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Abstract

Neurons are connected to other neurons by axons and dendrites that conduct signals with finite velocities,
resulting in delays between the firing of a neuron and the arrival of the resultant impulse at other neurons. Since
delays greatly complicate the analytical treatment and interpretation of models, they are usually neglected or
taken to be uniform, leading to a lack in the comprehension of the effects of delays in neural systems. This
paper shows that heterogeneous transmission delays make small groups of neurons respond selectively to inputs
with differing frequency spectra. By studying a single integrate-and-fire neuron receiving correlated time-shifted
inputs, it is shown how the frequency response is linked to both the strengths and delay times of the afferent
connections. The results show that incorporating delays alters the functioning of neural networks, and changes
the effect that neural connections and synaptic strengths have.
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Introduction

Eventhough the brain is quick to respond, neurons are
connected through axons and dendrites that propagate
signals with non negligible and replicable delays (Swad-
low, 1985, 1994). The transmission delay between two
neurons depends on the conduction velocity, related to
the diameter of the axon or dendrite (Cullheim, 1978;
Cullheim and Ulfhake, 1979; Gasser and Grundfest, 1939;
Lee et al., 1986; Waxman, 1980) and the properties of
the axon and dendrites (Harper and Lawson, 1985; Wax-
man, 1980), in combination with the lengh of the path
a pulse travels from one neuron to the other (time =
distance/speed). Conduction delays have been shown to
be plastic (Bakkum et al., 2008), indicating that condu-
tion delays are tuneable to some extent. On the other
hand, the conduction velocities have been found to be
activity dependent (Swadlow, 1974; Thalhammer et al.,
1994; De Col et al., 2008). Still, given that the re-
sponse times of neurons to natural stimuli are robust
(Mainen and Sejnowski, 1995), the transmission delay
times should be stable over time (Swadlow, 1985).

Because of the difficulties involved in the analytical
treatment of delays, they are often either neglected or
taken to be uniform. This has lead to a lack in the
comprehension of the effects of (heterogeneous) delays in
neural systems and the absence of delays in principal ac-
counts of the working of neural networks. Great insights
into the functioning and dynamics have been gained by
studying networks without (heterogeneous) transmission
delays, such as the understanding of the on- and offset of
oscillatory activity (e.g. Wang and Buzsáki, 1996; Wil-
son and Cowan, 1972), signal propagation (e.g. Mehring
et al., 2003; Reyes, 2003; Vogels and Abbott, 2009), ac-
tivity dynamics (e.g. Destexhe, 2009; Renart et al., 2010;
Van Vreeswijk and Sompolinsky, 1996), and memory stor-
age (e.g. Amit et al., 1985; Anderson, 1972; Brunel, 2016;
Hopfield, 1982; Klampfl and Maass, 2013).

However, there are cases in which the incorporation
of transmission delays can lead to drastically different
restults. Organisms, and with that their brains, oper-
ate in time and as such it is likely there is an impor-
tance in the temporal dimension of the activity of the
brain. It has already been advocated that transmission
delays endow neural networks with much richer dynam-
ics, increasing their functional capacity and possible dy-
namics (e.g. Chapeau-Blondeau and Chauvet, 1992; Des-
texhe, 1994a; Izhikevich, 2006; Ostojic, 2014), enabling
neural communication based on synchrony or spike or-
dering (e.g. Brette, 2012; Gautrais and Thorpe, 1998;
Thorpe, 1990), and allowing oscillations and synchroni-
ation (e.g. Buzsáki and Draguhn, 2004; Destexhe, 1994b;
Ernst et al., 1995; Geisler et al., 2010; Maex and De Schut-
ter, 2003; Van Vreeswijk et al., 1994). This paper con-
cerns the connection between transmission delays and the
frequencies to which a neuron responds. In particular it
exposes the concerted effect of synaptic strenghts and

synaptic delays on the frequency selectivity of neurons.
Synaptic connections between (excitatory) neurons

are principally understood in light of some variant of
a constitutive Hebbian learning process. The resultant
view is that for two neurons to be connected by an ex-
citatory connection it means that it is likely to observe
a co-occurence of their spiking activity, and the stronger
this connection, the more likely they will fire together. A
synaptic connection can also be understood through the
causal effect of a pre-synaptic neuron on the activity of a
post-synaptic cell, determined by the synaptic strenght
and pre-synaptic neuron type. Excitatory pre-synaptic
neurons have a depolarising effect and thus promote the
post-synaptic firing, in general leading to higher post-
synaptic firing rates. Inhibitory neurons lead to hyper-
polarisation and thus inhibit or delay post-synaptic fir-
ing, leading to reduced post-synaptic firing rates. These
effects are more pronounced for stronger connections.

