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Abstract

van Rooyen et al. [2015] introduced a notion of convex loss functions being ro-
bust to random classification noise, and established that the “unhinged” loss func-
tion is robust in this sense. In this note we study the accuracy of binary classifiers
obtained by minimizing the unhinged loss, and observe that even for simple linearly
separable data distributions, minimizing the unhinged loss may only yield a binary
classifier with accuracy no better than random guessing.

1 Introduction

As van Rooyen et al. noted in the first sentence of the abstract of van Rooyen et al.
[2015], “Convex potential minimisation is the de facto approach to binary classifica-
tion.” Given the ubiquity of this approach, it is natural to study its abilities and
limitations in the presence of noise, and indeed this is the subject of many works [see
Zhang, 2004, Bartlett et al., 2006, Long and Servedio, 2010, Manwani and Sastry, 2013,
Natarajan et al., 2013, van Rooyen et al., 2015, Ghosh et al., 2017]).

The aim of this note is to clarify the connection between minimizing a convex poten-
tial function which is “robust to classification noise” in the sense of van Rooyen et al.
[2015], and learning (i.e. performing accurate classification).

Background. Motivated by the observation that the popular AdaBoost algorithm
(which works by minimizing the (convex) exponential potential function) can have
empirically poor classification accuracy when run on noisy data [Dietterich, 2000,
Freund and Schapire, 1996, Maclin and Opitz, 1997], Long and Servedio [2010] stud-
ied the performance of classification algorithms which work by minimizing a convex
potential function in settings where linearly separable data is contaminated with ran-
dom classification noise (RCN). The main result of Long and Servedio [2010] is a proof
that for a certain simple learning problem corresponding to a “clean” data distribu-
tion D1 that is linearly separable with a margin, for any “convex potential function”
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φ, minimizing φ over all linear combinations of base features in the presence of ran-
dom classification noise only yields a binary classifier with an error rate of 1/2 under
the clean distribution D1. (Here a “convex potential function” is a convex function
φ : R → R satisfying certain mild conditions which we detail in Definition 1.) This is
in sharp contrast with the fact that, in the noise-free setting of a data distribution that
is linearly separable with a margin, driving the potential to zero leads to a perfectly
accurate binary classifier.

In an effort to address the discouraging negative result of Long and Servedio [2010],
van Rooyen et al. [2015] considered a weakening of the [Long and Servedio, 2010] condi-
tions for a convex potential function. In particular, they allow such functions φ to take
negative values (which is disallowed by the definition of Long and Servedio). We refer
to a function satisfying the condition of van Rooyen et al. [2015] as a “relaxed convex
potential function.”

The main result of van Rooyen et al. [2015] is that they propose a certain relaxed
convex potential function, which we denote φ⋆, and prove that it is “RCN-robust”.1

We give a formal definition of RCN-robustness in Section 2, but intuitively it means
that a minimizer of this potential function (minimizing over all linear combinations of
base features) under random classification noise performs no worse than a minimizer
obtained with no random classification noise. van Rooyen et al. [2015] also define a
notion of “strong RCN-robustness” and show that their φ⋆ is the unique relaxed convex
potential function which satisfies strong RCN-robustness.

This note. The purpose of the present note is to discuss the accuracy of the classifier
obtained by minimizing the relaxed convex potential function φ⋆ of van Rooyen et al.
[2015]. Our main observation is that, for a simple learning problem corresponding to a
certain “clean” data distribution D2 that is linearly separable with a margin, minimizing
φ⋆ over all bounded-norm linear combinations of base features even when there is no
random classification noise only yields a binary classifier with an error rate of 1/2.
Since, as shown by van Rooyen et al. [2015], φ⋆ is the unique strong RCN-robust relaxed
convex potential function, this means that minimizing any strong RCN-robust relaxed
convex potential function in this noise-free scenario may only yield a binary classifier
with an error rate of 1/2, which can be obtained through random guessing.

Our observation is consistent with the result of van Rooyen et al. [2015] that φ⋆ is
RCN-robust, since, informally, that condition only states that “you don’t do any worse
when there is RCN than when there is no RCN.” Our example demonstrates even when
there is no noise, the accuracy of the binary classifier obtained by minimizing φ⋆ may
be only 1/2, and of course the accuracy is no worse than this when there actually is
noise.

