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Abstract Objectives: Lateral connections in the pri-
mary visual cortex (V1) have long been hypothesized to
be responsible of several visual processing mechanisms
such as brightness induction, chromatic induction, vi-
sual discomfort and bottom-up visual attention (also
named saliency). Many computational models have been
developed to independently predict these and other vi-
sual processes, but no computational model has been
able to reproduce all of them simultaneously. In this
work we show that a biologically plausible computa-
tional model of lateral interactions of V1 is able to
simultaneously predict saliency and all the aforemen-
tioned visual processes.
Methods: Our model’s (NSWAM) architecture is based
on Pennachio’s neurodynamic model of lateral connec-
tions of V1. It is defined as a network of firing rate
neurons, sensitive to visual features such as brightness,
color, orientation and scale. We tested NSWAM saliency
predictions using images from several eye tracking datasets.
Results: We show that accuracy of predictions, using
shuffled metrics, obtained by our architecture is sim-
ilar to other state-of-the-art computational methods,
particularly with synthetic images (CAT2000-Pattern
& SID4VAM) which mainly contain low level features.
Moreover, we outperform other biologically-inspired saliency
models that are specifically designed to exclusively re-
produce saliency. Conclusions: Hence, we show that our
biologically plausible model of lateral connections can
simultaneously explain different visual proceses present
in V1 (without applying any type of training or opti-
mization and keeping the same parametrization for all
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the visual processes). This can be useful for the def-
inition of a unified architecture of the primary visual
cortex.

1 Introduction

Visual salience can be defined as “the distinct subjec-
tive perceptual quality which makes some items in the
world stand out from their neighbors and immediately
grab our attention” [35]. Hence, saliency could be de-
fined as one of the properties of the visual scene that
attracts our attention toward a particular set of visual
features. Although not being the best option for the
study of visual saliency, several studies of eye move-
ments using different approaches have been performed.
Eye movements are controlled by many different fac-
tors, e.g. low/high-level information, task, endogenous
factors, etc. Hence, prediction of eye movement cannot
be performed only by one of these factors. Koch and Ull-
man [38] propose a computational framework in which
visual features are integrated to generate a saliency
map. These visual features are projected to V1 and later
processed distinctively on the ventral (“what”) and dor-
sal (“where”) streams. These connections are projected
to the superior colliculus (SC), which would generate ei-
ther top-down (relevance) or bottom-up (saliency) con-
trol of eye movements by combining neuronal activ-
ity from distinct brain areas to a unique map (priority
map) [24][82].

Related Work

Given these distinct levels of processing from the human
visual system (HVS), a set of computational models are
proposed in order to reproduce eye movement behavior.
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Itti et al. introduce a biologically-inspired model [36]
in which low-level features are extracted using linear
DoG filters, their conspicuity is calculated using center-
surround differences (inspired by V1’s simple cell com-
putations) and integrated (pooled to the SC as a mas-
ter saliency map) using winner-take-all mechanisms. Al-
though computations of existing saliency models seem
to mimic HVS mechanisms, complexity of scenes make
eye-movement behavior hard to predict because of the
aforementioned additional factors. Bruce & Tsotsos model
[11] offered a semi-supervised mechanism to account
for relevant information of the scenes in combination
with the bottom-up computations of V1, predicting eye
movement behavior at distinct scene contexts. Given
the basis of these models, a myriad of computational
models, both with artificial and biological inspiration
[37][6][89][68], have implemented distinct ways to pre-
dict human eye movements obtaining better performance
on its predictions [67][8][9][13]. Thus, although proposed
computational eye movement prediction models could
precisely resemble eye-tracking data, it is questionable
to consider that these predictions accurately and specif-
ically represent saliency [10][4][5]. We have added a ta-
ble describing each model with its inspiration (Cog-
nitive/Biological, Information-based, Probabilistic and
Deep Learning, as described in [37][6][5]) and type of
feature processing (with global or local features). Saliency
corresponds to bottom-up attention, which derives from
generating conspicuity from low-level image features
[34]. The relation of eye movements in relation to saliency
is mainly based on the fact that eye movements are
driven by both bottom-up attention (saliency in this
case) and top-down attention (also coined with the name
“relevance” [23]). The problem is that “saliency mod-
els” are told to predict saliency while, in fact, they are
predicting fixations (which experimentally is dissimilar,
as it includes both bottom-up and top-down effects).

Table 1: Description of saliency models

Model Authors Year Inspiration Type
C I P D G L

IKN Itti et al.[36] 1998 3 3 3
AIM Bruce & Tsotsos [11] 2005 3 3 3

GBVS Harel et al.[30] 2006 3 3 3
SUN Zhang et al. [90] 2008 3 3

SDSR Seo & Milanfar [73] 2009 3 3 3 3
SIM Murray et al.[51] 2011 3 3 3
AWS Garcia-Diaz et al.[27] 2012 3 3 3

OpenSALICON Jiang et al.[76] 2015 3 3
ML-Net Cornia et al.[18] 2016 3 3

DeepGazeII Kümmerer et al.[41] 2016 3 3
SalGAN Pan et al.[59] 2017 3 3

SAM Cornia et al.[19] 2018 3 3

Inspiration: {C: Cognitive/Biological, I: Information-Theoretic, P:
Probabilistic, D: Machine/Deep Learning} Type: {G: Global, L:

Local}

Motivation

Li’s work [45][46][47][91] proposes that V1’s computa-
tions, particularly lateral connections, are the ones re-
sponsible of the representation of the aforementioned
saliency map. Following her work, the role for the early
processing of the visual features relies in V1, mainly
driven for this case by uniquely processing low-level vi-
sual features. These connections are later projected to
the SC in order to generate bottom-up saccadic eye
movements [70][71, Chapter 9][83]. Since Li’s architec-
ture only worked on lattices of oriented bars, in order
to process greyscale images [62] enhanced Li’s architec-
ture by adding receptive fields of different orientations
and spatial scales.

These authors show that this architecture repro-
duces the brightness induction visual process for both
still images and dynamic visual stimulus (i.e. videos).
By enhancing the architecture adding two channels (op-
ponent red-green and blue-yellow) to the luminance
channel, the same authors showed that this architecture
also reproduces chromatic induction [16]. Evenmore, by
studying several statistical properties of the spatial and
temporal dynamics of the firing-rate activity of the ar-
chitecture, they showed that it also predicts the visual
phenomena of visual discomfort [64] (which is one of
the the main triggers of migraines).

Considering that these works have shown that the
neuronal mechanism of lateral connections is partially
responsible for these effects, we aim to use the same
model in order to address another process present in
the primary visual cortex: visual saliency. Using this Pe-
nacchio’s computational architecture, we aim to com-
pute feature conspicuity (distinctiveness between fea-
ture maps), which will alternatively represent the func-
tion of the aforementioned saliency map.