However, by the inclusion of heterogeneous trans-
mission delays one can conceptualise a small circuit of
neurons as a cascade of filters with time-delayed and
weighted coupling. Seen in this way the properties of
the afferent connections determine the sub-threshold fre-
quency response of a neuron, with the synaptic weights
functioning as feed-forward coefficients in a neural filter-
ing circuit and thus influencing the frequency selectivity
of the post-synaptic neuron. This means that the effect
of synaptic strengths differs from the one given above,
and that the effect of a single synapse cannot be com-
pletely understood in isolation, but gets a significantly
different interpretation when considered in an ensemble
of synapses conveing correlated signals.

This paper explores this concept with a single integrate-
and-fire neuron receiving correlated and time-shifted in-
puts. It is shown that the sub-threshold frequency re-
sponse of a neuron is determined by the strengths and
relative delay times of the correlated afferent connec-
tions. The characteristics of the frequency response of
some cases are solved exactly, and qualitative observa-
tions are given for more general cases. Subsequently,
numerical simulations demonstrate the functional signif-
icance of this frequency selectivity, the frequency speci-
ficity, and show that the described effects hold for a range
of input correlations.

Results

To show the basic principle, consider a leaky integrate-
and-fire (IF) neuron, with a membrane potential gov-
erned by:

τ
dv

dt
+ v = G

(
I +

M∑
m=1

wmI
(m)

)
, (1)

in which τ is the membrane time constant. This equa-
tion is complemented with a spike-and-reset rule: once
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Figure 1: Sub-thresold frequency spectrum of (1)
measured for different time-constants τ (in s · rad−1),
showing the low-pass filtering effect intrinsic to the mem-
brane equation

the membrane potential v exceeds a threshold vth, the
membrane potential is directly reset to a reset value vr,
after which the membrane potential is again directly gov-
erned by (1).

The input is given by the term G
(
I +

∑
m wmI

(m)
)
,

which denotes the sum of a stochastic input I with corre-
lated and time-shifted inputs I(m), each of which is mul-
tiplied by a weight wm. The input can be interpreted as
the output of M similar neurons or groups of neurons
that receive strongly correlated input and so produce
highly correlated outputs, arriving through connections
with different delay times due to the different finite con-
duction velocities of the different axons and dendrites.
The term G is a gain factor which, since the frequency
response does not qualitatively depend on the absolute
gain but on the relative strenghts of the individual in-
puts, will be set to be unity in the following analysis of
this system.

Equation (1) without the spiking mechanism (or with
vth >> 〈I〉) is linear and time-invariant, as such the sub-
threshold frequency spectrum of v is given by the product
of the intrinsic frequency response 1/(1 + τs), with s
being a complex frequency of the form s = α + iω, and
the frequency spectrum of the input (Oppenheim et al.,
1997; Smith, 2007):

ṽ(s) =
1

1 + τs

(
Ĩ(s) +

∑
wmĨ

(m)(s)
)
, (2)

from which we see that the membrane equation has a
pole on the real axis at s = −τ−1, corresponding to
the characteristic decaying response of the leaky IF neu-
ron (Stein, 1965; Gluss, 1967). Thus the intrinsic fre-
quency response of the membrane acts as a low-pass filter
with time constant τ . Figure 1 shows the intrinsic sub-
threshold frequency response of the membrane equation
(1) for different values of τ .

The frequency transfer function H(s) of linear time-
invariant systems can be found by dividing the output

spectrum by the input spectrum, H(s) := Ṽ /Ĩ (Oppen-
heim et al., 1997). Requiring that all the input spike
trains are strongly correlated (ρ = 1) for different posi-
tive lag times, I(m)(t) = I(t−dm) for all m, with dm > 0,

and dividing (2) by Ĩ leads to the sub-threshold transfer
function of the membrane equation (1):

H(s) =

(
1 +

∑
wme

−dms
)

1 + τs
. (3)

Frequency response

The frequency response of the neuronal circuit can be
understood by finding the roots of the denominator and
the nominator of the transfer function (3), which will
respectively give the positions of the poles and zeros
of the frequency response. Since we are not occupied
with feedback components other than the intrinsic mem-
brane dynamics, (3) has just a single pole which position
is, as shown above, determined by the membrane time-
constant and lies at p = −1/τ . The rate of decay of
the membrane potential is proportional to the distance
of this pole to the origin, which can also be seen from
the homogeneous solution to (1).

