

Edinburgh Research Explorer

Inference and Learning for Generative Capsule Models

Citation for published version:
Nazábal, A, Tsagkas, N & Williams, CKI 2023, 'Inference and Learning for Generative Capsule Models',
Neural Computation, vol. 35, no. 4, pp. 727-761. https://doi.org/10.1162/neco_a_01564

Digital Object Identifier (DOI):
10.1162/neco_a_01564

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Neural Computation

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 30. Apr. 2024

https://doi.org/10.1162/neco_a_01564
https://doi.org/10.1162/neco_a_01564
https://www.research.ed.ac.uk/en/publications/d547617c-d731-4225-abb9-6b5963368b97

Final m/s version of paper accepted for publication in Neural Computation.

Inference and Learning for Generative Capsule
Models

Alfredo Nazabal*†

Amazon Development Centre Scotland
Edinburgh, UK

alfrena@amazon.com

Nikolaos Tsagkas∗‡

School of Informatics, University of Edinburgh,
Edinburgh EH8 9AB, UK
n.tsagkas@ed.ac.uk

Christopher K. I. Williams
School of Informatics, University of Edinburgh,

Edinburgh EH8 9AB, UK, and
The Alan Turing Institute, London, UK
c.k.i.williams@ed.ac.uk

October 21, 2022

Abstract

Capsule networks (see e.g. Hinton et al., 2018) aim to encode knowledge of
and reason about the relationship between an object and its parts. In this paper we
specify a generative model for such data, and derive a variational algorithm for
inferring the transformation of each model object in a scene, and the assignments
of observed parts to the objects. We derive a learning algorithm for the object
models, based on variational expectation maximization (Jordan et al., 1999). We
also study an alternative inference algorithm based on the RANSAC method of
Fischler and Bolles (1981). We apply these inference methods to (i) data generated
from multiple geometric objects like squares and triangles (“constellations”), and
(ii) data from a parts-based model of faces. Recent work by Kosiorek et al. (2019)
has used amortized inference via stacked capsule autoencoders (SCAEs) to tackle
this problem—our results show that we significantly outperform them where we
can make comparisons (on the constellations data).

*Equal contribution.
†Work carried out while AN was at the Alan Turing Institute.
‡Part of this work was carried out when NT was a MSc student at the University of Edinburgh.

1

Keywords: Capsules, variational inference, permutation matrix, Sinkhorn-Knopp
algorithm, RANSAC.

1 Introduction
An attractive way to set up the problem of object recognition is hierarchically, where
an object is described in terms of its parts, and these parts are in turn composed of
sub-parts, and so on. For example a face can be described in terms of the eyes, nose,
mouth, hair, etc.; and a teapot can be described in terms of a body, handle, spout and
lid parts. This approach has a long history in computer vision, see e.g. the work on
Pictoral Structures by Fischler and Elschlager (1973), and Recognition-by-Components
by Biederman (1987). More recently Felzenszwalb et al. (2009) used discriminatively-
trained parts-based models to obtain state-of-the-art results (at the time) for object
recognition. Advantages of recognizing objects by first recognizing their constituent
parts include tolerance to the occlusion of some parts, and that parts may vary less
under a change of pose than the appearance of the whole object.

Recent work by Sabour et al. (2017) and Hinton et al. (2018) has developed capsule
networks. These exploit the fact that if the pose1 of the object changes, this can
have very complicated effects on the pixel intensities in an image, but the geometric
transformation between the object and the parts can be described by a simple linear
transformation (as used in computer graphics). In these papers a part in a lower level
can vote for the pose of an object in the higher level, and an object’s presence is
established by the agreement between votes for its pose in a process called “routing-
by-agreement”. Hinton et al. (2018, p. 1) describe this as a process which “updates
the probability with which a part is assigned to a whole based on the proximity of
the vote coming from that part to the votes coming from other parts that are assigned
to that whole”. Subsequently Kosiorek et al. (2019) framed inference for a capsule
network in terms of an autoencoder, the Stacked Capsule Autoencoder (SCAE). Here,
instead of the iterative routing-by-agreement algorithm, a neural network hcaps takes as
input the set of input parts and outputs predictions for the object capsules’ instantiation
parameters {yk}Kk=1. Further networks hpartk are then used to predict part candidates
from each yk.

The objective function used in Hinton et al. (2018) (their eq. 4) is quite complex
(involving four separate terms), and is not derived from first principles. In this paper we
argue that the description in the paragraph above is backwards—we find it more natural
to first describe the generative process by which an object gives rise to its parts, and
that the appropriate routing-by-agreement inference algorithm then falls out naturally
from this principled formulation.

The contributions of this paper are to:

• Derive a novel variational inference algorithm for routing-by-agreement, based
on a generative model of object-part relationships, including a relaxation of the
permutation-matrix formulation for matching object parts to observations;

1i.e. the location and rotation of the object in 2D or 3D.

2

(a) (b) (c)

Figure 1: (a) Scenes composed of 2D points (upper figures) and their corresponding
objects (lower figures). (b) A synthetic face. The red lines indicate the areas of the 5
part types (i.e. hair, eyes, nose, mouth and jaw). (c) Example scene with 3 randomly
transformed faces.

• Focus on the problem of inference for scenes containing multiple objects. Much
of the work on capsules considers only single objects (although sec. 6 in Sabour
et al. (2017) and De Sousa Ribeiro et al. (2020b, sec. 4.4) are notable exceptions).

• Demonstrate the effectiveness of our algorithm on (i) “constellations” data gen-
erated from multiple geometric objects (e.g. triangles, squares) at arbitrary
translations, rotations and scales; and (ii) data of multiple faces from a novel
parts-based model of faces;

• Evaluate the performance of our algorithm and the RANSAC method vs. com-
petitors on the constellations data.

• Derive a learning algorithm for the object models, based on variational expecta-
tion maximization (Jordan et al., 1999).

The structure of the remainder of the paper is as follows: in section 2 we provide
an overview of the method. Section 3 gives details of the generative model and the
matching distribution between observed and model parts. The variational inference
algorithm derived from this model is given in section 4, and RANSAC inference is
described in sec. 5. Related work is discussed in section 6, and approaches to learning
generative capsule models are given in section 7. Our experiments and results are
described in section 8. We conclude with a discussion.

2 Overview
Consider images of a set of objects in different poses, such as images of handwritten
digits, faces, or geometric shapes in 2D or 3D. An object can be defined as an instantia-
tion of a specific model object (or template) along with a particular pose (or geometric

3

transformation). Furthermore, objects, and thus templates, are decomposed in parts,
which are the basic elements that comprise the objects. For example, faces can be
decomposed into parts (e.g. mouth, nose etc.), or a geometric shape can be decomposed
into vertices. These parts can have internal variability, (e.g. eyes open or shut).

