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Abstract

We describe a stochastic, dynamical system capable of inference and learning in a probabilistic

latent variable model. The most challenging problem in such models – sampling the posterior

distribution over latent variables – is proposed to be solved by harnessing natural sources of

stochasticity inherent in electronic and neural systems. We demonstrate this idea for a sparse

coding model by deriving a continuous-time equation for inferring its latent variables via Langevin

dynamics. The model parameters are learned by simultaneously evolving according to another
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continuous-time equation, thus bypassing the need for digital accumulators or a global clock.

Moreover we show that Langevin dynamics lead to an efficient procedure for sampling from the

posterior distribution in the ‘L0 sparse’ regime, where latent variables are encouraged to be set

to zero as opposed to having a small L1 norm. This allows the model to properly incorporate the

notion of sparsity rather than having to resort to a relaxed version of sparsity to make optimization

tractable. Simulations of the proposed dynamical system on both synthetic and natural image

datasets demonstrate that the model is capable of probabilistically correct inference, enabling

learning of the dictionary as well as parameters of the prior.

1 Introduction

Latent variable models such as sparse coding (Olshausen & Field, 1997) and Boltzmann machines

(Hinton & Sejnowski, 1983; Ackley et al., 1985) have been shown to be powerful and flexible

tools in machine learning. However, training such models properly requires sampling from prob-

ability distributions over the latent variables. Typically, instead of sampling, a MAP (maximum

a-posteriori) estimate or other heuristics are used since most sampling algorithms are laboriously

slow and have convergence guarantees only under limited conditions. The time cost in large part

comes from simulating stochastic dynamics of state transitions on deterministic, discrete-logic based

hardware, requiring random number generation and fine sampling intervals to avoid discretization

errors. These limitations have hindered the ability of latent variables models to learn complex

structure in data, since adapting the parameters in a more complex, structured model, such as a

hierarchical probabilistic model (Lee & Mumford, 2003), necessitates sampling under the posterior

distribution.
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This paper proposes a solution to this problem based on utilizing the intrinsic sources of stochas-

ticity that exist in any physical system. Our central thesis is that rather than forcing a deterministic,

discrete-logic based system to simulate stochastic dynamics on continuous variables, a more sensible

and efficient solution is to exploit physics to directly implement stochastic, analog computation. In

the same way that the analog VLSI retina implements filtering via lateral inhibition in a resistive

grid (Mead & Mahowald, 1988) – resulting in orders of magnitude greater computational efficiency

than digital simulation – we envision the development of analog circuits that perform the necessary

computations and stochastic dynamics for probabilistic inference and learning in complex latent

variable models. A recent successful example of this approach is the work of (Borders et al.,

2019), who used the intrinsic probabilistic behavior of nanoscale magnetic tunneling junctions

to sample from the binary state variables of a Boltzmann machine. Another example is the use

of stochastic logic circuits to perform fast Bayesian inference for perception and reasoning tasks

(V. Mansinghka & Jonas, 2014; V. K. Mansinghka et al., 2008). Additionally, in neuroscience it

has been hypothesized that seemingly random fluctuations in neural activity can be interpreted as a

process for sampling from posterior distributions (Hoyer & Hyvärinen, 2003; Berkes et al., 2011;

Orbán et al., 2016; Echeveste et al., 2020). Our goal here is to demonstrate, through derivation and

simulation of a dynamical system of equations, the viability of such an approach for probabilistic

inference and learning in a latent variable model. In an appendix, we point the way to a potential

circuit implementation.

Beyond the difficulties associated with sampling, learning the parameters of a probabilistic

model requires averaging the samples or other quantities computed from them. One direct way of

doing this is to accumulate these quantities followed by a parameter update (Fig. 1b). However, this

requires a digital accumulator, and the interfacing between analog and digital hardware is often a

3



bottleneck for sampling. For example, in recent work by (Roques-Carmes et al., 2019), the limiting

component for a photonic sampler was identified as the photodetector. Here we propose a novel,

fully analog framework in which the update of parameters occurs simultaneously alongside the

sampling of latent variables through continuous time dynamics (Fig. 1c). Rather than waiting for

the collection of samples for each discrete parameter update, the effective accumulation of samples

is achieved by simply having a longer time constant.

To study this analog learning and inference framework we apply it to the sparse coding model, a

simple yet expressive probabilistic model with an explicit prior over the latent variables (Tibshirani,

1996; Hastie et al., 2009). The sparse coding model is of interest in both neuroscience and

engineering as it provides an account for the neural representation of natural images in visual cortex

(Olshausen & Field, 1997) and it has proven useful in computer vision (Wright et al., 2010; Wang

et al., 2015) and signal compression (Donoho, 2006). However current implementations of sparse

coding are slow due to the optimization required to infer the latent variables for each data sample,

and learning is inefficient since only a single such point estimate of the latent variables is used to

make a dictionary update (Fig. 1a). In Section 2 we derive a a fully continuous-time sparse coding

model by making use of fast Langevin dynamics to sample latent variables and slower dynamics to

co-evolve the dictionary based on these samples, as in Figure 1c.

Sampling with Langevin dynamics is well studied both in theory (Bussi & Parrinello, 2007)

and in application to Bayesian learning (Welling & Teh, 2011). However, to our knowledge this

is the first fully analog approach to simultaneous inference and learning for sparse coding. Prior

sampling-based approaches utilized a mixture-of-Gaussians model and employed discrete Gibbs

sampling over the mixture variables (Olshausen & Millman, 2000) or a method for preselecting

parts of the space to sample via MCMC (Shelton et al., 2011).
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Figure 1: Illustration of three approaches to learning latent variable models. a) In the standard

approach, data x is presented at regular intervals (upper plot, black trace). A MAP estimate of

latent variables s is calculated via gradient descent or other iterative algorithm (green trace). The

resulting estimate is used for a discrete update to the dictionary A (lower plot). The blue vertical

bars illustrate the computational inefficiency where only a single point estimate of the coefficients is

used to make a dictionary update. b) In a sampling-based approach, for each data interval multiple

samples from the posterior are averaged for a dictionary update. The colored regions in the top

panel show that many samples are collected to approximate the posterior distribution. However, the

discrete dictionary updates (at corresponding vertical bands) make a fully analog implementation

difficult. c) Rather than waiting for the accumulation of samples, the dictionary A is updated

simultaneously alongside the latent variables s. The slow timescale of the dictionary compared to

the latent variables τA � τs allows for effective averaging. (Learning rates shown are purely for

illustrative purposes.)

