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Abstract

We study the learning dynamics and the representations emerging in Recurrent Neural
Networks trained to integrate one or multiple temporal signals. Combining analytical and
numerical investigations, we characterize the conditions under which a RNN with n neurons
learns to integrate D(� n) scalar signals of arbitrary duration. We show, for linear, ReLU
and sigmoidal neurons, that the internal state lives close to a D-dimensional manifold,
whose shape is related to the activation function. Each neuron therefore carries, to various
degrees, information about the value of all integrals. We discuss the deep analogy between
our results and the concept of mixed selectivity forged by computational neuroscientists to
interpret cortical recordings.
Keywords: Recurrent Neural Networks, Learning, Neural Integrators, Mixed Selectivity

1 Introduction

Recurrent neural networks (RNNs) have emerged over the past years as a versatile and power-
ful architecture for supervised learning of complex tasks from examples, involving in particular
dynamical processing of temporal signals (Chung et al., 2014). Applications of RNNs or of
their variants designed to capture very long-term dependencies in input sequences through gat-
ing mechanisms, such as GRU or LSTM, are numerous and range from state-of-the-art speech
recognition networks (Amodei et al., 2015) to protein sequence analysis (Almagro Armenteros
et al., 2017).

How these tasks are actually learned from data by RNNs has received less attention so
far. Yet, reaching a better understanding of the dynamics of training would bring valuable
advantages, both from a purely theoretical perspective as suggested in (Barak, 2017), as well
as from the practical point of view, e.g. to choose the learning rate or the initial conditions in
efficient ways, or to know how long data strings should be to reach good generalization properties.
Here, we concentrate on the specific task of integration of time series. Neural integrators have
been studied for several decades in neuroscience, both experimentally (Robinson, 1989; Aksay
et al., 2007; Wong and Wang, 2006) and theoretically (Elman, 1990; Seung, 1996; Lee et al.,
1997), and more recently, numerically, in the context of machine learning (Song et al., 2016).
The goal of the present study is three-fold.

First, we want to study how exactly the task of integration is learned from examples by
RNNs. While results have been obtained in the particular setup of Reservoir Computing (in
which recurrent connections are fixed, and training is performed by tuning only a small set of
input, output and feedback parameters), see (Tanaka et al., 2019) for a review, we study below
the general case where the recurrent weights are learned. Second, one important aim is to study
the nature of the high-dimensional representations in trained RNNs, an issue of general interest
in neural network-based learning (Zhang and Zhu, 2018; Montavon et al., 2018; Olah et al.,
2018). It is tempting, in this regard, to compare representations emerging in artificial neural
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Figure 1: A: Multiplexed Recurrent Neural Network, with D input channels (left) and the same
number of output channels (right). The internal state of the RNN, ht, is a vector of dimension
n. The inputs are encoded by the vectors ec and decoded from the internal state through the
decoder weights dc. B: Illustration of the decaying integral mapping that we want networks
to approximate, on a sparse input sequence. At each time-step t, if the input time-series xt
is non-zero, the integral is increased by s xt; then, it is multiplied by γ < 1, which produces
the exponential decay in absence of inputs. In practice, sequences used for experiments were
Gaussian noise, and these sparse sequences are used only for visualization.

networks to their natural counterparts in computational neuroscience. Third, we do not limit
ourselves to a single integration, but consider the issue of learning multiple integrators within a
unique network, a setting similar to (Luong et al., 2016). Besides the specific case of integration,
our works therefore offers a concrete illustration of how RNNs can achieve parallel, multiplexed
computations.

Our paper is organized as follows. We define the RNNs we consider in this work, the inte-
gration task and the training procedure in Section 2. The case of linear activation function is
studied in detail in Section 3. RNNs with non-linear activation functions are studied in Section
4 in the case of a single channel (D = 1), while our results for the general situation of multiple
channels (D ≥ 2) are presented in Section 5. Conclusions and perspectives can be found in
Section 6. The paper is complemented by a series of Appendices containing details about the
calculations, simulations and further figures. The source code for the simulations can be found
at https://github.com/AFanthomme/ManifoldsSupportRNI.

2 Definitions and model

Description of the network. We consider a single-layer RNN of size n, without any gating
mechanism; while such refinements are found to improve performance, as reviewed by (Lipton
et al., 2015), we omit them as they are not necessary for such a simple task. The computation
diagram presented in Figure 1A can be summed up as follows: at time t, the scalar inputs along
all channels c = 1..D, denoted xc,t, are multiplied by their respective encoder vectors ec; these

vectors are summed to the previous internal state ht−1
1, and multiplied by the weight matrix

W before a componentwise activation f is applied to get the new internal state ht. The update
equation for h is therefore

ht = f (νt) , (1)

where the current2 νt is defined through

νt = W ·

[
ht−1 +

D∑
c=1

xc,t ec

]
. (2)

1We initialize the internal state before any input to h−1 = 0.
2This name is chosen in analogy with computational neuroscience, where Wij is a synaptic weight from neuron

j to neuron i, and the image of the activity vector, νi =
∑

j Wijhj , represents the total current from the recurrent
population coming onto neuron i.
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The output units are linear: their values yc,t are simply obtained by taking the scalar product
of ht and the decoder vectors dc,

yc,t = dc · ht . (3)

Most of this study will be focused on two different activation functions f : the ”linear”
activation, which is simply the identity, and the ReLU non-linearity, which takes component-
wise maximum of a vector and zero. Linear activation allows for exact results to be derived on
both the learning dynamics and the structure of solutions, an approach similar to the one of (Saxe
et al., 2014) for the case of deep networks, and more recently (Schuessler et al., 2020b) in the case
of recurrent networks. The choice of ReLU will serve as an example of non-linear activation that
can be used to create perfectly generalizing integrators (at least in the D = 1 case), and show
that the conclusions of the linear network study remain relevant. Finally, we propose a generic
procedure to train a RNN with arbitrary non-linearity f to perform multiplexed integrations,
which we illustrate with success in the case of sigmoidal activation.

Description of the task. The networks will be trained to map D input time-series (xc,t)t∈N
to D output ones (yc,t)t∈N: for all channels c = 1, ..., D, the c-th output should match the
γc-discounted sum of the c-th channel inputs, times the scale factor sc:

yc,t = sc

t∑
k=0

γk+1
c xc,t−k , (4)

see Figure 1B. The values of the decay constants γc are chosen in [0, 1] to restrict memory to
recent events and avoid instabilities.

We quantify the performance of the network through the mean square error between the
actual and target outputs across the D channels on training epochs of length (duration) T :

L =

〈
D∑
c=1

T−1∑
t=0

(
yc,t − yc,t

)2〉
X

. (5)

Description of the learning procedure. Except when otherwise specified, the encoder e
and decoder d will be considered as randomly fixed at network initialization, and forced to be
of unit norm. The reason for this hypothesis is two-fold. First, our focus of interest is how the
network of connections between neurons evolves during training and the nature of the solutions
and representations obtained. The simplified setup allows for deeper mathematical analysis
of the dynamics of the W than the general case, where all parameters of the network evolve
simultaneously during training. Second, while the speed of convergence is positively impacted
by relaxing the constraint of fixing the decoder, numerical experiments indicate that the nature
of the W network is qualitatively unchanged if e and d are also trained, in particular when it
comes to the way the integrals are represented.

For theoretical analysis, we train the recurrent weights W using Gradient Descent (GD)
updates at learning rate η:

W
(τ+1)
ij = W

(τ)
ij − η

∂L
∂Wij

(W (τ)) , (6)

where τ is the discrete learning time. We also performed experiments using the non-linear
Adam optimizer (Kingma and Ba, 2017) to ensure robustness of our results with respect to the
specific choice of optimization procedure. Numerical implementations were performed in Python,
making extensive use of the Scipy (Virtanen et al., 2020) and Pytorch (Paszke et al., 2019)
packages respectively for scientific computing and implementation of Automatic Differentiation
and Gradient Descent optimization.
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3 Case of linear activation

Throughout this section we assume that the activation function f is linear. We start with the
simplest case of a single channel (D = 1), and will omit the subscript c = 1 below for simplicity;
the case of multiple channels D ≥ 2 will be studied in Section 3.4.

As the network dynamics ht → ht+1 is linear, the loss (5) can be analytically averaged over
the input data distribution. The computation is presented in Appendix A, and yields:

L(W ) =

T∑
q,p=1

χqp(µq − sγq)(µp − sγp), (7)

where
µq = d†W qe (8)

will be hereafter referred to as the q-th moment of W , and χ is a positive-definite matrix, related
to the covariance matrix of the inputs xt.

The average loss implicitly depends on γ, T , s, e, d and input correlations χ, which do not
evolve during training and are therefore omitted from the argument. Since χ is positive-definite,
the global minimum of the loss is reached when the moments of W fulfill

µq = sγq , (9)

for all q = 1, . . . , T . The same conditions are obtained for uncorrelated inputs, so we will restrict
to this case for numerical investigations in the following.

The gradient of the averaged loss with respect to the weight matrix W can be computed (see
Appendix B), with the result

∂L
∂Wij

= 2

T∑
q,p=1

χqp (µq−sγq)
p−1∑
m=0

n∑
α=1

dα(Wm)αi

n∑
β=1

(W p−1−m)jβ eβ . (10)

We emphasize that, while the network update dynamics is linear, the training dynamics over W
defined by (6) and (10) is highly non-linear.

3.1 Conditions for generalizing integrators

Conditions (9) over the moments µq, with q = 1, ..., T , ensure that the RNN will perfectly inte-
grate input sequences of length up to the epoch duration T . We call generalizing integrator
(GI) a RNN such that these conditions are satisfied for all integer-valued q, ensuring perfect
integration of input sequences of arbitrary length.

We will now derive a set of sufficient and necessary conditions for a diagonalizable matrix W

to be a GI3. Let us assumeW is diagonalized as PΛP−1, where the spectral matrix Λ = diag(λ)
is diagonal and P is invertible, of inverse P−1. The moments of W can be expressed from the
eigenvalues as follows:

µq = d†PΛqP−1e =

n∑
i=1

giλ
q
i with gi = (P †d)i(P

−1e)i .

Obviously, a null eigenvalue does not contribute to the above sum, hence the conditions that
we obtain in the following will only apply to non-zero eigenvalues. Our condition for null loss is
that all of the aforementioned moments µq are equal to s γq.