More formally, let T = {Tk}Kk=1 be the set of K templates that are used to generate
a scene. Each template Tk = {pn}Nk

n=1 is composed of Nk parts pn. We assume that
scenes can only be generated using the available templates. Furthermore, every scene
can present a different configuration of objects, with some objects missing in some
scenes. For example, in scenes that could potentially contain all digits from 0 to 9 once,
and if only the digits 2 and 5 are in the image, we consider that the other digits are
missing. If all the templates were employed in the scene, then the number of observed
parts M is equal to the sum of all the parts of all the templates N =

∑K
k=1Nk.

Each observed template Tk in a scene is then transformed by an independent
transformation yk, different for each template, generating a set of transformed parts
Xk = {xn}Nk

n=1

Tk
yk→ Xk. (1)

The transformation yk includes both the geometric transformation of the template, and
also the appearance variability in the parts.

In this paper we assume that we are given a scene X = {xm}Mm=1 composed of
M observed parts coming from multiple templates. (For example, the Part Capsule
Autoencoder (PCAE) of Kosiorek et al. (2019) outputs a set of parts.) The inference
problem for X involves a number of different tasks. We need to determine which
objects from the set of templates were employed to generate the scene. Also, we need
to infer what transformation yk was applied to each template to generate the objects.
This allows us to infer the correspondences between the template parts and the scene
parts.

We demonstrate our method on “constellations” data as shown in Fig. 1(a), and
data containing multiple faces (Fig. 1(c)). In the constellations data, the real generators
are triangle and square objects, but only their vertices are provided in the data. The
faces data is generated from the parts-based model of faces shown in Fig. 1(b) and
described in sec. 8.2.1.

3 A Generative Capsules Model (GCM)
We propose a generative model to describe the problem. Consider a template (or model)
Tk for the kth object. Tk is composed of Nk parts {pn}Nk

n=1.2 Each part pn is described
in its reference frame by its geometry pg

n and its appearance pa
n. Each object also has

associated latent variables yk which transform from the reference frame to the image
frame, so yk is split into geometric variables yg

k and appearance variables ya
k.

Geometric transformations: Here we consider 2D templates and a similarity trans-
formation (translation, rotation and scaling) for each object, but this can be readily

2For simplicity of notation we suppress the dependence of pn on k for now.

4

extended to allow 3D templates and a scene-to-viewer camera transformation. We
assume that pg

n contains the x and y locations of the part, and also its size sn and orien-
tation φn relative to the reference frame.3 The size and orientation are represented as the
projected size of the part onto the x and y axes, as this allows us to use linear algebra to
express the transformations (see below). Thus pg

n = (pgnx, p
g
ny, sn cosφn, sn sinφn)T .

Consider a template with parts pg
n for n = 1, . . . , Nk that we wish to scale by

a factor s, rotate through with a clockwise rotation angle θ and translate by (tx, ty).
We obtain a transformed object with geometric observations for the nth part xg

n =
(xgnx, x

g
ny, x

g
nc, x

g
ns), where the c and s subscripts denote the projections of the scaled

and rotated part onto the x and y axes respectively (c and s are mnemonic for cosine
and sine).

For each part in the template, the geometric transformation works as follows:
xnx
xny
xnc
xns

 =


1 0 pnx pny
0 1 pny −pnx
0 0 sn cosφn −sn sinφn

0 0 sn sinφn sn cosφn




tx
ty

s cos θ
s sin θ

 . (2)

Decoding the third equation, we see that xnc = sns cosφn cos θ − sns sinφn sin θ =
sns cos(φn + θ) using standard trigonometric identities. The xns equation is derived
similarly. We shorten eq. 2 to xg

n = F g
kny

g
k, where yg

k is the R4 column vector, and
F g
kn ∈ R4×4 is the matrix to its left.4 Allowing Gaussian observation noise with

precision λ we obtain

p(xg
n|Tk,y

g
k) ∼ N

(
xg
n|F

g
kny

g
k, λ

−1I
)
. (3)

The prior distribution over similarity transformations yg
k is modelled with a R4

Gaussian distribution with mean µg
0 and covariance matrix Dg

0:

p(Y g) =
K∏
k=1

N(yg
k|µ

g
0, D

g
0), (4)

where Y g denotes the set {yg
k}Kk=1. Notice that modelling yg

k with a Gaussian distri-
bution implies that we are modelling the translation (tx, ty) in R2 with a Gaussian
distribution. If µg

0 = 0 and Dg
0 = I4 then s2 = (ygk3)

2 + (ygk4)
2 has a χ2

2 distribution,
and θ = arctan ygk4/y

g
k3 is uniformly distributed in its range [−π, π] by symmetry. For

more complex linear transformations (e.g. an affine transformation), we need only to
increase the dimension of yg

k and change the form of F g
kn, but the generative model

in (4) would remain the same. For the 3D case, note that Basri (1996) has shown
that every affine projection of an object represents some uncalibrated paraperspective
projection of the object.

3For the constellations data, the size and orientation information is not present, nor are there any
appearance features.

4Here F is mnemonic for “features”.

5

Appearance transformations: The appearance xa
n of part n in the image depends

on ya
k. For our faces data, ya

k is a vector latent variable which models the co-variation
of the appearance of the parts via a linear (factor analysis) model; see sec. 8.2.1 for a
fuller description. Hence

p(xa
n|Tk,yk) ∼ N (xa

n|F a
kny

a
k +ma

kn, D
a
kn) , (5)

where F a
kn maps from ya

k to the predicted appearance features in the image, Da
kn is a

diagonal matrix of variances and ma
kn allows for the appearance features to have a

non-zero mean. The dimensionality of the nth part of the kth template is dkn. The prior
for ya

k is taken to be a standard Gaussian, i.e. N(0, I). Combining (4) and the prior for
ya
k, we have that p(yk) = N(µ0, D0), where µ0 stacks µg

0 and 0 from the appearance,
and D0 is a diagonal matrix with blocks Dg

0 and I .

Joint distribution: Let zmnk ∈ {0, 1} indicate whether observed part xm matches to
part n of object k. The set of these match variables is denoted by Z. Every observation
m belongs uniquely to a tuple (k, n), or in other words, a point xm belongs uniquely to
the part defined by yk acting on the template matrix Fkn. The opposite is also partially
true; every tuple (k, n) belongs uniquely to a point m, or it is unassigned if part n of
template k is missing in the scene.

The joint distribution of the variables in the model is given by

p(X, Y, Z) = p(X|Y, Z)p(Y)p(Z), (6)

where p(X|Y, Z) is a Gaussian mixture model explaining how the points in a scene
were generated from the templates

p(X|Y, Z) =
M∏

m=1

K∏
k=1

Nk∏
n=1

N (xm|Fknyk +mkn, Dkn)zmnk , (7)

where Dkn consists of the diagonal matrices λ−1I and Da
kn andmkn consists of a zero

vector for the geometric features stacked on top of the mean for the appearance features
ma

kn. Note that Fkn has blocks of zeros so that xg
m does not depend on ya

k, and xa
m

does not depend on yg
k.