An additional advantage of Langevin dynamics is that it leads us to a simple procedure for

sampling from the posterior when using an ‘L0 sparse’ prior that explicitly encourages latent

variables to be set to zero rather than simply taking on small values (also known as a ‘spike and

slab’ prior). Normally such priors are avoided as finding the optimal sparse representation of a

signal requires solving a combinatorial search problem. Instead, sparsity is enforced by imposing

an L1 cost function on the latent variables, which is used as a proxy for L0 since it allows for

convex optimization. However, in probabilistic terms, the L1 cost corresponds to a Laplacian prior

which only weakly captures the notion of sparsity. We show in Section 3 how Langevin sparse
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coding releases us from this restriction. By simple thresholding of a continuous variable undergoing

Langevin dynamics, we obtain samples from the posterior using an ‘L0 sparse’ prior.

In Section 4.1, we demonstrate the efficacy of this model for correct inference and learning

using a synthetic dataset. Furthermore in Section 4.2 we demonstrate that this approach allows

for learning the size of the dictionary, which was attempted in previous work using variational

approximation of the posterior (Berkes et al., 2008). Then in Section 4.3, we fit our L0-sparse

coding model to the Van Hateren dataset of natural images. In addition to learning the dictionary

elements, we provide an estimate for the sparsity of natural images.

To summarize, the main contributions presented are:

1. A theoretical formulation of simultaneous dynamics for sampling from latent variables and

learning model parameters.

2. Langevin Sparse Coding (LSC), a continuous-time, probabilistic model for simultaneous

inference and learning in a sparse coding model.

3. An efficient procedure for sampling from the posterior with an ‘L0 sparse’ prior.

4. Learning not only the dictionary for representing natural images but also other parameters of

the model such as the sparsity level and size of the dictionary.

2 Langevin Sparse Coding

Sparse coding is a simple yet efficient algorithm for learning structure in data by finding a ‘dictionary’

to describe patterns contained in the data. While it is formulated as a probabilistic latent-variable

model, it is often approximated in practice by finding point estimates for the latent variables rather
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than sampling from their posterior distribution. As a result, it is difficult to make rigorous claims

about the relation between the learned dictionary and the statistics of the data, and it is problematic

to adapt other parameters of the model such as the degree of sparsity or overcompleteness of the

dictionary. More broadly, it has hindered the advancement of sparse coding into a more powerful

generative modeling framework – for example, by incorporating hierarchical structure – since there

is no principled way to learn the parameters of such models without sampling from the posterior.

In this section, we introduce Langevin Sparse Coding (LSC), which efficiently samples the

latent-variables of a sparse coding model and allows simultaneous, continuous updates of dictionary

elements along with the latent variables. This last property is important in making the LSC

framework amenable for fully analog implementation. We begin with a review of the canonical

approach of Discrete Sparse Coding (DSC). Next, we introduce simultaneous-update sparse coding

(SSC) in which dictionary updates are made continuously and concurrent with the dynamics of

the coefficients. Finally, we present LSC where we demonstrate that the inherent noise to analog

systems can be used to perform sampling.

2.1 Probabilistic Model

Sparse coding assumes that the data, x ∈ RD, are described as a linear combination of elements

from a dictionary A ∈ RD×K with additive Gaussian noise n ∈ RD:

x = A s + n (1)

where ni
iid∼ N(0, σ2). The coefficients s ∈ RK are latent variables that are assumed to be sparsely

distributed, so that any given datapoint should be well approximated using a small number of

columns of the dictionary. Sparsity is enforced by the choice of prior, typically chosen to be
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factorial:

ps(s) = ΠK
i=1ps(si) (2)

ps(si) ∝ exp(−λC(si)) (3)

where the form of C is chosen so that ps(si) is peaked at si = 0 and with heavy tails away from

zero. (Note that non-factorial priors are also possible, see e.g., (Garrigues & Olshausen, 2010).)

The posterior over the latent variables in this model may be written in exponential form,

p(s |x, A) ∝ exp(−E(A, s,x)), (4)

with the energy function E(A, s,x) given by

E(A, s,x) =
||x− A s||22

2σ2
+ λ

∑
i

C(si) . (5)

Thus inferring a good (highly probable) interpretation of a given data sample, x, corresponds to

finding a set of latent variables, s, with low energy, E.

The goal of learning in this model is to find a dictionary, A, that provides the best fit to the data.

This is accomplished by solving for the maximum likelihood estimator (MLE) of the dictionary

A∗ = arg max
A
〈log p(x|A)〉x∼D (6)

where 〈·〉x∼D denotes expectation over the dataset D (e.g. natural images). The MLE can be found

through gradient ascent, where the gradient is given by

∇A〈log p(x|A)〉x∼D =
〈
〈−∇AE(A, s,x)〉s|x

〉
x∼D

(7)

=
〈〈

(x− A s) sT
〉
s|x

〉
x∼D

(8)

where 〈·〉s|x denotes expectation with respect to the posterior distribution p(s |x, A) (see (Lewicki &

Olshausen, 1999) for a derivation). Thus, adapting the dictionary to the data requires, for each data
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sample x, sampling from the posterior over s and computing the correlation between the residual,

x− A s, and s. The dictionary A would then be incrementally updated according to this correlation

(eq. 8). Equilibrium is reached when
〈
〈x̂(s)sT 〉s|x

〉
x∼D =

〈
x〈sT 〉s|x

〉
x∼D, with x̂(s) = A s.

Beyond learning the dictionary, one can adapt other parameters of the model such as σ and λ

also via gradient descent. The gradients for these parameters are as follows:

∇σ〈log p(x|A)〉x∼D ∝
1

D

〈〈
|x− A s|2

〉
s|x

〉
x∼D
− σ2 (9)

∇λ〈log p(x|A)〉x∼D ∝
1

K

〈〈
K∑
i

C(si)

〉
s|x

〉
x∼D

− 〈C(s)〉ps(s) (10)

Adapting these parameters similarly requires computing averages under the posterior distribution

for each data sample. Note that when the sparse coding model objective is formulated purely in

terms of its energy function (eq. 5) – which is typically the case – then there is no principled away

to adapt these parameters to the data. The probabilistic framework makes it possible, so long as it is

tractable to sample from the posterior distribution.