3As the set of diagonalizable matrices is dense in the space of matrices, any non-diagonalizable matrix W can
be made diagonalizable through the addition of an infinitesimal matrix; the moments of the resulting matrix are
arbitrarily close to the ones of W , which makes our results for diagonalizable matrices directly applicable to W ,
see Section 3.3.
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The above set of conditions can be rewritten as follows. For any real-valued polynomial Q(z)
of degree less than, or equal to T in z, such that Q(0) = 0, we have∑

i

giQ(λi) = sQ(γ) . (11)

We can evaluate the previous equality for well-chosen polynomials. Let us consider one
eigenvalue, say, λκ assumed to be different from γ, and the Lagrange Polynomial Q(z) equal to
one for z = λκ and to 0 for z = 0, z = λi 6= λκ and z = γ. Such a polynomial exists as soon
as T ≥ n+ 1 in the general case where all eigenvalues are distinct from each other, 0, γ, and as
soon as T ≥ r + 1 if n− r eigenvalues are equal e.g. to 0. Equality (11) gives:∑

i

gi δλi,λκ = 0 ,

where δ·,· denotes the Kronecker delta. Therefore, any eigenvalue different from γ must satisfy an
exact cancellation condition for the associated g coefficients ensuring that it does not contribute
to the network output. Similarly, a condition for the γ eigenvalue can be written, to ensure that
an input of magnitude 1 entails a change of magnitude s in the output.

The necessary and sufficient conditions for a diagonalizable matrixW to be a global minimum
of the loss defined with T ≥ n+ 1 therefore read{ ∑

i gi δλi,γ = s

∀κ s.t. λκ /∈ {γ, 0},
∑
i gi δλi,λκ = 0

(12)

These conditions are in turn enough to guarantee that W is a global minimum of the loss
for any value of T , hence the Generalizing Integrators and the minima of the losses defined with
T ≥ n+ 1 are equal.

Clearly, any global minimum of the averaged loss L experimentally obtained when using
training sequenes of length T ≥ n + 1 is a GI. Networks trained with much shorter epochs can
also be GIs if the rank of W remains small enough throughout the training dynamics. More
precisely, if we assume we have found a minimum of the loss of rank r ≤ n it will be a GI as
soon as T ≥ r+ 1. An important illustration is provided by the null initialization of the weights
(W (τ=0) = 0), which ensures that W remains of rank r = 2 at all times τ , see (10) and next
subsection.

3.2 Special case of null-weight initialization

We now assume that the weight matrix W is initially set to zero, and characterize all the GIs
accessible through GD, as well as the local convergence to those solutions. A study of the full
training dynamics for two special cases (T = 1 and e = d) can be found in Appendix C.

Low-rank parametrization. From the expression of the gradients (10) and the linearity of
the weight updates (6), it is clear that starting from W =0, the weight matrix will remain at all
times τ in the subspace generated by the four rank-1 matrices dd†,de†, ed†, ee†. We introduce
an orthonormal basis for the v1 ≡ e,v2 ≡ d space,

va =

2∑
b=1

(Σ−1/2)ab vb, with Σab = v†avb , (13)

and the corresponding parametrization of the subspace spanned by W :

W (τ) =

2∑
a,b=1

ω
(τ)
ab va vb

† , (14)

where ω(τ) is a 2× 2-matrix.
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Figure 2: Illustration of the three GI manifolds in the space of 2×2–matrices with one eigenvalue
equal to γ, the second to λ, and the remaining two degrees of freedom being labeled α and β.
In one manifold (red), the second eigenvalue is zero, so that all of those matrices are GIs with
decay γ, and any scale s. The other two manifolds contain integrators at the particular scale
s∗ = d†e only, and are of rank 2. The values of α0 and β0 are computed in Appendix E, where
details on the parametrization used here can also be found.

Generalizing integrators. Conditions (12) for W to be a GI can be turned into conditions
over ω, see Appendix D. Let us assume that ω is diagonalized through ω = PωΛωP

−1
ω with

Λω = diag(λ1, λ2), and define gi = (P †ω
√

Σ)i,1(P−1ω

√
Σ)i,2. The conditions for ω to define a GI

through (14) are: (λi = γ for i = 1 or 2), (
∑
i δγ,λigi = s) and gi = 0 if λi /∈ {0, γ}. Taking

into account the constraint g1 + g2 = Σ1,2 = d†e, we find that the set of GIs is spanned by the
following three manifolds in the 4-dimensional space of ω matrices, see Appendix E for details:

• The first manifold is of dimension 2, and contains rank-1 integrators W at all scales. These
weight matrices have one eigenvalue equal to γ, and the other to 0 so that one of the g
coefficients remains unconstrained:

ω =
γ

β − α

(
β −1
αβ −α

)
, (15)

where (α, β) ∈ R2. Fixing the scale s to any value different from d†e introduces exactly
one relation between α and β, making the set of rank-1 perfect integrators at scale s a
1–dimensional manifold, see Appendix E.

• The other two manifolds contain rank-2 integrators, operating at the scale s∗ = d†e only.
For generic independent encoder and decoder vectors, the scale s∗ = d†e is of the order of
n−1/2 and vanishes in the large size limit. We will discard these solutions, and focus on
rank-1 solutions given by (15) at finite scale s ( 6= d†e).

The structure of the GI manifolds is sketched in Figure 2.
In Appendix F, we compute the gradient and Hessian of the loss in the null-initialization

subspace. In the case of fixed encoder and decoder, the convergence towards a GI is generically
exponentially fast; the corresponding decay time can be minimized by appropriately choosing
the value s of the scale s, see Appendix G. For some specific choices of the scale s, convergence
can be much slower and exhibit an algebraic behaviour, see Appendix H.

3.3 Initialization with full rank connection matrices

The results above assumed that training started from a null weight matrix, in order to constrain
the dynamics of W to a very low-dimensional space. Training RNNs on very short epochs
(T = 3) was then sufficient to obtain rank-1 GIs capable of integrating arbitrary long input
sequences.

In practice, we observe that initializing the network with a matrix W of small spectral norm
(instead of being strictly equal to zero) does not change the fact that only one of the eigenvalues
of W is significantly altered during training, and a GI is obtained as soon as T ≥ 3. The use of a
non-linear optimization scheme such as Adam rather than GD does not change this observation.

To gain insights about this empirical result, let us consider a perturbation ε =
∑
i εiuivi,

with singular values bounded by 1, around a generalizing integrator of rank 1, W = σlr†. Under
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the assumption that the u and v vectors are drawn randomly on the unit sphere of dimension n,
their dot products with e, d and each other are realizations of a centered Gaussian distribution
of variance 1/n. We can then consider the image of e by our perturbed matrix:

(W + ε)e = (σr†e)l+

n∑
i=1

εi(v
†
i e)ui (16)

The second term, originating from the perturbation, is a vector whose components are sums
of n terms of unfixed signs and magnitudes 1/n, and is, hence, of the order of 1/

√
n. Accordingly,

the dot product of this perturbation vector with d, which is exactly the perturbation to the first
moment µ1, will be of the order of 1/

√
n too. Under similar hypothesis of independance of

Gaussian vectors, all moments µq will be perturbed by terms of that same order.
Since unstructured eigenvectors do not contribute to the network output at first order, the

gradients with respect to those parameters will also be subleading and this perturbation will
remain mostly unchanged during training, in agreement with numerical simulations.

3.4 Case of multiple channels

We have seen that GD is generally able to train a linear RNN exponentially fast towards a
rank–1 single-channel GI with associated eigenvalue γ and singular vectors tuned to ensure the
correct scale of integration. The state of the corresponding network is easily interpretable: it is,
at all times, proportional to the output integral. Due to the linearity of the network, this result
can be straightforwardly extended to the case of D > 1 integration channels, as we show below.

Interpretation of rank–1 solutions in the single channel case. We write the rank–1 GI
as W = σlr†, where l and r are normalized to 1, and σ is positive. Since W must have γ as
its eigenvalue, we need σr†l = γ. Additionally, to ensure that the first non-zero input gives the
correct output, we require that σ(d†l)(r†e) = sγ. It is easy to check that these conditions are
sufficient to ensure that the state of the network is

ht = a yt l with a =
1

d†l
, (17)

for all times t, which, in turn, ensures perfect integration (yt = yt). In other words, rank–1 GIs
rely on a linear, one-dimensional representation of the target integral: the internal state is, at
all times, proportional to yt.

Representation of integrals with multiple channels. The above discussion of the single-
channel case generalizes to multiple channels. Through training a weight matrix W of rank D is
constructed, which has (γ1, ..., γD) as its eigenvalues, and singular vectors compatible with the
(fixed) encoder and decoder weight vectors. The GI conditions are as follows:

∀c ∈ J1, DK, σcr
†
clc = γc

∀c ∈ J1, DK, σc (d†clc) (r†cec) = sc γc

∀(c, c′) ∈ J1, DK2, c 6= c′, r†cec′ = 0

∀(c, c′) ∈ J1, DK2, c 6= c′, d†clc′ = 0

∀(c, c′) ∈ J1, DK2, c 6= c′, r†clc′ = 0

(18)

The two first conditions are exactly the same as in the single channel case, while the last three
ensure that the modes of the weight matrix coding for the different integration channels c do not
interfere, and can independently update the values of their outputs to match the targets yc,t.

Assuming these conditions are satisfied, the network state is at time t equal to

ht =

D∑
c=1

ac yc,t lc , (19)

where the ac’s are structural coefficients, which generalizes expression (17) to the case D ≥ 2.
The state of any neuron i is therefore a linear combination of the D integrals across the multiple
channels. Multiplexing is here possible as long as D ≤ n, and encoders and decoders each form
free families of Rn.
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Figure 3: Internal encoding of the integral yt by a single-channel ReLU network using two
populations. A: Experimentally observed distributions of the components of L±, determined
by fitting the activity of each neuron with (20). Results are aggregated across 10 realizations of
batch–SGD training n = 1000, s = 1. B: Illustration of the activity shift from the + to the −
population at arrival of an input that changes the sign of the target. Mutual inhibition between
the two sub-networks guarantees only one can be active at a given time, and an external input
is required to perform the shift.