The zeros of (3) correspond to frequencies at which
H(s) vanishes, corresponding to the input frequencies to
which the neuron responds minimally, so the roots of the
numerator correspond to frequencies that are attenuated
by the circuit. Since dm ∈ R it is difficult to find exact
expressions for the roots of (3). Exact analysis of the
roots in general cases is thus beyond the scope of this
paper, but it is straightforward to plot (3) in order to
gain a qualitative insight into the frequency response.

However it will be instructive to treat some cases in
which the roots can be obtained analytically. For the
folowing it is assumed that each delay time dm is an in-
teger multiplying some basic time unit δ0 = 1/(2πfmax)
in sec · rad−1. The highest frequency to be analysed is
determined by fmax, or conversely fmax can be deter-
mined by requirement on δ0 to fit the desired values of
dm. In the following a normalised frequency will be used
(fmax will be normalised to unity) such that δ0 = 1/(2π)
sec · rad−1. Two specific cases will be treated analyti-
cally: a neuron receiving one additional input (M = 2)
for a delay time d > 0, resulting in a ‘comb filtering’,
and the case of a neuron receiving 2 additional inputs
(M = 3) with d2 = 2d1, d1 > 0 such that the nominator
can be transformed into a quadratic polynomial. Some
of the results will be extended to the more general case in
which d2 = nd1, for n ∈ N. Afterwards some qualitative
observations about the zeros of (3) will be made.

In the case of M = 2 the nominator of (3) has peri-
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odically distributed roots

zn =− w 1
d e

i(2n+k)π
d , (4)

for n = 1, 2, 3, ... and

k =

{
1, d even

0, d odd,

from which we immediately see that the attenuated fre-
quencies (given by the the angles ∠zn) are determined
by the delay time d, and that the weight w only influ-
ences the amount of attenuation (given by the magni-
tudes |zn|). Figure 2 shows the frequency responses for
some different values for d, also demonstrating the reason
for the conventionally used name ‘comb filter’.

A more interesting case is to analyse the zeros of the
sub-threshold transfer function

H(s) =

(
1 + w1e

−ds + w2e
−2ds

)
1 + τs

, (5)

describing a neuron receiving M = 3 inputs with har-
monically related delays (see figure 3a), which can be
obtained exactly by defining σ(s) = eds and multiplying

the transfer function by σ2

σ2 . This allows to rewrite the
nominator N(s) of the transfer function as

N(σ) =
(
σ2 + w1σ + w2

)
,

which is quadratic in σ. Now any standard strategy to
obtain the roots of N(σ) can be employed, leading to:

σ =
−w1 ±

√
w2

1 − 4w2

2
.

Substituting back eds for σ, we can use a similar formula
as in the case of M = 2, leading to

zn = −

(
−w1 ±

√
w2

1 − 4w2

2

) 1
d

e
i(2n+1−k)π

d ,

with n and k the same as in (4), showing that the zeros
of (5) repeat with a period 1/d1, and that each of these
intervals contains 2 zeros. In this case the frequencies
at which the zeros are positioned are influenced by both
the delay times and the connection weights. Notice that
since each wm is required to be real, the complex zeros
occur in conjugate pairs. Figures 3b and 3c show the
frequency responses of for some values for d and w.

The periodicity of the zeros extends also to a more
general case where d2 is an integer multiple of d1. In this
case the zeros repeat again with period 1/d1, but now
each interval contains d2/d1 zeros.

As said before, in general it will be difficult to de-
termine the zeros of (3) exactly. Still some of the above
observations can be extended by graphing the magnitude
of H(s) with s = iω with respect to ω. The first obser-
vation is that the number of zeros in the [0, π) interval

is determined by the longest delay time. More specifi-
cally: longer delay times lead to a more rapid succession
of zeros. Indeed, this can be inferred from the exact
treatment in the last section, in which higher order nu-
merators lead to a faster sucession of zeros. The second
observation is that when the delays have a harmonic re-
lationship, with each dm being an integer multiple of d1,
the pattern of zeros occurs periodically with a period of
1/d1. Thirdly, in case of complex roots, these roots have
to occur in conjugate pairs, since the weights are defined
to be real. Finally, the period of repetition of zeros is
determined by the delay times, but crucially in case of
complex roots, the weights determine the exact attenu-
ated frequency within each interval. This leads to the
important observation that synaptic plasticity not only
alters the susceptibility, and with that the frequency, of
post-synaptic firing, but alters the frequency selectivity
of the neuronal circuit.