2.2 Discrete Sparse Coding

In practice, the expectation over the data in (8) is approximated via stochastic gradient descent

(SGD). For a batch of data of size N , {xn}n=1...N , the update rule is

∆A = η
1

N

N∑
n=1

〈
(xn − A sn) sTn

〉
sn|xn

(11)

where η specifies the learning rate. However, the expectation over sn is usually considered intractable

and so in practice it is approximated by the maximum a posteriori (MAP) estimator of sn

s∗n = arg min
sn

E(A, sn,xn). (12)
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Solving via gradient descent yields the iterative update equation

∆sn ∝ −∇sE(A, sn,xn) (13)

= − 1

σ2
AT (xn − Asn)− λC ′(sn) (14)

where C ′ is the derivative of cost function C above (5) and operates elementwise on sn. For each

xn, equation (14) is iteratively evaluated until it converges to a solution. In order to make this a

convex optimization, the cost function C is typically taken to be the L1 norm, corresponding to a

Laplacian prior ps(s). Gradient descent does not generally constitute the most efficient method for

finding the MAP estimate, but we use it here as a step towards the development of LSC below.

The price we pay for approximating the expectation 〈 · 〉sn|xn in equation 11 with a single MAP

estimate is that it now becomes necessary to normalize the dictionary elements A = (A1, . . . ,AK)

after each update via

Ai ←
Ai

||Ai||2
≡ Âi. (15)

This is necessary because the MAP estimator s∗ will consistently underestimate s such that it is

biased toward zero (due to the sparse prior). As a result, each Ai will grow without bound unless

normalized. (As we shall see below, this no longer becomes necessary when we sample from the

posterior.)

Both updates ∆A and ∆sn can be expressed more efficiently through gradient descent on a

batch energy function:

E(A, S,X) ≡
N∑
n=1

E(A, sn,xn) (16)

=
||AS −X||22,2

2σ2
+ λ||S||1,1. (17)
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We have defined batch matrices S ∈ RK×N and X ∈ RD×N . Above, || · ||p,q refer to the L(p,q)

matrix norm, defined by

||A||p,q =

∑
j

(∑
i

|aij|p
) q

p

 1
q

(18)

With the batch energy defined, the update rules are

S ← S − ηS∇SE(A, S,X) (19)

A← A− ηA∇AE(A, S,X) (20)

A← Norm(A) (21)

where the Norm() operation corresponds to the normalization of equation 15.

To coordinate the updates of S and A, a nested loop must be used (Alg. 1). The inner loop

approximates the MAP estimator S∗ while the outer loop finds the MLE of A.

Algorithm 1 Algorithm for discrete sparse coding (DSC). Note line 6 was included purely to

emphasize S∗ as a MAP estimate.
1: for k ← 1 to NA do

2: X ← SAMPLEBATCH()

3: for n← 1 to Ns do

4: S ← S − ηS · ∇SE(A, S,X)

5: end for

6: S∗ ← S

7: A← A− ηA · ∇AE(A, S∗, X)

8: A← Norm(A)

9: end for
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A closely related cousin of DSC, the Locally Competitive Algorithm (LCA) (Rozell et al.,

2008), computes the MAP estimate by following dynamics that descend the energy E in a more

efficient manner. Instead of doing direct gradient-descent (eq. 14), s is taken to be a monotonically

increasing, nonlinear function of another variable u that follows the gradient with respect to s:

∆un ∝ −∇sE(A, sn,xn) (22)

sn = g(un) (23)

where g operates elementwise on u and is determined by the choice of cost function C. For an L1

cost, g is a signed Relu function with threshold λ:

g(ui) =


0 |ui| < λ

sign(ui)(|ui| − λ) |ui| ≥ u0

(24)

Other than this difference in the dynamics for MAP inference, which falls purely within the inner

loop (line 4) of Algorithm 1, both DSC and LCA update the dictionary based on a single MAP

estimate and thus suffer the same inefficiency as depicted in Figure 1a.

2.3 Simultaneous (Update) Sparse Coding - SSC

We note that the DSC algorithm above requires the alternating update of the dictionary elements and

coefficients. Typically, this necessitates a digital clock for synchronization and is a major challenge

towards fully analog implementation. In this subsection, we present an asychronous framework –

Simultaneous-Update Sparse Coding (SSC) – where both the dictionary and coefficients are updated

simultaneously.

Rather than updating the dictionary A at the end of the loop when S has converged to the MAP

estimator S∗, SSC updates A continuously and concurrent with S. In search of dynamics amenable
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to analog computation, we take the step sizes to be infinitesimally small, and arrive at the following

set of differential equations.

τSṠ = −∇SE(A, S,X(t)) (25)

τAȦ = −∇AE(A, S,X(t)) (26)

while still enforcing the normalization constraint on A (eq. 15). Here, we take X(t) to be updated

synchronously at regular intervals of τX . At each update, a new batch of samples is drawn.

To compare SSC and DSC, consider the following simulation for SSC using the Euler Method.

Algorithm 2 Euler Method simulation of SSC with stepsize of ∆t and regular interval input of X
1: for t← 1 to tmax/∆t do

2: dS ← ∂E
∂S

(A, S,X(t))

3: dA← ∂E
∂A

(A, S,X(t))

4: S ← S − ∆t
τS
· dS

5: A← A− ∆t
τA
· dA

6: A← Norm(A)

7: end for

Comparing Algorithm 1 and Algorithm 2, the timescales τ can be related to the learning rates,

η, and the number of iterations NS . We stress an important difference between the two is that SSC

is fully described through a set of coupled differential equations and requires no control structure

(i.e. a nested for loop). This is especially desirable for analog implementation as a global clock is

no longer necessary. Furthermore, there is no longer need for synchronous, regular input of the data

X . While not explored here, dynamic input such as videos can be naturally processed without any
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frame-by-frame synchronization.

2.4 Sampling via Langevin Dynamics

Consider a time-varying system described by coordinates u(t) with energy E(u) . It can be modeled

by Langevin dynamics according to the following stochastic differential equation:

u̇ = −∇E(u) +
√

2Tξ(t), (27)

where ξ(t) is independent Gaussian white noise with 〈ξ(t)ξ(t′)T 〉 = Iδ(t − t′). Under these

dynamics the distribution of p(u(t)), over time, will asymptotically converge to

p(∞)(u) ∝ e−E(u)/T (28)

This relation suggests that we change the dynamics of SSC (25) by injecting noise to Ṡ:

τSṠ = −∇SE(A, S,X) +
√

2TτSξ(t) (29)

Note that under the scaling of t→ t/τS , we have 〈ξ(t/τS)ξ(t′/τS)T 〉 = Iδ(τ−1
S (t− t′)) = τSIδ(t−

t′) = 〈√τSξ(t)
√
τSξ(t

′)T 〉. This necessitates the somewhat unexpected scaling factor of τS .

