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LIF units in Deep Learning

ABSTRACT

Up to now, modern Machine Learning is mainly based on fitting high dimensional functions to
enormous data sets, taking advantage of huge hardware resources. We show that biologically inspired
neuron models such as the Leaky-Integrate-and-Fire (LIF) neurons provide novel and efficient ways
of information encoding. They can be integrated in Machine Learning models, and are a potential
target to improve Machine Learning performance.
Thus, we derived simple update-rules for the LIF units from the differential equations, which are
easy to numerically integrate. We apply a novel approach to train the LIF units supervisedly via
backpropagation, by assigning a constant value to the derivative of the neuron activation function
exclusively for the backpropagation step. This simple mathematical trick helps to distribute the error
between the neurons of the pre-connected layer. We apply our method to the IRIS blossoms image
data set and show that the training technique can be used to train LIF neurons on image classification
tasks. Furthermore, we show how to integrate our method in the KERAS (tensorflow) framework and
efficiently run it on GPUs. To generate a deeper understanding of the mechanisms during training we
developed interactive illustrations, which we provide online.
With this study we want to contribute to the current efforts to enhance Machine Intelligence by
integrating principles from biology.
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Introduction

The interest in „Neuroscience inspired AI“ has rapidly grown over the last years (Hassabis et al., 2017). There are
major reasons for this development. Although traditional Machine Learning algorithms have been massively improved
by the collection of huge data sets (Russakovsky et al., 2015) and the development of modern hardware components
(Steinkraus et al., 2005; Sheng and Zhou, 2017), certain issues remain unsolved by these algorithms. Up to now,
these algorithms are —in contrast to our brain— highly specialized on a given task. We were not yet able to develop
algorithms with general intelligence (Shevlin et al., 2019; Pontes-Filho and Nichele, 2019). Our nervous system has the
ability to perform sensory tasks with enormous precision, such as the detection of very low stimuli in the eye (Field
et al., 2019; Rieke and Baylor, 1998) or very small pressure differences in the ear and on the other hand is able to
process and understand complex story plots (Mar, 2004; Tenenbaum et al., 2006). Thus, we do not need huge hardware
components but are limited to approximately 1011 neurons (Herculano-Houzel, 2009), which perform these tasks in a
very efficient way.

Information can be processed faster and more efficiently in the brain, as spiking neural networks can encode data
in different spatio-temporal patterns (Thorpe et al., 2001; Perkel and Bullock, 1968; Krauss et al., 2018; Gross and
Kowalski, 1999). Thus, the brain does not simply count spikes (rate codes) but exploits the temporal dynamics of these
spikes (Koopman et al., 2003) and uses spontaneous spiking and neural noise to enhance sensory processing (Schilling
et al., 2020; Krauss et al., 2017, 2016).

Different biological inspired neuron models have been developed such as the Hodgkin-Huxley or the Fitzhugh-Nagumo
neuron (Hodgkin and Huxley, 1952; Izhikevich and FitzHugh, 2006), but they are rarely integrated in Machine Learning
applications.

Biologically inspired Leaky-Integrate-and-Fire (LIF) neurons (Burkitt, 2006) are an interesting target for Machine
Learning models to potentially improve performance and increase interpretability on the one hand ("Neuroscience
inspired AI" (Hassabis et al., 2017)) and to create models for biology on the other hand (“Cognitive Computational
Neuroscience” (Kriegeskorte and Douglas, 2018)).

Due to these properties of spiking networks and especially LIF units much effort has be undertaken to train LIF neuron
networks supervisedly via backpropagation.

In 2000 an interesting approach for training LIF networks via backpropagation was introduced, named SpikeProp, which
was several times improved and further developed (Bohte et al., 2000; Schrauwen and Van Campenhout, 2004a,b). The
basic idea of the algorithm is that not spiking patterns are learned, but desired spike times are defined as learning targets.
In other approaches the input encoding is restricted to only one spike per neuron (Kheradpisheh and Masquelier, 2019),
meaning that the information is encoded in the time to first spike. Furthermore, some researchers use approximated
derivatives in the gradient descent method to account for the discontinuities of the LIF neurons (Wu et al., 2018;
Lee et al., 2020). Furthermore, some studies show that Long-Short-Term-Memory (LSTM) units (Hochreiter and
Schmidhuber, 1997) can also be trained, so that they behave like spiking neurons (Koopman et al., 2003; Pozzi et al.,
2018; Rezaabad and Vishwanath, 2020). This insight helps to use existing pipelines to train spiking neural networks.
In this context, it has to be stated that in recent studies artificial spiking neural networks are more and more often
compared to biological systems to understand and rebuild them (Kim et al., 2019). Additionally, the spiking neural
networks are an interesting target for energy efficient computation on small computer chips (Lee et al., 2020).