1van Rooyen et al. [2015] uses the term “SLN-robust”, where the acronym stands for Symmetric
Label Noise.
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Potential function Reference Satisfies Definition 1?

Exponential:
φ(z) = e−z [Freund and Schapire, 1997] Yes

Mixed linear/exponential:

φ(z) =

{

1− z if z ≤ 0

e−z if z > 0
[Domingo and Watanabe,
2000]

Yes

Logistic:
φ(z) = ln(1 + e−2z) [Friedman et al., 1998] Yes

Hinge:
φ(z) = max{0, 1 − z} [Gentile and Warmuth, 1998] No

Unhinged:
φ(z) = 1− z [van Rooyen et al., 2015] No

Table 1: Some commonly used potential functions.

2 Preliminaries

2.1 Background: the negative result of Long and Servedio [2010] for
convex potential functions

Convex potential functions. We recall the following definition which is central to
the work of Long and Servedio [2010]:

Definition 1 ([Long and Servedio, 2010], Definition 1). A function φ : R → R is a
convex potential function if it satisfies the following:

1. φ ∈ C1 (i.e. φ is differentiable and φ′ is continuous) and φ is convex and nonin-
creasing; and

2. φ′(0) < 0 and limx→∞ φ(x) = 0 (hence φ is everywhere non-negative).

A number of potential functions used in the literature fit this definition, in-
cluding the exponential potential function used by AdaBoost [Freund and Schapire,
1997], the mixed linear/exponential potential function used by MadaBoost
[Domingo and Watanabe, 2000], and the logistic function used by LogitBoost
[Friedman et al., 1998]; see Table 1.

Linearly separable learning problems. One of the simplest models for binary-
labeled data over Rd is that of data which is linearly separable with a margin. A “clean”
probability distribution D over Rd × {−1, 1} is linearly separable with margin γ > 0 if
there is a target weight vector w = (w1, . . . , wd) ∈ R

d such that

Pr
(x,y)∼D

[

y(w · x)

|w1|+ · · ·+ |wd|
< γ

]

= 0.
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A very standard learning approach for such a setting is to choose a hypothesis weight
vector v = (v1, . . . , vd) ∈ R

d with the aim of minimizing the “global” potential function

Pφ,D(v) := E
(x,y)∼D

[φ(y(v · x))] . (1)

(Of course, given a finite sample of draws from D, this is typically done by min-
imizing the corresponding expectation over the sample.) It is well known that if
D is linearly separable with margin γ > 0, then for a range of different choices
of the convex potential function φ (including the AdaBoost, MadaBoost and Logit-
Boost potential functions described above), greedy iterative algorithms that perform
coordinatewise gradient descent to minimize Pφ,D will drive the misclassification er-
ror Pr(x,y)∼D[y 6= sign(v · x)] to zero. Indeed, the AdaBoost [Freund and Schapire,
1997], MadaBoost [Domingo and Watanabe, 2000] and LogitBoost [Friedman et al.,
1998] boosting algorithms correspond precisely to greedy coordinatewise gradient de-
scent procedures of this sort; see the work of Mason et al. [1999] for details.

Learning problems with random classification noise. LetD be a data distribution
over Rd×{−1, 1} as described above. The η-RCN corrupted version of D is the following
distribution Dη over Rd × {−1, 1}: a draw from Dη is obtained by drawing (x,y) ∼ D
and flipping the label y with probability η.

The negative result of Long and Servedio [2010]. The main result of
Long and Servedio [2010] is that there is no convex potential function such that mini-
mizing φ on the η-RCN corrupted distribution Dη will succeed in achieving nontrivial
classification accuracy:

Theorem 2. Fix any noise rate 0 < η < 1/2 and any convex potential function φ. There
is a distribution D over R2 × {−1, 1} (in fact the distribution D is supported on three
points in the unit disc) and a margin parameter γ > 0 such that (a) D is linearly sepa-
rable with margin γ, but (b) any weight vector v which minimizes E(x,y)∼Dη

[φ(y(v · x))]

has Pr(x,y)∼D[y 6= sign(v · x)] = 1/2.

(See Appendix A for a proof that for any convex potential function φ, the minimizer
analyzed in Theorem 2 exists.)