Following the above dynamics, for fixed A and input X , S will sample from the posterior

distribution,

pS|X(S(t)|X,A) ∝ e−E(A,S,X)/T . (30)

This is a remarkable result: By simply injecting noise into the continuous-time dynamics normally

used for MAP inference in sparse coding, we obtain a dynamical system that naturally samples

from the desired posterior distribution (eq. 4). With T = 0, we recover the SSC dynamics above

(eqs. 25-26) where S converges to the MAP estimate.
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A useful property of (29) is that the equilibrium distribution is independent of the time constant

τS . By taking τA � τS , the assumption that A is fixed with respect to the dynamics of S can be

upheld. Conversely, because S evolves much faster thanA, the dynamics ofA are well approximated

by

τAȦ = −〈∇AE(A, S,X)〉S|A,X . (31)

This is the exact mean gradient that we originally sought to calculate (eq. 7).

In summary, we have derived a new method for inference and learning in a sparse coding model,

Langevin Sparse Coding (LSC), as specified by the continuous, coupled dynamics of equations 29

and 31, that achieves the desired property illustrated in Figure 1c. Importantly, our aim doing this is

not simply to produce another MCMC algorithm, but rather to move toward a physical realization

that naturally implements these dynamics (an example of which is described in Appendix C).

3 ‘L0 Sparse’ Prior

Since the goal of sparse coding is to represent each data item using a small number of non-zero

latent variables, the prior should ideally have a sharp peak at zero in order to encourage many

latent variables to be set to zero. In this case, the cost term C within the energy function (5) would

resemble an L0 cost that rewards coefficients for being strictly zero (as opposed to being non-zero

and merely small in amplitude). However such cost functions are not used in practice because

they are not amenable to gradient-based or convex optimization methods for computing the MAP

estimate. Instead, the L1 cost is usually adopted as a proxy for L0 as it has been shown to yield

equivalent solutions under certain conditions (Tropp, 2006). However from the perspective of a

probabilistic model, the L1 cost corresponds to a Laplacian prior that only weakly expresses the
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notion of sparsity. In fact, the Laplacian is the maximum entropy distribution for a real-valued

variable of a given mean absolute value. Here we show that the use of ‘L0 Sparse’ priors becomes

tractable in our sampling-based setting, and we develop a modified LSC formulation that enables

efficient sampling from the posterior.

Consider the following prior consisting of a mixture of a delta-function and Laplacian distribu-

tion (also known as a ‘spike and slab’ prior (Mitchell & Beauchamp, 1988)):

p0(s) = π λe−λ s + (1− π)δ(s). (32)

With π as the probability of being ‘active’, 1− π quantifies the L0 sparsity, or how likely s is to be

zero. When s is in the active state it is exponentially distributed with mean 1/λ (see right panel of

figure 2). Note that here and in what follows we will assume the latent variables to be non-negative

as opposed to allowing them to go positive or negative as is typically the case in sparse coding

models.

To develop an efficient sampling strategy, we first define auxiliary variables u such that each ui

independently follows an exponential distribution:

pU(ui) = λ e−λui . (33)

We then take the latent variables s to be given by si = f(ui) where f is a biased ReLU function:

si = f(ui) =


0 ui < u0

ui − u0 ui ≥ u0

(34)

for some positive u0. We can show that si is then distributed according to the prior p0(s) by
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Figure 2: ‘L0 Sparse’ prior. Left panel shows the exponential distribution p(u). With the change of

variable s = f(u) via the application of a soft-thresholding function, we obtain the desired L0-like

distribution p0(s) shown in the right panel (shown for the region s ≥ 0). The threshold parameter

u0 is chosen so that the probability weight of the delta function, 1− π, is equal to the shaded region

in the left panel. These plots show the resulting distributions for λ = 1, π = 0.5.
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marginalizing the joint distribution p(s, u) over u as follows:

pS(s) =

∫ ∞
−∞

p(s|u) pU(u)du

=

∫ u0

0

δ(s) pU(u)du+

∫ ∞
u0

δ(s− (u− u0)) pU(u)du

= δ(s)

∫ u0

0

pU(u)du+ pU(s+ u0)

= δ(s) [1− e−λu0 ] + λe−λs e−λu0

= [1− π] δ(s) + π λe−λs ≡ p0(s)

(35)

with π = e−λu0 . The relation between p(u), u0 and p(s) is illustrated in Figure 2.

To derive the Langevin dynamics for sampling from the posterior using the L0-sparse prior

above, we first re-write the energy function in terms of u:

E(A,u,x) =
1

2

||x− Af(|u|)||22
σ2

+ λ||u||1. (36)

We then let u follow Langevin dynamics governed by this energy function. Note that we can

allow the ui to move freely between positive and negative values and then use only their absolute

value in evaluating the energy. This essentially reflects the dynamics about the origin which avoids

the problems associated with having an infinite energy barrier at ui = 0. Letting |u| denote the

elementwise absolute value of u, the distribution of |u| will converge to

p(|u| |x) ∝ exp
(
−||Af(|u|)− x||22/σ2 − λ||u||1

)
(37)

∝ p(x|f(|u|)) pU(|u|) (38)

= p(x|s) p0(s) (39)

Thus we obtain a second remarkable result: By following Langevin dynamics on the energy in (36)

with s = f(|u|), we obtain samples from the posterior p(s|x) given by combining the likelihood
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with the L0-sparse prior p0(s). This is significant, because a MAP-estimate based approach would

be impossible with such a prior since the posterior will always have its maximum at s = 0 regardless

of the likelihood.

Applying the LSC equations (29, 31) using the energy in equation (36), we obtain the following

coupled stochastic differential equations for inference and learning in L0-LSC:

τuu̇ = −AT (A s− x)Θ(|u| − u0)− λ sign(u) +
√

2ξ(t) (40)

s = f(|u|) (41)

τAȦ = −(A s− x)sT . (42)

where Θ(u) is the Heaviside function and ξ(t) is independent Gaussian white noise. Importantly,

we can also learn u0, and therefore the activation probability, π, via the dynamics

u̇0 ∝

〈〈
− ∂E
∂u0

〉
s|x

〉
X∼D

(43)

=
〈〈
AT (As− x) · 1(s > 0)

〉
s|x

〉
x∼D

(44)

4 Results

To study the efficacy of L0-LSC, we first apply it to an artificial dataset consisting of images of

bars in different orientations. This provides a useful test case for evaluation since the causes that

generate the data are known. We then turn to a dataset of natural scenes where the ground truth is

unknown.
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A0 A1 A2 A3 A4 A5 A6 A7

A8 A9 A10 A11 A12 A13 A14 A15

(a) Bars Dictionary

(b) Bars Sample: λ = 1, π = 0.3, σ = 0

(c) Bars Sample: λ = 1, π = 0.3, σ = 0.5

Figure 3: The synthetic Bars dataset used as a toy problem. a) The dictionary is the collection of

vertical and horizontal lines. b) An example of a sample drawn from the dataset. c) Another sample

with noise introduced.