4 Non-linear activation: case of a single channel

We now turn to the case of non-linear activation. The computation of the averaged loss is not
analytically feasible any longer. However, by investigating RNNs trained with Gradient Descent
on the mean square error (5) computed on batches of inputs, hereafter referred to as batch–
SGD, we have identified structural and dynamical properties, from which sufficient conditions
for generalization can be constructed.

4.1 Empirical study of neural representations in a ReLU network

We start by considering the case of the ReLU activation, where f = b·c+ = max(·, 0) is a non-
linear component-wise operator. The simple encoding (17) adopted by linear-activation networks
relied on the fact that the activity of each neuron could change sign with yt. This is not possible
with ReLU activation anymore since activities are forced to remain non-negative, and a novel
encoding is obtained after training of the RNNs that we expose below.

Behavior of neuron activities. Based on numerical simulations reported in Figure 3A, we
argue that the population activity in ReLU networks depends on two vectors, referred to as L+

and L−, with non-negative components and dot products with d equal to, respectively, +1 and
−1. More precisely, these vectors determine how the neural activities vary with the integral yt,
depending on its sign:

ht = bytc+L+ + b−ytc+L− . (20)

Hence, in the space of possible internal states Rn+, the state h of the RNN lies in the union of
the two half lines along L+ and L−, a 1-dimensional piecewise linear manifold whose geometry
is imposed by the non-linear activation b·c+.

The n components of L+,L− define a priori four sub–populations: if (L+)i > 0 and (L−)i >
0 neuron i is active at all times t (”shared” population); if (L+)i > 0 and (L−)i = 0 (respectively,
(L+)i = 0 and (L−)i > 0), the neuron is only active when the integral is positive (resp. negative),
defining the ”+” (resp. ”-”) population; if (L+)i = (L−)i = 0 , the neuron is never active and
belongs to the ”null” population. In numerical experiments, the shared and null populations
account for a small fraction of the neurons (around 5%, see Figure 3A) when training is performed
using batch–SGD, while they are entirely absent when training on the proxy loss (29); in addition,
shared neurons never have strong activities and their contributions to the output integral seem
irrelevant.
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Figure 4: Behavior of currents in a ReLU network trained using the batch–SGD loss, s = 2,
γ = 0.995. A: Parametric plot of the currents (νt)i incoming on two representative neurons i
(red, blue) vs. target integral yt across time t. We observe a linear relation, with a slope that
varies both in sign and magnitude from neuron to neuron. B: Normalized dot product between
the vector of currents ν and the image of the encoder We vs. value of the integral, illustrating
eqns. (21) and (24).

Behavior of neuron currents. Numerical experiments furthermore indicate that the depen-
dence of the current νt (2) on the integral yt is simpler than the one shown by the activity ht.
We observe that the current vector is proportional to the integral,

νt = ytL, (21)

where the components Li of the vector L vary from neuron to neuron, both in amplitude and
in sign, see Figure 4A.

The representation of the integral based on two non-overlapping populations reported above
may be seen as a straightforward consequence of the linear encoding at the level of pre-activation
currents expressed by (21):

ht = bνtc+ = byt Lc+ = bytc+ bLc+ + b−ytc+ b−Lc+, (22)

from which we deduce that the population vectors L+ and L− defined in (20) are equal to,
respectively, bLc+ and b−Lc+. In other words, neurons i encode positive or negative values of
the integral depending on the signs of the components Li.

Hence, while the neural state ht = f(νt) of a ReLU RNN is not proportional to the integral
value, see (20), as was the case for linear RNNs in Section 3.3, proportionality is recovered at
the level of the pre-activation currents νt. We will see below that the linearity of the currents
with respect to the integrals extends to the case of multi-channel integrators.

4.2 Theoretical analysis of the ReLU integrators

We now explain the origin of the linear relationship between current and integral values (21),
and how the vector L defining the current direction is related to the connection matrix W , the
encoder e, and the parameters s, γ.

Sufficient conditions for integration. Let us first consider the network at time t = 0, with
all activities set to zero (h0 = 0). As the first input x1 is read by the encoder, the current vector
at time t = 1 takes value

ν1 = W (0 + x1 e) = x1 We =
ȳ1
sγ
We . (23)

The above equality agrees with the linear relationship (21) provided we have

L =
1

sγ
We . (24)
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Figure 5: Contributions to the currents in a ReLU integrator trained with batch–SGD. Left:
scatter plot of WL− vs. WL+. Right: WL+ vs. We. Colors refer to the neural populations,
see Figure 3A. For both panels we show on the sides the histograms of current components.
Results were obtained with T = 10, γ = 0.995, s = 2, n = 1000. Numerical findings confirm
that WL+ = −WL− and We = sWL+.

This identity is in excellent agreement with numerical findings, as shown in Figure 4B.
We now assume that the current linearly expresses the target integral ȳt at time t, and look

for sufficient conditions for relationship (21) to hold at time t + 1 after the new input xt+1 is
received by the network. The current at time t+ 1 reads

νt+1 = W (ht + xt+1 e) = W (bνtc+ + xt+1 e)

= W (bȳtLc+ + xt+1 e) = W (bȳtc+L+ + b−ȳtc+L−) + xt+1We

= bȳtc+WL+ + b−ȳtc+WL− + xt+1We ,

(25)

and should match

νt+1 =
ȳt+1

sγ
We =

( ȳt
s

+ xt+1

)
We (26)

according to (21) and (24). We deduce that WL+ and WL− have to be aligned along We, see
(24). Furthermore, based on the identity y = byc+ − b−yc+, we readily obtain that

WL+ = −WL− = s−1We . (27)

These relations are in very good agreement with numerics, see Figure 5.

Proxy loss for integration by a network of ReLU units. Conditions (24,27) as well as the
relations between L,L+,L− ensure perfect generalizing integration. They can be summarized
into the set of four equalities {

d†b±Wec+ = ±sγ
W b±Wec+ = ±γWe

(28)

linking the matrix of connections, the encoder and decoder vectors, as well as the scale and
decay parameters.

We now introduce a proxy loss for W , whose global minimum is achieved when conditions
(28) above are fulfilled,

Lproxy =
∑
z=±1

(d†bzWec+ − zsγ)2 +
∑
z=±1

|W bzWec+ − zγWe|2 . (29)

Experimentally, training on this proxy loss is extremely effective and as expected leads to perfect
integrators satisfying the relations between currents shown in Figure 5. Similarly to the linear
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case, if the encoder and decoder are fixed during training, the convergence time of GD is strongly
dependent on s with a preferred scale around |e||d|, see study of dynamics of learning with Lproxy
in Appendix I,

While the batch-SGD loss is by definition based on actual computation of the network output
for sample input sequences, the proxy loss imposes strict conditions on the dynamical behavior of
the network that, in turn, ensure that the batch-SGD loss will be zero. While there is no a priori
reason to believe that all global minima of (5) are global minima of (29), we empirically observed
that the solutionsW found by minimizing the batch–SGD seemed to also be approximate minima
of the proxy loss (see Figure 5 for the ReLU case).

Properties of the connection matrix. Training integrators with either batch–SGD or the
proxy loss yields solutions with one dominant singular value, of the form

W ' σ l r†.

We report some properties of these solutions in Appendix J. In particular, the singular value σ
is, in the case of fixed encoder and decoder with unit norms, bounded from below by 2 max(1, s),
where s is the scale. In practice, except for scales close to 1, this lower bound seems to be tight,
i.e. σ = max(1, s), see Appendix J, Figure 17. We interpret this saturation as a manifestation
of the conjecture by (Arora et al., 2019) that gradient descent implicitly favors solutions with
small matrix norm, as rank–1 matrices have a Frobenius norm equal to their singular value.

4.3 Case of generic non-linear activation.

We now turn to the generic case of non linear activation function f . To do so, we show how the
idea of proxy loss developed in the ReLU case can be naturally extended to any f .

Generic proxy loss. We start by writing, for an arbitrary activation function f , the dynamical
equation for the current, rather than for the activity state,

νt+1 = W
(
f(νt) + xt+1e

)
. (30)

At the first time-step, since h−1 = 0 the current ν0 will be equal to x0νe = y0/(sγ)νe. The
error will thus vanish if and only if, for all y in the range of values of the target integral,

d†f
( y
sγ
We

)
= y. (31)

These relations generalized the first two conditions in (28) for ReLU activation. Furthermore,
imposing that We is an ‘eigenvector’ of the non-linear operator W f(·) with eigenvalue γ, i.e.

W · f
( y
sγ
We

)
=
y

s
We, (32)

for any y, will force the current to remain at any time aligned along We. A simple inductive
proof similar to (25) shows that in these conditions the coordinate along that line will evolve
proportionally to the output, similarly to eqn. (21). Combined with the condition derived for
the first input, this is enough to guarantee perfectly generalizing integration.

For arbitrary f , conditions (31) and (32) can generally not be exactly satisfied for y varying
over a continuous domain, i.e. for an infinite number of values of y. However, these conditions
can be fulfilled for a discrete and finite subset, which will provide sufficient accuracy for good
integration in practice. Let ymax be the largest absolute value of the integral; the interval
[−ymax; ymax] can be discretized in m ∼ 2ymax/ε steps of width ε. We may expect a network with
n neurons and n2 connections to be generically able to fulfill the corresponding 2m conditions
(31) and (32) as soon as n2 > 2m. Hence we expect the error on the integral of a time series of
T inputs to scale as ε ∼ 1/n2, irrespectively of T (as long as the integral values remains below
ymax).
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Based on these considerations, we propose a proxy loss for integration of a single scalar signal
using a RNN with arbitrary non-linearity:

Lproxy,f,D=1(W ) =

∫
z∈Z

[
d†f(zWe)− s γ z

]2
+ [W · f(zWe)− z γWe]

2
. (33)

This integral can be estimated via Monte-Carlo, and the choice of Z = [−zmax, zmax] will
restrict the maximum value ymax = s γ zmax of y that can be represented through our network.
It is still possible to obtain generalization to infinite number of integration steps, but the choice
of γ has to be tuned so that the integral never exceeds the range the network was trained for.

Application to sigmoidal activation. We tested this new loss with a sigmoidal activation

function4

f : x→ 1

1 + exp−50(x−0.1)
.