We here introduce a very direct way to train LIF neurons using backpropagation. Thus, we manually fix the derivative of
the LIF neuron only within the backpropagation step and thus the error contributing to a certain spike can be distributed
over the neurons of the pre-connected layer. The study is structured as follows. We firstly illustrate and explain the
function of LIF neurons. In a second step, we introduce our method to train LIF units with backpropagation. We
prove the validity of our approach by the application of the method in hybrid neural networks trained on an image
classification task using the IRIS data set (Nilsback and Zisserman, 2008). The study comes along with interactive
versions of most of the figures, which help the reader to gain a better understanding of the mechanisms within spiking
neural networks.

Methods

All simulations were run on a standard Desktop PC equipped with a Nvidia TitanXp Gpu device. The simulations were
written in Python using Keras (Chollet, 2018) and Tensorflow (Abadi et al., 2016) for Machine Learning and Numpy
(Walt et al., 2011) for further evaluations and interfaces. The visualization of the data was done in Javascript using
the D3-library (Bostock et al., 2011) and in Python using Matplotlib (Hunter, 2007) and Pylustrator (Gerum, 2020).
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Thus, we provide interactive plots in an open github-repository. This interactive plots should help to gain a deeper
understanding of the mechanisms described in the paper. A link to the repository is provided in the figure captions.

Results

Leaky Integrate and Fire Neurons (LIF)

As described above the Leaky-Integrate-and-Fire (LIF) neuron model is a simple spiking neuron model based on one
single differential equation. The idea is that the neuron sums up all input currents, increases its’ membrane potential
and produces a spike if a certain threshold is reached (see Fig. 1). The leak term causes a continuous decrease of the
membrane potential and thus prevents long-range correlations.
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Figure 1: The response of the leaky integrate and fire neurons. a, illustration of the data flow in a LIF unit.
b, the response of the LIF unit to a given input signal. The cell (Vt, orange) integrates the input (xt, purple) until
the internal state exceeds the threshold (gray line). Then it outputs a spike (yt, red). The leak term lets the cell
state decay over time. With the parameters: winput = 0.5, wleak = 0.1, Vthresh = 1.0. For interactive version see:
https://rgerum.github.io/paper_spiking_machine_intelligence/#lif_unit

The leaky integrate and fire (LIF) neuron’s (Koch et al., 1998) membrane potential Vm is described by the following
differential equation:

I(t)− Vm(t)

Rm
= Cm · V̇m(t) (1)

(with the input current I(t), the membrane resistance Rm, and the membrane capacity Cm.)

When the membrane potential exceeds a threshold Vth, a spike in form of a delta function δ(t) is emitted and the
membrane potential is reset to 0. To simulate the response of a LIF neuron, this differential equation has to be integrated.
The standard integration method is the Euler integration (Atkinson, 1989), which we used for this approach. First, the
differential equation is solved for V̇m(t)

V̇m(t) =
I(t)

Cm
− Vm(t)

RmCm
(2)

This differential equation can be reformulated in a recursive manner (for one Euler step).
Vt+1 = Vt +

(
C−1m · xt − Vt ·R−1m C−1m

)
·∆t (3)
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LIF units in Deep Learning

(with the time step delta ∆t, and the I(t) now renamed xt.) We extend the update equation to include the spiking when
the threshold has been reached and the resetting of Vt+1 after the spike.