Discrimination of inputs

The filtering capabilities endowed by heterogeneous trans-
mission delays are not purely theoretic, but can be shown
to have a definite effect for the functioning of neural
circuits. Driving two neurons with differing frequency
selectivity (see methods section for the neuron param-
eters) with a communal input that consists of a white
noise during the first 200ms and subsequently alternates
between two filtered white noise signals, each matching
the frequency response of one of the neurons, shows that
neurons respond selectively to their matched input (see
figure 4). Whereas both neurons respond with low fir-
ing rates during the white-noise input interval (on av-
erage 0.0 (σ = 0.00) spikes/second for neuron A and
0.04 (σ = 0.01) spikes/second for neuron B. During the
matched input intervals a clear distinction between the
outputs of the two neurons is observed (36.75 (σ = 3.72)
spikes/second for neuron A versus 0.03 (σ = 0.20) spikes/second
for neuron B during A-matched input (t(998) = 468.00, p =
0.00), 1.03 (σ = 1.13) spikes/second for neuron A versus
53.66 (σ = 5.12) spikes/second for neuron B during B-
matched input (t(998) = −292.70, p = 0.00)).

Thus neurons are sensitive to their matched spectral
input and can selectively respond to differing spectral in-
puts: each neuron responded less during the other neu-
ron matched input with respect to the white noise in-
put (t(499) = −175.06, p = 0.00 for neuron A, t(499) =
−32.42, p = 6.89e− 125 for neuron B). In order to visu-
alise the specificty of neuronal filtering circuits, neuronal
circuits with sub-threshold frequency responses which
only pass a narrow band of frequencies are stimulated
with narrow band filtered white noise input with differ-
ent center band frequencies (see methods for the neu-
ron parameters). Figure 5 shows that each neuron re-
sponds primarily to their matched input, examplified by
the maximal response values in the diagonal entries, and
that the responses diminish rapidly with different center
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Figure 2: ‘Comb’-filtering: a) schematic drawing indicating neuron wiring receiving 2 inputs with differing delay
times d0 < d1, due to differing path lengths; b-c) measured sub-threshold frequency spectra for different synaptic
weight w values, for two different delay times
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Figure 3: ‘Quadratic’ filters: a) schematic of neuron wiring; b-c) measured sub-threshold frequency spectra for
neurons receiving 3 inputs with w2 = 1 and different values for w1, for two different delay times d1, and d2 = 2d1
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Figure 4: Frequency selectivity: a) schematic indicating neuron wiring. Both neurons receive input both from
a source matched to their own sub-threshold frequency selectivity as well as from a source matched to the other
neuron. One neuron receives, through an identical set of M input-lines, both the matched and unmatched source.
In the figure neuron A receives M = 3 inputs (indicated by the solid blue input lines) from source IA with three
different delay-times (da0 < da1 < da2) and weights (wa0, wa1 and wa2), and through the same synapses the input
of source IB (indicated by the solid orange input lines). Neuron B receives input from source IA (dashed blue
input lines) and IB (dashed orange input lines) with the same connection parameters between sources, but different
from those of neuron A. b) box-plots indicating difference in firing rates (transformed into z-scores) of each neuron
during white noise (left 2 box-plots), A-matched (middle box-plots) and B-matched (right most plots) input. c)
spike raster and averaged spike-rates of neuron A and B in response to a white-noise input (white area), A-matched
input (blue areas) and B-matched input (orange areas). Top plot shows the spike timings of 500 repetitions of the
same trial. Bottom plot indicates the average firing rate (transformed to z-scores) of the 500 repetitions per neuron.
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Figure 5: Specificity of neuron response: output fir-
ing rate of neurons with narrow band-pass frequency se-
lectivity (M = 13), with different center-frequencies (x-
axis), in response to band-pass filtered white noise input
with different center-frequencies (y-axis). Diagonal en-
tries correspond to matched input and synaptic-filtering
center-frequency. Off-diagonal entries correspond to in-
creasing disparity between the synaptic-filter and input
center-frequencies

frequencies, as shown by a rapid diminishing of activ-
ity in the off-diagonal entries. Neuronal circuits with
sepecific wiring are thus capable to respond strongly to
matching frequency inputs, while supressing their input
to non-frequency matched inputs. In order to suppress
most of the frequency spectrum and only pass an increas-
ingly narrow band, a neuron needs to receive more and
more inputs. However the neurons simulated for figure 5
received only 13 inputs, much less than the estimates of
the average number of inputs received by neurons.