Objectives

In this study we want to test if the computations of our
model are able to reproduce eye movement behavior be-
ing consistent with eye-tracking psychophysical exper-
imentation. Current evaluation of saliency predictions
is unfair and do not consider many biases, specific to
saliency. Using metrics not affected by these biases, we
want to show that our architecture can obtain similar
results in comparison to other state-of-the-art models
(or outpeform them in some specific datasets). Con-
cretely, we want to study whether our architecture can
obtain results similar or better than other stateof-the-
art models when using datasets with less top-down eye
movement biases (that is, datasets which mainly re-
flects bottom-up saliency related eye movements). Ad-
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ditionally, we want to show that we can obtain these re-
sults without applying any type of training or optimiza-
tion and keeping the same parametrization for all the
visual processes (e.g. brightness induction, chromatic
induction and visual discomfort). Hence, we want to
show that a computational model of lateral connections
can offer a unified architecture reproducing distinct V1
functionality, leading to a unification of several visual
processes.

Unifying an architecture of several visual processes

Li’s architecture is a model of a neuronal mechanism
present in the primary visual cortex (and other areas).
All the perceptual processes that rely on this mecha-
nism could be computationally reproduced, at least par-
tially, with the same architecture. As explained in pre-
vious section we showed in previous studies [62][16][64]
that the proposed firing-rate neurodynamic model of
V1’s intra-cortical interactions extended in Penacchio’s
model [62] is able to simultaneously reproduce several
visual processes such as brightness and color induction
effects as well as visual discomfort mechanisms.

Brightness induction refers to the changes in per-
ceived brightness of a visual target due to the lumi-
nance of its surrounding area. From this statement, the
HVS can either perceive the visual target and the sur-
rounding area with similar/equal brightness (assimila-
tion) or to perceive brightness differences (contrast).
We can observe in Fig. 1A how two grey patches are
perceived distinctively whilst being with same bright-
ness. Similarly, the HVS perceives the chromatic prop-
erties of a visual target distinctively depending on the
chromaticities of its surrounding area. This phenomena
is named chromatic induction. It appears in both “l”
and “s” opponent channels (“l” for red-green and “s” for
blue-yellow). This effect is observable on Fig. 1B, where
the central ring from the reference stimulus (left) ap-
pears to be “greener” (being perceived with lower “l”
chromatic properties) than the central ring from the
test (right), which appears to be “bluer” instead (being
perceived with higher “s” chromatic properties).

These effects were reproduced previously in a mul-
tiresolution wavelet framework with BiWaM [58] and
CiWaM [57] computational models. These models’ aim
was to mimic V1’s simple cell mechanisms by comput-
ing center-surround differences at distinct color and lu-
minance opponencies. Being inspired by the aforemen-
tioned Li’s model, Penacchio et al. [62] modeled an exci-
tatory and inhibitory model of V1 as a more biologically
plausible approach to reproduce these visual effects.
Considering physiological and neurodynamic properties

of V1 cells [45] at different spatial frequencies and ori-
entations, Penacchio et al. [62] show it is possible to
simultaneously reproduce psychophysical experiments
of brightness [62] and chromatic [16] induction effects
using a unified computational architecture.

A B C

Fig. 1: (A) Example of Brightness induction present
at the White effect [85]. The two grey squares are the
same luminance, but the the left square is perceived as
darker than the right square. (B) Chromatic induction
from Monnier & Shevell’s concentric ring stimuli [50].
On the left disk we perceive a greenish ring and on the
right disk we perceive a bluish, but these two rings are
the exactly the same color. (C) Discomfortable image
(credit by Nicholas Wade). If we fixate our gaze at this
image, after some tens of seconds it could become un-
comfortable to look at. [80].

Latest experiments showed that this computational
architecture is also able to predict visual discomfort
[64]. Specific visual patterns (Fig. 1C) are shown to
cause discomfort, malaise, nausea or even migraine [63][42].
Taking into account the relative contrast energy from
stimulus regions (due to its orientation, luminance, chro-
matic and spatial frequency distributions), we can pre-
dict whether a stimulus can cause hyperexcitability in
V1, a possible cause of visual discomfort for certain im-
ages.

Hypothesis

The Hypothesis of the present work is that a computa-
tional architecture implementing a biologically plausi-
ble model of lateral connections in the primary visual
cortex is able to predict low-level saliency while simul-
taneously reproducing all the previously commented vi-
sual processes (e.g. brightness and chromatic induction,
and visual discomfort).

2 Model Description

The model is extended from previous implementation
by Pennacchio et al. [62] in Matlab and C++ 1. Here

1 Code can be downloaded from https://github.com/
dberga/NSWAM

https://github.com/dberga/NSWAM
https://github.com/dberga/NSWAM
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we describe the main steps in relation to the compu-
tations done to the images: 2.1. Feature Extraction,
2.2. Feature Conspicuity and 2.3. Feature Integration.
In this section, computations in the early visual path-
ways will be represented in line with a stimulus exam-
ple. Overall model architecture was inspired by previ-
ous work from Murray et al.’s Saliency Induction Model
(SIM) [51], defining a biologically-inspired and unsuper-
vised low-level model for saliency prediction. Although
it provided a promising approach for predicting saliency
maps, we want to stress the novelty of computations of
firing rate dynamics proposed in our architecture are in
accordance with physiological properties of V1 cells.

2.1 From images to Sensory Signals: Feature
Extraction

2.1.1 Color representation

Human retinal cone photoreceptors are sensitive to dis-
tinct wavelengths of the visual spectrum, correspond-
ing to long, medium and short wavelengths. Similarly,
traditional digital cameras capture light as values in
the RGB color space (corresponding to Red, Green and
Blue components). Retinal ganglion cells (RGC) en-
code luminance and chromatic signals as an opponent
representation. This opponent representation separates
channels of “Red vs Green” and “Blue vs Yellow” from
cone cell responses, and luminance (“Bright vs Dark”)
from both cones and rod responses. Activity from these
channels (R-G, B-Y and L) is then projected respec-
tively to the lateral geniculate nucleus (LGN) and through
parvo-cellular (P-), konio-cellular (K-) and magno-cellular
(M-) pathways towards V1.

In order to represent this opponent colour informa-
tion, we use the widely used opponent colour represen-
tation:

L = R+G+B, (1)

rg = R−G
L

, (2)

by = R+G− 2B
L

, (3)

We can interpret L, rg and by components defined
in Eqs. 1,2,3 as means of luminance opponency and
chrominance oponencies R-G and B-Y, respectively. In
Fig. 2 we illustrate an example of an image and its
conversion to this representation, with higher activation
on the “Red vs Green” opponent cells than the case of
“Blue vs Yellow” and “Bright vs Dark” opponencies. It
has been shown that this representation is related to
some perceptual properties of colour perception [60].

All RGB pixel values of processed images are previ-
ously corrected with γ = 1/2.2.