Ṽt+1 = Vt +
(
C−1m · xt − Vt ·R−1m C−1m

)
·∆t (4)

yt+1 = Θ(Ṽt+1 − Vthresh) spiking (5)

Vt+1 = Vm ·Θ(−Ṽt+1 + Vthresh) resetting (6)

Where Θ(x) is the Heaviside step function. The parameters can be renamed as follows:

C−1m ∆t = winput (7)

R−1m C−1m ·∆t = wleak (8)

Without loss of generality, Vthresh can be fixed to 1, as the scaling can be absorbed in winput. The update rule of the
LIF unit can be summarized as follows:

Vt = winput · xt + (1− wleak) · Vt−1 ·Θ(Vthresh − Vt−1) (9)
yt = Θ(Vt − Vthresh) (10)

These equations can e.g. be used to analytically calculate the firing rates r of the LIF neurons (for calculation see Suppl.
Fig. S1). The firing rates are an important property for many Machine Learning algorithms (Dominguez-Morales et al.,
2016).

r = 1/ceil

 ln
(

1− Vthresh

I · wleak

winput

)
ln (1− wleak)

− 1

 (11)

Here, ceil(x), denotes the ceiling of a number, i.e. rounding up to the closest integer.

Deep Learning with LIF Neurons

We show how the LIF neurons can be integrated in standard Machine learning applications for image classification.

LIF Neurons and Multidimensional Data

When the LIF neurons are applied to multi-dimensional data such as an image an efficient representation is needed
to optimize LIF neurons for our standard hardware and software architectures. The image, which we feed to the LIF
units has N rows and M columns (N ×M ). However, we regard the image as serial data set, where the time axis
corresponds to the x-axis of the image. Thus, the input of the LIF neurons consists of an N -dimensional vector for each
of the M time steps. Therefore, also Vt and yt are N -dimensional vectors. Thus, when an image is fed to a LIF unit as
described above (input image see Fig. 2a) it is transformed to "voltage fluctuations" in the LIF unit (see Fig. 2b) and
output spiking patterns (see Fig. 2c).

The model can be extended by the use of several LIF units with different winput and wleak (see eq. 10 ). This would
make winput and wleak a vector instead of a scalar and the scalar product would transform into a tensor product. This is
an efficient representation, which can easily be optimized for and run on GPUs.

Calculation of the Gradient

The standard method to supervisedly train neural networks on a classification task is to minimize a loss function
L(yout, ydesired). It is a measure of the dissimilarity between the desired output and the output of the neural network
yout calculated by forward propagation. For example in a classification task with a softmax output, the loss function
usually is the cross-entropy. This loss function is minimized using a gradient descent algorithm. The gradient descent
works by adding the negative gradient multiplied with the learning rate γ to the weights, which have to be optimized.

∆W = −γ · dL

dW
(12)

To illustrate the calculation of the gradient, we use an example architecture, consisting of two fully-connected layers
and a LIF layer in between (see Fig. 3).
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Figure 2: Image processed column-wise by a LIF layer. The figure shows the input (a), internal state (b), and the
output (c) of the LIF layer. For interactive version see: https://rgerum.github.io/paper_spiking_machine_
intelligence/#lif_image_processing

input Dense
W1

x LIF
winput
wleak

y Dense
W3

output

Figure 3: Example network architecture
Example neural network architecture used to illustrate the gradient descent algorithm.

To calculate the update of the weights W1, we have to calculate the gradient dL
dW1

.

dL

dW1
=

∂L

∂yout
· ∂yout
∂y

· ∂y
∂x
· dx

dW1
(13)

The term ∂y
∂x is the derivative of the LIF output as a function of the LIF input. If this derivative is 0 the weights of the

first layer W1 cannot be trained.

Vt = winput · xt + (1− wleak) · Vt−1 ·Θ2(Vthresh − Vt−1) (14)
yt = Θ1(Vt − Vthresh) (15)

However, this is exactly the case, as the LIF equations contain two Θ functions. To better reference them, we call the
Θ function for generation the output spike Θ1 and the Θ function for resetting the membrane potential Θ2. As the Θ
function is a completely flat function (except at 0), its’ gradient is 0 at all points, therefore reducing all gradients to 0.
Thus, no gradient can enter or pass the LIF cell. One possibility to overcome this problem would be to smooth the Θ
functions. But a more elegant solution, that does not affect the forward pass, is to just redefine the gradient of the LIF
unit. The derivative with respect to the inputs can be written as follows:

∂yt
∂xt

=
∂yt
∂Vt

∂Vt
∂xt

= Θ′1(Vt − Vthresh) · winput (16)

∂yt
∂xt−1

=
∂yt
∂Vt

∂Vt
∂Vt−1

∂Vt−1
∂xt−1

(17)