Robustness for ρ 6= 1

Throughout this paper it was assumed that the inputs
the post-synaptic neuron receives through the different
synapses were perfectly correlated ρ = 1. Eventhough
the intrinsic noise levels of neurons are low (Mainen and
Sejnowski, 1995), the great number and diversity of synap-
tic inputs still likely leads to each neuron being subjected
to a ‘unique’ noise source. Indeed correlations in the out-
put of any two neurons are generally weak (Cohen and
Kohn, 2011). Perfect correlation is thus, in general, un-
likely.

In order to investigate the tolerance to non-perfectly
correlated inputs, a neuron is simulated receiving 2 addi-
tional inputs M = 3, with different correlation between
the inputs arriving through the different delay lines, thus

I(m) = ρI + (1− ρ)ηm, (6)

with ηm being a similar noise source as I. Fourier trans-
forming the sub-threshold responses shows, as visible in
figure 6a, that with decreasing correlation the shape of

the ‘measured’ sub-threshold frequency spectrum quickly
reduces to that of the intrinsic sub-threshold response of
the membrane equation (equal to the spectrum on the
left for ρ = 0). This suggests that even relatively small
disrelations between the inputs abolishes the frequency
selectivity of a neuron described in this paper.

However, again simulating the two neurons adapted
to discriminate between two spectrally different inputs,
but this time with each neuron receiving white noise in-
put with strength (1 − ρ) in addition to the spectrally
shaped input (with strength ρ), leads to a suprising find-
ing. Figures 6b and 6c show the results as in figures 4b
and 4c, but now for different values of input correlation.
These results show that functionally the frequency selec-
tive effect due to the input parameters is still present for
correlations lower (ρ = .2) than for which the frequency
response shaping effect is visually prominent from the
sub-threshold frequency spectrum (c.f. figure 6a).

Thus importantly, eventhough from the ‘measured’
frequency spectra the effect of the inputs on the fre-
quency selectivity seemed to be negligible, the frequency
selectivity of the neurons are functionally still signifi-
cantly shaped by the input parameters, and this fre-
quency selectivity is predictable by the theory presented
in this paper.

Discussion

This paper shows that delays in the transmission of sig-
nals between neurons have a determinate effect on the
frequency response of small neural circuits, making it
possible for neural networks to act as finite impulse re-
sponse filters. It is shown that the length of the delay
time but importantly also the strengths of the connec-
tions determine the frequency selectivity, and that the
frequency response of a neuron due to its afferent connec-
tions can be characterised by the analysis of the strengths
and delay times of the incoming connections. Numerical
simulations demonstrated that neural networks can be
constructed in which neurons with differing connections
from overlapping input sources can differentially respond
to spectrally different inputs, and can do so with high
specificity, thus opening up the frequency domain for us-
age in neural communication. Finally, it is found that
with diminishing input correlation the measured sub-
threshold frequency spectra do not show clear signs of
the effects of the input parameters, but the frequency
selectivity is still functionally present.

The idea of filtering by neurons is not new: a receptive
field is essentially a filter. It is however important to note
that the frequency filtering as treated in this paper is dis-
tinct from a filtering of information (as a receptive field
does). The filtering described here is a power filtering:
the attenuation (and accentuation) of the magnitudes of
certain frequencies, leading to differential responses to
inputs with different frequencies, which does not neces-
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Figure 6: Robustness to de-correlated inputs: a)
measured sub-threshold frequency spectra for decreasing
inter-synapse input correlation ρ, showing fast degrada-
tion of frequency selectivity with decreasing correlation.
b) boxplot indicating z-scores of firing rate in response
to matched (solid boxes) and unmatched (dashed boxes)
with different inter-input correlations (x-axis). c) Spike
raster and averaged firing rates of 1000 neurons with ran-
dom synapse parameters (number and position of con-
jugate zeros), in response to input alternating between
matched and unmatched input, repeated for different
inter-synapse input correlations (indicated with different
colors, corresponding to the colors of panel b). Top plot
indicating the spike timings of the neurons for 6 different
correlation values (indicated with different colours). Bot-
tom plot indicates the average of the firing rates, trans-
formed into z-scores, of all the neurons for each inter-
synapse correlation value.