⇒

A B C

Fig. 2: Example of RGB image (left image) and its cor-
responding opponent color representation: (A) “red vs
green” (rg) , (B) “blue vs yellow” (by) and (C) “lumi-
nance” (L) channels.

2.1.2 Multiscale and orientation representation

V1 cell sensitivities to distinct orientations [34] and
spatial frequencies [49] are usually modeled as Gabor
filters. Since Gabor transforms cannot be inverted to
obtain the original image, we used the à trous algo-
rithm, which is an undecimated discrete wavelet trans-
form (DWT) [28][74, Chapter 6]. This decomposition
allows to perform an inverse, where the basis functions
remain similar to Gabor filters. We propose biologically
plausible computations for extracting multiple orien-
tations and multiscale feature representations of from
V1’s receptive field (RF) hypercolumnar organization
(Fig. 3). The wavelet approximation planes cs,θ (s for
scale and θ for orientation) are computed by convolving
the image with the filter hs.

cs,h = cs−1 ⊗ hs,
cs,v = cs−1 ⊗ h′s.

(4)

The filter hs is obtained from hs−1 by doubling its size,
i.e. hs = ↑ hs−1, where ↑ means upsampling by intro-
ducing zeros between the coefficients. The filter (hs) for
the first scale is

h1 = 1
16
[
1 4 6 4 1

]
This filter can be also transposed (h′s) to obtain distinct
approximation orientation planes cs,h and cs,v. From
these approximation planes, we can obtain the wavelet
coefficients ωs,θ at distinct scales and orientations:

ωs,h = cs−1 − cs,h,
ωs,v = cs−1 − cs,v,

ωs,d = cs−1 − (cs,h ⊗ h′s + ωs,h + ωs,v),
cs = cs−1 − (ωs,h + ωs,v + ωs,d).

(5)
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Here, ωh, ωv and ωd correspond to the coefficients with
“horizontal”, “vertical” and “diagonal” orientations. Ini-
tial c0 = Io (e.g. s = 0) is obtained from the oppo-
nent components (o = L, rg, by) and cn corresponds to
the residual plane of the last wavelet component (e.g.
s = n). The inverse transform is obtained by integrat-
ing wavelet coefficients and residual planes:

I ′o =
n∑

s=1,θ=h,v,d
ωs,θ + cn. (6)

Considering that for every image, M ×N is the size
of the feature map (resized to N ≤ 128), the set of
spatial scales is (s = 1..S), where S = blog2(N/8)c+ 2.

θ = h θ = v θ = d

s=1

s=2

s=3

s=4

s=5

A B C

Fig. 3: Output from à-trous DWT of the signals shown
on Fig. 2. We show values for rescaled wavelet filters,
with scales s = 1..5 and orientations θ = h, v, d cor-
responding to distinct channel opponencies (A) ωo=rg,
(B) ωo=by and (C) ωo=L.

2.2 Computing V1 Dynamics: Feature Conspicuity

Feature conspicuity from previous Murray’s SIM model
is computed using center-surround feature computa-
tions (CS) while applying a contrast sensitivity function
(eCSF). Similarly, we extract low-level feature-dependent
computations corresponding to the orientation sensitiv-
ities (θ = 0, 90, 45/135◦) of the retinotopic positions
(i) at distinct spatial frequencies (s) for ON and OFF-
center cells. These ON and OFF cells activities (be-
fore the computation of lateral connections) responses
are computed by taking the positive and negative val-
ues of the wavelet planes, respectively. Feature distinc-
tiveness is computed with the Penacchio et al. network
of excitatory-inhibitory firing rate neurons, simulating
V1’s lateral interactions (Fig. 4). Contrast enhance-
ment or suppression emerges from lateral connections

as an induction mechanism. Lateral interactions are im-
plemented to have self-directed (J0) and monosynaptic
connections (J) between excitatory neurons. Inhibitory
interactions have disynaptic connections (W ) through
all inhibitory interneurons, defined by:

J[isθ,js′θ′] = λ(∆s)0.126e(−β/ds)2−2(β/ds)7−d2
s/90, (7)

W[isθ,js′θ′] = λ(∆s)0.14(1− e−0.4(β/ds)1.5
)e−(∆θ/(π/4))1.5

,

(8)

Equation 7 is applied if (0 < d ≤ 10 and β < π/2.69)
or [(0 < d ≤ 10 and β < π/2.69) and |θ1| < π/5.9
and |θ2| < π/5.9], otherwise J[isθ,js′θ′] = 0. We take
W[isθ,js′θ′] = 0 if d = 0 or d ≥ 10 or β < π/1.1 or
|∆θ| ≥ π/3 or |θ1| < π/1.99, otherwise we use the ex-
pression in Equation 7. In these equations, d = d(i, j)
is the distance between the nodes at position i and j,
and θ1, θ2 are the angles between the nodes and the line
defined by i− j, with |θ1| ≤ |θ2| ≤ π/2. The sign of the
angles is determined by the condition |θi| ≤ π/2. Pa-
rameter β = 2θ1 + 2 sin |θ1 + θ2| and ∆θ = θ− θ′ (with
|θ − θ′ ≤ π/2). Term λ(∆s) is related to the difference
between the spatial scales (∆s = |s − s′|) of the two
connected nodes. Details of this term can be found on
[62, Supporting Information S1].

In Fig.4 C and D we have shown a graphical rep-
resentation of these connections. Considering these in
a simulated retinotopic space (corresponding to a the
visual space but at distinct RF sizes) with a radius
∆s = 15 × 2s−1 and radial distance ∆θ (respectively
accounting for the distance between RF neurons from
different spatial frequencies as ds and radial distance
as β). We can see that excitatory connections J are de-
fined between nodes with similar orientation that are
relatively aligned. In contrast, inhibitory connections
W are defined between nodes with similar orientation
but non-aligned.

Excitatory and inhibitory membrane potentials (their
derivatives) are described by

ẋisθ = −αxxisθ − gy(yisθ)

−
∑

∆s,∆θ 6=0
Ψ(∆s, ∆θ)gy(yis +∆sθ +∆θ) + J0g(xisθ)

+
∑

j 6=i,s′,θ′

J[isθ,js′θ′]gx(xjs′θ′) + Iisθ + I0,

(9)
ẏisθ = −αyyisθ − gx(xisθ)

+
∑

j 6=i,s′,θ′

W[isθ,js′θ′]gx(xjs′θ′) + Ic . (10)

Functions gx and gy correspond to the activation
function (implemented as piece-wise linear functions)

https://s3-eu-west-1.amazonaws.com/pstorage-plos-3567654/1066250/Text_S1.pdf
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A
B

Fig. 4: Illustration of the different elements and their
connections that define our computational network.
(A) Two populations of excitatory and inhibitory nodes
are defined in a 2-dimensional regular discrete lattice
(here reduced to a single dimension for the sake of clar-
ity). Nodes of these two populations are connected be-
tween them. The output of te layer of excitatory nodes
is considered the output of the network. (B) At each
retinotopic position we consider we have an hypercol-
umn composed by a set excitatory and inhibitory nodes
tuned to different spatial orientations and scales. (C,D)
Sketches of the weights of both the excitatory J and in-
hibitory W between retinotopic positions i and j. These
connections are traslation invariant.