2.2 Relaxed convex potential functions: a new hope?

Motivated by the goal of circumventing the negative result of Theorem 2,
van Rooyen et al. [2015] consider a relaxed form of Definition 1:

Definition 3. A function φ : R→ R is a relaxed convex potential function if it satisfies
the following:

1. φ ∈ C1 (i.e. φ is differentiable and φ′ is continuous) and φ is convex and nonin-
creasing; and

2. φ′(0) < 0.
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The only difference between Definition 1 and Definition 3 is that the latter does
not require limx→∞ φ(x) = 0; a relaxed convex loss function may take (arbitrarily large
magnitude) negative values. van Rooyen et al. [2015] exploit this flexibility by proposing
the following simple potential function, which they call the “unhinged loss”:

φ∗(z) = 1− z.

It is trivial to verify that φ⋆ satisfies Definition 3 and hence is a valid relaxed convex
potential function. (Note, also, that if the simpler φ(z) = −z is used instead, all
gradients and minima are unaffected.) We note that the unhinged loss is a member of
the class of symmetric loss functions, which satisfy φ(z) + φ(−z) =constant; such loss
functions have been studied by a number of authors, see e.g. Charoenphakdee et al.
[2019a], Ghosh et al. [2015].

RCN-robustness. van Rooyen et al. [2015] analyze the relaxed convex potential func-
tion φ⋆ through the lens of a new notion which we will call RCN-robustness. Their def-
inition (Definition 1 of van Rooyen et al. [2015]) applies to a general pair (ℓ,F) where
ℓ is a loss function and F is a class which may consist of any collection of functions
mapping a domain X to R.

Informally, a pair (φ,F) is RCN-robust if minimizing φ over F on noise-free data
gives the same binary classification performance as minimizing φ over F on RCN-
contaminated data. More precisely, we have the following:

Definition 4. Let F be a set of real-valued functions over Rd and let φ be a potential
function. The pair (φ,F) is is said to be RCN-robust if the following holds: Let D be any
distribution over Rd×{−1, 1} and let 0 < η < 1/2 be any noise rate. If f is a minimizer
of E(x,y)∼D [φ(y(f(x)))] over f ∈ F and g is the minimizer of E(x,y)∼Dη

[φ(y(g(x)))]
over g ∈ F , then

Pr
(x,y)∼D

[y 6= sign(f(x))] = Pr
(x,y)∼D

[y 6= sign(g(x))]. (2)

van Rooyen et al. [2015] specialize Definition 4 to the function class Flin of all linear
functions x 7→ v · x from R

d → R (see Section 3.2 of their paper). However, a problem
with Definition 4 for this function class is that E(x,y)∼D [φ(y(v · x))] may not have
a minimum. This is not merely a technicality. In fact, for standard loss functions
such as the logistic loss or the exponential loss, for any linearly separable distribution
D, E(x,y)∼D [φ(y(v · x))] does not have a minimum, informally, because scaling up v
increases all of the margins, which decreases all of the losses.2 van Rooyen et al. [2015]
interpret Theorem 2 as saying that for d ≥ 2, the pair (φ,Flin) cannot be RCN-robust
for any convex potential function φ (see Proposition 1 of Section 3.2 of their paper),
but the fact that the minimizer typically doesn’t exist in the absence of noise interferes
with this interpretation. The unhinged loss also cannot be minimized over Flin, since

2Implicit bias research analyzes the effect of the algorithm that drives E(x,y)∼D [φ(y(v · x))] to zero
on the classification behavior of the limiting classifier. Different algorithms lead to markedly different
limiting classifiers [Telgarsky, 2013, Soudry et al., 2018, Ji and Telgarsky, 2019] .
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by scaling up the weight vector of any linear separator, the unhinged loss can achieve
an arbitrarily large negative value.

van Rooyen et al. [2015] also consider the class Flin,r of all linear functions whose
weight vector has length at most r. They prove the following:

Theorem 5 ([van Rooyen et al., 2015], Section 5.1). For all d and all r > 0, (φ⋆,Flin,r)
is RCN-robust.

van Rooyen et al. [2015] further establish a number of additional properties about
the unhinged loss φ⋆; most of these will not concern us, but one simple property, which
we now explain, is relevant to our discussion in Section 3. As above let v ∈ R

d be
the minimizer of E(x,y)∼D [φ(y(v · x))] subject to ||v|| ≤ r and let v′ ∈ Rd be the min-
imizer of E(x,y)∼Dη