Annealing parameter: During inference, where the model is fitted to data, it is
useful to modify the covariance matrix Dkn to β−1Dkn, where β is a parameter < 1.
The effect of this is to inflate the variances in Dkn, allowing greater uncertainty in the
inferred matches early on in the fitting process, as used, e.g. in Revow et al. (1996). β
is increased according to an annealing schedule during the fitting.

Match distribution p(Z): In a standard Gaussian mixture model, the assignment
matrix Z is characterized by a Categorical distribution, where each point xm is assigned
to one part

p(Z) =
M∏

m=1

Cat(zm|π), (8)

6

with zm being a 0/1 vector with only one 1, and π being the probability vector for
each tuple (k, n). However, the optimal solution to our problem occurs when each part
of a template belongs uniquely to one observed part in a scene. This means that Z
should be a permutation matrix, where each point m is assigned to a tuple (k, n) and
vice versa. Notice that a permutation matrix is a square matrix, so if M ≤ N , we add
dummy rows to Z, which are assigned to missing points in the scene.

The set of permutation matrices of dimension N is a discrete set containing N !
permutation matrices. A discrete prior over permutation matrices assigns each valid
matrix Zi a probability πi:

pperm(Z) =
N !∑
i=1

πi I[Z = Zi] (9)

with
∑N !

i=1 πi = 1 and I[Z = Zi] being the indicator function, equal to 1 if Z = Zi and
0 otherwise.

The number of possible permutation matrices increases as N !, which makes exact
inference over permutations intractable, except for very small N . An interesting
property of pperm(Z) is that its first moment Epperm [Z] is a doubly-stochastic (DS)
matrix, a matrix of elements in [0, 1] whose rows and columns sum to 1. We propose to
relax pperm(Z) to a distribution pDS(Z) that is characterized by the doubly-stochastic
matrix A with elements amnk, such that EpDS

[Z] = A:

pDS(Z) =
N∏

m=1

K∏
k=1

Nk∏
n=1

azmnk
mnk . (10)

A is fully characterized by (N − 1)2 elements. In the absence of any prior knowledge
of the affinities, a uniform prior over Z with amnk = 1

N
can be used. However, note that

pDS can also represent a particular permutation matrix Zi by setting the appropriate
entries of A to 0 or 1, and indeed we would expect this to occur during variational
inference (see sec. 4) when the model converges to a correct solution.

Related models: Our model for a single object has both geometric and appearance
variability (see eqs. 3 and 5). A similar model but with geometric features only was
developed by Revow et al. (1996). Fergus et al. (2003) described a “constellation of
parts” model, that used a joint Gaussian model for locations of the parts, and an image-
patch model for each part appearance. However, the appearance model was a single
Gaussian per part, without the correlations between parts afforded by the factor analysis
model. This model was applied to images of single (foreground) objects, summing out
over possible assignments Z. Rao and Ballard (1999) developed a hierarchical factor
analysis model, but used it to model extended edges in natural image patches rather
than correlations between the parts of an object. See sec. 7 for further discussion of
parts-based models.

Hierarchical modelling: above we have described a two-layer model with part-
object relations. This can of course be extended to a deeper hierarchy; for example

7

we would expect to find relationships between the objects in a scene, such as the
relationships between a dining table and the dining chairs, or between a bed and its
associated nightstand(s). Such scene-level relationships can be formulated in terms
of graphical models for the groups of objects. We believe the most difficult aspect is
handling the assignment Z between model parts and observed parts (as covered in this
paper), and that inference in the graphical model above is fairly standard, and is left for
future work.

4 Variational Inference
Variational inference for the above model can be derived similarly to the Gaussian
Mixture model case (Bishop, 2006, Sec. 10.1). The variational distribution under the
mean field assumption is given by q(Z, Y) = q(Z)q(Y), The evidence lower error
bound (ELBO) for this model is derived in Appendix A. Optimizing the ELBO with
respect to either q(Z) or q(Y), the optimal solutions can be expressed as

log q(Z) ∝ Eq(Y)[log p(X, Y, Z)], (11)
log q(Y) ∝ Eq(Z)[log p(X, Y, Z)]. (12)

These alternating updates of q(Y) and q(Z) carry out routing-by-agreement.
For q(Z) we obtain an expression with the same form as the prior in (10)

q(Z) ∝
N∏

m=1

K∏
k=1

Nk∏
n=1

ρzmnk
mnk , (13)

where ρmnk represents the unnormalized probability of point m being assigned to
tuple (k, n) and vice versa. These unnormalized probabilities have a different form
depending on whether we are considering a point that appears in the scene (m ≤M)

log ρmnk = log amnk −
1

2
log |β−1Dkn| −

dkn
2

log 2π−

β

2
Eyk

[(xm − Fknyk −mkn)TD−1kn (xm − Fknyk −mkn)], (14)

or whether we are considering a dummy row of the prior (m > M),

log ρmnk = log amnk. (15)

When a point is part of the scene (14), and thus m ≤M the update of ρmnk is similar
to the Gaussian mixture model case. However, if a point is not part of the scene (15),
and thus m > M then the matrix is not updated and the returned value is the prior
amnk. The expectation term in (14) is given by:

Eyk
[(xm − Fknyk −mkn)TD−1kn (xm − Fknyk −mkn)] =

(xm − Fknµk −mkn)TD−1kn (xm − Fknµk −mkn) + trace(F T
knD

−1
knFknΛ−1k). (16)

8

The normalized distribution q(Z) becomes:

q(Z) =
N∏

m=1

K∏
k=1

Nk∏
n=1

rzmnk
mnk , (17)

where Eq(Z)[zmnk] = rmnk. The elements rmnk of matrix R represent the posterior
probability of each point m being uniquely assigned to the part-object tuple (n, k)
and vice-versa. This means that R needs to be a DS matrix. This can be achieved by
employing the Sinkhorn-Knopp algorithm (Sinkhorn and Knopp, 1967) as given in
Algorithm 1, which updates a square non-negative matrix by normalizing the rows and
columns alternately until the resulting matrix becomes doubly stochastic.

The use of the Sinkhorn-Knopp algorithm for approximating matching problems
has also been described by Powell and Smith (2019) and Mena et al. (2020), but note
that in our case we also need to alternate with inference for q(Y).

Algorithm 1 Sinkhorn-Knopp algorithm, taking as input a square non-negative matrix
M

1: procedure SINKHORNKNOPP(M)
2: while M not doubly stochastic do
3: Normalize rows of M : mij =

mij∑
j mij

, ∀i
4: Normalize columns of M : mij =

mij∑
i mij

, ∀j
return M

Furthermore, the optimal solution to the assignment problem occurs when R is a
permutation matrix itself. When this happens we exactly recover a discrete posterior
(with the same form as (9)) over permutation matrices where one of them has probability
one, with the others being zero.