. Reprinted with permission from “A Neurodynamical Model of
Brightness Induction in V1”, 2013, by O. Penacchio, PLoS ONE,
8(5):e64086, p.5. Copyright 2013 by the Public Library of Science

[62].

for transforming the membrane potentials to firing rate
values. The spread of the inhibitory activity within a
hypercolumn is represented as Ψ . Terms αx = 1/τx,
αy = 1/τy are the decay constants that define the
decay of excitatory and inhibitory potentials to their
resting potential values, respectively. Terms τx and τy
are the mean time that excitatory and inhibitory mem-
brane potentials, respectively, take to decay to its mean
value. We have used αx = αy = 1 values. The variable
Iisθ corresponds to the external input values of the im-
age, which in our case are the wavelet coefficients that
simulate the response of the classical receptive field of
every node (Iisθ ≡ ωisθ). Inhibitory top-down activity
can be introduced to the model through Ic, including a
noise signal to stabilize the nonlinear equilibrium. We
suggest to read further details of the model and its pa-

rameters are specified in [62, Supporting Information
S1]. We compute the temporal average of ON and OFF-
center cells M(ωt+is ) and M(ωt−is ) as the model output
over several oscillation cycles (being the mean of gx for
a specific range of t, where t is the membrane time,
which corresponds to 10 ms) from distinct color oppo-
nencies (o = L, rg, by). Distinctively from the induction
cases described in Unifying an architecture of several
visual processes, we do not combine the model output
M(ωtiso) to the coefficients ωtiso, instead, we consider
the firing rate from the model output as our predictor of
feature distinctiveness, which will define our main func-
tion for our saliency map (Eq. 11). The model output
can provide detail of single neuron dynamics of firing
rate, which its dynamical properties may vary across
stimulus properties such as color opponency, scale and
orientation.

Ŝtisoθ = M(ωt+isoθ) +M(ωt−isoθ) + ci, (11)

2.3 Generating the saliency map: Feature Integration

After computing feature distinctiveness for the low-level
feature maps, we need to integrate these conspicuity or
distinctiveness maps in order to pool the neuronal ac-
tivity to the projections of the SC as means of acquiring
a unique map, which will represent our saliency map.
First, we have computed the inverse transform from the
DWT (IDWT) Eq. 6 for integrating the sensitivities for
orientation (θ) and spatial frequencies (s). In this case,
instead of the ωs,θ, we use Ŝ as the sum of ON and
OFF cells after processing the dynamical model (Eq.
11) summated for each channel:

Ŝio(inverse/sum) =
n∑

s=1..S,θ=h,v,d
Ŝisoθ + cn. (12)

Second, we have computed the euclidean norm (Ŝ) for
integrating the firing rate of the distinct color opponen-
cies (Eq. 13).

Ŝi =
√
Ŝi;rg + Ŝi;by + Ŝi;L, (13)

Third, we have normalized the resulting map (z(Ŝ))
by the variance of the firing rate (Eq. 14), as stated by
Li [91, Chapter 5]. Finally, we convolved the saliency
map with a Gaussian filter in order to simulate a smooth-
ing caused by the deviations of σ = 1 deg given from eye

https://s3-eu-west-1.amazonaws.com/pstorage-plos-3567654/1066250/Text_S1.pdf
https://s3-eu-west-1.amazonaws.com/pstorage-plos-3567654/1066250/Text_S1.pdf
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tracking experimentation, recommended by LeMeur &
Baccino [44].

zi(Ŝ) =
Ŝi − µŜ
σŜ

, (14)

where µŜ and σŜ are the mean value and the standard
deviation of Ŝi over all i pixels, respectively.

3 Experiments

In order to test the validity of our hypothesis, we tested
the accuracy of NSWAM for prediction of visual saliency
using fixations from eye-tracking experiments. Eye move-
ment data (i.e. ground truth or GT) is combined across
all fixations from participants’ data, being represented
as binary maps (called fixation maps), according to the
fixation localizations in the visual space for each cor-
responding image, or as density distributions (alterna-
tively named density maps) from these fixations consid-
ering eye-movement localization probabilities (Fig. 5).
Fixation density maps are computed accordingly from
fixation maps with a Gaussian filter [44].

Saliency Metrics

Prediction scores are calculated using spatially depen-
dent metrics [14][15] which compare either fixation maps
or fixation density maps to saliency map predictions
from the models. For the case of AUC, it computes the
Area Under ROC considering true positive (TP) values
for the saliency predictions inside the locations from the
fixation maps and false positive (FP) values for saliency
outside the maps. The Normalized Scanpath Saliency
(NSS) is calculated by standarizing the saliency map
of the TP. Other metrics such as Correlation Coeffi-
cient (CC) or Similarity (SIM), compare correlations
of pixels between fixation density maps and predicted
saliency maps. Also using the fixation density maps as
GT, the Kullback-Leibler divergence (KL) measures the
statistical difference between the two maps (the density
map of GT and the saliency map), therefore the lower
score is the better.

Other metrics compare saliency maps with a base-
line set of other image fixation maps in order to prevent
behavioral tendencies such as center biases (see [4][31]),
which are not representative data for saliency predic-
tion. For instance, the shuffled AUC (sAUC) is calcu-
lated as the proportion between TP of the current GT
and penalizes for TP of GT from other images. For the

A B C

D E F G

Fig. 5: (A) Example Image. (B) Mask of the salient
region (manually defined). (C) Fixation density map
(GT, i.e. ground truth) obtained by psychophysical ex-
perimentation with observational subjects. (D,E,F,G)
Predicted saliency maps of the different color opponent
channels z(ŜL), z(Ŝrg), z(Ŝby) and the final saliency
map z(Ŝ) respectively. (E) Comparing the mask and
the fixations (both by GT and the computationally
predicted) we calculate different metrics from these
saliency maps. Results for z(Ŝ) corresponds to our
model’s saliency prediction (NSWAM). We can see that
NSWAM obtain results very similar to other methods.

case of Information Gain (InfoGain) a Gaussian base-
line of all GT (adding up fixations for all dataset to
one unique map) is substracted from the prediction for
penalizing for center biases.