sarily alter the signal-to-noise ratio (Lindner, 2014), but
alters the dynamics of signal transmission. Thus, unless
spectral content directly conveys information, the effect
of delays as presented in this paper does not constitute a
‘neural code’ as such. Rather, it plays an indirect role by
making it possible to dynamically route signals (for ex-
ample by amplifying certain frequency bands; excitation
or inhibition of other neurons by the frequency selective
neuron or; resetting the phase of oscillatory populations).
Through these effects neural codes can be transmitted,
so this type of filtering constitutes a medium, rather than
the message.

Reinterpretation of synaptic strengths

The presented results show that with the inclusion of
transmission delays the effect of synaptic connectivity is
different from the generally accepted interpretation: the
strenght of a synaptic connection determines not merely
the frequency of post-synaptic firing, but co-determines
the frequencies to which the post-synaptic neuron re-
sponds. This sub-threshold frequency response is deter-
mined by the full ensemble of synapses transmitting cor-
related inputs to a neuron, thus the effect of the strength
of a single synapse on the activity of the post-synaptic
neuron cannot be understood in isolation, but only in
relation to the other synapses. In the light of this ob-
servation, the interpretation of the meaning of synaptic
strength and the role of synaptic plasticity might need
to be reconsidered. It will be crucial, of course, to test
the predictions of the theory presented in this paper ex-
perimentally.

Interpretation of the inputs

During the theoretical treatment of the frequency se-
lectivity due to synaptic inputs the time-shifted inputs
were taken to be perfectly correlated. Eventhough it was
shown that perfect correlation was not needed for neural
circuits to retain functionally their frequency selectivity,
the correlation levels for which the frequency filtering was
qualitatively prominent are higher than reported correla-
tions between pairs of neurons (Cohen and Kohn, 2011).
This raises the question how to interpret the inputs used
in this study.

A first posibility, which is also the most simple ex-
planation, is to let the different delayed inputs emerge
from the same, or largely overlapping sources, through
different transmission lines. In this way the unique noise
sources are reduced to that due to synaptic transmission
and the propagation of signals along axons and dendrites.
It is, by the knowledge of the author, not known whether
such connection patterns exist in the brain, but in any
case this solution would require a very specific wiring of
neural circuits.

Another option arises by observing that the results of
the numerical situations show (section ) that switching
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the input from a unmatched to a matched input elicits a
rapid response in the matched neuron, as visible from the
switches between the different inputs in figure ??. From
the viewpoint of a neuron this is equivalent to its in-
put switching from uncorrelated (with arbitrary spectral
content) signals, to correlated (and frequency matched)
signals. Thus neurons need only transient pre-synaptic
synchronisation to detect their matched spectral input.

As a third explaination, eventhough single cell to sin-
gle cell correlations are low, and seem to actively be kept
low even when driven by the same input (Renart et al.,
2010; Graupner and Reyes, 2013), collectively coherent
activity often co-occurs with irregular firing in single
neurons (Buzsáki and Wang, 2012). Network level os-
cillatory activity can arise from sparsely interconnected
and weakly correlated neurons (Brunel and Hakim, 1999;
Brunel, 2000), showing that the correlation between pairs
of neurons can be low contemporary with the pooled ac-
tivation of sub-sets of a population showing stronger cor-
relations. Thus the different inputs can be correlated to
a high degree if we interpret the input lines of (1) as
each receiving the pooled activity from a population of
(sparsely) interconnected and (weakly) correlated neu-
rons.
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Methods

All simulations carried out in this paper are done with
leaky intergrate-and-fire neurons (Lapicque, 1907), re-
ceiving M correlated, weighted and time-shifted inputs
wmI

(m)(t − dm). The membrane potential is governed
by the equation

τ
dv

dt
+ v = G

(
I(t− d0) +

M∑
m=1

wmI
(m)(t− dm)

)
,

which is supplemented with a spike-and-reset mechanism:
each time v surpasses a threshold value vc, it is said to fire
a spike and is directly reset to a reset value vr. Through-
out a normalising gain factor of G = (1 +

∑M
m=1 |wm|)−1

is used. In the simulations for the results and figures of
this article the inputs I(m) to the neuron are either pure
white-noise or filtered white-noise, depending on the par-
ticular simulation (see the following method sections for
the specifics per simulation). In general, for simplicity,
the first delay time is set to zero (i.e. d0 = 0).