The distribution for q(Y) is a Gaussian with

q(Y) =
K∏
k=1

N(yk|µk,Λ
−1
k), (18)

Λk = D−10 + β

M∑
m

Nk∑
n

rmnkF
T
knD

−1
knFkn, (19)

µk = Λ−1k

[
D0µ0 + β

M∑
m

Nk∑
n

rmnkF
T
knD

−1
kn (xm −mkn)

]
, (20)

where the updates for both Λk and µk depend explicitly on the annealing parameter
β and the templates employed in the model. Note that the prediction from datapoint
m to the mean of yk depends on rmnkF

T
knD

−1
kn (xm −mkn), i.e. a weighted sum of the

predictions of each part n with weights rmnk. These expressions remain the same when
considering a Gaussian mixture prior such as (8).

Algorithm 2 summarizes the inference procedure for this model.

9

Algorithm 2 Variational Inference
1: Initialize β, βmax and R ∼ U [0, 1]N×N , ∀m,n, k
2: R = SinkhornKnopp(R)
3: while not converged do
4: Update Λk (19), ∀k
5: Update µk (20), ∀k
6: Update log ρmnk (14)(15), ∀m,n, k
7: Update R = SinkhornKnopp(ρ)
8: if ELBO has converged then
9: if β < βmax then

10: Anneal β
11: else
12: converged = True

return R, {µk,Λk}

4.1 Comparison with other objective functions
In Hinton et al. (2018) an objective function costhk is defined (their eq. 1) which
considers inference for the pose of a higher-level capsule k on pose dimension h.
Translating to our notation, costhk combines the predictions vmk from each datapoint
m for capsule k as costhk =

∑
m rmk lnP h

m|k, where P h
m|k is a Gaussian, and rmk is

the “routing softmax assignment” between m and k. It is interesting to compare this
with our equation (20). Firstly, note that the vote of xm to part n in object k is given
explicitly by βΛ−1k F T

knD
−1
kn (xm −mkn), i.e. we do not require the introduction of an

independent voting mechanism, this falls out directly from the inference. Secondly,
note that our R must keep track not only of assignments to objects, but also to parts of
the objects. In our experiments with the constellations data each observed part could
match any object/part combination of the models, so this is necessary. For the faces
data, the observed parts are of identifiable type (e.g. nose, mouth), so in this case they
only need to vote for the object. In contrast to Hinton et al. (2018), our inference
scheme is derived from variational inference on the generative model for X , rather than
introducing an ad hoc objective function that corresponds to a clustering in y-space.

De Sousa Ribeiro et al. (2020a) develop a variational Bayes extension of the model
of Hinton et al. (2018). They write down a mixture model in y-space where the
“datapoints” are the votes vmk, and use Bayesian priors for the mixing proportions, and
for the means and covariance matrices of the components. This can improve training
stability, e.g. by reducing the problem of variance-collapse where a capsule claims sole
custody of of a datapoint. However, this is still a model for clustering in y-space, and
not a generative model for X .

The specialization of the SCAE method of Kosiorek et al. (2019) to constellation
data is called the “constellation capsule autoencoder (CCAE)” and discussed in their
sec. 2.1. Under their equation 5, we have that

p(x1:M) =
M∏

m=1

K∑
k=1

N∑
n=1

akak,n∑
i ai
∑

j aij
N(xm|µk,n, λk,n), (21)

10

Algorithm 3 RANSAC approach
1: T : K templates of the scene
2: Bk: base matrix for template Tk
3: X: M points of the scene
4: out = []
5: for xi ∈ X do
6: for xj ∈ X \ xi do
7: xij = Vectorize(xi,xj)
8: for k = 1 : K do
9: ŷk = B−1k xij

10: Tk
ŷk−→ X̂k

11: if SubsetMatch(X̂k, X) then
12: Add (Tk, ŷk, X̂k) to out

return out

where ak ∈ [0, 1] is the presence probability of capsule k, ak,n ∈ [0, 1] is the conditional
probability that a given candidate part n exists, and µk,n is the predicted location of
part k, n. The aks are predicted by the network hcaps, while the ak,ns and µk,ns are
produced by separate networks hpartk for each part k.

We note that (21) provides an autoencoder style reconstructive likelihood for x1:M ,
as the a’s and µ’s depend on the data. To handle the arbitrary number of datapoints
M , the network hcaps employs a Set Transformer architecture (Lee et al., 2019). In
comparison to our iterative variational inference, the CCAE is a “one shot” inference
mechanism. This may be seen as an advantage, but in scenes with overlapping objects,
humans may perform reasoning like “if that point is one of the vertices of a square,
then this other point needs to be explained by a different object” etc, and it may be
rather optimistic to believe this can be done in a simple forward pass. Also, the CCAE
cannot exploit prior knowledge of the geometry of the objects, as it relies on an opaque
network hcaps which requires extensive training.

5 A RANSAC Approach to Inference
A radical alternative to “routing by agreement” inference is to make use of a “random
sample consensus” approach (RANSAC, Fischler and Bolles, 1981), where a minimal
number of parts are used in order to instantiate an object. The original RANSAC
fitted just one object, but Sequential RANSAC (see, e.g., Torr 1998; Vincent and
Laganière 2001) repeatedly removes the parts associated with a detected object and
re-runs RANSAC, so as to detect all objects.

For the constellations problem, we can try matching any pair of points on one of the
templates to every possible pair of M(M − 1) points in the scene. The key insight is
that a pair of known points is sufficient to estimate the 4-dimensional ŷk vector in the
case of similarity transformations. Using the transformation ŷk, we can then predict
the location of the remaining parts of the template, and check if these are actually
present. If so, this provides evidence for the existence of Tk and ŷk. After considering

11

the M(M − 1) subsets, the algorithm then combines the identified instantiations to
give an overall explanation of the scene.

More details of the RANSAC approach are given in Algorithm 3. Assume we have
chosen parts n1 and n2 as the basis for object k, and that we have selected datapoints xi

and xj as their hypothesized counterparts in the image. Let xij be the vector obtained
by stacking xi and xj , and Bk be the 4 × 4 square matrix obtained by stacking Fkn1

and Fkn2 . Then ŷk = B−1k xij . Finally, SubsetMatch(X̂k, X) selects those points in Xk

that are close to X with a given tolerance and add them to the output. Among them,
the solution is given by the one that minimizes

∑Nk

n=1(x̂nk − xnk)2.
The above algorithm chooses a specific basis for each object, but one can consider

all possible bases for each object. It is then efficient to use a hash table to store the
predictions for each part, as used in Geometric Hashing (Wolfson and Rigoutsos, 1997).
Geometric Hashing is traditionally employed in computer vision to match geometric
features against previously defined models of such features. This technique works well
with partially occluded objects, and is computationally efficient if the basis dimension
is low.