Trained with a decay γ = 0.8, scale s = 1, Z = [−5, 5] 5, those networks converge to a solution
with a single dominant singular value and manage to integrate signals of arbitrary length, despite
their inability to generalize to larger values of the integral. We observe that some neurons in the
network exhibit a saturated behaviour when the integral is above (resp. below) a neuron-specific
threshold θi, while other neurons never reach that saturation. This results in a behavior where,
during monotonous evolution of the integral starting from 0, an increasing number of neurons
get activated to support the integral, see Figure 6. While these networks have a very different
phenomenology from the ReLU ones in state space, the integration is still performed through
linear currents. We also confirmed that sigmoidal networks could be trained on the batch-SGD
loss, yielding integrators with a single dominant singular value; training with γ too close to 1
results in poor performance, suggesting that the issues of generalization to large values of y is
not entirely due to the choice of proxy loss, but could hint at intrinsic limitations of the network,
related to the activation function.

The proxy loss (33) will be extended below to the general case D > 1. It should be noted that
all non-linear integrators need not be absolute minima of the proxy loss and follow the linear
current representation. We only show here that it is one possible representation scheme, which
can be adapted to any non-linearity and could therefore help bridge the gap between idealized
ReLU activation and more complex examples, e.g. inspired from real neurons.

5 Non-linear activation: case of multiple channels

We now consider the case of a multiplexed integrator with D input-output channels, performing
D integrals in parallel. In practice, numerical experiments were carried out for D = 2, 3, 4.

Batch and proxy losses for multiple integrators. To train our RNN to carry out multiple
integrations, we followed two different strategies. First, we used the batch loss defined in (5)
from a set of input data, combined with a learning algorithm, e.g. SGD.

Second, drawing our inspiration from the detailed analysis of the single-channel case studied
in the previous section, we introduced an extension of the proxy loss (33) to an arbitrary number

4The choice of the slope and bias, here 50 and 0.1 respectively, is not critical to the results. We chose the slope
so that the transition from 0 to 1 of the sigmoid happens on a scale of 1/50, close to the expected magnitude of
the currents n−1/2 ' 1/30 for n = 1000. The bias was then chosen so that x = 0 is not in the linear portion of
the sigmoid, nor in a fully saturated portion to avoid the null weight-matrix W (0) = 0 to be a fixed point of the
learning dynamics.

5For γ = 0.8, s = 1, and inputs of magnitude bounded by 1, the integral evolves in [−4, 4] as ymax is solution
of ymax = γ(ymax +s), hence zmax = ymax/(sγ) = 5. In practice, to observe the regimes |y| ' ymax more easily,
we test the network using sequences alternating between bursts of ±1 inputs and long periods with no external
input, see Figure 9.
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Figure 6: A: Value of the pre-activation current νi as a function of the integral for two rep-
resentative neurons. B: Activity-integral characteristic curve for the neurons of panel A. One
of them (blue, right scale) saturates for low enough values of yt, while the other (orange, left
scale) never saturates. C: Histogram of the mean activity of neurons for different values of the
integrals, aggregated across 8 realizations of the training on the proxy loss (33). The range of
integral values [−4, 4] was divided in 100 bins to select the time-steps in the test sequences that
corresponded to the values of y indicated in the legend. As the value of the integral increases,
more neurons get strongly activated, and eventually saturate. The same evolution could be
observed for integrals yt decreasing below the zero value. Those networks were trained using the
batch–SGD loss, γ = 0.8, s = 1, n = 1000, and the same results are found using the proxy loss.

D > 1 of input signals,

Lproxy,f,D(W ) =

∫
z1∈Z1

· · ·
∫
zD∈ZD

{∑
c

[
d†cf

(∑
c

zcWec
)
− sc γc zc

]2

+

[
W · f

(∑
c

zcWec
)
−
∑
c

γc zcWec

]2}
,

(34)

where the integral runs overs the D-dimensional range of values of the integrals, Z1×Z2×...×ZD.
As we shall see below, training with this loss allowed us to obtain networks with arbitrary non-
linearity that represent the integral values linearly in the space of currents, as we shall see below.
Note that different activation functions, varying from neuron to neuron could be also considered,
e.g. through the introduction of a distribution of thresholds for the sigmoidal function.

Characterization of currents for ReLU networks. We start with the ReLU case. As
in the linear case, training ReLU networks with Stochastic Gradient Descent of the batch loss
yields networks that perform multiple integrations with excellent accuracy. Inspection of the
connection matrices W reveals that they have D dominant singular values, as illustrated in
Figure 7A for D = 3 channels. Such a spectral structure, consisting of a large number of ”bulk”
values and a small number of ”outliers” that perform a computational task is reminiscent of the
setting investigated in (Schuessler et al., 2020a).

The D corresponding left eigenvectors lc of the W matrix define a D–dimensional linear
manifold for the current vector νt,

νt '
D∑
c=1

αc,t lc, (α1,t, .., αD,t) ∈ RD , (35)

while the activity state ht of the network lives on a non-linear version of this manifold, shaped
by the ReLU activation function:

ht = bνtc+ . (36)
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A B

Figure 7: Histograms of the singular values of W in a ReLU (A) and sigmoidal (B) network
across 4 realizations (one colour each) of batch–SGD with D = 3, T = 10, n = 1000. The ReLU
networks were trained with γ1 = γ2 = .995, γ3 = .992, while the sigmoidal ones were trained
with γ1 = γ2 = .8, γ3 = .75. In both cases, a bulk of eigenvalues are found close to 0, while
exactly 3 of them become substantially larger. A fair amount of variability can be observed in
the exact value of those large eigenvalues, even using the same values of the decays.

Investigating the relation between the α coordinates in the current manifold and the values of
the different integrals y, we empirically find that they are related by a linear mapping. More
precisely, there exists a D×D–matrix R such that the coordinates αt along the current-manifold
can be written at all times as:

αc,t =

D∑
c′=1

Rc,c′ yc′,t . (37)

In Figure 8, we illustrate this mapping in the D = 2 case. The methodology adopted is the
following. While the network is performing integration, at each time-step t, we infer the αc,t
coordinates from the values of the currents through (35). The panels of Figure 8 show the
coordinate αc (left: c = 1; right: c = 2), see color code in the figure, as a function of the two
integrals y1, y2. Aggregating those results across a large number of long trajectories, we find that
the value of the currents as a function of the targets is independent of the exact input sequence
and linearly depends on the value of the integrals. Hence, the linear dependence of the current
on the integrals, empirically found for D = 1 in (21), also holds in the multi-channel case.

We emphasize that the presence of a bulk of small, but not negligible, singular values of
W (in addition to the D dominant ones) is not in contradiction with the fact that the current
lives in a D–dimensional manifold. The corresponding singular vectors may be orthogonal to
the encoders, and therefore never contribute to the internal state. To illustrate this point, we
provide a quantitative evaluation of the distance between the currents νt and the D–dimensional
vector space D spanned by the D largest singular vectors lc on the right hand side of eqn (35)
as follows. After collecting the currents ν at all time-steps during 128 trajectories of duration
T = 200, we compute the projection νint of those currents on D using least-squares, and the
orthogonal projection, νoutt . The ratio of their norms

r =
〈|νoutt |〉t〈
|νint |

〉
t

, (38)

where 〈·〉t denotes the average over time, estimates how much of the current lies out of the
D-dimensional manifold. Results for the ratios are reported in the first line of Table 1 for
networks obtained from the batch and the proxy losses, and are very small, r < 0.5. These
values are significantly smaller than what would be expected by chance in a null model in which
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Figure 8: Value of the coordinates α1 and α2 in the current manifold as a function of the value of
the target outputs ȳ. Both coordinates depend linearly on the value of the two integrals (y1, y2),
so that the position in the current manifolds is a linear representation of the integrals. The
points were aggregated across 256 trajectories of length T test = 200, for networks trained using
batch–SGD on the mean square error (5) with training epochs duration T train = 10, γ1 = 0.995,
γ2 = 0.992.

D=1, proxy D=2, proxy D=1, batch D=2, batch
ReLU 1.63 10−2±9.22 10−4 4.9 10−2±4.87 10−3 1.31·10−2±1.69 10−3 1.25 10−2±1.38 10−3

Sigmoid 3.22·10−2±2.44·10−3 1.13·10−1±1.36·10−2 5.62·10−2±1.45·10−2 3.34·10−1±1.90·10−2

Table 1: Average ratios r of the projections of the current outside and inside the best D–
dimensional subspace, see eqn. (38), for different activation functions and values of D, and
n = 1000. Error bars were estimated from 8 realisations of the training in the same conditions.

all directions in the n-dimensional space of currents would be equally significant,

rnull =

√
n

D
− 1 , (39)

whose value is larger than 20 for n = 1000 and D = 1, 2.

Case of sigmoidal units. We have repeated the above analysis on networks with sigmoidal
units, trained both from the batch and proxy losses. Results for a representative networks
trained with the proxy loss to integrate D = 2 channels are shown in Figure 9A. We observe
an excellent match between the output integrals and their target values. Similar results, albeit
slightly less accurate are obtained with the batch loss.

As in the ReLU case, the connectivity matrix W is characterized by D large singular values,
and a bulk of smaller ones. This bulk is influenced by several factors, including the initial
condition over the matrix W and the choice of the learning algorithm. Despite the presence of
these small singular values, the D-dimensional nature of the current can be assessed, see ratios r
reported in 1. The values of r are much smaller than what would be expected from a null model,
and confirm the low-dimensionality of the current manifold. Not suprisingly, the values of the
ratios for sigmoidal networks are 2 to 10 times larger than for their ReLU counterparts (for the
same size n), as expected from the higher difficulty to solve conditions (31,32), see discussion in
Section 4.3.
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Figure 9: Learning of D-dimensional integrators with sigmoidal networks. A: Comparison be-
tween expected and measured output on structured test sequences, designed to alternate between
bursts of ±1 inputs and long periods with no external input to allow for visual discrimination
of the origin of errors between scale and decay. B: Activity of a representative neuron in the
(y1, y2) plane, measured on white-noise inputs. The decays are equal to 0.8 and 0.75, n = 1000,
and the sigmoidal networks were trained using the proxy loss (34).