[φ(y(v′ · x))] subject to ||v′|| ≤ r. van Rooyen et al. [2015] make
the straightforward but useful observation that v is the vector corresponding to a
“nearest centroid classifier” (see Servedio [2002], [Tibshirani et al., 2002], p. 181 of
[Manning et al., 2008], and Section 5.1 of Shawe-Taylor and Cristianini [2004]), i.e. we
have

v = α E
(x,y)∼D

[yx] (3)

for a suitable rescaling factor α, and furthermore that v = v′ (this holds since the values
of E(x,y)∼D [φ⋆(y(w · x))] and E(x,y)∼Dη

[φ⋆(y(w · x))] are linearly related with a slope

of 1− 2η > 0).

3 A separable learning problem where minimizing the un-
hinged loss on clean data yields a poor classifier

In this section we observe that while the unhinged loss φ⋆ is strongly robust, there are
simple linearly separable data distributions for which minimizing φ⋆ over all functions
in Flin,r even in the absence of random classification noise only yields a binary classifier
with an error rate of 1/2. So while (2) is satisfied, it holds because both error rates are
equal to 1/2.

We illustrate this with the linearly separable learning scenario which is depicted
in Figure 1. The distribution D over R2 × {−1, 1} is as follows: given a parameter
0 < γ < 0.0901,

• D puts weight 1/4 on the labeled example x(1) := (1, 0), y(1) := 1;

• D puts weight 1/4 on the labeled example x(2) := (γ,
√

1− γ2), y(2) := 1;

• D puts weight 1/2 on the labeled example x(3) := (γ,−2γ), y(3) := 1.

It is clear that D is linearly separable with margin γ. By (3), the vector in R2 which
minimizes E(x,y)∼D [φ(y(v · x))] points in the direction of

v = (v1, v2) =

(

1

4
+

3γ

4
,

√

1− γ2

4
− γ

)

.
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v (1,0)

(γ,
√

1− γ2)

(γ,−2γ)

Figure 1: The distribution D over R2 × {−1, 1}. All examples have label +1; the two
examples with weight 1/4 are depicted with small filled circles and the example with
weight 1/2 is depicted with a larger unfilled circle.

For 0 < γ < 0.0901 we have v · x(3) < 0 and hence sign(v · x(3)) 6= y(3), so the LHS of
(2) is 1/2. Since v′ = v the RHS of (2) is also 1/2.

4 Implicit bias

This section includes a couple of observations about the implicit bias of algorithms that
iteratively reduce the unhinged loss. Analogous results have been obtained for other
loss functions [Telgarsky, 2013, Soudry et al., 2018, Ji and Telgarsky, 2019].

4.1 Gradient descent

Recall that the unhinged loss function is defined to be φ∗(z) = 1−z. If D is uniform over
(x1, y1), ..., (xn, yn) ∈ R

d × {−1, 1}, then for any v ∈ Rd the gradient of the unhinged
loss at v is −

∑n
i=1 yixi (note that this does not depend on v). Thus, if the unhinged

loss is minimized by gradient descent starting with an initial solution of 0, all iterates
are multiples of

∑n
i=1 yixi. If the initial solution is v0, then, after T updates with step

size η, the weight vector is v0 + ηT
∑n

i=1 yixi. As T goes to infinity, the angle between
this weight vector and

∑n
i=1 yixi goes to zero.

4.2 Coordinate descent

As mentioned earlier, popular boosting algorithms can be viewed as coordinate descent
on a convex potential function, which works by repeatedly finding the coordinate axis
with the steepest descent direction and making an update in that direction. Informally,
the unhinged loss rewards increasing the margin yv · x of a correctly classified example
(x, y) as much as increasing the negative margin of an incorrectly classified example, but
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increasing the margin of a correctly classified example does not make progress towards
overall classification accuracy. (In contrast, the tendency of the exponential loss to
place more importance on misclassified examples is key to AdaBoost’s ability to boost.)
If we denote the components of xi by xi,1, ..., xi,d, since the gradient of the unhinged
loss is the same for all v, when it is minimized by coordinate descent starting from the
zero weight vector all of its iterates will only have nonzero components on members
of argmaxj

∑

i yixij . (If there is not a tie for the best weak learner, this will be a
single component.) From a boosting point of view, a boosting algorithm based on the
unhinged loss allows a weak learner to keep returning the same (weak) hypothesis.