4.1 Inference on Bars Dataset

For the bars dataset, samples are generated from a dictionary A consisting of vertical and horizontal

lines (Fig. 3a). We compare results obtained on this dataset against DSC as well as another method

for training sparse coding, the locally competitive algorithm (LCA) (Rozell et al., 2008).

We synthetically generate data as a linear combination of the dictionary with additive Gaussian

noise (Eq. 1) where, ni ∼ N(0, σ2) and the coefficients are distributed according to L0 zero-inflated

exponential prior(Beckett et al., 2014) (Eq. 32). A sample drawn from this model without noise and

with noise is shown in Fig. 3b and 3c.
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When trained on this dataset, all three algorithms were successful at learning the correct

dictionary. However, L0-LSC can better capture the posterior distribution than either DSC or LCA

due to the fact that it directly enforces L0 sparsity. In both DSC and LCA, the sparsity is controlled

by adjusting the parameter λ. However, the relationship between λ and L0 sparsity (Fig. 4a) is

rather indirect and no analytic expression is known. On the other hand, in L0-LSC a specific level

of L0-sparsity can be directly enforced by setting u0 = −λ−1 log(π).
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Figure 4: a) LCA and DSC are trained on data generated with activation probability π = 0.3 (blue)

and π = 0.1 (red). For both, a sweep in sparsity parameter λ is made. While a correspondence

between λ and π exists, there is no analytic expression to automatically adapt these parameters

to the data. Even with data of known sparsity, it is impossible to select the correct parameter λ

to use. b) With L0-sparse LSC, the activation probability π is directly related to the parameter

u0 = −λ−1 log π and can be learned directly without a parameter search.

Moreover, the activation probability π can be learned by LSC without any guesswork or

parameter search (Eq. 43). Specifically, simultaneous to the evolution of A,u, the threshold

parameter u0 is treated as a variable evolves through gradient descent, u̇0 ∝ ∇u0E.

Figure 4b shows the convergence of model parameter π to match (approximately) the actual
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level of sparsity in the data. To further characterize the coefficients, the distributions of the non-

negative coefficients of the three algorithms were also plotted in Fig. 5. Using a fixed dictionary,

the algorithm was run to infer either the MAP estimate (DSC and LCA) or to sample from the

posterior (L0-LSC). This was done with a correctly learned dictionary (Fig. 3a) as well as a random

dictionary (i.e. uncorrelated gaussian noise). In addition to having the correct L0-sparsity, L0-LSC

correctly samples the posterior, which when averaged over the data matches the desired prior (Fig.

5c), as expected from theory. This is in contrast to non-stochastic algorithms where the inferred

latent variable distribution often often exhibits a more pronounced peak at zero compared to the

prior. A more quantitative analysis is provided in Appendix B.

4.2 Learning the Dictionary Norm

For traditional sparse coding models such as DSC and LCA which update the dictionary based

on a single MAP estimate for each data item, it is necessary to normalize the dictionary elements

after each update. However if the update is based on samples from the posterior, as specified in

equation (8), then this is no longer necessary. As a result, when using LSC, there is no need for

normalization. Instead, the dictionary element norms ||Ai|| will automatically grow or shrink as

needed to optimize the model log-likelihood.

The adaptive norm property can also be used to automatically select for the size of the dictionary.

For data of dimensionD, we consider a dictionary of sizeK = Ω×D, to have an (over)completeness

of Ω. A 2× overcomplete model was trained using the LSC algorithm using a fixed activation

probability π, without normalizing the dictionary A. The resulting learned dictionary is shown in

Fig. 6b. In previous work by (Berkes et al., 2008), Annealed Importance Sampling (AIS) (Neal,
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Figure 5: The distribution of non-zero coefficients of each of the three algorithms. The dotted red

line shows the prior of coefficients used in generating the dataset. The left panel of each subfigure

shows the empirical distribution when each algorithm is run with random dictionaries. The right

panel shows the the distribution with learned dictionaries. Only L0-LSC, with the correctly trained

dictionary achieves the distribution matching the prior.

2001) was used to approximate the marginal likelihood in order to find the optimal dictionary

elements. However, L0-LSC, without additional procedures, can be used to effectively do the same

through attenuation of unnecessary dictionary elements. The learned dictionary contains exactly the

bars dictionary and the extra elements decay to nearly zero, as shown in Figure 6a.

When both ||Ai|| and π are being learned, a more stable solution is to have duplicated dictionary

elements with a reduced activity. This is shown in Figure 7a with a duplicated dictionary but halved

activity (Fig. 7b).
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Figure 6: Learning the dictionary size. a) Dictionary norms bifurcate, with half decaying to nearly

zero. b) The remaining elements contain exactly one copy of the dictionary elements used to

generate the data.

(a) Learned dictionary with duplicated elements

(b) Activation probability π learned by twice overcom-

plete model
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(c) Evolution of dictionary norms

Figure 7: LSC is used to learn both the dictionary size and activation probability of the same

2× overcomplete model a) The learned dictionary now contains duplicated elements. b) But the

activation probability π is half of the actual value used in generating the data.
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Figure 8: With activity fixed (π = 0.5), only a fraction of the total dictionary elements have

significant norm, the rest vanish. The dictionary elements are sorted by their respective norms.

4.3 Natural Image Patches

We ran the L0-LSC algorithm on a dataset of 8× 8 image patches of whitened natural scenes from

the Van Hateren dataset(Hateren & Schaaf, 1998; Olshausen, 2013). First, the model activity was

fixed at π = 0.5 and we used L0-LSC to learn a 4× overcomplete dictionary (K = 4× 64 = 256).

We can see in Figure 8 that a little more than half of the dictionary was utilized. The unused

dictionary elements had a comparatively insignificant norm. In contrast to prior efforts to determine

the optimal number of dictionary elements based on approximating the log-likelihood (Berkes et al.,

2008), this result emerges directly from dictionary learning in Langevin sparse coding.

Then, unfixing π, we allow the activity to be learned. Repeating the experiment at different levels

of overcompleteness Ω, a correspondence between the activity and overcompleteness is plotted in

Figure 9a. This relationship happens to be very well modeled by π ∝ Ω−1. As a consequence,

the expected number of active dictionary elements, π × K = π × Ω × D stays nearly constant

irrespective of the overcompleteness Ω.