Nature of single neuron activity and mixed selectivity. The above findings allow us to
determine how the state hi of a neuron depends on the integrals ȳ = (ȳ1, ȳ2, ..., ȳD):

hi = bs†i ȳc+ , with si,c =
∑
c′

Rc′,c lc′,i . (40)

From a geometrical point of view, as illustrated in Figure 10(left) in the D = 2 case, each neuron
activity hi is the image through the ReLU non-linearity of the dot product between an associated
direction si and the set of integrals ȳ. The same feature is encountered for sigmoidal units, as
shown in Figure 9B.

In the two-channels case again, we have then characterized the distribution of the angular
direction of si across the n neurons, and find that it is equally distributed on [0, 2π], see Figure
10(right) for ReLU networks; similar results are found with the sigmoidal activation function.
This flat distribution can be interpreted in light of the maximum entropy principle: each neu-
ron carries information about a (non-linear) projection of the integral vector, and no specific
orientation for this projection should be expected to be favored.

In the solutions empirically obtained through Gradient Descent, either on the batch loss
or the proxy loss, we found that the network jointly encodes information about all integrals
in the state of all neurons, a phenomenon similar to the one of ”mixed selectivity” used to
interpret cortical recordings in the field of computational neuroscience (Rigotti et al., 2013),
and closely related to the issue of class selectivity in computer vision, see (Leavitt and Morcos,
2020). Mixed selectivity can be seen here as a consequence of initialization: in our experiments,
all encoders and decoders have non-zero components on all neurons of the network. Therefore,
during training, the connectivity matrix will be optimized in such a way that all neurons will
extract and represent information about all integrals.

If we instead constrain the encoder and decoder for each channel to have the same support,
spanning only n/D neurons and non-overlapping with the support for any other channel, we find
that the obtained solutions do not exhibibit mixed selectivity anymore: the connection matrices
W are block-diagonal, indicating that the network subdivided into D independent populations,
each responsible for the coding of one integral. Relaxing the support constraint on either the
encoders or the decoders causes mixed specificity to reappear. Last of all, allowing the support
of the channels to overlap causes the corresponding neurons to exhibit mixed selectivity, while
the rest of the network remains simply selective. Those findings are illustrated in Figure 11.

None of these support constraints significantly impact the final performance or the learning
dynamics, and only affect the topology of the connectivity matrix.
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Figure 10: Mixed selectivity in bichannel ReLU networks. Left: Activity hi of a representative
neuron i as a function of the two integrals, aggregated across 512 epochs of T test = 200 time-
steps. This activity is of the form max(s†iy, 0), meaning that the neuron will only ever be active
in half of the (y1, y2) plane. Right: Distribution of the angle of the boundary plane between zero
and non-zero activity across the n = 1000 neurons of the network. These figures were obtained
by training the networks using the same parameters as Figure 8.

Figure 11: Visualization of the elements of the weight matrix W after training a ReLU network
to integrate D = 2 signals through batch–SGD in three different cases of initialization: (left) the
encoders and decoders are independent Gaussian vectors without any restriction; (middle) the
population is divided in two: the first half of the neurons have non-zero encoder and decoder only
on channel 1, and similarly the other half on channel 2; (right) starting from the non-overlapping
case, we allow a small fraction of the neurons (middle portion) to have non-zero components
on all e,d vectors. We find that the use of disjoint supports produces block-diagonal solutions
where one population is in charge of one integral and isolated from the others, thus exhibiting
single selectivity.

Learning with sign-constrained connections. So far, the only biological constraint we
have considered regarded the states of neurons, which were forced to remain positive through
the use of the ReLU activation function in order to represent firing rates. We now introduce
a constraint on the weight matrix W itself, corresponding to the observed division between
excitatory and inhibitory neurons known as Dale’s Law (Squire et al., 2012): at initialization,
we fix a certain fraction of the columns of W , corresponding to the outgoing connections from a
subpopulation of neurons, to have only negative entries, while the rest of the columns will have
only positive entries. In order to maintain these constraints satisfied during training, after each
step of optimization, we fix to 0 all the elements of W that changed sign.

At the end of the training the weight matrices exhibit one additional relevant singular value
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Figure 12: Distribution of the components of the left and right singular vectors for the largest
singular value (left) and the following D ones (right). These histograms were obtained with 16
realizations of the batch–SGD training, using n = 1000, D = 2, and 25% of inhibitory neurons.
While the signs of the components of the 2nd and 3rd singular vectors appear random, they
have a particular structure in the first singular vector : the left singular vector is always positive,
while the right is positive (resp. negative) if the neuron is in the excitatory (resp. inhibitory)
population; the corresponding rank-1 matrix has columns of fixed signs corresponding to the
ones of Dale’s constraints.

compared to their unconstrained counterparts:

W ' σ0 l0 r†0 +

D∑
c=1

σc lc r
†
c .

The rank-1 contribution coming from this additional mode has the correct signs to satisfy Dale’s
constraint, as illustrated in Figure 12. Additionally, the left eigenvector l0 is almost orthogonal
to all decoding vectors dc, suggesting that this mode is not used for the computation of the
integrals, but only as a way to satisfy the sign constraints over W . It should be noted that our
empirical result does not rule out the existence of networks of rank D performing D multiplexed
integrals while satisfying Dale’s Law. However, such solutions, if they exist, are not obtained
through a simple Gradient Descent procedure from a zero or small W .

6 Conclusion and perspectives

Summary of results and open questions. We have studied in this work how a RNN with
n neurons learns to perform one or more integrations of temporal inputs; each integration was
characterized by the target values of the scale factor s and of the decay coefficient γ (generally,
slightly below 1).

In the case of a RNN with linear activation performing a single integral, we have precisely
characterized the length of the temporal input necessary for perfect generalization (integration
of any temporal signal), the optimal learning rate and the convergence time of the training
procedure when the weight matrix is initially set to zero (or is small enough in norm). The coding
of the integral is realized in a simple way: the activity vector of the entire neural population
varies along a 1-dimensional direction in the n-dimensional space, with a proportionality factor
equal to the integral.

In the case of ReLU activation, very accurate integration was obtained at the end of the
training too. While a full mathematical analysis seemed much harder than for linear activation,
we showed empirical evidence for the fact that the activity vector belongs to a piecewise 1-
dimensional manifold. Coding of the positive and negative values of the integrals is done by
two essentially non-overlapping populations of neurons, switching on and off when the integral
value crosses zero. Remarkably, the pre-activation current of the ReLU units shows a simple
behaviour: it is proportional to the integral. We have derived sufficient conditions over the
weight matrix for such a coding to take place, and characterized the nature (directions of left
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and right eigenvectors, amplitude of singular value as a function of s, γ) of the corresponding
rank-1 integrator.

In the case of a multiplexed network with D input/output channels, we have found that
the weight matrix is of rank D; this statement is exact for linear activation and approximately
true for ReLU activation RNNs, whose weight matrix has D large singular values compared to
the n−D remaining ones. Consequently, the network activity is restricted to a D–dimensional
manifold in Rn, whose geometry is imposed by the activation function of the neurons. For
ReLU activation, as in the single-integral case, strong empirical evidence suggests that the pre-
activation currents are linear combinations of the D integrals and span a D-dimensional linear
subspace.

It is important to stress that the above results are not mere consequences of the threshold-
linear nature of ReLU units. We have repeated our analysis with saturating units, obeying a
sigmoidal activation function, with essentially the same results. Interestingly, some units never
saturate for all possible values of the integral(s), other do, and all participate to produce the
right outputs. To elucidate the reason for the D-dimensional nature of the coding of integrals by
the currents, we have introduced a proxy loss reflecting sufficient conditions for such a coding.
The networks trained from data (and the batch loss) behave quite similarly to the networks
minimizing this proxy loss.

While we have empirically shown that GD can generate very accurate multi-integrators in
the case where D is small and the number of neurons n is large, how the optimal computational
capacity (maximal sustainable value of D) precisely increases with n remains to be understood
in the case of RNNs with non-linear activation.

Last of all, from a purely machine-learning point of view, our work shows the versality of
RNNs to achieve simultaneously several computational tasks. The variety of representations
supporting these computations could then be harnessed for transfer learning, see (Pan and
Yang, 2010) for a review, by using our trained RNN as a (possibly fixed) feature extractor. One
example of such a task is the one of context-dependent integration, studied in the prefrontal
cortex of monkeys by (Mante et al., 2013), and which we adapt to our setup in Appendix K.

Nature of representations and connection with computational neuroscience. While
scalar integration using a single-layer recurrent network is far from state-of-the-art Machine
Learning, the abundance of studies in the field of neuroscience (often motivated by the oculo-
motor system in fish) and the absence of a comprehensive theory of representation in such
networks make it a worthwhile case study. Our theoretical analysis provide new evidence for
the relevance of low-dimensional representations, and this result is robust to changes in the
training method, the initial conditions of the weight matrix, as well as the choice of activation
function. Our work therefore provides additional motivation for the theoretical study of the
properties of RNNs with low-rank coupling matrix initiated in the contexts of statistical physics
and computational neuroscience (Barak, 2017; Mastrogiuseppe and Ostojic, 2018).