3.1 Predicting human eye movements in natural
images

We have computed the saliency maps2 for images from
distinct eye-tracking datasets, corresponding to 120 real
scenes (Toronto) [11], 40 nature scenes (KTH) [39], 100
synthetic patterns (CAT2000Pattern)[7] and 230 syn-
thetic images with specific feature contrast (SID4VAM)
[4][5]. We have computed these image datasets with
deep supervised artificial saliency models that specifi-
cally compute high-level features (OpenSalicon [33][76],
DeepGazeII [41], SAM [19], SalGan [59]), and mod-
els that extract low-level features, corresponding to the
cases with artificial (SUN [90], GBVS [?]) and biologi-
cal inspiration (IKN [36], AIM [12], SSR [73], AWS [27]

2 Code for model evaluations can be downloaded in https:
//github.com/dberga/saliency

https://github.com/dberga/saliency
https://github.com/dberga/saliency
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and SIM [51]). The Saliency WAvelet Model (SWAM)
and Neurodynamic SWAM (NSWAM) corresponds to
our model excluding or including lateral interactions
explained in Section 2.2.

Our results show that our model performance is
similar to other saliency models, outperforming previ-
ous Murray’s SIM model for the cases of SID4VAM,
CAT2000 and KTH (Tables 2, 3 and 4), correspond-
ing to synthetic and nature images, as well as showing
stable metric scores for distinct contexts (similarly as
AWS and GBVS). NSWAM outperforms SWAM as well
as other biologically-inspired models (IKN, AIM, SSR
& SIM) specially for metrics that account for center bi-
ases. These center biases are qualitatively present even
for images where the salient region is conspicuous (Fig.
6, rows 8-9).

Saliency models that compute high-level visual fea-
tures are shown to perform better with real image scenes
(Table 5). However, the image contexts that lack of
high-level visual information should be more represen-
tative indicators of saliency, due to the absence of se-
mantically or contextually-relevant visual information
(nature images), or to be characterized to uniquely con-
tain low-level features (synthetic images) presenting clear
pop-out spots to direct participants fixations (which
would cause lower inter-participant differences and there-
fore lower center biases).

Although AWS and GBVS perform better on pre-
dicting fixations at distinct contexts, we remark the
plausibility of our unified design for modeling distinct
HVS’ functionality. NSWAM shows a new insight of ap-
plying a more biologically plausible computation of the
aforementioned steps. First, we transform image values
to color opponencies, found in RGC. Second, we model
LGN projections to V1 simple cells using a multiresolu-
tion wavelet transform. Third, conspicuity is computed
with the Penacchio’s dynamical model of the lateral in-
teractions between these cells. Fourth, these channels
are integrated to a unique map which will represent
SC activity. Using a neurodynamic model with firing-
rate neurons allows a more detailed understanding of
the dependency of saliency on lateral connections and
a potential further study in terms of single neuron dy-
namics using real image scenes.
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method ↑CC ↑NSS ↑SIM ↑sAUC ↑InfoGain
Humans 0.943 0.882 1.000 4.204 0.000 1.000 0.860 2.802

 H
IG

H
-L

E
V

E
L OpenSalicon 0.692 0.673 0.284 0.956 1.549 0.375 0.615 0.052

DeepGazeII 0.640 0.634 0.177 0.630 1.685 0.336 0.618 -0.150

0.727 0.673 0.305 0.967 2.610 0.388 0.600 -1.475

0.537 0.523 0.026 0.070 11.947 0.216 0.503 -14.954
SalGan 0.715 0.662 0.287 0.883 2.506 0.373 0.593 -1.350

  
  

  
 L

O
W

-L
E

V
E

L

SUN 0.542 0.532 0.080 0.333 16.408 0.165 0.530 -21.024
GBVS 0.747 0.718 0.400 1.464 1.363 0.413 0.628 0.331
SSR 0.672 0.665 0.192 0.639 1.904 0.365 0.642 -0.467
AWS 0.679 0.667 0.255 1.088 1.592 0.373 0.672 0.013
AIM 0.570 0.566 0.122 0.473 14.472 0.224 0.557 -18.182
IKN 0.686 0.678 0.283 0.878 1.748 0.380 0.608 -0.233
SIM 0.650 0.641 0.189 0.694 1.702 0.357 0.619 -0.148
SWAM (Ours) 0.639 0.618 0.177 0.682 1.799 0.340 0.601 -0.281
NSWAM (Ours) 0.614 0.610 0.136 0.529 1.686 0.335 0.622 -0.150

↑AUC
Judd

↑AUC
Borji ↓KL

SAM
RESNET

SAM
VGG

Table 2: Results for prediction metrics (columns) with
SID4VAM dataset [4] with synthetic images for differ-
ent computational models (rows). An up/down arrow
(↑ / ↓) besides a metric name means that the high-
est/lowest the value of this metric, the better the pre-
diction of the particular method. Best results for every
metric is shown in bold and underlined. We can see that
the GBVS method is usually the one obtaining the best
results. Our models (SWAM and NSWAM) are shown
in the last rows in bold and italics.
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method ↑CC ↑NSS ↑SIM ↑sAUC ↑InfoGain
Humans 0.895 0.826 0.890 2.335 0.265 0.736 0.623 0.777

 H
IG

H
-L

E
V

E
L OpenSalicon 0.651 0.621 0.220 0.603 1.526 0.357 0.555 -1.092

DeepGazeII 0.611 0.561 0.157 0.467 1.932 0.325 0.547 -1.657

0.766 0.711 0.518 1.356 1.747 0.456 0.546 -1.444

0.625 0.581 0.123 0.320 8.581 0.322 0.508 -11.262
SalGan 0.751 0.714 0.417 1.080 1.720 0.430 0.553 -1.384

  
  

  
 L

O
W

-L
E

V
E

L

SUN 0.549 0.539 0.068 0.193 5.860 0.280 0.526 -7.237
GBVS 0.759 0.717 0.399 1.056 1.113 0.430 0.561 -0.503
SSR 0.592 0.582 0.118 0.318 1.760 0.334 0.568 -1.432
AWS 0.604 0.594 0.209 0.609 1.521 0.339 0.595 -1.077
AIM 0.570 0.565 0.118 0.332 5.323 0.301 0.544 -6.490
IKN 0.701 0.692 0.323 0.828 1.267 0.382 0.562 -0.724
SIM 0.586 0.578 0.120 0.336 1.614 0.328 0.566 -1.225
SWAM (Ours) 0.617 0.602 0.180 0.503 1.484 0.335 0.571 -1.029
NSWAM (Ours) 0.588 0.584 0.139 0.383 1.471 0.326 0.571 -1.017

↑AUC
Judd

↑AUC
Borji ↓KL

SAM
RESNET

SAM
VGG

Table 3: Results for prediction metrics with CAT2000
dataset [7] training subset (Pattern) of uniquely syn-
thetic images. Best results for every metric is shown in
bold and underlined

.
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method ↑CC ↑NSS ↑SIM ↑sAUC ↑InfoGain
Humans 0.969 0.954 1.000 3.831 0.000 1.000 0.903 2.425