5 Discussion

While the unhinged loss is noise-tolerant in a sense, minimizing it can fail to find an
accurate classifier on data that is linearly separable with a large margin. On the other
hand, minimizing the unhinged loss has been found to yield reasonable accuracy on
natural data [see Patrini et al., 2017, Charoenphakdee et al., 2019b]. This is not en-
tirely unexpected, since, when learning linear models, minimizing the unhinged loss is
closely related to performing Naive Bayes classification [Domingos and Pazzani, 1997,
Ng and Jordan, 2001], using a spherical Gaussian to model the class-conditional distri-
butions.

Given our results, one natural goal for future work is to study whether there are
conditions on potential functions which achieve an attractive tradeoff between noise-
robustness and usefulness for learning (in the sense that minimizing the potential
function yields an accurate classifier). Tools developed for studying Fisher consis-
tency [Fisher, 1922], consistent loss functions [Zhang, 2004], classification calibration
[Bartlett et al., 2006] and H-consistency [Long and Servedio, 2013] may be useful for
this. In particular, it would be interesting to investigate symmetric potential functions
(see e.g. Charoenphakdee et al. [2019a], Ghosh et al. [2015]) and the multiclass setting
(see e.g. [Ghosh et al., 2017, Zhang and Sabuncu, 2018]) in light of this question.

A A minimizer exists for noisy data

In this appendix we show that for all convex potential functions φ, all finite-covariance
distributions D over Rd, and all η ∈ (0, 1/2), the function Pφ,Dη

has a minimum. (Recall

from (1) that Pφ,Dη
(v) := E(x,y)∼Dη

[φ(y(v · x))] .)
We recall some useful background.

Definition 6. For any a, the set {x : f(x) ≤ a} is a level set for f : Rd → R.

Definition 7. A nonzero vector u ∈ Rd is a direction of recession for a function f if,
for all nonempty level sets L of f , there exists some x0 such that x0 + λu ∈ L for all
λ ≥ 0. (Informally, all non-empty level sets of f extend infinitely in the u direction.)

Lemma 8 ([Rockafellar, 2015], Theorem 27.1). The set of minima of a continuous
convex function f is nonempty and bounded iff f does not have any direction of recession.
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Definition 9. Say that a probability distribution D over Rd ×{−1, 1} has finite covari-
ance if, for all unit length u ∈ Rd, E(x,y)∼D[(u · x)2] exists.

Now we are ready to analyze Pφ,Dη
.

Proposition 10. For any convex potential function φ, for any η ∈ (0, 1/2), for any
finite-covariance distribution D over Rd, Pφ,Dη

has a minimum.

Proof. First, we may assume without loss of generality that, for all unit length u ∈ Rd,

E
(x,y)∼D

[|u · x|] > 0 (4)

since otherwise u · x = 0 almost surely, and Pφ,Dη
(v) is unaffected by projecting v onto

the subspace of Rd orthogonal to u.
Assume for contradiction that some u is a direction of recession for Pφ,Dη

. For any

x0 ∈ R
d and λ ≥ 0, we have

Pφ,Dη
(x0 + λu)

= E
(x,y)∼Dη

[φ(y((x0 + λu) · x))] (def. of Pφ,Dη
)

= E
(x,y)∼D

[ηφ(−y((x0 + λu) · x)) + (1− η)φ(y((x0 + λu) · x))] (def. of Dη)

≥ E
(x,y)∼D

[η max
ỹ∈{−1,1}

φ(ỹ((x0 + λu) · x))] (since η < 1/2 and φ ≥ 0)

= E
(x,y)∼D

[ηφ(−|(x0 + λu) · x|)] (since φ is nonincreasing)

≥ η E
(x,y)∼D

[φ(0) − φ′(0) · |(x0 + λu) · x|] (since φ is convex and φ′(0) < 0)

≥ η

(

φ(0)− φ′(0)λ E
(x,y)∼D

[|u · x|] + φ′(0) E
(x,y)

[|x0 · x|]

)

.

(triangle inequality, φ′(0) < 0)

Thus limλ→∞ Pφ,Dη
(x0+λu) = ∞, which contradicts the assumption that u is a direction

of recession for Pφ,Dη
.
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