Measured sub-threshold frequency response
spectra

The sub-threshold frequency response spectra are mea-
sured by driving the neuron with inputs which are time-
shifted versions of a single white-noise source with mean
µ = 0 and standard deviation σ = 1. To ignore the
fast membrane fluctuation caused by spiking, the spiking
threshold was set to infinity (vc = ∞). The simulations
were carried out with 1e4 timesteps per spectrum. Each
spectrum is the average over the spectra of 1e4 simulated
neurons.

Frequency selectivity: discrimination of in-
puts

The ‘base’ input both neurons received alternates be-
tween two different noise signals with differing spectral
content, each of these signals matching the frequency se-
lectivity of either one of the two neurons. In the first
4000 timesteps of each realisation the administered in-
put is an unfiltered white noise signal, in order to observe
the baseline firing of each neuron. For these simulations
the spike-and-reset mechanism v > vth =⇒ v ← vr is
reintroduced, so it is be possible to observe the spiking
behavior of the two neurons in response to the different
inputs. Simulations were carried out with 2e4 timesteps.
Each group consists of 500 neurons, for a total of 1000
neurons. The firing rates are calculated per neuron with
a time-window of 200 timesteps. The rate of each neuron
is transformed into z-scores. The z-scores are averaged in
each condition (white-noise, A-matched or B-matched),
per neuron. Two-sample independent t-tests are carried
out comparing the distribution of average z-scores of neu-
ron A versus that of neuron B, per condition. Matched
sample t-test were carried out between the firing z-scores
between the random interval and the matched intervals.
For plotting purposes, the firing-rate z-scores are aver-
aged over all neurons per timestep.

Frequency selectivity: specificity of responses

Each neurons receives 13 inputs with weights leading to
zeros evenly spaced around the unit-circle, with the ex-
eption of one conjugate pair. In this way the neuron is
mainly responsive to a small band of frequencies around
the angle of the missing pair of zeros. These neurons are
subsequently exposed to bandpass filtered white noise
with differing center frequencies. The spike count of each
neuron in response to each bandpass filtered noise stim-
ulus is recorded and normalised per neuron over differ-
ent inputs such that the maximal count of each neuron
equals one. Each pixel correspons to the average spike
count of 500 neurons over 2e3 timesteps. Each spike rate
is calculated over the whole time of each trial.

Robustness to non perfect correlation

Each input I(m) to the synapses of the neurons in these
simulations is driven by an input consisting of a source
input I, which is a specifically filtered white-noise signal
matched to the prefferred spectrum of a neuron. This
input is shared by all the synapses. In addition each
synapse receives a unique noise etam, which is a ran-
domly permutated version of the matched input. This
input is unique to each synapse. Thus:

I(m) = ρI + (1− ρ)ηm. (7)

The synapse parameters (M , wm and dm) are contructed
from (M − 1)/2 randomly drawn zeros on the upper half
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of the unit circle and their conjugates, in addition to
the direct input m = 0. This resulted in 1000 neurons
with different frequency selectivity. These neurons are
then driven in 6 trials with inputs with differing inter-
synapse correlations from perfect correlation ρ = 1 to
completely uncorrelated ρ = 0, as described above. Each
trial consisted of 5 blocks of equal time: the first 2000
timesteps all neurons are driven a random permutation
of their matched input (shuffled along the time dimen-
sion), resulting in a white noise input. Following there
are 4 blocks of 2000 timesteps each, during the first and
the third block each neuron receives their matched in-
puts. In the second and last block each neuron receives
the matched input of another neuron, randomly drawn
(thus a shuffling of the pairing between neuron and in-
put). The firing rates are calculated over a window of
500 timesteps, for each neuron for each correlation level,
and transformed into z-scores. For each correlation level
the mean firing rate z-scores of each neuron during the
matched blocks is compared to its firing rate z-score dur-
ing the unmachted blocks in a two-sample paired t-test.
For plotting of the firing rates, the firing rate z-scores are
averaged across neurons, resulting in one line per corre-
lation level.
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