 H
IG

H
-L

E
V

E
L OpenSalicon 0.821 0.771 0.522 1.655 1.113 0.429 0.716 0.232

DeepGazeII 0.850 0.768 0.595 1.877 0.997 0.483 0.717 0.422

0.850 0.725 0.612 1.955 2.420 0.516 0.666 -1.555

0.569 0.543 0.055 0.158 11.972 0.214 0.506 -15.522
SalGan 0.858 0.816 0.629 1.898 0.986 0.510 0.716 0.387

  
  

  
 L

O
W

-L
E

V
E

L

SUN 0.694 0.682 0.242 0.755 1.589 0.290 0.645 -0.499
GBVS 0.817 0.803 0.487 1.431 1.168 0.397 0.632 0.077
SSR 0.765 0.756 0.364 1.084 1.355 0.340 0.700 -0.174
AWS 0.773 0.761 0.401 1.229 1.322 0.352 0.714 -0.106
AIM 0.727 0.716 0.292 0.883 1.612 0.314 0.663 -0.580
IKN 0.794 0.782 0.421 1.246 1.248 0.366 0.650 -0.024
SIM 0.754 0.744 0.317 0.951 1.486 0.302 0.705 -0.369
SWAM (Ours) 0.728 0.716 0.287 0.868 1.492 0.305 0.654 -0.378
NSWAM (Ours) 0.706 0.694 0.257 0.764 1.604 0.278 0.631 -0.552

↑AUC
Judd

↑AUC
Borji ↓KL

SAM
RESNET

SAM
VGG

Table 5: Results for prediction metrics with Toronto
dataset [12], corresponding to real (indoor and outdoor)
images. Best results for every metric is shown in bold
and underlined.
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Image GT IKN AIM SWAM SIM NSWAM
(Human Fix.) (Ours) (SWAM+CS&eCSF) (Ours)

Fig. 6: For images showing distinct contexts (first column), we show the eye-tracking psychophysical experimen-
tation (GT, column 2)
and several examples of saliency maps from Itti et al. (IKN), Bruce & Tsotsos (AIM), Saliency WAvelet Model (SWAM), Murray

et al.’s model (SIM) and our Neurodynamic model (columns 5 to 7, respectively).

3.2 Psychophysical study with low-level visual features

In the previous section we studied the accuracy of the
computational architecture to predict eye movements
for natural images. But one of the open questions is how
every low-level visual feature, e.g. contrast, size, orien-
tation, etc, contributes to conspicuity of feature maps.
Acknowledging that the HVS process visual informa-

tion according to the visual context, human perfor-
mance on detecting a salient object on a scene may also
vary according to the visual properties of such object.
With a synthetic image dataset [4][5] a specific analysis
of how each individual feature influences saliency can
be done. In this study we will show how fixation data
is predicted when varying feature contrast, concretely
on parametrizing Set Size, and Brightness, Color, Size
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method ↑CC ↑NSS ↑SIM ↑sAUC ↑InfoGain
Humans 0.902 0.850 1.000 2.038 0.000 1.000 0.822 1.415

 H
IG

H
-L

E
V

E
L OpenSalicon 0.634 0.611 0.300 0.452 0.780 0.541 0.556 -0.278

DeepGazeII 0.648 0.618 0.362 0.578 0.678 0.559 0.588 -0.104

0.660 0.599 0.371 0.570 3.125 0.508 0.548 -3.643

0.525 0.525 0.058 0.074 8.800 0.354 0.501 -11.836
SalGan 0.655 0.626 0.391 0.581 1.666 0.544 0.560 -1.554

  
  

  
 L

O
W

-L
E

V
E

L

SUN 0.535 0.532 0.083 0.132 0.804 0.512 0.526 -0.303
GBVS 0.649 0.638 0.351 0.505 0.711 0.563 0.533 -0.177
SSR 0.575 0.573 0.172 0.270 0.778 0.525 0.557 -0.260
AWS 0.587 0.583 0.210 0.329 0.851 0.511 0.581 -0.362
AIM 0.572 0.568 0.179 0.274 0.918 0.523 0.552 -0.509
IKN 0.617 0.611 0.274 0.403 0.714 0.547 0.551 -0.173
SIM 0.587 0.584 0.201 0.311 0.745 0.531 0.573 -0.212
SWAM (Ours) 0.601 0.596 0.231 0.346 0.749 0.529 0.574 -0.221
NSWAM (Ours) 0.598 0.593 0.230 0.345 0.711 0.536 0.565 -0.168

↑AUC
Judd

↑AUC
Borji ↓KL

SAM
RESNET

SAM
VGG

Table 4: Results for prediction metrics with KTH
dataset [39] subset of uniquely nature images. Best re-
sults for every metric is shown in bold and underlined

and Orientation contrast between a target salient ob-
ject Fig. 5B and the rest of distractors (feature singleton
search).

In order to quantitatively estimate the accuracy of
the computational model predictions, we used the shuf-
fled AUC (sAUC) metric. It computes the area under
ROC considering TP as fixations inside the saliency
map, similarly to the AUC metric. In contrast to AUC,
sAUC does not evaluate FP at random areas of the
image but instead uses fixations inside other random
images from the same dataset over several trials (10 by
default). The sAUC metric gives a more accurate eval-
uation of predicted maps with respect human fixations
but penalizing for higher model center biases (which
are or can be present for distinct images in the ground
truth).

3.2.1 Brightness differences

Differences in brightness are major factors for making
an object to attract attention. That is, a bright ob-
ject is less salient as luminance of other surround ob-
jects increase (Fig. 7). Conversely, a dark target in a
bright background will be more salient as surround dis-
tractors have higher luminance [61][56]. NSWAM pro-
cesses luminance signals separately from chromatic ones
using the L channel (feature conspicuity from a dis-
tinctively bright object upon a dark background will
be processed similarly to a dark object upon a bright
background). We compare sAUC metrics for both con-
ditions and NSWAM is shown to acquire similar perfor-
mance to SIM and SWAM, with higher sAUC than IKN
Fig. 8,A-B, specially for stimulus with higher contrasts
(∆LD,T > .25). Results on sAUC for NSWAM corre-
lates with brightness contrast, for both cases of bright
(ρ = .941, p = 1.6 × 10−3) and dark (ρ = .986, p =
4.7× 10−5) background.

A

B

0 0.08 0.17 0.25 0.33 0.41 0.5

Fig. 7: Synthetic stimuli representing distinct bright-
ness contrasts (HSL luminance differences) from target
and distractors (∆LD,T ) with (A) bright background
(LT = 0.5, LB = 1, LD = 0.5..1) and (B) dark back-
ground (LT = 0.5, LB = 0, LD = 0..0.5). Rows below
A,B are NSWAM predictions.

A

B

Fig. 8: Results of sAUC upon brightness contrast,
∆LD,T ) with (A) bright and (B) dark background.
We can see that our models SWAM, SIM and NSWAM
are usually among the best methods.