As far as neuroscience is concerned, we believe that our result about the encoding of multiple
integrals by each neuron, expressed by (40), is of particular interest. There is, indeed, a very
striking analogy between our findings and the concept of mixed selectivity used to interpret
cortical recordings in the field of computational neuroscience (Rigotti et al., 2013). For a long
time, neuroscientists have focused on neurons whose activities depended on a single sensory
relevant variable, such as the orientation of a bar in the visual cortex area V1 or the animal’s
head direction in the subiculum (in our case, the value of one particular integral yc). Such
neurons are, obviously, easier to identify from activity recordings. However, there is growing
recognition that most cells display mixed sensitivity, that is, have activities varying non-linearly
with several relevant variables, and that the relative degree of importance of each variable in
determining the activity may considerably vary from neuron to neuron (as we find in Figure 10).
Such mixed representations could be useful for decision making based on multi-sensorial streams
of information, a possibility sometimes put forward to explain their relevance in neuroscience. It
is, from this point of view, remarkable that mixed representations spontaneously emerge in our
study, where the RNN lacks any explicit incentive to exploit them, simply because they are much
more likely than pure representations (Figure 10). Studying the representations of computational
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tasks in artificial neural networks could therefore be a valuable tool to understand their biological
counterparts, an approach already proposed in the domain of spatial navigation (Banino et al.,
2018).
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Supplementary information

A Fully averaged loss for linear single-channel integrators

For an arbitrary input sequence (xt)0≤t≤T−1, we compute through induction the value of the
output at any time t as:

∀t ∈ N, yt =

t∑
q=0

xt−qd
TW q+1e :=

t∑
q=0

xt−qµq+1

The target output is yt = s
∑t
q=0 xt−qγ

q+1, so that the square error is:

ε2t = (yt − yt)2

= [

t∑
q=0

xt−q(µq+1 − sγq+1)]2

=

t∑
q,p=0

xt−qxt−p(µq+1 − sγq+1)(µp+1 − sγp+1)

The loss to minimize is the average of the sum of those errors along input sequences of
length T :

L(W ) =

〈
T−1∑
t=0

ε2t

〉
=

〈
T−1∑
t=0

t∑
p,q=0

xt−qxt−p(µq+1 − sγq+1)(µp+1 − sγp+1)

〉

=

〈
T−1∑
t=0

T−1∑
p,q=0

xt−qxt−p1q≤t1p≤t

〉
(µq+1 − sγq+1)(µp+1 − sγp+1)

=

T−1∑
p,q=0

〈
T−1∑
t=0

xt−qxt−p1q≤t1p≤t

〉
(µq+1 − sγq+1)(µp+1 − sγp+1)

:=

T∑
p,q=1

χqp(µq − sγq)(µp − sγp)

(41)

where we introduced the time-integrated correlation matrix χ.
χ is symmetric, and it is easily shown that:

∀v ∈ RT ,v†χv =

T−1∑
p,q=0

vqχqpvp =

T−1∑
p,q=0

〈
T−1∑
t=0

vqxt−qxt−p1q≤t1p≤tvp

〉

=

〈
T−1∑
t=0

(

T−1∑
q=0

vqxt−q1q≤t)(

T−1∑
p=0

xt−p1p≤tvp)

〉

=

T−1∑
t=0

〈(
t∑

p=0

xt−p vp

)2〉
.

Therefore, χ is non-negative. Assuming now that v is such that the quadratic form above
vanishes, the term corresponding to t = 0, equal to v20〈x20〉 vanishes, entailing that v0 = 0 as
soon as the input is assumed to have positive probability to be non-zero at this first time-step.
Then, the t = 1 contribution, 〈(x0 v1 + x1 v0)2〉 = 〈(x0 v1)2〉 also vanishes, which implies that
v1 = 0. By recursion over t, all the components of v must vanish, which shows that χ is
definite positive.
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B Gradient and Hessian of the linear single channel loss

We have:

∇Wij
L =

T∑
q,p=1

χqp

[
(µq − sγq)

∂µp
∂Wij

+ (µp − sγp)
∂µq
∂Wij

]

= 2

T∑
q,p=1

χqp(µq − sγq)
∂µp
∂Wij

.

(42)

We compute through induction:

∂W p
ij

∂Wkl
=

p−1∑
m=0

Wm
ikW

p−1−m
lj hence

∂µp
∂Wkl

=

n∑
i,j=1

p−1∑
m=0

diW
m
ikW

p−1−m
lj ej

So that the gradient of L with respect to W is:

∇WijL = 2

T∑
q,p=1

χqp(µq − sγq)
p−1∑
m=0

∑
α,β

(dαW
m
αi)(W

p−1−m
jβ eβ) (43)

We now want to compute the Hessian H of this loss:

Hij,kl =
∂L

∂Wij∂Wkl
= 2

T∑
q,p=1

χqp(µq − sγq)
∂

∂Wkl

 p−1∑
m=0

∑
α,β

(dαW
m
αi)(W

p−1−m
jβ eβ)


+ 2

T∑
q,p=1

χqp
∂µq
∂Wkl

p−1∑
m=0

∑
α,β

(dαW
m
αi)(W

p−1−m
jβ eβ)

We will only be interested in the value of the Hessian at global minima of L, so that the first
term in this equation will not contribute. In that case, we find:

Hij,kl = 2

T∑
q,p=1

χqp

 p−1∑
m=0

∑
α,β

(dαW
m
αi)(W

p−1−m
jβ eβ)

 n∑
α̃,β̃=1

q−1∑
m̃=0

dα̃W
m̃
α̃kW

q−1−m̃
lβ̃

eβ̃

 (44)

C Two special cases of null initialization

Exact solution for T = 1. We begin by the simplest case possible, when the epochs are of
length 1. The gradient descent updates become in that case:

∆Wij = −2η(d†We− sγ)diej

Hence, we have at any time W = ωdeT , so that we can study the optimization dynamics on
the scalar ω only :

∆ω = −2η(ω||e||2||d||2 − sγ)

Therefore, after τ steps of optimization, the coefficient ω is equal to

ω(τ) =
sγ

||e||2||d||2
[1− (1− 2η||e||2||d||2)τ ]

This dynamics is stable if and only if η < ||e||−2||d||−2. When it is, the network converges
exponentially fast to W = γs

||e||2||d||2de
T , which gives the following moments :

∀k ≥ 1, µk = γs(
γs e · d
||e||2||d||2

)k−1

Therefore, in that case, we converge towards a solution that achieves the desired scaling s, but
has a decay constant that is fixed by the initial choice of s, e and d.
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Same encoder and decoder, T > 1, uncorrelated inputs. For this part, we assume that
e = d. Considering that the first update in that case is proportional to eeT , all subsequent
ones are too, so we know that W (t) = ω(t)ee† and the dynamics can be studied on the scalar
ω only.
Because of this, all moments are given by µk = ωk||e||2k+2 = ||e||2(ω||e||2)k. The
corresponding scale and decay are respectively ||e||2 and ω||e||2, and because of this it is only
possible to obtain a Generalizing Integrator at scale s = ||e||2.
The fixed points of the gradient descent dynamics are the real roots of the following
polynomial P :

∆ω

η
= 2

T∑
k=1

k(T + 1− k)(ωk||e||2k+2 − sγk)ωk−1||e||2k−2 := P (ω)

Choosing s = ||e||2, we can check with Mathematica that for any value of T larger than 2, this
polynomial has a single real root at ω = γ/||e||2, which is a generalizable minimum. Since the
leading order term in this polynomial is of odd degree, we know that limw→±∞ P (ω) = ±∞,
and therefore the derivative of P at ω = γ/||e||2 is positive, so that this value of ω is an
attractive fixed-point of the dynamics. As before, the dynamics is convergent only if the
learning rate is smaller than P ′(γ/||e||2)−1.

D Expression of the moments in the low rank
parametrization

We have defined ω so that

W =

2∑
a,b=1

ωa,bva vb
†.

Because of the orthogonality conditions va
†vb = δa,b, we can easily compute the powers of W

as:

W k =

2∑
a,b=1

(ωk)a,bva vb
†,

which yields the following moments:

µk = d†W ke = d†
2∑

a,b=1

ωka,bva vb
†e

=

2∑
a,b=1

√
Σ1,aω

k
a,b

√
Σb,2 = (

√
Σωk
√

Σ)1,2

We now assume ω to be diagonalizable as ω = PωΛωP
−1
ω , so that:

µk = (
√

Σωk
√

Σ)1,2 = (
√

ΣPωΛk
ωP
−1
ω

√
Σ)1,2

=

2∑
i=1

λki (
√

ΣPω)1,i(P
−1
ω

√
Σ)i,2 =

2∑
i=1

λki (P †ω
√

Σ)i,1(P−1ω

√
Σ)i,2

:=

2∑
i=1

giλ
k
i

Using a reasoning similar to the one of Section 3.1, we find the same conditions (12) for
Generalizing Integrators, but with a new expression of the g coefficients.
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E Generalizing Integrators in the null initialization
subspace

In this section, we seek to determine all matrices ω that correspond to Generalizing Integrators
at decay γ. A first, obvious condition is that at least one of the eigenvalues of ω has to be
equal to γ. Without loss of generality, we will consider this eigenvalue to be the first one, and
we will denote the other λ.
The matrix Pω that diagonalizes ω can be parametrized as:

Pω =

(
u1 v1
u2 v2

)
Each column of Pω can be independently multiplied by a non-zero scalar and yield the same ω.
There are therefore three cases: either u1 or v1 is null (but not both, since P would then not
be invertible), or both are non-zero.
We also recall that

g1 + g2 =

2∑
i=1

[(
√

ΣPω)1,i(P
−1
ω

√
Σ)i,2] = Σ1,2 = d†e (45)

Case u1 6= 0 and v1 6= 0.

In that case, the modal matrix Pω of ω⊥ will be parametrized as follows, with α 6= β to ensure
invertibility:

Pω =

(
1 1
α β

)
This results in the following parametrization of the space Eγ of two by two matrices with at
least one eigenvalue equal to γ :

Eγ =

{
Γ(λ, α, β) =

(
1 1
α β

)(
γ 0
0 λ

)(
1 1
α β

)−1
; (λ, α, β) ∈ R3, α 6= β

}

=

{
1

α− β

(
αλ− βγ γ − λ
αβ(λ− γ) αγ − βλ

)
; (λ, α, β) ∈ R3, α 6= β

} (46)

If λ = γ : All values of α and β correspond to γ1, a perfect integrator at scale s∗ = d†e.

If λ 6= γ and λ 6= 0 : In that case, we need to impose g2(α, β) = 0, otherwise the second
eigenvalue will contribute to the output and the system will not be a Generalizing Integrator.
This will in turn impose that g1 = d†e, and hence these will be integrators at scale s = d†e/γ.
We find that:

g2[α, β] = Z
(α− β0)(β − α0)

α− β
where: 

α0 = − (κ− l−)r− + (κ+ l−)r+
2d†e(r+ − r−)

β0 =
(κ+ l−)r− + (κ− l−)r+

2d†e(r+ − r−)

Z =
[d†e(r+ − r−)]2

2κ2

l± = ||d||2 ± ||e||2

κ =
√
l2− + 4(d†e)2 ∈]0, l+[

r± =
√
l+ ± κ
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Figure 13: Structure of the minima in the null initialization subspace. On the left, we present
the structure of the manifolds of 2 × 2–matrices with exactly one eigenvalue equal to γ, and
both eigenvectors with non-zero first components. The coefficients α and β parametrize the
eigenvectors, and λ is the second eigenvalue. The ”slow minima”, which are located at the
intersections of our manifolds, are the ones towards which convergence of Gradient Descent
can be algebraically slow, see Section H. On the right, we detail the structure of the iso-scale
manifolds in the λ = 0 submanifold, and show that they are indeed one-dimensional as long as
s /∈ {0,d†e}. While the lines appear to cross, they do so only on the α = β line which is a
singularity of our parametrization and therefore non-physical.

