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The Effect of Class Imbalance on Precision-Recall Curves

Christopher K I Williams
School of Informatics, University of Edinburgh, UK

March 17, 2021

Abstract

In this note I study how the precision of a binary classifier depends on the ratio r of positive to
negative cases in the test set, as well as the classifier’s true and false positive rates. This relationship
allows prediction of how the precision-recall curve will change with r, which seems not to be well
known. It also allows prediction of how Fβ and the Precision Gain and Recall Gain measures of
Flach and Kull (2015) vary with r.

Consider a binary classifier, where the predictions change as the threshold for deciding between
the two classes is varied. The Receiver Operating Characteristic (or ROC) curve and the Precision-
Recall (PR) curve are two ways of summarizing the performance of classifier in this situation. The ROC
curve is invariant to the ratio r of positive to negative cases in the test set in the population limit, but
the PR curve is affected by r. Below I show explicitly how the PR curve and derived quantities like the
Fβ measure (due to Van Rijsbergen 1979) are affected by r. As these are frequently used to assess
the performance of classifiers, it is important that the effect of r is well understood, and adjusted for (if
necessary).

The standard notation (see e.g., Witten et al. 2017, sec. 5.8) for binary classification is summarized
below:

Predicted Sum
Actual positive negative
positive TP FN P
negative FP TN N

There are P positive and N negative datapoints in the dataset, with the true positive rate (TPR) and
false positive rate (FPR) defined as

TPR =
TP

TP + FN
=

TP

P
, FPR =

FP

FP + TN
=

FP

N
. (1)

Let the fraction of positives in the dataset be denoted by π = P/(P + N), and define the ratio
r = P/N = π/(1− π). If we consider the table above normalized by the sample size n = P + N, then
we observe that the table’s entries are fully characterized by the three quantities TPR, FPR and r, as
the sum of the normalized entries must be 1. The values in the table are usually thought of as empirical
counts from a sample of size n. However, one can consider the normalized table in the limit n → ∞,
which describes the population properties of the classifier at the threshold chosen.

1



Figure 1: Precision-recall curves for varying r.

The ROC curve is a plot of TPR against FPR. As is well known (see e.g., Fawcett 2006), the pop-
ulation ROC is invariant to r ; this is immediate from the definitions of TPR and FPR, which are ratios
within the positives and negatives respectively. Empirical ROC curves for will exhibit some variability as
r varies (and indeed across different samples of the same size).

Precision is defined as

Prec =
TP

TP + FP
=

P · TPR
P · TPR+N · FPR

=
TPR

TPR+ 1
rFPR

. (2)

Thus the precision has an explicit dependence on r. Note that the Prec → 1 as π → 1, and also that
Prec→ 0 as π → 0 if FPR > 0.

The precision-recall curve plots the precision against recall Rec, which is another name for the true
positive rate. As recall is invariant to class imbalance, we can consider how the precision varies with r
at fixed recall. If we start with balanced classes at r = 1 and gradually decrease r1, we see that the
corresponding precision will decrease, because the denominator increases.

For population values of TPR, FPR and r, eq. 2 allows us to transform the precision as a function
of r. For an empirical sample, it allows us to predict how the PR curve will change with r using the
empirical values of TPR and FPR. This is illustrated in Fig 1. In this case a simple classification
problem with 2d Gaussians was set up, and a logistic regression classifier trained. For a test set with
r = 1 and P = N = 5000 the blue curve was obtained, and for r = 0.1 (P = 500, N = 5000) the green
empirical curve. If at each value of recall the blue curve is scaled as per eq. 2, the red curve is obtained.
Note the good agreement between the predicted and actual curves; the differences can be explained
by the fact that the empirical green curve uses a smaller number of samples than the red curve (which
reweights all of the balanced samples).

1PR curves are typically used when r is small, e.g. in information retrieval settings.
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The ability to predict how the PR curve varies with r does not seem to be well known. For example,
Fawcett (2006, sec 4.2) discusses “class skew” and shows PR curves for r = 1 and r = 0.1, but makes
no comment on their relationship. However, Hoiem et al. (2012) have pointed out that when comparing
PR curves for the detection of different visual object classes, the average precision score is sensitive
to the value of r for each class. To enable a fairer comparison, they suggested using “normalized
precision”, which uses a standard value of r across classes2.

Note that class imbalance rtrain in the training data should not have an effect on the test ROC and
PR curves of a probabilistic classifier3. To see this, consider the log odds ratio

log
p(C+|x)
p(C−|x)

= log
p(x|C+)

p(x|C−)
+ log rtrain, (3)

where rtrain = p(C+)/p(C−). For a generative classifier the LHS is obtained from the RHS and the
effect of rtrain is immediate. For a discriminative classifier eq. 3 can be used to understand the effect
of rtrain on the decision boundary. The test ROC and PR curves only depend on the sequence of
confusion matrices obtained as the threshold on the classifier’s log odds ratio is changed—the effect of
changes in rtrain is to shift the threshold, but not to change the sequence obtained.

The Fβ measure is commonly used as a figure-of-merit that combines precision and recall. It is
defined as a weighted harmonic average

1

Fβ
=

1

1 + β2
1

Prec
+

β2

1 + β2
1

Rec
. (4)

Substituting the expression for the precision from eq. 2, we obtain

1

Fβ
=

1

1 + β2
TPR+ 1

rFPR

TPR
+

β2

1 + β2
1

TPR
, (5)

and hence

Fβ =
(1 + β2)TPR

TPR+ 1
rFPR + β2

, (6)

which demonstrates the explicit dependence of Fβ on r.

The performance of a classifier is often summarized by the area under the PR curve (AUPR), by
analogy to the area under the ROC curve (AUROC). However, Flach and Kull (2015) argue that it is
better to summarize precision-recall performance based on the F1 score. This leads them to introduce
the Precision Gain PrecG and Recall Gain RecG, defined as

PrecG =
Prec− π

(1− π)Prec
, RecG =

Rec− π
(1− π)Rec

. (7)

Their Precision-Recall-Gain curve plots Precision Gain on the y-axis against Recall Gain on the x-axis
in the unit square (i.e., negative gains are ignored). It is interesting to express PrecG and RecG in

2Hoiem et al. (2012) considered the PASCAL Visual Object Classes (VOC) dataset across 20 object classes, and chose
their standard r based on the average proportion of positives across the classes.

3Or of one that provides a graded real-valued output, like a SVM.
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terms of TPR, FPR and r. Using 1/(1− π) = 1 + r we obtain

PrecG =
1

1− π
− r

Prec
= 1 + r − r

(
1 +

1

r

FPR

TPR

)
= 1− FPR

TPR
, (8)

RecG =
1

1− π
− r

Rec
= 1 + r

(
1− 1

TPR

)
. (9)

Notice how PrecG is in fact independent of r, while RecG has an affine rescaling due to r. Interestingly,
both PrecG and RecG each only depend on two out of the three quantities TPR, FPR and r.

The key point of the above analyses is to highlight the explicit effect of the class imbalance as
expressed by r on the precision, Fβ and the precision/recall gains, and to show how these quantities
can be adjusted for different r if necessary. Like Hoiem et al. (2012), Siblini et al. (2020) make use of a
fixed class ratio r0, and use it to define AUPR, F-score and AUPR Gain scores that thus do not depend
on r.
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