3.2.2 Color differences

Color changes spatial and temporal behavior of eye
movements, influencing conspicuity of specific objects
on a scene [23][3]. Similarly to previous section, here
we vary the chromaticity of the background, which can
alter search efficiency [52][20]. In this section, we used
stimuli similar to Rosenholtz’s experimentation [69],
with red and blue singletons for achromatic or satu-
rated backgrounds Fig. 9. Here, chromatic contrast is
defined as the HSL saturation differences (∆SD,T ) be-
tween a salient target and the rest of distractors.

Similarly to Fig. 7, NSWAM has similar sAUC to
SIM for all background conditions (Fig. 10,A-D). Achro-
matic backgrounds contribute to salient object detec-
tion by increasing sAUC of the pop-out singleton. That
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A

B

C

D

0 0.121 0.246 0.368 0.528 0.728 1

Fig. 9: Chromatic stimuli upon saturation contrast
(∆SD,T ) between a red target (HT = 0◦) and a (A)
grey background or a (B) saturated red background.
Other cases (C,D) present a blue target (HT = 240◦)
with same background properties to (A) and (B) re-
spectively. Rows below A-D correspond to NSWAM’s
predicted saliency maps.

effect is present for visual search results and our saliency
prediction. Results comparing target search fixation maps
and sAUC show distinct performance upon saturation
contrast depending on background conditions. Cases
where stimulus background is achromatic, distinct from
the feature singleton, have higher correlation than with
saturated background. For the cases of grey (achro-
matic) background, there is a correlation between sAUC
results for our model and∆SD,T with a red (ρ = .864, p =
1.2 × 10−2) and blue (ρ = .944, p = 1.4 × 10−3) target
singleton. However, when background color is saturated
red, while targets are either red (ρ = .106, p = .82) or
blue (ρ = .483, p = .27), then saturation contrast do
not correlate with sAUC.

A

B

C

D

Fig. 10: Results of the sAUC metric upon saturation
contrast (∆SD,T ) on a red singleton with (A) achro-
matic or (B) saturated red background, or either a blue
singleton with (C) achromatic or (D) saturated red
background. We can see that our models SWAM, SIM
and NSWAM are usually among the best methods.

3.2.3 Size contrast

Feature distinctiveness using feature singletons have been
tested by varying set size, object orientation and/or
color. Here, we test how object size affects its saliency,
previously tested with visual search experimentation
[29][75][66]. A set of 34 symmetric objects (with a dark
circle shape) are distributed randomly around the im-
age Fig. 11, preserving equal diameter. One of the cir-
cles is defined with dissimilar size, either with higher or
lower diameter with respect the rest (which are defined
with a diameter of 2.5 deg). Performance for NSWAM’s
sAUC improves with size dissimilarity. When the di-
ameter of the dissimilar circle is higher, sAUC is higher
for that particular region. For the highest scaling fac-
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tor (when the dissimilar object is bigger), NSWAM has
higher sAUC compared to previous biologically-inspired
models (Fig. 12). In addition, there is a significant cor-
relation between circle diameter and our model’s results
of sAUC (ρ = .955, p = 8.3× 10−4).

1.25 1.67 2.08 2.5 3.34 4.17 5

Fig. 11: Examples of circle distractors with equal diam-
eter (�D = 2.5 deg), containing a salient one with dis-
similar size (�T = 1.25..5 deg) with respect the rest. In
lower row there are NSWAM’s predicted saliency maps.

Fig. 12: Results of the sAUC metric for Size Contrast
stimuli. We can see that our models SWAM, SIM and
NSWAM are usually among the best methods.

3.2.4 Orientation contrast

Using visual stimuli defined by oriented bars, varying
angle of objects is found to increase search efficiency
when angle contrast is increased [22][55][54]. A total of
34 bars were oriented horizontally and randomly dis-
placed around the scene (Fig. 13). The dissimilar ob-
ject for this case is a bar oriented with an angle contrast
with respect the rest of bars of ∆Φ(1, 0)=[0, 10, 20, 30,
42, 56, 90]◦. Although results of sAUC show that NSWAM
overperforms SIM’s saliency maps, IKN is best for cap-
turing orientation distinctiveness (Fig. 14). In NSWAM,
3 types of orientation selective cells are modeled, cor-
responding to the orientation for the wavelet coeffi-
cients (θ = h, v, d). A higher number of orientation
selective cells would provide a higher accuracy, spe-
cially for diagonal angles (here we only provide θ = d

for 45/135◦ combined). By modeling orientation selec-
tive cells with 2D Gabor and Log-Gabor transforms
[43][25][27] it would be possible to correctly build an

hypercolumnar organization with a higher number of
angle sensitivities.

0 10 20 30 42 56 90

Fig. 13: An oriented bar with an orientation contrast of
∆Φ = 0..90◦ with respect to a set of bars oriented at
ΦD = 0◦. In lower row there are NSWAM’s predicted
saliency maps.

We have to acknowledge that for this experimen-
tation, distractors have been set with same horizon-
tal configuration. Specific connectivity interactions [2]
between orientation dissimilarities needs to be defined
in order to reproduce orientation-dependent visual il-
lusions and conspicuity under heterogeneous, nonlinear
and categorical angle configurations (seen to be per-
formed by V2 cells [1]), which are previously known to
distinctively affect visual attention [55][54][26].

Fig. 14: Results for sAUC metric for Orientation Con-
trast stimuli.

3.2.5 Visual Asymmetries

Search asymmetries appear when searching target of
type “a” is found efficiently among distractors of type
“b”, but not in the opposite case (i.e. searching for ”b”
among distractors of type “a”) [77][86]. Previous studies
pointed out this concept when searching a circle crossed
by a vertical bar among plain circles and searching a
plain circle among circles crossed by a vertical bar. Us-
ing these two configurations, we filled a grid of distrac-
tors according to specific scales (Fig. 15). Scale values
(s = [1.25, 1.67, 2.08, 2.5, 3.33, 4.17, 5] deg) change the
amount of items, with arrays of 5×7, 6×8, 8×10, 10×13,
15 × 20 and 20 × 26 objects. In Fig. 16 our model is
not only more efficient than other biologically-inspired
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models upon dissimilar sized objects but also on de-
tecting conspicuous objects at distinct scales, account-
ing for lower or larger amount of distractors. sAUC
for NSWAM showed to correlate for a conspicuous cir-
cle crossed by a vertical bar among circles (ρ = .83,
p = 2.1× 10−2) but not for a conspicuous circle among
circles crossed by a vertical bar (ρ = .15, p = .75).

A

B

20× 26 15× 20 12× 16 10× 13 8× 10 6× 8 5× 7

Fig. 15: Stimuli with distinct set sizes corresponding
to search asymmetries present on a (A) salient circle
crossed by a vertical bar among other circles and a (B)
salient circle among other circles crossed by a vertical
bar. Rows below A,B correspond to NSWAM’s pre-
dicted saliency maps.