For the faces data, each part has location, scale and orientation information, so a
single part is sufficient to instantiate the whole object geometrically. For the appearance,
we follow the procedure for inference in a factor analysis model with missing data, as
given in Williams et al. (2019), to predict ya

k given the appearance of the single part.
It is interesting to compare the RANSAC and routing-by-agreement approaches

to identifying objects. In RANSAC a minimal basis is chosen so as to instantiate the
object, which is then verified by finding the remaining parts in the predicted locations.
In contrast routing-by-agreement makes predictions from all of the observed parts, and
then seeks to adjust the R matrix so as to cluster these predictions into coherent objects.
This is generally an iterative process, although the SCAE autoencoder architecture is
“one shot”.5

6 Related Work
The origins of capsule networks (including the name “capsule”) can be traced back
at least as far as the work of Hinton et al. (2011) on Transforming Auto-encoders.
Capsules were further developed in Sabour et al. (2017). Above we have already
discussed later work by Hinton and co-workers, including Hinton et al. (2018), Kosiorek
et al. (2019), and also De Sousa Ribeiro et al. (2020a).

The paper by De Sousa Ribeiro et al. (2022) provides a thorough survey of capsules.
Below we highlight a few papers on capsules; for example Li and Zhu (2019) develop
a capsule Restricted Boltzmann Machine (RBM). This generative model contains a
number of capsules, each having a binary existence variable and a vector of capsule
variables similar to our yk. However, these capsule variables are not used to model
geometric transformations (the key idea behind capsule networks), but instead to handle
appearance variability of the parts.

5One can extend variational autoencoders to use iterative amortized inference, see Marino et al.
(2018).

12

(a)

(b)
0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦

part-set-a part-set-b

Figure 2: PCAE-based reconstruction for different angles of rotation of the input
scenes. Row (a) corresponds to reconstructions with the learned part-set-a and row
(b) reconstructions with the learned part-set-b. The parts are 11× 11 pixels, and the
images in rows (a) and (b) are 40× 40.

Both Li et al. (2020) and Smith et al. (2021) propose a layered directed generative
model. These both make use of the "single parent constraint", where a capsule in a
layer can be connected to only one capsule (its parent) in the layer above. Such tree-
structured relationships are similar to those studied in Hinton et al. (2000) and Storkey
and Williams (2003). Like Li and Zhu (2019), Li et al. (2020) do not explicitly consider
modelling geometric transformations with their network. This aspect is explicit in
Smith et al. (2021), where their capsule variables (similar to our yks) do model pose,
but not appearance variability.

However, most importantly, these recent capsule models do not properly handle
the fact that the input to a capsule should be a set of parts; instead in their work the
first layer capsules that interact with the input image model specific location-dependent
features/templates in the image, and their second layer capsules have interactions with
the specific first layer capsules (e.g. the fixed affinity ρkij of Smith et al. (2021) parent i
in layer k for child j). But if we consider a second-layer capsule that is, for example,
detecting the conjunction of the 3 strokes comprising a letter “A”, then at different
translations, scales and rotations of the A it will need to connect to different image level
stroke features, so these connection affinities must depend on transformation variables
of the parent. This point is illustrated in Fig. 2 of sec. 7 for the PCAE parts, and is also
made in sec. 5.4 of Smith et al. (2021), where it is shown that the parts decomposition
used of a digit image is not stable with respect to rotation of the digit.

7 Learning Generative Capsule Models
Above we have assumed that the models are given, i.e. that Fkn andmkn are known for
each part n and model k. One advantage of the interpretable nature of the GCM is that

13

one can use a “curriculum learning” approach (Bengio et al., 2009), where individual
models can first be learned, and then composed together for inference in more complex
situations.

For a given object, a key issue is the learning of the decomposition into parts. For
the constellations data this is not an issue as the points (i.e. parts) are given, but for
image data it must be addressed. An important issue is the degree of flexibility of
each part—is it simply a fixed template, or are there internal degrees of flexibility? An
example of the former is non-negative matrix factorization (NMF) (Lee and Seung,
1999), where, for example, aligned images of faces were decomposed into non-negative
basis functions (parts) that were combined with non-negative coefficients. An example
of a richer parts-based model is by Ross and Zemel (2006), who developed “multiple
cause factor analysis” (MCFA) and applied it to faces, to learn the regions governed
by each part and the variability within each part.6 This work was also carried out on
aligned, vertically oriented face images, so it was not necessary to factor out geometric
transformations. For our work on faces, we made use of the parts-based model from
the “PhotoFitMe” work described in section 8.2.1. This provided a ready-made parts
decomposition, but we learned a factor analysis model on top to model the correlations
between the parts.

Kosiorek et al. (2019) developed a Part Capsule Autoencoder (PCAE) to learn parts
from images, and applied it to MNIST images. Each PCAE part is a template which
can undergo an affine transformation, and it has "special features" that were used to
encode the colour of the part. If the overall model is to be equivariant to geometric
transformations, it is vital that the input part decomposition is stable to such variation,
otherwise the model is building on shaky foundations. However, we have observed that
the parts detected by PCAE are not equivariant to rotation. Figure 2 shows that the
PCAE part decompositions inferred for a digit 4 are not stable to different angles of
rotation: notice e.g. in panel (a) how the part coloured white maps to different parts
of the 4 for 45◦-180◦ and 225◦-0◦. The details of this experiment are described in
Appendix D.

As identified above, a strength of the GCM is that individual models can first be
learned, before moving on to more complex situations. We can start with an initial guess
for the object configuration, which can be chosen as one of the noisy configurations
from the training set. We then run variational expectation maximization (variational
EM; see sec. 6.2 in Jordan et al. 1999). In the E-step, variational inference is run as
in sec. 4 with this model to infer the y and Z variables on each training example. In
the M-step, the variatonal distributions determined in the E-step are held fixed, and the
locations of the template points are updated so as to increase the ELBO, summed over
the training cases. Details of this update are given in Appendix B for the constellations
dataset, and experimental results are given in sec. 8.1.3.

6In contrast to our work they did not have a higher-level factor analyser to model correlations between
part appearances, but did allow variability in the masks of the parts.

14

8 Experiments and Results
We first provide experimental details and results for inference and learning for the
constellations data in sec. 8.1, and then give experimental details and results for the
faces data in sec. 8.2.

8.1 Constellations: experiments and results
Below we provide details of the data generators, inference methods and evaluation
criteria for the constellations data in sec. 8.1.1, present results for inference on the
constellations data in sec. 8.1.2, and for learning constellation models in sec. 8.1.3.

8.1.1 Constellations experiments

In order to allow fair comparisons, we use the same dataset generator for geometric
shapes employed by Kosiorek et al. (2019). We create a dataset of scenes, where each
scene consists of a set of 2D points, generated from different geometric shapes. The
possible geometric shapes (templates) are a square and an isosceles triangle, with parts
being represented by the 2D coordinates of the vertices. We use the same dimensions
for the templates as used by Kosiorek et al. (2019), side 2 for the square, and base and
height 2 for the triangle. All templates are centered at (0, 0). In every scene there are
at most two squares and one triangle, so N = 11. Each shape is transformed with a
random transformation to create a scene of 2D points given by the object parts. To
match the evaluation of Kosiorek et al. (2019), all scenes are normalized so as the
points lie in [−1, 1] on both dimensions. When creating the scene, we select randomly
(with probability 0.5) whether an object is going to be present or not, but delete empty
scenes. A test set used for evaluation is comprised of 450-460 non-empty scenes, based
on 512 draws.