= Θ′1(Vt − Vthresh) · (1− wleak) · [Θ2(Vthresh − Vt−1) + Vt−1 ·Θ′2(Vthresh − Vt−1)] · winput (18)

If we define Θ′2(x) = 0, then the expression for an arbitrary derivative for a past x is:

∂yt
∂xt−n

= Θ′1(Vt − Vthresh) · winput(1− wleak)n
n∏

i=1

Θ2(Vthresh − Vt−1) (19)

One can see that the crucial part here is the function Θ1 that prevents any gradient to pass. Therefore, we redefine the
gradient of Θ1 to be 1 and keep the gradient of Θ2 as 0. This procedure is only a small change to the equations, which
only affects the backpropagation step and leaves the forward propagation untouched.

6
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a

b

Figure 4: The response and gradient of a LIF cell. Each column represents one time step. The color saturation
denotes the value of the cells which results from the inputs a. b, the propagated error from the red time step. The
derivatives are defined as follows: Θ′1(x) = 1, Θ′2(x) = 0. For interactive version see: https://rgerum.github.
io/paper_spiking_machine_intelligence/#lif_backpropagation

The gradient enters the cell (as Θ′1 = 1) and propagates to all input units that contributed to the spike (see Fig. 4)
but does not penetrate to inputs that contributed to the previous spike (as Θ′2 = 0). We have shown that our gradient
definition allows errors to pass the LIF neurons to pre-connected layers. For the backpropagation procedure the gradients
with respect to the LIF parameters is also needed, if they are supposed to be trainable (winput, wleak, for complete
gradients see Supplements).

In the next step, the LIF unit implementation described above is embedded in a hybrid neural network out of LSTM
layers and a softmax layer. This hybrid neural network is applied to an image classification task, where 10 different
flower species should be identified. We are aware of the fact that the LSTM units add further complex effects to the
model, but we use them as they are a simple method to integrate the spikes and transform them into a class label.
The used data set is a sub-data set of the 102 category flower data set (Nilsback and Zisserman, 2008) with only 10
categories. Thus, the LIF units should pre-process and compress the images of the different blossoms.

LIF Units for Image Classification

Network Architecture 1

The classification task on different blossoms is based on the 10 most occurring flower species (see Suppl. Fig. S2) of
the 102 category flower data set (Nilsback and Zisserman, 2008). The used network consists of one LIF layer with 3
different LIF units types (3x2=6 trainable parameters) compressing the colored images of 500x400 pixels.

The three LIF unit types each get exactly one color channel of the input images. In each time step each LIF unit
type receives one column of one color channel of the image as input and returns a spike vector still representing the
same color channel. Thus, the view that the LIF layer consists of 1200 individual LIF neurons of 3 different sorts (in
analogy to network architecture 2) with 1D spike train output is equivalent, although for programming reasons the
tensor notation was used in the tensorflow (Abadi et al., 2015) implementation.

Thus, the 8 bit images are compressed by a factor of 8 as each 8 bit integer is replaced by a boolean number (spike, no
spike). The compressed spike data is fed to an LSTM layer (30 units) connected to a fully connected output layer with
softmax activation (10 units) (see Tab. 1). As loss function the categorical cross-entropy is used. The parameters winput

and wleak of the LIF units, as well as the LSTM and softmax parameters are trained via backpropagation.

The training procedure is stopped after 30 epochs of no improvement of the test accuracy ("early stopping"). The
classification accuracy for one image (see fig. 5) is defined as the average probability value of the correct label during

7
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Table 1: Network architecture 1
Layer (type) Output Shape Parameters #
LIF-Layer (None, 400, 500, 3) 6
Reshape (None, 500, 1200) 0
LSTM Layer (None, 500, 30) 147720
Dropout (None, 500, 30) 0
Time distributed Dense (None, 500, 30) 930
Dropout (None, 500, 30) 0
Softmax (None, 500, 10) 310
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Figure 5: Accuracy of training a network with a LIF layer. The training accuracy is shown in dark blue and the test
accuracy in light blue.

the image presentation, which is a very conservative estimator for the accuracy. The overall test accuracy (all test
images) achieves a value of over 40 %, whereas the chance accuracy is 10% (10 categories). This proves that the LIF
neurons can be trained via backpropagation so that they operate in a sophisticated parameter range.