A

B

Fig. 16: Results of sAUC upon varying scale and set
size of (A) an array of circles and a salient one crossed
by a vertical bar and (B) an array of circles crossed by
a bar and a salient circle.

3.3 Ablation Study of Feature Integration

In this section, we include some brief results testing
how distinct fusion methods can efficiently integrate

information to the unique saliency map (mainly what
we consider as the SC function). As mentioned in the
first step of Section 2.3, our original model (SWAM
and NSWAM) uses the default inverse equation (Eq.
6) which can be used for obtaining the original image
(if we do not sum the conspicuity maps and normalize
as the other steps). For this, we tested distinct mecha-
nisms of Feature Integration, alternative to Eq. 12:

Ŝio(max) = max
s,θ

(Ŝisoθ) + cn. (15)

Ŝio(argmax) = argmax
s,θ

(Ŝisoθ) + cn (16)

Where Ŝio(max) calculates the pointwise maximum
of the retinotopic positions ”i” in each scale ”s” and ori-
entation ”θ”, separately for each channel ”o” (rg, by, L).
The case of Ŝio(argmax) considers the ”winner” as the
whole channel map Ŝio that contains the neuron with
highest activity for all multiscale dimensions (s, θ). We
have computed the eye fixation prediction results for
the all datasets in Figure 6, and results show that per-
forming the inverse transform (sum) of all maps we get
best scores. In addition, we added qualitative results for
Fig. 17, with 3 examples of real, nature and synthetic
images (being the inverse more similar overall to the
GT).
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Dataset Integration ↑CC ↑NSS ↑SIM ↑sAUC
TORONTO inverse 0.706 0.694 0.257 0.764 1.604 0.278 0.631

max 0.672 0.661 0.199 0.603 1.645 0.272 0.624
argmax 0.664 0.649 0.178 0.548 1.714 0.281 0.618

KTH inverse 0.598 0.593 0.230 0.345 0.711 0.536 0.565
max 0.553 0.549 0.101 0.160 0.794 0.507 0.552
argmax 0.557 0.553 0.138 0.204 0.785 0.517 0.537

CAT2000-Patterninverse 0.588 0.584 0.139 0.383 1.471 0.326 0.571
max 0.521 0.517 0.016 0.074 1.599 0.301 0.552
argmax 0.572 0.564 0.091 0.247 1.509 0.320 0.546

SID4VAM inverse 0.614 0.610 0.136 0.529 1.686 0.335 0.622
max 0.575 0.570 0.078 0.309 1.767 0.320 0.586
argmax 0.626 0.609 0.183 0.528 1.704 0.338 0.575

↑AUC
Judd

↑AUC
Borji ↓KL

Table 6: Results for prediction metrics for testing dis-
tinct baselines (inverse/sum, max and argmax), corre-
sponding to mechanisms explained in Eqs. 12, 15 and
16.

4 Conclusions

In this work, we hypothesize that low-level saliency is
likely to be associated by the computations of V1. Con-
cretely, we hypothesized that a neurodynamic model of
V1’s lateral interactions, processing each channel sep-
arately and acquiring firing rate dynamics from real
image simulations, is able to simultaneously reproduce
several visual processes, including low-level visual saliency.
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”Image”

”GT”

”inverse”

”max”

”argmax”

Fig. 17: Qualitative examples for distinct Feature In-
tegration techniques (rows 3-5), with real, nature and
synthetic images (columns 1-3).

Here we have to pinpoint three statements in agreement
with our findings:

– First, our model of the lateral interactions in V1
show a performance similar to other state-of-the-art
models on human eye fixations. In that sense, our
model acquires similar results in comparison with
saliency prediction baselines, specifically in metrics
that penalize for center biases (sAUC and InfoGain).
Additionally, our model outperforms other biologically-
inspired saliency models in natural and synthetic
images.

– Second, our model is consistent with human psy-
chophysical measurements (tested for Visual Asym-
metries, Brightness, Color, Size and Orientation con-
trast). Adding up to the stated hypothesis, our model
presents highest performance at highest contrast from
feature singleton stimuli (where salient objects pop-
out easily).

– Three, we remark the model plausibility by mim-
icking HVS physiology on its processing steps and
being able to reproduce other effects such as Bright-
ness Induction [62], Color Induction [16] and Visual
Discomfort [64], efficiently working without apply-
ing any type of training or optimization and keeping
the same parametrization.

Other biologically plausible alternatives that predict
attention using neurodynamic modeling [45][21][17] do
not provide a unified model of the visual cortex able

to reproduce these distinct tasks simultaneously, and
specifically, using real static or dynamic images as in-
put. We suggest that V1 computations work as a com-
mon substrate for several tasks, simultaneously.

Future work of interest would consist on predicting
scan-paths for real scenes in order to provide gaze-wise
temporal detail for saliency prediction and saccade pro-
gramming. To do so, a foveation mechanism (such as a
retinal [81] or a cortical magnification transformation
towards V1 retinotopy [72]) would be needed in order to
process each view of the scene distinctively. Other appli-
cations of the same model would be to generate saliency
maps with dynamic scenes or videos (mainly used for
visual tracking and salient object detection in several
real world applications), integrating other features such
as flicker or motion. In order to provide top-down com-
putations for representing feature relevance apart from
saliency, we could feed our model with a selective mech-
anism [78][32] for specific low-level feature maps, en-
abling the possibility to perform visual search tasks.
As shown in Section 3.2.4, saliency computations could
be more accurately represented with a higher number
of 2D Gabor/Log-Gabor filters [43][25][27]. Considering
the dependence of saliency to stimulus contrast, the us-
age of contrast-adaptive mechanisms [65] in the Feature
Integration step (2.3) could dramatically improve re-
sults, specially for psychophysical pattern images. Fur-
ther modeling would include intra and inter-cortical in-
teractions between simple and complex cells in a multi-
layer implementation of V1. Such implementation could
adequate more detailed and efficient computations of
V1, projecting the excitatory recurrent dynamics from
V1 (specifically from Layer 5 complex cells, also named
“Meynert” cells) to SC [48][53]. Although latest hy-
potheses about the SC have suggested that saliency
is processed in the SC and not by the visual cortex,
corresponding to a distinct, feature-agnostic saliency
map [79][84], we claim the importance of the mecha-
nisms of V1 to be responsible for computing distinctive-
ness between the stated low-level features, which might
conjunctively contribute to the generation of saliency
[46][47][87]. However, modeling the computations of the
pathways from the RGC to the SC would be of inter-
est for a more integrated and complete model of eye-
movement prediction, seeing the roles of the distinct
projections to the SC and their computations, alterna-
tively involved in the control of eye movements.
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