26



1 2 3 4 5 6
Overcompleteness ( )

0.05

0.10

0.15

0.20

0.25

0.30
M

ea
n 

Ac
tv

ity
 (

)
18.5/  Fit

(a) Mean activity at different levels of overcompleteness

1 2 3 4 5 6
Overcompleteness

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

M
ea

n
N
um

.o
fA

ct
iv
e
Co

effi
ci
en

ts Mean Num. Active 18.5

(b) Mean number of active coefficients

Figure 9: a) Using LSC to learn dictionaries for natural scenes at different levels of completeness Ω,

the relationship π ∝ 1/Ω is obtained. b) This implies that the mean number of dictionary elements

used to code each image is constant irrespective of the total number of dictionary elements learned.

Error bars on both plots denote the 10% - 90% range

5 Discussion

Our main contribution in this paper is to show that by using Langevin dynamics to sample from

posterior distributions, we obtain a set of continuous-time equations over analog state variables

that enable probabilistically correct inference and learning in a latent variable model. While the

use of Langevin dynamics for sampling in probabilistic models per se is not new (Cheng et al.,

2018), our emphasis here is to show how these dynamics play out in the case of the sparse coding

model, and to point the way toward their efficient implementation in analog, electronic circuits that

harness natural sources of stochasticity, for which we provide an example in Appendix C. The basic

operations involve computing inner products, thresholding, lateral inhibition, and thresholding, in

addition to injection of a Gaussian noise source. The first four of of these are shared with LCA, for
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which there already exist examples of both efficient analog implementations (Shapero et al., 2012;

Sheridan et al., 2017), and digital implementation using spiking neurons (Davies et al., 2021). In the

latter case LCA was shown to achieve the highest efficiency gains. The only additional component

required for implementing LSC or L0-LSC beyond these existing implementations is the injection

of a Gaussian noise source. This would seem quite natural since noise is intrinsic to any physical

system, however shaping the noise to be Gaussian and i.i.d., and whether this is strictly required,

remain important issues to resolve.

Finding efficient implementations is key to making probabilistic models tractable and scalable

to practical problems of interest such as image analysis. Indeed, latent variable models such as

Boltzmann machines are often considered intractable due to the inner loop required to sample

over hidden unit states conditioned on input data. For this reason, practitioners often turn to

approximations such as restricted Boltzmann machines (RBM’s) (Hinton & Salakhutdinov, 2006)

or variational inference (VAE’s) (Kingma & Welling, 2013) so as to make the problem tractable by

eliminating “explaining away” – i.e., dependencies among hidden units conditioned on the data.

But for most problems of interest in perception, explaining away is key (Olshausen, 2014). So

doing away with explaining away in the interest of making the problem tractable simply dodges

the very problem that needs to be solved. Here we show that there is alternative approach that

tackles sampling from posteriors head on and makes it tractable via dynamics that could be naturally

realized in a physical system.

An important next step will be to improve the efficiency of sampling by developing richer

dynamical models. It is well known that the first-order Langevin dynamics we have utilized here

can be slow to mix and reach equilibrium (Hennequin et al., 2014). Adding higher-order terms

to the dynamics such as momentum or even third-order terms has been shown to dramatically
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improve mixing time (Mou et al., 2021), and it has even been proposed that the balanced excitatory

and inhibitory recurrent networks in cortex could serve such a function (Hennequin et al., 2014;

Echeveste et al., 2020). The model we have proposed here could be modified along similar lines,

and indeed this is a topic of ongoing work. Yet another route is to harness recent improvements in

Hamiltonian Monte Carlo (Sohl-Dickstein et al., 2014).

With an efficient sampler in place, it becomes possible to adapt parameters of a sparse coding

model beyond the dictionary, such as the level of sparsity or overcompleteness, which has not

been possible in previous MAP-estimate based approaches. Furthermore, through application of

a threshold function to the stochastic dynamics, we demonstrate that inference with an L0-sparse

prior – which has been avoided in most approaches by using L1 as a proxy – can be readily

computed and implemented (Sec. 3). As shown in Section 4.1, L0-LSC is better at sampling from

the posterior distribution as well as capable of learning the activation probability π of the latent

variables s. In applying the model to natural images (Sec. 4.3), we found that the mean number of

dictionary elements used to encode an image is mostly invariant to the total dictionary size. This

runs counter to previous results (Olshausen, 2013) showing that, on average, the number of elements

required for reconstructing a given image decreases with larger dictionaries in which the elements

take on more specific and diverse shapes. This discrepancy could possibly be reconciled by the

fact that the previous work utilized MAP-estimates rather than sampling, and so the learning was

biased accordingly. Nonetheless, it is still intriguing that the mean number of dictionary elements

in our case was near constant, suggesting that overcompleteness is an under-utilized degree of

freedom. However, another likely culprit is the assumption of a factorial prior, and it may be

that an overcomplete dictionary loses its explanatory power under such a prior. Thus, it will be

important to consider group sparse coding or other approaches for modeling statistical dependencies
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among latent variables (Garrigues & Olshausen, 2010, 2007) in order to fully realize the gains from

overcompleteness.

Finally, another contribution of this work is to show how both learning and inference can be

mapped to simultaneous dynamics at two different time scales. An underlying assumption in all

implementations of probabilistic models on digital systems is the notion of a global clock. But the

global clock is an impossibility for neural systems of any significant complexity. Our work presents

an alternative approach to computing sparse coding which allows for simultaneous updates of both

latent variables and model parameters such as the dictionary elements. This type of concurrent

dynamics removes the need of any such global clock.

More generally, the mixed time-scale analog sampling framework on which LSC is based opens

the way to learning richer generative models that capture dependencies among latent variables via

horizontal connections (Garrigues & Olshausen, 2007) or via top-down priors (Boutin et al., 2020).

And this goes beyond just sparse coding. In the future we hope to develop analogous procedures

for learning other latent variable models such as Boltzmann machines and hierarchical Bayesian

models (Lee & Mumford, 2003).
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A Time-scaling property of Langevin Dynamics

Consider the results of scaling the time variable t by a constant τ

t̃ = τ · t. (45)

Recall that the Gaussian white noise ξ(t) was normalized such that

〈ξ(t)ξ(t′)〉 = Iδ(t− t′). (46)

Using the new, scaled time, we have

〈ξ(t̃)ξ(t̃′)〉 = Iδ(τ(t− t′)) (47)

=
1

τ
Iδ(t− t′). (48)

If we define ξ̃(t̃) =
√

(τ)ξ(τt), we will recover

〈ξ̃(t̃)ξ̃(t̃′)〉 = Iδ(t− t′). (49)

B Quantifying convergence to prior

To better quantify the convergence to the desired prior, we estimate the KL-divergence from p(si|λ),

the target prior to p(si|A) the learned prior based on dictionary A. Because the learned prior cannot

be easily calculated, we rely on samples taken at regular time intervals. The samples are then binned

in the same way that generated the histograms in (Fig. 5) .