Note that the data set does not allow the neural network to train on trivial features such as the color of the flower as the
data set contains different color variants of the same flower species. The LIF units compress the image, nevertheless the
shape of the flowers can still be seen in the spike patterns (see Fig. 6). The here described model proves that spiking
layers can be trained for a classification task.

Network Architecture 2

We further provide evidence that a classification network can also be trained, when there is a fully-connected layer
pre-connected to the LIF layer. Here, the LIF layer consists of 1200 LIF units, generating output spike trains (1D
boolean scalar spike train). Each LIF unit receives a weighted sum of 3 · 400 values as input (3 color channels and 400
as the images consist of 400 rows). The x-coordinate (500 pixels width of the image) is the time axis.

In contrast to the architecture above (network 1), with only 6 trainable parameters except LSTM and softmax layer (3 LIF
neuron types, 1200 LIF neurons), this network has 1,441,200 trainable parameters for the pre-connected fully-connected
layer and 2,400 trainable parameters (winput, wleak) for the 1,200 individual LIF units (see Tab. 2). The fact that the

Table 2: Network architecture 2
Layer (type) Output Shape Parameters #
Reshape (None, 500, 1200) 0
TimeDistributed Dense (None, 500, 1200) 1441200
LIF-Layer (None, 500, 1200) 2400
LSTM Layer (None, 500, 30) 147720
Dropout (None, 500, 30) 0
Time distributed Dense (None, 500, 30) 930
Dropout (None, 500, 30) 0
Softmax (None, 500, 10) 310
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Figure 6: Spiking network processes images. The network takes images as input (a, g) and applies a LIF layer (b,
h) to generate spike trains for each row and color channel (c, i). These spike trains are fed into an LSTM layer (d,
j) which is followed by a softmax layer (e, k). The softmax layer predicts the category of the image (f, l). The three
different colorbars (lif cell) represent the internal state of the LIF units for the three different color channels. The spike
data produced by this LIF layer is shown under the heading lif output. The activation of the LSTM layer is shown
as color map (lstm). The category probability calculated through the softmax layer is represented by the size of the
category images (softmax). For interactive version see: https://rgerum.github.io/paper_spiking_machine_
intelligence/#lif_network1
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Figure 7: Accuracy of training a network with included LIF layer. The orange curves show the accuracy during
training without manually setting the gradient of Θ′1 = 1 (disappearing gradient network, dark orange: training accuracy,
light orange: test accuracy). The gradient cannot pass the LIF units. The blue curves in contrast show that the algorithm
is able to train the LIF layer as well as the pre-connected dense layer (dark blue: training accuracy, light blue: test
accuracy).

gradient can pass the LIF units can be seen when analyzing the accuracy as a function of the epochs (learning curve).
The accuracy is higher for the LIF units with the activation function gradient (Θ′1 = 1) set to one (blue curves). This is
true for training as well as test accuracy.

The test accuracy for the network, where the gradient can pass the LIF layer, is increased by more than 10 % compared
to the disappearing gradient network (orange curve) and raises up to a value of approximately 55 % (see Fig. 7).
Nevertheless, the accuracy of the disappearing gradient network is not at chance level, as the random connections lead to
usable features for the higher layers (LSTM layers), an effect that was shown in biology as well as in computer science
(see e.g. (Dasgupta et al., 2017)). In the following, we show that the output of the LIF layer significantly changes over
the training epochs. Thus, the time course of the output of a LIF unit for one certain image is shown in Fig. 8.
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a

b

Figure 8: Training of a network with LIF units. a the spiking patterns of the LIF units before training (epoch 0, each
line in the three blocks represents one of the 1200 neurons, the x-axis is the 500 time points, yellow represents a spike,
purple represents no spike). b the spiking patterns of the LIF units after training (epoch 172). The input of one LIF unit
in each time step is a weighted sum of the rows of the image (each image has 400 rows and 3 color channels, input:
weighted sum of 1200 values). It can be seen that the output spike patterns change during training (a, epoch 0, b epoch
172) and that the spike density is reduced. Thus, the network develops a sparse coding of the input image. For interactive
version see: https://rgerum.github.io/paper_spiking_machine_intelligence/#lif_network2

The spike patterns clearly change during the training process and the spike occurrences decreases (see Fig. 8). This
effect –called sparse-coding (Olshausen and Field, 1997)– is correlated with a higher performance of the network and
shows that the gradient can pass the LIF layer. Furthermore, sparse-coding of input stimuli is a basic principle in
biological neural networks and here emerges automatically due to our training method.