Hence, there are two manifolds of points satisfying g2(α, β) = 0:{
Mα = {Γ(λ, α, α0), (λ, α) ∈ R2}
Mβ = {Γ(λ, β0, β), (λ, β) ∈ R2}

(47)

where Γ is defined in equation (46). These two manifolds intersect along a 1-Dimensional
manifold:

Mα ∩Mβ = {Γ(λ, β0, α0), λ ∈ R}

If λ = 0 : The system will always be a perfect integrator at decay γ, since no other
eigenvalue can contribute to the output. Its scale is determined by :

s = g1(α, β) = Z
(α− α0)(β − β0)

β − α
(48)

From this result, we deduce the following:

• For any given value of s /∈ {0,d†e}, the set of values of α, β that give c1[α, β] = s is a
one-dimensional manifold, as can be seen in Figure 13. A parametrization of this
manifold can be obtained by inverting equation (48) as the set Γ(0, α, βs(α)) where Γ is
defined in equation (46) and:

βs(α) =
Z(α− α0)β0 − αs
Z(α− α0)− s

.

• When s = 0, the two solutions are α = α0 or β = β0, no matter the value of the other
parameter.

• When s = d†e, equation (48) is not invertible and the condition g1 = s is satisfied if and
only if β = α0 or α = β0, which are exactly the intersection of the Mα (resp. Mβ)
manifolds of equation (47) with the λ = 0 subspace.
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From ω to W

We have shown that in the generic case s /∈ {0,d†e}, the Generalizing Integrators at scale s
correspond to ω of rank 1 and form a 1–dimensional manifold.
Such matrices ω can be parametrized as:

Mλ=0 =

{
γ

β − α

(
β −1
αβ −α

)
; (α, β) ∈ R2, α 6= β

}
=

{
σωxy

†;σω =
γ
√

(α2 + 1)(β2 + 1)

β − α
,x =

1√
α2 + 1

(1, α),y =
1√
β2 + 1

(β,−1), (α, β) ∈ R2, α 6= β

}

where x and y are respectively the left and right eigenvector of the corresponding rank 1
matrix. When ω is of that form, we have:

W = σω
∑
a,b

xaybva vb
† = σω(

∑
a

xava)(
∑
b

ybvb
†) := σlr†,

so that W (ω) is of rank 1 too.

Case u1 = 0

The matrix Pω that diagonalizes ω will be parametrized as:

Pω =

(
0 1
1 v

)
and is always invertible no matter the value of v 6= 0.
Now, there are two degrees of freedom λ and v, and the corresponding matrices are:

ω =

(
λ 0

(γ − λ)v γ

)
As before, the scale s is determined by cγ , which depends linearly on v. Hence, the choice of
scale fixes v, and either λ has to be chosen either equal to 0 when s is different from d†e
(yielding a single solution) or it remains free if the choice of scale imposes cλ = 0 (yielding a
1D manifold).
A perfectly analogous reasoning can be applied when v1 = 0 and u1 6= 0, and in both cases the
manifolds of solution are of lower dimension than their counterparts which have non-zero u1
and u2; we discard those solutions as we expect them to be smooth limits of the generic case.

F Gradients and Hessian in the low-rank parametrization

We will now explicitly compute the derivative of the loss with respect to the 2× 2–matrix ω.
We previously found that:

µq = d†W qe = (
√

Σωq
√

Σ)12

=

2∑
a,b=1

√
Σ1aω

q
ab

√
Σb2

and we have that:
∂ωqa,b
∂ωij

=

q−1∑
m=0

ωmaiω
q−1−m
jb

so that:

∂µq
∂ωij

=

q−1∑
m=0

(
√

Σωm)1i(ω
q−1−m

√
Σ)j2
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which allows us to compute the gradient of the loss with respect to the coefficients of ω
through:

∂L
∂ωij

= 2

T∑
q,p=1

χq,p(µq − sγq)
∂µp
∂ωij

We can now compute the Hessian of the loss, which will allow us to derive formulas for stability
and speed of convergence of Gradient Descent. This Hessian can be decomposed as follows:

Hij,kl =
∂L

∂ωij∂ωkl
=

T∑
q,p=1

χq,p

[
∂µq
∂ωij

∂µp
∂ωkl

+ (µq − sγq)
∂µp

∂ωij∂ωkl

]
We want to estimate this Hessian at rank 1 generalizing integrators, so that the second part
will always be zero. Therefore, the Hessian is simply:

Hij,kl =

T∑
q,p=1

χq,p

[
q−1∑
m=0

(
√

Σωm)1i(ω
q−1−m

√
Σ)j2

][
p−1∑
m̃=0

(
√

Σωm̃)1k(ωp−1−m̃
√

Σ)l2

]
(49)

G Minimum convergence time

We are now interested in studying the dynamics of convergence towards the GIs W ∗ in the
null initialization subspace. To do so, we use a Taylor expansion of the loss around one of its
minima:

L(W ∗ + δW ) =

n∑
i,j,k,l=1

δWij Hij,kl(W ∗) δWkl

Seeing δW as a vector and H as a (symmetric) matrix, we can diagonalize H with real

eigenvalues λI and normalized eigenvectors uI , and express δW =
∑n2

I=1 δIuI in that basis so
that:

L(W ∗ + δW ) =

n2∑
I=1

λI δ
2
I (50)

Since our loss is positive for any weight-matrix W , we expect that all eigenvalues of the
Hessian computed at a GI be positive. We also expect that (in the generic case s 6= d†e) one of
them is 0, corresponding to the local tangent to the 1–dimensional manifold of GIs.
Writing the GD dynamics on the perturbation δ, we find that:

δ
(τ+1)
I = (1− ηλI)δ(τ)I ,

hence δ will see each of its components either be conserved (if it corresponds to a null
eigenvalue) or evolve exponentially. This exponential evolution is convergent as long as
|1− ηλI | < 1, and monotonic as long as η < 1/λI . Choosing the optimal learning rate for the
full system η∗ = 1/λmax, the slowest component of δ evolves as

(1− η∗λmin)τ = (1− λmin/λmax)τ ' eτ ln (1−C−1) ' e−τ/C ,

hence the characteristic convergence time will be C = λmax/λmin
6

Since in the null initialization case the weights are parametrized by a 2× 2–matrix, the Hessian
is 4× 4 and its spectrum can easily be computed numerically by using equation (49). We
therefore performed the following study: fixing the L2 norm of the encoder and decoder as well

as their dot product7, we evaluate the spectrum of H and deduce from it the condition number

6λmin is the minimum non-zero eigenvalue.
7In order to generate e and d with macroscopic overlaps (larger than n−1/2), we first draw them independently,

normalize them to 1, then modify the decoder as d = oe + (1 − o)d where o is the overlap; for large enough n,
the dot product d†e will be close to this overlap. We then independently rescale them to the desired norm.
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Figure 14: Evolution of the minimum convergence time as a function of the scale.

C along each manifold of rank 1 s–scaled GIs; we find that a minimum exists for α, β (see
Appendix E) of order 1, and this value will be a lower bound for the convergence time to any
GI at scale s using Gradient Descent. We plot the value of this bound as a function of s for
different initial choices of i/o–vectors in Figure 14.

H Algebraic convergence for specific scale value

From the previous analysis, it seems that when s = d†e the λ = 0 manifold of solutions is hard
to reach. Numerically, we see that Gradient Descent converges to a solution that lies in the
union of the two 2D manifolds described earlier, corresponding to W of rank a priori 2. If we
initialize with a random, non-zero, W in the null initialization subspace, we converge
exponentially; if we start from W = 0, the convergence is algebraic as a power law τ−2 instead
of exponential (see Figure 15).
To understand this phenomenon, we will consider the continuous-time, non-linear differential
equation on the coefficients of ω: ω̇ = −∂ωL. Let us also introduce the two manifolds of GIs at
scale s = d†e:

Mα0
(α, λ) =

1

α− α0

(
αλ− α0γ γ − λ
αα0(λ− γ) αγ − α0λ

)
Mβ0

(β, λ) =
1

β − β0

(
βγ − β0λ λ− γ
ββ0(γ − λ) βλ− α0γ

)
In the following, we refer respectively to the union and the intersection of those manifolds as U
and I. If we consider any GI M in U \ I, numerical experiments show that the Hessian has
exactly two null and two strictly positive eigenvalues; the two null directions, which give us the
linearized centre space Ec around M in which convergence is at most as a power law,
correspond to the local tangent of the manifold of minima and are therefore not relevant:
convergence of the loss is exponential.
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Figure 15: Explanation of the dynamics of convergence towards a minimum at s = d†e. (Left)
Informal representation of GD trajectories. Two types of trajectories converging to GIs exist:
starting from a random W in the null initialization subspace (middle), we usually converge
outside of the intersection of the two manifolds exponentially fast, with a fairly wide range of
times of convergence depending on the precise starting point; in rare cases, that random starting
point lies on (or close enough to) the slow manifold on which convergence is as a power law τ−2.
We illustrate this algebraic convergence by starting from W = 0 (right), which is experimentally
found to be on the slow manifold. Both experimental curves show 8 different realizations of the
training, with same learning rate, norms of vectors and overlap (but scale chosen exactly to d†e
after e and d have been drawn for that particular realization of the experiment).

