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Abstract 

Deep convolutional neural networks follow roughly the architecture of biological visual 

systems and have shown a performance comparable to human observers in object recognition 

tasks. In this study, I tested three pretrained deep neural networks in visual search for simple 

visual features, and for feature configurations. The results reveal a qualitative difference from 

human performance. It appears that there is no clear difference between searches for simple 

features that pop out in experiments with humans, and for feature configurations that exhibit 

strict capacity limitations in human vision. Both types of stimuli reveal comparable capacity 

limitations in the neural networks tested here.    

Introduction 

It is well known that human observers have certain limitations on simultaneous processing of 

multiple visual stimuli (Estes & Taylor, 1964; Bergen & Julesz, 1983). Visual search 

experiments have revealed several simple features (luminance, color, size, orientation) that 

can be detected in parallel across the visual field, independent of the number of objects (e.g. 

Wolfe, 1998). Detection of combinations of simple features is more difficult and may need 

serial processing (Treisman & Gelade, 1980; Wolfe et al, 1989). Signal detection theory that 

assumes noisy representation of feature values has slightly changed the picture (Kinchla, 

1974; Palmer et al, 2000), but different behavior of simple and complex features is still 

important. Search for a simple feature among homogeneous distractors fits well to SDT model 

that assumes independent encoding of visual objects, and ideal integration of noisy signals 

(Shaw, 1984; Palmer et al, 1993; Palmer, 1994). Search for configurations of simple features 

has strictly limited capacity and exhibit set size effects consistent with dividing fixed 

processing resources, or serial scanning (Shaw, 1984; Põder, 1999; Palmer et al, 2011).  

According to a widely accepted view, spatial attention plays an important role in perception of 

complex objects (Treisman & Gelade, 1980: Cheal et al, 1991; Wolfe & Bennett, 1996). It is 

believed that spatial attention gates visual signals at relatively low levels and in retinotopic 

coordinates and thus simplifies processing at higher levels (Broadbent, 1958; Neisser, 1967).  

However, there are different opinions too (Deutsch & Deutsch, 1963; Allport, Tipper & 

Chmiel, 1985). In recent studies, Rosenholtz (Rosenholtz et al 2012; Rosenholtz, 2017) has 

argued that spatial gating is not necessary in visual processing and apparent capacity 

limitations may reflect complexity of decision boundary in some high-level multidimensional 

space where a representation of the whole visual field is encoded. This view resembles 

information processing in current artificial neural networks. Therefore, experimenting with 

these networks may help to test theories of biological vision.  

Several years ago, artificial neural networks reached the level of human performance in 

demanding visual object recognition tasks (e.g. Krizhevsky et al, 2012; Ciresan et al, 2012; 

Simonyan & Zisserman, 2014; Szegedy et al, 2015). These networks are hierarchical feature 

combiners following roughly the architecture of biological visual systems and trained on 

millions of labeled natural images. 
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Many studies have reported on functional similarities between deep neural networks and 

visual systems of humans or monkeys (e.g. Khaligh-Razavi & Kriegeskorte, 2014; Yamins et 

al, 2014; Kubilius et al, 2016). However, some interesting differences have been reported as 

well (Nguyen et al., 2015; Geirhos et al., 2018; Lonnqvist et al, 2020). 

Up to now, there have been no publications on classic visual search experiments with deep 

neural networks. Usually, these networks do not contain any mechanisms of spatial attention. 

Therefore, it would be interesting to see whether they are able to reproduce the capacity 

limitations found in experiments with humans. In this study, I run simple search experiments 

using three well-known convolutional neural networks in place of a human observer.      

Methods 

In the present experiments, the pretrained neural networks AlexNet, GoogLeNet, and 

ResNet18 provided with Matlab Deep Learning Toolbox were used. The last three layers that 

were adapted for the classification of 1000 natural image categories were removed and 

replaced with equivalent layers for the classification into two categories: “target present”, and 

“target absent”. Only one of the new layers in each network contained trainable weights and 

biases. These parameters were adjusted during the training with my visual search stimuli. The 

changes in the previous layers were prohibited by freezeWeights function. 

Simple search stimuli were generated in Matlab. The size of stimuli was 227x227 or 224x224 

pixels x 3 color planes. Each image contained n (n = 1, 2, 4, or 8) simple items (squares, lines, 

rectangles, rotated Ts). The items were depicted on a dark background. To minimize possible 

crowding effects, the minimal center-to-center distance between the items was set to be at 

least 48 pixels. Also, the items were not placed within 28-pixel edges of the image. 