Discussion

Summary

In this study, we have done an in-depth analysis of the maths behind, and the applicability of LIF neurons in Machine
Learning.

We show that LIF units can be embedded in standard neural network models and can be trained with backpropagation.
We developed a definition of the gradient, that allows the backpropagated error of a spike to be assigned to those inputs
that contributed to this spike. This was done by fixing the derivatives of the activation functions (Θ′1 = 1, Θ′2 = 0).

For our analysis we chose a complex image data set, which has in contrast to simpler data sets such as MNIST, more
different frequencies, which translate into different spiking patterns. Up to now, in most studies only simpler data sets
were used (for review see Tavanaei et al. (2019)).

Limitations

The aim of our study was to establish a simple idea how to train neural networks consisting of LIF neurons, although we
are aware of the fact that we do not yet achieve state-of-the-art performance compared to other architectures optimized
for image classification (see e.g. (Xia et al., 2017; Feng et al., 2019; Qin et al., 2019)). Additionally, to achieve higher
performance the recurrent neural networks have to be optimized for the used hardware components (Bhuiyan et al.,
2010).

10
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However, we are convinced that our method is a very direct and uncomplicated way to train LIF networks and thus is
interesting to the Machine Learning as well as Neuroscience community. Furthermore, our method is easy to implement
in existing Machine Learning frameworks such as Keras (Chollet, 2018) and thus can efficiently been run on GPU
devices. The interactive visualizations help to further understand the computational mechanisms and are a step towards
explainable AI. To gain a deeper understanding how Machine Learning algorithms work, i.e. to solve the black-box
problem (also opacity debate), has currently become an important issue in AI research (Castelvecchi, 2016; De Laat,
2018).

The results of this study have the potential to provide novel insights in the function of biological neural networks (cf.
e.g. (Schemmel et al., 2006; Jin et al., 2010)). Thus, we think that the application of analysis techniques developed for
untrained or randomly connected neural networks such as stability analysis (Liapunov exponent) or motif distribution
analysis (see e.g. (Bertschinger and Natschläger, 2004; Krauss et al., 2019c,a,b)), can be applied to the spiking neural
networks trained with backpropagation to gain new insights in brain dynamics and function.

Concluding Remarks

The implementation of biological principles in Machine Learning such as sparsity (Gerum et al., 2020) or spiking
properties can help to improve the performance of Machine Learning algorithms. Furthermore, we hypothesize that
spiking neural networks unfold their full potential in tasks with serial data such as speech or music classification
(Schilling et al., 2020).
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Supplementary Material

Firing Rates

We will analytically calculate the number of timesteps with a constant input I which are necessary to provoke a spike.
At time t0 we start with Vt0 = winput · I and apply the update rule for LIF units as shown above:

Vtn = winput · I + (1− wleak) · Vtn−1 (20)

The implicit description of Vtn can be written in an explicit manner.

Vtn =

n∑
i=0

(1− wleak)i · winput · I (21)

The criterion for a spike is: Vtn ≥ Vthresh. Thus, the following inequation has to be solved:

Vthresh ≤
n∑

i=0

(1− wleak)i · winput · I (22)

≤ winput · I ·
n∑

i=0

(1− wleak)i with

n∑
i=0

ai =
an+1 − 1

a− 1
(23)

≤ winput · I ·
(1− wleak)n+1 − 1

−wleak
(24)

−Vthresh
I

· wleak

winput
+ 1 ≥ (1− wleak)n+1 (25)

ln

(
−Vthresh

I
· wleak

winput
+ 1

)
≥ (n+ 1) · ln(1− wleak) (26)

n ≥
ln
(

1− Vthresh

I · wleak

winput

)
ln (1− wleak)

− 1 (27)

(28)

This results in the number of timesteps until the next spike event.

n = ceil

 ln
(

1− Vthresh

I · wleak

winput

)
ln (1− wleak)

− 1

 (29)

Note, for wleak = 0 this simplifies to:

n = ceil

(
Vthresh
winput · I

)
(30)

The equation shows that n is a nonlinear function of wleak and winput and thus a simple downregulation of wleak cannot
be compensated by a downregulation of winput. On the other hand, Vthresh can be fixed to 1 without loss of generality
as a change of Vthresh can be absorbed in winput.