DKL(p(s|λ)||p(s|A)) =

〈
log

(
p(s|λ)

p(s|A)

)〉
s|λ

(50)

≈
∑
n

pn(λ) log

(
pn(λ)

qn(A)

)
(51)
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where

pn(λ) = P (nδs < s < (n+ 1)δs) (52)

with δs being the bin width. Figure 10 shows the evolution of the estimated DKL over time. As

expected, only with LSC does the KL-divergence approach 0.
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Figure 10: The KL-Divergence for coefficients si is compared for each of the three sparse coding

methods. Only with LSC, does the DKL approach zero.

C Hardware Implementation

While the results presented above were obtained from simulation on a digital computer using the

Euler-Maruyama algorithm, LSC was designed with stochastic analog implementation in mind. In

this section, we present one candidate hardware implementation making use of Gilbert cells, a type

of fast analog voltage multiplier (Gilbert, 1968).

The first goal is to design an analog circuit capable of simulating the coupled differential

equations of continuous-time sparse coding (Eq. 25), explicitly

τS ṡ = −AT (As− x)− λ1sgn(s) (53)

τAȦ = −(As− x)sT (54)
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The core design challenge is to dynamically update s through matrix multiplication with ATA.

Simultaneously, we require the dictionary elements A to also change in accordance with the value of

s. One promising approach is using grids of memristors, or programmable resistors (Di Ventra et al.,

2009), which have been proposed as an analog implementation of generative adversarial networks

(Krestinskaya et al., 2020). However, the limited endurance of memristors prevents extensive

rewrites and ultimately a fully analog implementation (Krestinskaya et al., 2020). As an alternative,

we propose using arrays of Gilbert cells for matrix multiplication. Because both inputs and the

output are voltages, continuous dynamic updates are easily possible.

C.A Gilbert Cell Matrix Multiplier

To focus on the matrix multiplication, we simplify Eqs. 53-54, at least initially, by ignoring

the sparsity term, taking λ1 = 0. We can also better organize the equations by introducing the

reconstruction error variable, ∆ = As− x. Finally, integrating the differential equations, we obtain

∆ = As− x (55)

s = −τ−1
s

∫
dt AT∆ (56)

A = −τ−1
A

∫
dt ∆ sT (57)

We represent each of the variables A, s,x,∆ by proportional electric potentials.

V (A) ∝ A (58)

V (S) ∝ s (59)

V (X) ∝ x (60)
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Multiplication of matrices consists of element-wise multiplication which is facilitated by Gilbert

cells and summation, which is facilitated through operational amplifiers.

A schematic of a Gilbert cell is shown in Figure 11. With inputs given as the voltage differences

VA ≡ V +
A − V

−
A and VB ≡ V +

B − V
−
B , the multiplier produces an output proportional to the product

of the inputs.

Vout = V +
out − V −out =

1

VT
(V +

A − V
−
A ) · (V +

B − V
−
B ) =

VA · VB
VT

. (61)

The constant VT depends on the design of the cell, choice of transistors, and other factors.

+
-

+
-

VD
D

×

Gilbert Cell Multiplier Op-amp Adder

Op-amp Integrator

Figure 11: Circuit elements used for multiplication, summation and integration of voltages. The

op-amp adder is used to add elements. The op-amp integrator is typically used to integrate over

time.

Using operational amplifiers (op-amps) for summing electric potentials (Mancini, 2003) (Fig.

11), matrix multiplication of analog signals can be implemented with a grid of Gilbert cells. This

is demonstrated in (Fig. 12a) specifically for ∆ = As − x. An array of nodes with potentials

represent elements A are shown in red. Wires running horizontally carrying potentials representing
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(c) Full circuit with triple multipliers

Figure 12: a) An analog matrix multiplier built from a grid of Gilbert cells and op-amp adders.

Note the extra row of input V (X) makes this technically an affine transformation. b) The output

of the previous circuit, V (∆), is fed back to another set of multipliers and integrated. The new

multiplier array are weaved into the existing circuit (which are faded to emphasize the newly added

multipliers). c) With an array of triple multipliers, this circuit allows for the dictionary elements

V
(A)
ij to be updated concurrent with the coefficients V (s)

i . In practice, the Gilbert cells input and

output potential differences. However, for brevity each pair of potentials are represented by a single

node – see App. D for detailed circuit diagrams.

elements of s are shown in blue. Each Gilbert cell multiplies the two sets of input potentials to

produce the output V −1
T V

(A)
ij V

(S)
j . This output is then subsequently summed together by a series of

op-amp adders shown running vertically in the figure. An extra row of inputs, −V (X)
n accounts for

the needed bias, making this an affine transformation (rather than a matrix multiplication). Finally
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the output at the bottom of the figure is

V
(∆)
i = V −1

T

∑
j

V
(A)
ij V

(S)
j − V (X)

i . (62)

Recall that VT is a constant which depends on specific Gilbert cell. This first circuit implements Eq.

55 as desired.

In a similar manner, an implementation of τsṡ = −AT∆ can be obtained. Because the voltages

associated with matrix elements V (A)
ij are already present, a second set of Gilbert cells can be woven

into the previous circuit (Fig. 12b). Here, the potentials V (∆)
i are propagated through vertical wires

and with op-amp adders running horizontally, the resulting product is

−V −1
T

∑
i

V
(A)
ij V

(∆)
i = −V −1

T

∑
i

V
(AT )
ji V

(∆)
i = −V −1

T

(
V (AT )V (∆)

)
j
. (63)

To integrate the above output, we make use of op-amp integrators (see. Fig. 11). Passing through a

set of integrators and looping back to V (S)
j , we obtain

V (S) = −τS
∫
dx V −1

T V (AT )V (∆) (64)

The time constant is dependent on op-amp integrator (i.e. τS = RC) and can be adjusted

accordingly. The newly introduced circuitry further enforces Eq. 56.