Otherwise, the items were located randomly. The images of “target present” category 

contained one target item and n-1 distractor items, the images of “target absent” category 

contained only n distractors.    

In this study, five search experiments with different visual features were run (examples of 

stimuli are given in Figure 1). There were four “simple” tasks, with targets of either different 

luminance, color, length, or orientation, and one “complex” task (rotated Ts), where target 

differs from distractors by spatial configuration of two bars. In addition to set size, difficulty 

levels were varied by either target-distractor difference, or size of stimuli. 

Two different training procedures, with mixed and separate set sizes, were run. 

For a mixed training, 8000 images were used, 4000 of “target present”, and 4000 of “target 

absent” category. Each set size (1, 2, 4, and 8) had equal number of samples in both 

categories. 6400 images were assigned to training and 1600 to validation set. After training in 

a given search task, the network was tested with the same task using an independent sample 

(400) of images for each set size. 

In separate training, total numbers of images were identical. In a single training run, there 

were 2000 images, 1000 of “target present”, and 1000 of “target absent” category, 1600 

images were assigned to training, and 400 to validation set. After training, the final proportion 

correct for the validation set was determined. 

Training, with stochastic gradient descent, and constant training rate, was run on a single 

GPU. Detailed training parameters were somewhat different across the networks (minibatch 

size 50 or 80, training epochs 20 or 30, learning rate from 0.0003 to 0.003).  
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Figure 1. Examples of visual search stimuli used in this study. All examples depict stimuli 

with target present. Set size (number of objects in a display) was varied from 1 to 8. 

 

Two simple models were used to measure the effects of set size on proportion correct. The 

first one supposes that d prime vs. set size slopes are constant in log-log graphs and measures 

this slope. The second is an SDT based search model with (possibly) limited capacity 

encoding and ideal decision rule (Palmer et al, 2000; Mazyar et al, 2012; Põder, 2017) that 

has been frequently applied to human observers. This model measures an effect of set size on 

encoding precision (noise variance). This measure is 0 for unlimited capacity (independent 

processing of items), and 1 for a fixed capacity (noise variance inversely proportional to set 

size). The two models have equal numbers of free parameters and are easily comparable. 

Results 

Examples of data from individual experiments and model fits are depicted in Figure 2. The 

fits were far from perfect, but both models capture the main regularities of data reasonably 

well. Goodness-of-fit statistics for both models are given is Tables 1, and 2, for mixed and 

separate training, respectively. These results reveal consistently better fit for the results from 

mixed training experiments. The reason for that is not clear. A somewhat better fit of SDT 

based search model compared to the simple log-log slope model was observed as well. 

The estimated measures of set size effects are given in Figures 3 and 4. Most interestingly, 

there is no systematic difference between classic simple features and complex feature 

configuration (rotated T) search. In both conditions, neural networks exhibit from moderate to 

strong capacity limitations. Still, there are clear difference between the networks – AlexNet 

has stronger capacity limitations as compared to GoogLeNet and ResNet18. 
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Figure 2. Examples of graphs with proportions correct as dependent on set-size and target-

distractor discriminability, for different search experiments. Symbols depict experimental data 

and lines are model fits. 
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 Constant log-log slope SDT model 

AlexNet GoogLeNet ResNet18 AlexNet GoogLeNet ResNet18 

Brightness 22.0 28.8* 6.5 22.0 22.1 6.9 

Length 31.1 22.1 11 25.7 18.1 14.3 

Color 95.2* 10.5 44.4* 72.5* 15.1 11.1 

Orientation 46.4* 21.8 23.6 42.5* 21 13.8 

Rotated T1 29.3* 13.2 14.9 30.5* 12.6 10.8 

Rotated T2 8.3 20.9 23.9 7.9 29.3* 15.5 

Rotated T3 11.8 24.2 12 10.6 26.1 11.2 

Rotated T4 22.1 26.8 17.2 21.3 25.8 11 

 

Table 1. Model fits (likelihood ratio statistic G) of the results from search experiments with 

mixed training. Significant differences (with p<0.01) between data and models are indicated.  