The spiking only occurs at all if the input exceeds the input threshold:

Imin =
Vthresh · wleak

winput
(31)

Smaller inputs lead to a divergence of the n as the cell state decays faster than it is resupplied by the input. The equation
for the input threshold Imin shows that the input threshold is only non-zero if the neuron is "leaky", e.g. has a leak
parameter wleak 6= 0.

The fact that the two parameters wleak and winput have different effects on the spike rate, and cannot be trivially
combined to one parameter, training of these two parameters can help to extract interesting features from the input data.
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Figure S1: Average number of timesteps needed for spike (corresponds to inverse spike rate). The curve (blue)
shows the steps it takes for the neuron to spike when it receives a constant input (winput = 0.5, wleak = 0.1).

Limited image data set

The neural networks used in this study were trained on the classification of 10 different flower species, which are a
subset of 102 Oxford flower data set (Nilsback and Zisserman, 2008).

Figure S2: Exemplary images from the limited data set with 10 categories out of 102 Oxford flower data set
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Gradients

The gradient with respect to winput:

dyt

dwinput
= ∂yt

∂Vt

(
∂Vt

∂winput
+ ∂Vt

∂Vt−1

dVt−1

dwinput

)
=

∂yt

∂Vt

{
∂Vt

∂winput
+ ∂Vt

∂Vt−1

[
∂Vt−1

∂winput
+ ∂Vt−1

∂Vt−2

(
∂Vt−2

∂winput
+ ∂Vt−2

∂Vt−3

dVt−3

dwinput

)]}
=

Θ′1(Vt − Vthresh) ·
[
xt + (1− wleak)Θ2(Vthresh − Vt−1)xt−1+

(1− wleak)2Θ2(Vthresh − Vt−1)Θ2(Vthresh − Vt−2)xt−2+

(1− wleak)3Θ2(Vthresh − Vt−1)Θ2(Vthresh − Vt−2)Θ2(Vthresh − Vt−2) dVt−3

dwinput

]
=

Θ′1(Vt − Vthresh) ·
[
xt +

∑N
n=1 xt−n(1− wleak)n ·

∏n
i=1 Θ2(Vthresh − Vt−i)

]
(32)

The gradient with respect to wleak:
dyt

dwleak
= ∂yt

∂wleak

dVt

dwleak
=

= Θ′1(Vt − Vthresh)·[
− Vt−1Θ2(Vthresh − Vt−1)− Vt−2(1− wleak)Θ2(Vthresh − Vt−1)Θ2(Vthresh − Vt−2)−

Vt−3(1− wleak)2Θ2(Vthresh − Vt−1)Θ2(Vthresh − Vt−2)Θ2(Vthresh − Vt−3)+

(1− wleak)3Θ2(Vthresh − Vt−1)Θ2(Vthresh − Vt−2)Θ2(Vthresh − Vt−3) dVt−3

dwleak

]
=

Θ′1(Vt − Vthresh) ·
[
−
∑N

n1
Vt−n(1− wleak)n−1 ·

∏n
i=1 Θ2(Vthresh − Vt−i)

]
(33)

Keras Implementation

These gradient definitions can be implemented with the following code in tensorflow:

@tf.function
def lif_gradient(x, w_i, w_l, t_thresh=1):

time_steps = x.shape[1]

Vm = w_i * x[:, 0]
states = tf.TensorArray(tf.float32, size=time_steps)

for i in tf.range(time_steps):
Vm = w_i * x[:, i] + (1 - w_l) * Vm * theta2(t_thresh - Vm)
spike = theta1(Vm - t_thresh)
states = states.write(i, spike)

return tf.transpose(states.stack())

With the theta functions defined as:

@tf.custom_gradient
def theta2(x):

def grad(dy):
return dy*0

return tf.cast(x > 0, tf.float32), grad

@tf.custom_gradient
def theta1(x):

def grad(dy):
return dy*1

return tf.cast(x > 0, tf.float32), grad
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