Additionally, we study how the methods compare when objects are created from
noisy templates. We consider that the original templates used for the creation of
the images are corrupted with Gaussian noise with standard deviation σ. Once the
templates are corrupted with noise, a random transformation yk is applied to obtain the
object Xk of the scene. As with the noise-free data, the objects are normalized to lie in
[-1,1] on both dimensions.

The CCAE is trained by creating random batches of 128 scenes as described above
and optimizing the objective function in (21). The authors run CCAE for 300K epochs,
and when the parameters of the neural networks are trained, they use their model on
the test dataset to generate an estimation of which points belong to which capsule, and
where the estimated points are located in each scene.

The variational inference approach allows us to model scenes where the points
are corrupted with some noise. The annealing parameter β controls the level of noise
allowed in the model. We use an annealing strategy to fit β, increasing it every time the
ELBO has converged, up to a maximum value of βmax = 1. We set the hyperparameters
of the model to µg

0 = 0, Dg
0 = I4, λ = 104 and amnk = 1

N
. We run Algorithm 2 with

5 different random initializations of R and select the solution with the best ELBO.
Similarly to Kosiorek et al. (2019), we incorporate a sparsity constraint in our model,

15

that forces every object to explain at least two parts. Once our algorithm has converged,
for a given k if any rmnk > 0.9 and

∑
m

∑
n rmnk < 2 it means that the model has

converged to a solution where object k is assigned to less than 2 parts. In these
cases, we re-run Algorithm 2 with a new initialization of R. Notice that this is also
related to the minimum basis size necessary in the RANSAC approach for the types of
transformations that we are considering.

The implementation of SubsetMatch in Algorithm 3 considers all matches between
the predicted and the scene points where the distance between them is less than 0.1.
Among them, it selects the matching with minimum distance between scene and
predicted points.

For both the variational inference algorithm and the RANSAC algorithm, a training
dataset is not necessary if we have prior knowledge of the target shapes. This contrasts
with SCAE, which learns from whole scenes. If prior knowledge is not available, these
shapes can be learned as described in sec. 7, and illustrated in sec. 8.1.3.

Unfortunately we do not have access to the code employed by Hinton et al. (2018),
so we have been unable to make comparisons with it.

Evaluation: Three metrics are used to evaluate the performance of the different
methods: variation of information (Meilă, 2003), adjusted Rand index (Hubert and
Arabie, 1985) and segmentation accuracy (Kosiorek et al., 2019). They are based on
partitions of the datapoints into those associated with each object, and those that are
missing. Compared to standard clustering evaluation metrics, some modifications are
needed to handle the missing objects. Details are provided in Appendix C. We also use
an average scene accuracy metric, where a scene is correct if the method returns the
full original scene, and is incorrect otherwise.

8.1.2 Constellation Inference Experiments

In Table 1 we show a comparison between CCAE, the variational inference method
with a Gaussian mixture prior (8) (GCM-GMM), with a DS prior over permutation
matrices (9) (GCM-DS), and the RANSAC approach for scenes without noise and with
noise levels of σ = 0.1, 0.25 .7 For GCM-GMM and GCM-DS we show the results
where the initial β = 0.05. The effect of different β initializations is discussed below.

We see that GCM-DS improves over CCAE and GCM-GMM in all of the metrics,
with GCM-GMM being comparable to CCAE. Interestingly, for the noise-free scenar-
ios, the RANSAC method achieves a perfect score for all of the metrics. Since there
is no noise on the observations and the method searches over all possible solutions
of yk, it can find the correct solution for any configuration of geometric shapes in a
scene. For the noisy scenarios, all the methods degrade as σ increases. However, the
relative performance between them remains the same, with RANSAC performing the
best, followed by GCM-DS and then GCM-GMM.

Figure 3 shows some reconstruction examples from CCAE and GCM-DS for the
noise-free scenario. In columns (a) and (b) we can see that CCAE recovers the correct
parts assignments but the object reconstruction is inaccurate. In (a) one of the squares
is reconstructed as a triangle, while in (b) the assignment between the reconstruction

7Code at: https://github.com/anazabal/GenerativeCapsules

16

Table 1: Comparison between the different methods. For Segmentation Accuracy,
Adjusted Rand Index and Scene Accuracy the higher the better. For Variation of
Information the lower the better. Different levels of Gaussian noise with standard
deviation σ are considered.

Metric Model σ=0 σ=0.1 σ=0.25
CCAE 0.828 0.754 0.623

Segmentation GCM-GMM 0.753 0.757 0.744
Accuracy ↑ GCM-DS 0.899 0.882 0.785

RANSAC 1 0.992 0.965
CCAE 0.599 0.484 0.248

Adjusted GCM-GMM 0.586 0.572 0.447
Rand Index↑ GCM-DS 0.740 0.699 0.498

RANSAC 1 0.979 0.914
CCAE 0.481 0.689 0.988

Variation of GCM-GMM 0.478 0.502 0.677
Information ↓ GCM-DS 0.299 0.359 0.659

RANSAC 0 0.034 0.135
CCAE 0.365 0.138 0.033

Scene GCM-GMM 0.179 0.173 0.132
Accuracy ↑ GCM-DS 0.664 0.603 0.377

RANSAC 1 0.961 0.843

and the ground truth is not exact. For GCM-DS, if the parts are assigned to the ground
truth properly, and there is no noise, then the reconstruction of the object is perfect.
In column (c) all methods work well. In column (d), CCAE fits the square correctly
(green), but adds an additional red point. In this case GCM-DS actually overlays two
squares on top of each other. Both methods fail badly on column (e). Note that CCAE
is not guaranteed to reconstruct an existing object correctly (square or triangle in this
case). In column (f) we can see that CCAE fits an irregular quadrilateral (blue) to the
assigned points, while GCM-DS obtains the correct fit. Additional examples for noisy
cases with σ = 0.25 are shown in Appendix E.

To assess the effect of in the initial value of β, we considered 6 values: 0.005,
0.01, 0.05, 0.1, 0.2, and 0.5. We found that GCM-DS is always better than CCAE
and GCM-GMM. As the initial β is increased, GCM-DS performs better across all the
metrics. We found that the performance of GCM-DS and GCM-GMM degrades with
β > 0.1.

We conducted paired t-tests between CCAE and GCM-GMM, GCM-DS and
RANSAC on the three clustering metrics for σ = 0 and initial β = 0.05. The
differences between CCAE and GCM-DS are statistically significant with p-values
less than 10−7, and between CCAE and RANSAC with p-values less than 10−28. For
CCAE and GCM-GMM the differences are not statistically significant.

17

Figure 3: Reconstruction examples from CCAE and GCM-DS for noise-free data. The
upper figures show the ground truth of the test images. The middle figures show the
reconstruction and the capsule assignments (by colours) of CCAE. The lower figures
show the reconstruction and the parts assignment of GCM-DS. Datapoints shown with a
given colour are predicted to belong to the reconstructed object with the corresponding
colour.