Lastly, for Eq. 57, another set of Gilbert cells to multiply ∆i and sj is added. Its output is then

integrated and fedback back into V (A)
ij . Figure 12c presents the complete circuit for implementing

the coupled equations 55 - 57. For conciseness, we introduce the triple multiplier comprising of

three Gilbert cells (see Fig. 12c inset). With inputs of aij, sj,∆i, it outputs all pairwise products

δisj, aij∆i and aijsj .
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Note that in the complete circuit, the voltages V (S)
j , V

(A)
ij , V

(∆)
i no longer are inputs to the

system but rather represent “internal variables.” Only V (X)
i is set externally and the potential at the

remaining nodes evolve according to the coupled equations. The fact that the evolution of A and s

requires neither external measurement nor global clocking is exactly the desired result sought out of

the fully analog system. We further demonstrate in App. E that the triple multiplier array can be

easily modified to accept asynchronous batched inputs.

C.B L1-SSC Circuit

With matrix multiplication accounted for, we return to the sparse penalty. Specifically, to implement

the sign function in (Eq. 53), a high gain open loop op-amp is used as an comparator (App. D.A).

The entire analog circuitry was drafted and simulated in LTSpice. The results are compared against

solutions to (Eq. 25 - 26) and shown in Fig. 13a, 13b.

Over the course of one second, 100 inputs V (X) were presented in 10ms intervals. We highlight

the different response from different nodes in the circuit. The faster evolving coefficients V (S)

converge for each input within the short 10ms window. The slower evolving dictionary elements

V (A) exhibits slower and smoother dynamics. Finally, the reconstruction error V (∆) spikes with

each presentation of new input and tends towards zero. We see that the simulated circuit dynamics

closely follows the theoretical solutions both on short time scales and long time scales.

C.C L0-LSC Circuit

Lastly, we present the design of an analog circuit to implement L0-LSC. Its dynamics are modeled

by Eqs. 40, 42. Two major changes are required from the above L1-SSC design. First is the
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(b) L1-SSC circuit for 1s over 100 input batches
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(c) L0-LSC circuit over 100ms

Figure 13: Dynamics of potentials representing s, A and ∆ in two analog circuits implementing

sparse dictionary learning. The dotted lines depict simulated values and the solid lines are theoretical

solutions. (Top) dynamics of latent variable coefficients. (Middle) dynamics of dictionary elements.

(Bottom) dynamics of reconstruction error. a) The dynamics shown for a L1-sparse SSC circuit. b)

The same potentials in the circuit plotted for a longer interval of time where the evolution of A is

more apparent. c) The dynamics shown for a L0-LSC circuit
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inclusion of a soft-threshold function and second, the injection of white noise. Details of both can

be found in App. D.B.

Results from the Spice simulations are shown in Fig. 13c. Similar to L1-SSC, the circuit is

characterized by two populations of fast evolving nodes V (s)
i and slow evolving nodes V (A)

ij .

While in the Spice simulation, white noise was directly added to the circuit, the ultimate aim is

to leverage unavoidable, inherent noise of the circuit. An important direction for further research is

the detailed characterization of noise from various electronic components. It has been demonstrated,

in the context of photonic networks (Roques-Carmes et al., 2019), systems leveraging non-Gaussian

sources of noise can converge to the same distribution as those with white noise.

D Analog Circuit

The circuitry used in the LTSpice simulation is shown in Fig. 14. One of the triple multipliers is

highlighted by the blue box. A integrator is represented by the circuit block in the red box.

Note that unlike the simplified circuit diagram shown in Fig. 12c, the multipliers act on

differential voltages and also outputs two potentials V−, V+. The triple multiplier, therefore takes

in six inputs and produces six outputs. Because of this, the integrator operates on the difference

in voltages and contains an subtracting op-amp before the actual integrator. In practices, this is

achieved through a pair of cascading opamp circuits. The first, a differential amplifier, performs

a subtraction and the second, an integrator amplifier continues with integration. This differential

integrator, in purple, is modified in implementing L0- and L1-sparse penalties.
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Figure 14: Circuit block diagram used in the LTSpice simulation.
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(a) Difference integrator with L1 penalty (b) Difference integrator with L0 penalty

Figure 15: The circuit diagram for both L1 and L0-sparse differential ingegrators. a) L1 sparse

pentalty is achieved by taking the sign function of the output and subtracting the initial input.

Specifically, the sign function is implemented using an op-amp. b) The L0-sparse penalty is

achieved mainly by passing the output through a threshold function (s = f(u)).

D.A L1-Sparse

With the L1-penalty, Eq. 55 - 57 becomes

∆ = As− x (65)

s = −τ−1
s

∫
dt AT∆ (66)

A = −τ−1
A

∫
dt
(
∆sT + λ1sgn(s)

)
(67)

with the addition of a sgn(s) term. The differential integrator circuit is modified accordingly.

An open loop op-amp behaves as the sign function. The output is then summed with ∆sT and

subsequently integrated. The strength of the L1 penalty λ1 can be easily adjusted with the summation

being a weighted sum.
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D.B L0-Sparse Circuit

The L0-sparse set of equations is

∆ = As− x (68)

u = −τ−1
s

∫
dt AT∆ (69)

A = −τ−1
A

∫
dt
(
∆sT + λ1sgn(u)

)
. (70)

Recall that the new internal variable u and s are related via the threshold function si = f(ui) (Eq.

34). In keeping with the conventions of the simulations, we restrict ui to be positive, making the

sign function unnecessary. The circuit shown above details the implementation of the threshold

function. The potential u0 is subtracted from ui and then a ReLU circuit(Agarap, 2018) is applied

making use of the equivalent expression

f(ui) = max(0, ui − u0) (71)

in cases where ui ≥ 0. Finally, to maintain ui ≥ 0 despite the white noise, a transistor switch is

added to short the capacitor of the integrator amplifier should ui < 0.

E Batched Circuit

In this section, we describe a simple modification to generalize the current circuit to incorporate

batched inputs. The dynamics of SSC with input of batch size N can be written as

τuu̇n = ∇uE(A,un,xn) (72)

τAȦ =
1

N

N∑
n=1

∇AE(A,un,xn). (73)
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Figure 16: Circuit for batched update. a) A very simple passive averager is shown, where the central

node has a potential equaling the mean of all the “inputs”. b) Incorporating this passive averager

into a column of mulitpliers. c) A 3D circuit comprised of layers of the LSC circuit. Each layer

corresponds to an individual input of a batch with its unique data xn and coefficients un but with

shared dictionary elements A.

We can implement the above dynamics by stacking N identical LSC circuits (see Fig. 16). Each

layer would have its own data xn and latent variables un and be updated independently. However,

the dictionary elements A is shared among all layers and its update is averaged from each layer. A

simple passive averaging circuit, shown in the figure below, can be used to link each of the layers.
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