 

 Constant log-log slope SDT model 

AlexNet GoogLeNet ResNet18 AlexNet GoogLeNet ResNet18 

Brightness 26.0* 23.6 19.1 19.9 18.1 7.5 

Length 44.8* 40.8* 38.9* 38.3* 39.2* 28.9 

Color 169.6* 13.5 14.9 137.7* 18.1 6.5 

Orientation 53.3* 30.5* 37.2* 42.5* 31.1* 30.8* 

Rotated T1 53.3* 51.0* 31.7* 41.6* 41.1* 21.1 

Rotated T2 34.5* 38.1* 47.5* 29.4* 41.4* 39.5* 

Rotated T3 21.4 31.2* 33.2* 22.8 33.9* 25.4 

Rotated T4 18.0 15.6 33.2* 16.2 12.8 25.5 

 

Table 2. Model fits (likelihood ratio statistic G) of the results from search experiments with 

separate training. Significant differences (with p<0.01) between data and models are 

indicated.  

Discussion 

In the present study, simple visual search experiments were run on pretrained deep 

convolutional neural networks. While many previous studies with human observers have 

found big differences between searches for simple features and for feature configurations, 

virtually no difference was found with artificial neural networks. Both types of stimuli 

revealed moderate to strong capacity limitations in the studied neural networks.  

Quantitatively, d prime decreased with increasing set size with an exponent of -0.5 to -1. 

According to SDT based search model, encoding noise variance increased with set size 

according to a similar slope. Human observers, when searching for simple visual features, 

usually exhibit very small set size effects, and zero capacity limitations according to SDT 

model.  

There is no question that deep convolutional networks can learn to accomplish these simple 

tasks much better, when allowed to adapt weights in the lower layers. However, the purpose 

of this study was to examine how well the learned image transformations necessary for object 

recognition support visual search. Apparently not very well.   
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Figure 3. Set size effects as log-log slopes of d prime vs. set size for different search 

experiments, different neural networks, and for two training procedures.   

 

There are several potential explanations. It is possible that artificial neural networks can 

acquire more human-like capacity limits when trained on more heterogeneous stimuli and 

with different visual tasks. However, some details of network architecture may be important 

too. 

To understand this issue better, I tried to train a couple of toy networks. A simple 3-layer 

network, trained from scratch, learns easily to detect a target – a spike with a higher 

magnitude among distractors with a lower magnitude. However, the performance depends 

heavily on the number of spikes, very similarly to the set size effects observed in transfer 

learning with deep networks. Some prewired details, for example, a global max pooling layer, 

can help network to find a much more efficient algorithm, with zero set size effect. Therefore,  
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Figure 4. SDT based capacity limitation measures for different search experiments, different 

neural networks, and for two training procedures.   

 

it is possible that efficient performance of simple search tasks requires some built-in details 

not present in standard networks optimized for object classification. 

The somewhat smaller set size effects found with GoogLeNet and ResNet18 may indicate an 

effect of architectural innovations that supposedly increase sparsity of encoding and a better 

fit to biological vision (Szegedy et al., 2015). However, the present results are still far from 

unlimited capacity found in feature search with human observers.  

Are there any theoretical ideas that could predict the set size effects from this study? 

Some facts about linear networks may be useful. When the same set of units is used for a 

distributed coding of several variables, then interference from irrelevant ones appears as a 

noise in decoded pattern, with variance proportional to the number of irrelevant variables. 

This could explain an approximately square root decay of d prime as dependent on number of 
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items. However, the square root decay is also consistent with a linear decision rule in 

multidimensional feature space, instead of the ideal decision rule.    

I found some preference for SDT based search model over simple power function. However, 

the assumptions of this model may be incompatible with artificial neural networks. The idea 

of distinct representations of visual items, each with its own noise, looks too different from 

neural networks where representations are distributed over thousands of units, and noise is 

just an interference from other representations encoded by the same pool of units. The 

observed regularities reminiscent of ideal integration of noisy signals may have another 

explanation in these networks. 

Conclusions 

This study revealed that deep convolutional neural networks, pretrained for object 

recognition, behave differently from human observers in classic visual search tasks. When 

human observers can search for a simple visual feature among homogeneous distractors very 

efficiently, artificial neural networks cannot. They exhibit comparable set size effects in both 

simple feature search and “complex” search for feature configurations. It is possible that 

training in object recognition does not build operations required for efficient search, and/or 

prewired architecture of traditional networks is not well suited for learning efficient visual 

search.      
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