8.1.3 Learning Constellations

Making use of the interpretable nature of the GCM, we consider learning each template
(triangle or square) individually from noisy data, with noise values of σ = 0, 0.1, 0.25.
(Note that the full dataset as generated contains 1/7 = 14% single triangles, and 28%
single squares which can be selected simply based on the number of points.)

To compare the learned template to the ground-truth (GT), we have to bear in mind
that the learned template could be a rotated version, as this will still be centered and
have the correct scale. To remove this rotational degree of freedom, we compute the
Procrustes rotation (see, e.g., Mardia et al. 1979, sec. 14.7) that best aligns them. After
this, we can compute the standardized mean squared error (SMSE) 1

N

∑N
n=1(pn −

pGT
n)T (pn − pGT

n).
We use S = 64 examples to train each template, and use one random sample to

seed the initial template (after translation, scaling and rotation). (In fact, for noise-
free constellation data (σ = 0), a single observed triangle or square configuration
serves as a perfect template.) As N is 3 or 4 in this case, we can use exact inference
over permutations, rather than the variational approach. We initialized β = 0.01 and
increased it after each iteration by a factor of two, similarly to the annealing strategy
utilized in Algorithm 2. The stopping criterion for the learning process was that the
SMSE between two consecutive updates of the learned template should not be greater
than 10−4.

For the triangle object, the SMSE of the learned template was 4.1×10−5 at σ = 0.1,
and 9.6 × 10−3 at σ = 0.25. For the square object, the corresponding SMSEs were
1.8 × 10−4 and 2.1 × 10−2 respectively. Figure 4 shows example learned templates

18

square, σ = 0.1 triangle, σ = 0.25

Figure 4: Visualization of GT templates and Procrustes transformed learned templates,
after training with scenes of different noise levels.

(after Procrustes rotation) compared to the GT templates. We see that with only S = 64
examples, an accurate template can be learned for each object. As expected, the
error increases with increasing σ. Note that σ = 0.25 gives quite noticeably distorted
examples, see e.g. the examples in Fig. 6 (top row). In contrast, for the CCAE, the
encoder network in the autoencoder is not able to benefit from curriculum learning,
and must tackle the full problem for the start; Kosiorek et al. (2019) used 300k batches
of 128 scenes to train this model.

8.2 Faces: experiments and results
Below we provide details of the data generator and inference methods for the faces
data in sec. 8.2.1, and give inference results in sec. 8.2.2.

8.2.1 Parts-based face model

We have developed a novel hierarchical parts-based model for face appearances. It is
based on five parts, namely eyes, nose, mouth, hair and forehead, and jaw (see Fig. 1(b)).
Each part has a specified mask, and we have cropped the hair region to exclude highly
variable hairstyles. This decomposition is based on the "PhotoFit Me" work and data of
Prof. Graham Pike, see https://www.open.edu/openlearn/PhotoFitMe.
For each part we trained a probabilistic PCA (PPCA) model to reduce the dimensional-
ity of the raw pixels; the dimensionality is chosen so as to explain 95% of the variance.
This resulted in dimensionalities of 24, 11, 12, 16 and 28 for the eyes, nose, mouth,
jaw and hair parts respectively. We then add a factor analysis (FA) model on top with
latent variables ya

k to model the correlations of the PPCA coefficients across parts.
The dataset used (from PhotoFit Me) is balanced by gender (female/male) and by race
(Black/Asian/Caucasian), hence the high-level factor analyser can model regularities
across the parts, e.g. wrt skin tone. xa

n is predicted from ya
k as F a

kny
a
k +ma

kn as in (5).

19

https://www.open.edu/openlearn/PhotoFitMe

yg
k would have an effect on the part appearance, e.g. by scaling and rotation, but this

can be removed by running the PPCA part detectors on copies of the input image that
have been rescaled and rotated.

The “PhotoFit Me” project utilizes 7 different part-images for each gender/race
group, for each of the five part types. As a result, we generated 75 synthetic faces
for each group, by combining these face-parts, which led to a total of 100, 842 faces.
All faces were centered on a 224 × 224 pixel canvas. For each synthetic face we
created an appearance vector xa

n, which consisted of the stacked vectors from the 5
different principal component subspaces. Finally, we created a balanced subset from
the generated faces (18, 000 images), which we used to train a FA model. We tuned the
latent dimension of this model by training it multiple times with a different number of
factors, and finally chose 12 factors, where a knee in the reconstruction loss on the face
data was observed on a validation set.

To evaluate our inference algorithm we generated 224× 224 pixel scenes of faces.
These consisted of 2, 3, 4 or 5 randomly selected faces from a balanced test-set of
7, 614 synthetic faces, which were transformed with random similarity transformations.
The face-objects were randomly scaled down by a minimum of 50% and were also
randomly translated and rotated, with the constraint that all the faces fit the scene and
did not overlap each other. An example of such a scene is shown in Fig. 1(c), and
further examples are shown in Figure 5. For each scene it is easy to determine the
correct number of faces, as the number of faces present is equal to the count of each of
the parts detected. Afterwards, these two constraints were dropped to test the ability of
our model to perform inference with occluded parts, see Figure 5(e) for an example.
These occluded scenes were comprised of 3 faces. In our experiments we assume that
the face parts are detected accurately, i.e. as generated.

In the case of facial parts—and parts with both geometric and appearance features
in general—it only makes sense to assign the observed parts xm to template parts
xkn of the same type (e.g. an observed “nose” part should be assigned only to a
template “nose” part). We assume that this information is known, since the size of
the appearance vector of each part-type is unique. Thus it no longer makes sense to
initialize the assignment matrix uniformly for all entries, but rather only for the entries
that correspond to templates of the observed part’s type. Consequently, (14) is only
utilized for m,n pairs of the same type. Similarly to the constellation experiments,
we initialized the assignment matrix 5 times and selected the solution with the largest
ELBO.

In the experiments we evaluated the part assignment accuracy of the algorithms. In
a given scene, the assignment is considered correct if all the observed parts have been
correctly assigned to their corresponding template parts with the highest probability. In
order to evaluate the prediction of the appearance features, we measured the root mean
square error (RMSE) between the input and generated scenes.

20

Ground Truth VI RANSAC

(a)

(b)

(c)

(d)

(e)

Figure 5: Reconstruction examples with our Variational Inference (VI) algorithm and
the RANSAC-type algorithm: (a) scene with 2 faces, (b) scene with 3 faces, (c) scene
with 4 faces (d) scene with 5 faces and (e) 3 faces with partially occluded faces. All
faces have been randomly selected and transformed.