On the other hand, if M ∈ I, the Hessian exhibits three null eigenvalues (because the
manifolds of minima intersect non-tangentially), so that the centre space Ec is now of
dimension 3. Since the GIs are only two 2D planes, there exists an invariant manifold along
which convergence is not exponential. Denoting as x the coordinate along that slow direction,
the Center Manifold Theorem ensures that the evolution of x is given by:

ẋ = g(x),

where g is a polynomial of order at least 2 with neither constant nor first order term.
Assuming that the order two term is non-zero, we get that locally, for x close to 0, ẋ = ax2.
Integrating over time, we get that x evolves as τ−1. We then look at the value of the loss when
ω is equal to a generalizing minimum M plus a small perturbation X of order x:

L =

T∑
q,p=1

χqp(µq − sγq)(µp − sγp) =

T∑
q,p=1

χqp[
√

Σ (M +X)q
√

Σ)12 − sγq][
√

Σ (M +X)p
√

Σ)12 − sγp]

=

T∑
q,p=1

χqp[(
√

ΣM q
√

Σ)12 − sγq +O(x)][(
√

ΣMp
√

Σ)12 − sγp +O(x)]

= O(x2)

Therefore, if the quadratic term of g is non-zero, x scales as τ−1 and the loss as τ−2 when τ is
large, as is observed experimentally. It should be noted that this result does not depend on the
value of T nor on the choice of e and d, as observed experimentally too.
Therefore, algebraic convergence is observed only when very strict conditions are met:

• the gradient descent starts from a very specific subspace, the pre-image of the
intersection, which we will refer to as a ”slow manifold”. It is of lower dimension than
the initial space of weight-matrices, so that random initial conditions will almost never
satisfy this criterion.

• the system always remains on the trajectory of GD. In particular, this means that η and
the noise on the computed updates need to be small enough that we don’t accidentally
leave the slow manifold, which would then lead to exponential convergence.
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I Single-channel ReLU proxy loss gradients and Hessian

We have shown in Section 4.2 that the two following pairs of conditions are enough to
guarantee perfect integration of arbitrary signals:{

d†b±Wec+ = ±sγ
W b±Wec+ = ±γWe

(51)

We define the proxy loss as the sum of four terms corresponding to the residuals of those
equalities:

Lproxy = L1
+ + L1

− + L2
+ + L2

−

where L1
± = (d†b±Wec+ − ±sγ)2 and L2

± = |W b±Wec+ − ±γWe|2.

The gradients of these quantities are computed as :


∂L1
±

∂Wij
= 2(d†b±Wec+ − ±sγ)(±diH(±We)iej)

∂L2
±

∂Wij
= 2(W b±Wec+ − ±γWe)|i(b±Wec+ −±sγ)|j ± 2ej

∑
a

(W b±Wec+ − ±γWe)|aWaiH(±We)|i

where H is the componentwise Heaviside function, that takes a vector as input and returns a
vector whose k-th component is 0 if the k-th component of the input was strictly negative, 1 if
it was strictly positive, and .5 if it is exactly 0.
The Hessian of the L1 terms is readily computed as :

∂L1
±

∂Wij∂Wkl
= 2diH(±We)|iejdkH(±We)|kel) + 2(d†b±Wec+ − ±sγ)δikdiejelδ(±We)|i

where δ is the discrete Dirac distribution δik which is one if i = k and 0 otherwise, and δ the
componentwise Dirac distribution such that δ(v) is a vector of same shape as v whose
components are 1 if the corresponding composant of v is 0, and 0 otherwise. This part of the
Hessian is indeed symmetric by exchange of ij and kl because of the δik in the second term.
The Hessian of the L2 terms is more complicated, but can be found to be :

1

2

∂L2
±

∂Wij∂Wkl
=
∑
a

WaiWakejelH(±We)iH(±We)k

+
∑
a

(W b±Wec+ − ±γWe)|aWaiδikδ(±We)|iejel

+ δik(b±Wec+ − ±γe)|j (b±Wec+ − ±γe)|l
+±[δjk(W b±Wec+ − ±γWe)|ielH(±We) + ij ⇔ kl]

+±[(b±Wec+ − ±γe)|jWikelH(±We)|k + ij ⇔ kl]

Combining those four terms, we get the Hessian of our full proxy loss:
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Figure 16: Experimentally determined values of the highest eigenvalue of the Hessian around
the GI manifold, determining the optimal stable learning rate for GD, and of the empirical
convergence time as a function of the scale. Numerical experiments carried out with n = 50
neurons, independent encoder and decoder of norm 1.

1

2

∂Lproxy±
∂Wij∂Wkl

= diejdkel[H(We)|iH(We)|k +H(−We)|iH(−We)|k]

+ ejel
∑
a

WaiWak[H(We)|iH(We)|k +H(−We)|iH(−We)|k]

+ δik[(bWec+ − γe)|j(bWec+ − γe)|l + (b−Wec+ + γe)|j(b−Wec+ + γe)|j ]
+ [δjk(W 2e− 2γWe)|iel + ij ⇔ kl]

+ [Wik(We− 2γe)|jel + ij ⇔ kl]

+ δikdiejeld
†|We|δ(We)|i

+ δikejeld
†|We|

∑
a

Wai(W |We|)|aδ(We)|i

Contrary to the linear null initialization case where the Hessian was a 4× 4–matrix, we have no
way to a priori reduce the number of degrees of freedom, and H is a n2 × n2–matrix. We are
therefore restricted to very low number of neurons (around 50 in our case) for the
diagonalization to remain computationally tractable. Another major obstacle is that we do not
have an analytical expression of the GI manifolds at which we want to evaluate the Hessian.
We adopted the following methodology: first, we train networks on the proxy loss using
Gradient Descent at low learning rate and wait for convergence; we evaluate the largest
eigenvalue λ+ of H at the obtained weight-matrix, but do not compute the lowest ones as they
are both prone to numerical errors, and not necessarily positive as some small negative
eigenvalues will exist when we are only close to a GI; we compute an ”effective” lowest
eigenvalue by fitting the decay of the loss during GD at learning rate η < 1/λ+, and deduce
the corresponding minimum convergence time. The results of these numerical simulations are
presented in Figure 16. We performed tests on larger networks to verify if the inferred
maximum stable learning rate remained valid, as well as the order of magnitude of the
convergence time, yielding the expected results.

J Analysis of rank-1 ReLU generalizing integrators

Training of the ReLU RNNs, either on real data or on the proxy loss (29), leads to GIs
exhibiting one dominant singular value. As in the linear case, we write W = σlr†; with no loss
of generality we can impose r†e > 0 by multiplying r and l by −1. Conditions (28) become{

σ r†l± = ±γ
σ(r†e)(d†l±) = ±sγ

where l± = b±lc+.
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Figure 17: Behavior of the singular value σ and dot products of the singular vectors l, r with
e,d as functions of s. The figure was obtained with n = 1000, independently drawn encoder
and decoder, and aggregated across 6 realizations of GD on the proxy loss. Error bars are not
reported as they are not distinguishable from the line width.

Using Cauchy-Schwarz inequality, and denoting as 1± the vector whose component i is equal
to 1 if li is of the corresponding sign and 0 otherwise, we have:

|d†l±| = |(d1±)†(±l1±)| ≤ |d1±||l1±|.

Assuming half of the components of l are positive and half are negative, as confirmed by
numerical studies, and given that |d| = |l| = 1, both norms on the right hand side are equal to
2−1/2 in the large n limit, yielding |d†l±| ≤ 1/2. Since 0 ≤ r†e ≤ 1, we conclude that σ ≥ 2sγ.
Similarly, we have that |r†l±| ≤ 1/2, implying σ ≥ 2γ. These conditions can then be
summarized into σ ≥ 2γmax(s, 1).
Experimentally, we find that this lower bound is closely followed when s is either large or
small. Since W is of rank 1, its Frobenius norm is equal to σ, and we argue that the saturation
of this lower-bound on σ is a manifestation of the conjecture of (Arora et al., 2019) that
gradient descent implicitly favors solutions with small matrix norm. Therefore, we have for any
scale s significantly different from 1:

σ = 2γmax(s, 1). (52)

Numerical experiments show that, for a wide range of scales, l and d are almost equal. Hence,
d†l± = ±|db±dc+|2 ' ±1/2, entailing r†e ' min(s, 1) . For s� 1, r is almost aligned with d,
while for s > 1 we have r ' e (This statement holds for uncorrelated encoder and decoder).
Our theoretical predictions are in very good agreement with numerical experiments, as shown
in Figure 17. Notice that the change of direction of r with s has consequences on the signs of
the couplings: Wij is positive for pairs of neurons within the ”+” and ”-” populations and
negative in between at small s, but is essentially random at large s, see Figure 18.

K Example of transfer learning: context-dependent
selectivity

In order to illustrate the versatility of the current-linear representations described in the main
text, we implement a simple example of transfer learning to context-dependent selectivity,
inspired by (Mante et al., 2013). The idea is the following: a pretrained 3–channels integrator
is used to integrate 3 time-series x0, x1, x2 (respectively, the motion evidence, color evidence
and contextual cue in the experiment described by (Mante et al., 2013)) into their decaying
integrals y0, y1, y2, potentially with different decay constants. The cue integral y2 is used to
determine to which integral, y0 or y1, the network must be sensitive: when y2 is negative, the
network must output 0 if y0 < 0 and 1 if y0 > 0; when the integral y2 is positive, the network
must output 0 if y1 < 0, and 1 if y1 > 0.
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Figure 18: Weight-matrix W of a single-channel ReLU network visualized as a discrete heatmap.
Neurons were reordered so that the indices of the ”+” population are from 0 to n/2, while the
”-” population goes from n/2 to n. When s = 0.1, the sign of Wij is fully determined by whether
i and j are in the same cluster; when s = 10, this observation is no longer true. We also note
that, as expected, the coefficients of W are larger when s increases as the norm of W scales as
max(1, s). This figure was obtained for independent encoder and decoder of scale 1, n = 1000.

Figure 19: Output of an online context-dependent classifier. The task is the following: the
network receives D = 3 input channels; when the integral y2 is negative, the network must
output 0 if y0 < 0 and 1 if y0 > 0; when the integral y2 is positive, the network must output 0
if y1 < 0, and 1 if y1 > 0. This result is obtained by training a sigmoidal decoding layer on the
internal states of a fixed sigmoidal network pretrained through batch–SGD.

To train this network, we first train the 3–channels integrator using any of the methods
described in the main text. We then use it as a fixed input transformer, mapping a
3–dimensional time-series to a n–dimensional one (the state ht at any time-step). For each
time-step, the value of the expected output is determined using the aforementioned rules on y,

and the classification output is obtained as outt = (1 + exp−50(u
†ht−0.1))−1. The trainable

parameter of this new decoding layer is the vector u. It is easy to learn the value of u through
batch–SGD using the supervised learning procedure described here, and the resulting networks
behave as shown in Figure 19.
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