as well.

It is also interesting to note the analogies between the connectivity arising
from NEF (J = φAW ) and that arising by other means in real or artificial cir-
cuits. The NEF low-rank connectivity can be interpreted as linearly mapping
between low- and high- dimensional dynamical systems, with the surprising
result that this transformation also works for nonlinear neural dynamics. Re-
cently, low-rank perturbations to connectivity have received attention [15, 17,
19, 20], both due to specific training protocols [5], and due to observations
of low dimensional neural activity in data [12]. Together, this implies that
something akin to the NEF formula might arise through the unconstrained
training of neural networks.

11 Acknowledgments

We thank Amichai Labin for helping with an initial version of this project.
We thank Chen Beer and Ran Darshan for comments on the manuscript. We
thank the Ostojic lab for fruitful discussions. OB is supported by the Israeli
Science Foundation (346/16). SR is supported by the Howard Hughes Medical
Institute. We thank Misha Tsodyks, in whose lab this project started 12 years
ago.

15



References

1. Hopfield, J. J. Neural networks and physical systems with emergent col-
lective computational abilities. Proceedings of the national academy of
sciences 79, 2554 (1982).

2. Ben-Yishai, R., Bar-Or, R. L. & Sompolinsky, H. Theory of orientation
tuning in visual cortex. Proceedings of the National Academy of Sciences
92, 3844–3848 (1995).

3. Hansel, D. & Sompolinsky, H. Methods in Neuronal Modeling. From
Synapse to Networks. Koch C and Segev I, editors (MIT Press, Cam-
bridge, MA. Chapter Modeling Feature Selectivity in Local Cortical Cir-
cuits, 1998).

4. Eliasmith, C. & Anderson, C. C. H. Neural engineering: Computation,
representation, and dynamics in neurobiological systems (2013) (MIT
Press, 2004).

5. Sussillo, D. & Abbott, L. F. Generating Coherent Patterns of Activity
from Chaotic Neural Networks. Neuron 63, 544–557. issn: 0896-6273
(Aug. 2009).

6. Boerlin, M., Machens, C. K. & Deneve, S. Balanced spiking networks can
implement dynamical systems with predictive coding in (Ohio, 2012).

7. Eliasmith, C. et al. A Large-Scale Model of the Functioning Brain. en.
Science 338, 1202–1205. issn: 0036-8075, 1095-9203 (Nov. 2012).

8. Boerlin, M., Machens, C. K. & Denève, S. Predictive Coding of Dy-
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12 Appendix A – Nonlinear feature dynamics

If we consider a desired nonlinear dynamics in the feature space:

˙̂x = −x̂+ h(x̂) (49)

we replace the definition of W (Equation 7) by the following:

h(x) = Wf(φx) (50)
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obtaining the desired dynamics:

dx̂

dt
= −x̂+Wf(φWr) (51)

As above, the temporal derivative of x̂ is

dx̂

dt
= W

dr

dt
= −x̂+Wf(Jr) (52)

thus, by defining
J = φW, (53)

we obtain the desired dynamics. For the linear case, the matrix A will be
absorbed into the W matrix, and thus into the final J , leading to the same
solution.

13 Appendix B – Eigenvalues of Jacobian

The eigenvalues for the Jacobian in Equation 36 can be derived by observing
that the eigenvectors are sin θ and cos θ truncated between ±θC . We then use
g1 from Equation 27:

g1 =

∫
dθ

2π
[cos θ − cos θC ]+ cos θ (54)

=
θC − 1/2 sin 2θC

2π
(55)

To calculate the eigenvalues:

∫ θC

−θC

dθ

2π
cos(θ − θ′) sin θ′ =

θC − 1/2 sin 2θC
2π

sin θ (56)∫ θC

−θC

dθ

2π
cos(θ − θ′) cos θ′ =

θC + 1/2 sin 2θC
2π

cos θ (57)

λ1 = 0 (58)

λ2 = −1 +
θC + 1/2 sin 2θC
θC − 1/2 sin 2θC

(59)
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14 Appendix C – Adding a bias term

In the main text we show that NEF recovers the ring model with the constraint
of J0 = 0. From our derivation, we observe that this is due to NEF constraining
only the first Fourier mode of the connectivity. We can artificially extend the
feature space, in order to allow a non-zero bias term:

x =

 cosψ
sinψ
a

 (60)

The tuning curves also need to be artifically extended:

φ =
(

cos θ sin θ −b
)

(61)

Solving the NEF equation indeed leads to a nonzero J0 = −ab
g̃0

, where

g̃0(θC) =
∫

dθ
2π

[cos θ − cos θC ]+.
This technical trick is somewhat similar to adding a bias in the Perceptron

problem. Note that this ad-hoc solution requires knowledge of the ring model
phase diagram, and how it relates to the NEF solutions, and is thus not a
general solution.

15 Appendix D – Moving bump connectivity

Below is the derivation of the connectivity for the case of a moving bump. The
low-dimensional dynamics are given by:

dx

dt
= −x+

(
1 v
−v 1

)
x (62)

which leads to
φAx = cos(ψ − θ) + v sin(ψ − θ) (63)

We can write the condition Ax = f(φAx) as:

(1− iv)eiψ =

∫
dθ

2π
w(θ)h(θ − ψ) (64)

with

h(z) = f(cos z + v sin z) (65)
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Moving to Fourier, the equation becomes

(1− iv)δk,1 = wkhk (66)

yielding the Fourier coefficient of w:

wk = δk,1h
−1
1 (1− iv) (67)

The scalar h−11 can be computed, and will depend on v, but we only consider
the angular dependence of J = φAW here, arriving at

Jθ,θ′ ∝ [cos(θ − θ′) + v sin(θ − θ′)] (68)

16 Appendix E – Effect of choosing different

relevant x values

In our derivation of the NEF, we implicitly defined the x values of interest
(and thus W ) in equality 7 as Ax. This condition is important, because in
general it is not possible to have a consistent mapping for all x values when
using linear mappings to approximate nonlinear ones. For instance, if one used
x instead of Ax, this would not make any difference for a fixed point dynamics
(because A = I), and thus the original ring model can still be recovered.
When considering moving bumps, however, this choice results in a different
connectivity, leading to deviations from the desired low-dimensional dynamics.
Figure 5 exemplifies this phenomenon for both the threshold-linear function
and an additional nonlinearity. In both cases, we see a deviation from the
desired low-dimensional manifold. Additionally, in one case (Figure 5C), both
the desired amplitude and the desired frequency are not maintained in the low
dimensional feature dynamics.
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Figure 5: Deviation from desired low-dimensional dynamics. When
constructing the NEF with the identity of Equation 7 based on x instead of
on Ax, the desired low-dimensional dynamics are no longer guaranteed. This
is illustrated by a moving bump, similar to Figure 4. A,C f(z) = [z + Ie]+
B,D f(z) = [z + Ie]

0.5
+ .
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