21

8.2.2 Face Experiments

Firstly, the VI algorithm was evaluated on scenes of multiple, randomly selected and
transformed faces.8 For scenes with 2, 3, 4 and 5 faces, the assignment accuracy was
100%, 100%, 99.2% and 93.7% respectively (based on 250 scenes per experiment).
RANSAC gave 100% accurate assignments in all four cases. This is to be expected,
since from each part the pose of the whole can be predicted accurately. However,
RANSAC’s ability to infer the appearance of the faces proved to be limited. More
specifically, in 250 instances uniformly distributed across scenes of 2, 3, 4 and 5 faces,
the VI algorithm had RMSE of 0.036± 0.004, while RANSAC scored 0.052± 0.006,
with consistently higher error on all scenes. This is illustrated in the examples of Figure
5, where it is clear that RANSAC is less accurate in capturing key facial characteristics.
If inference for ya

k is run as a post-processing step for RANSAC using all detected
parts in an object, this difference disappears.

The supplementary material contains a movie showing the fitting of the models to
the data. It is not possible for us to make a fair comparison with the SCAE algorithm
on the faces data, as the PCAE model used is not rich enough to model PCA subspaces.

Secondly, we evaluated the ability of our algorithm to perform inference in scenes
where some parts have been occluded, either by overlapping with other faces or by
extending outside of the scene. In 250 scenes with 3 partially occluded faces, both the
VI and RANSAC algorithms were fully successful in assigning the observed parts to
the corresponding template accurately; see Figure 5(e) for an example.

9 Discussion
In our experiments RANSAC was shown to often be an effective alternative to varia-
tional inference (VI). This is particularly the case when the basis in RANSAC is highly
informative about the object. For the constellations experiments this was the case, even
when the datapoints were corrupted by noise. However, as we saw in sec. 8.2.2 for
the faces data, an individual part was less informative about the appearance than the
geometry, and so led to worse reconstructions unless a post-processing step using all of
the detected parts was used. Also, RANSAC’s sampling-based inference may be less
amenable to neural-network style parallel implementations than VI.

Above we have described a generative capsules model. The key features of this
approach are:

• The model is interpretable, and thus admits the use of prior knowledge, e.g. if we
already know some things about an object. The formulation is also composable
in that models for individual objects can be learned separately, then combined
together at inference time.

• The variational inference algorithm is obtained directly from a generative model
for the observations X . In contrast other leading formulations set up an objective
to produce clusters in y-space.

8Code at: https://github.com/tsagkas/capsules

22

• The interpretable structure of the GCM allows other inference methods to be
used, as demonstrated by our use of RANSAC.

• The GCM conforms to the view, as promoted in Kosiorek et al. (2019), that the
input is regarded as a set of parts. This formulation ensures that if the parts
can be detected equivariantly, then the inferences for the objects will also be
equivariant. This was demonstrated in the constellations and faces experiments.

As noted above, for the GCM to be equivariant to large transformations of the
input, the parts need to to be detected equivariantly. Some capsules papers have used
the affNIST dataset9, but this only used small rotations of up to ±20◦. Hinton et al.
(2018, sec. 5.1) did investigate the use of very different viewpoints on the smallNORB
dataset; while their capsules results in Table 2 did outperform a competitor CNN, it is
noticeable that there is still a performance gap between novel and familiar viewpoints.
We have demonstrated (see Fig. 2) that the PCAE decomposition is not equivariant to
large rotations, and similar observations have been made by Smith et al. (2021) for
their model. Thus we believe that further work on the equivariant extraction of parts is
necessary in order to achieve equivariant object recognition.

Acknowledgements
We thank the anonymous referees for their helpful comments. This work was supported
in part by The Alan Turing Institute under EPSRC grant EP/N510129/1. For the
purpose of open access, the authors have applied a Creative Commons Attribution (CC
BY) licence to any Author Accepted Manuscript version arising from this submission.

A Details for Variational Inference
The evidence lower bound (ELBO) L(q) = Eq[log p(X, Y, Z)− log q(Y, Z)] for this
model is decomposed in three terms:

L(q) = Eq[log p(X|Y, Z)]−KL(q(Y)||p(Y))−KL(q(Z)||p(Z)), (22)

where KL(q||p) is the Kullback-Leibler divergence between distributions q and p. The
first term indicates how well the generative model p(X|Y, Z) fits the observations
under our variational model q(Y, Z):

Eq[log p(X|Y, Z)] = −
M∑

m=1

K∑
k=1

Nk∑
n=1

rmnk

[dkn
2

log 2π +
1

2
log |β−1Dkn|+

β

2
(xm − Fknµk −mkn)TD−1kn (xm − Fknµk −mkn) +

β

2
trace(F T

knD
−1
knFknΛ−1k)

]
.

(23)

9https://www.cs.toronto.edu/~tijmen/affNIST/

23

https://www.cs.toronto.edu/~tijmen/affNIST/

The Kullback-Leibler divergence between the two Gaussian distributions q(Y) and
p(Y) in our model has the following expression:

KL(q(Y)||p(Y)) =

1

2

K∑
k=1

(
trace(D−10 Λ−1k)− dk + (µk − µ0)

TD−10 (µk − µ0) + log |D0|+ log |Λk|
)
,

(24)

where dk is the dimensionality of yk.
The expression for KL(q(Z)||p(Z)) is given by

KL(q(Z)||p(Z)) =
N∑

m=1

K∑
k=1

Nk∑
n=1

rmnk log
rmnk

amnk

. (25)

B Learning for the Constellations Model
We specialize the ELBO given in Appendix A for one constellation, taking K = 1
(and hence dropping the index k). As there are no appearance features, we drop the g
superscript on Fn and y. Also the meanmkn is only needed for the appearance features
and thus can be omitted. Dn is specialized to λ−1I2, we set β = 1 in this appendix and
allow λ to vary, and we assume p(y) ∼ N(0,Λ−10). Hence by specializing eq. 23 we
obtain

Eq[log p(X|Y, Z)] =

−
M∑

m=1

N∑
n=1

rmn

[
log

2π

λ
+
λ

2
(xm − Fnµ)T (xm − Fnµ) +

λ

2
trace(F T

n FnΛ−1)
]
, (26)

where q(y) ∼ N(µ,Λ−1), with Λ and µ specialized from eqs. 19 and 20 as

Λ = Λ0 + λ
M∑

m=1

N∑
n=1

rmnF
T
n Fn, µ = λ Λ−1(

M∑
m=1

N∑
n=1

rmnF
T
n xm). (27)

Our goal in learning is to adapt the template parameters {Fn} so as to increase the
variational log likelihood (ELBO) L(q). In the M-step of variational EM, the distri-
butions q(y) and q(Z) (parameterized by µ, Λ and R) are held fixed, and the ELBO
is optimized wrt {Fn}. Note that the terms KL(q(Y)||p(Y)) and KL(q(Z)||p(Z)) do
not depend explicitly on {Fn}, and hence any derivative of these KL terms wrt Fn will
be zero. Thus these terms can be omitted when optimizing the ELBO wrt {Fn}.

The trace term in eq. 26 can be simplified using
∑

m rmn = 1, to give

M∑
m=1

N∑
n=1

rmntrace(F T
n FnΛ−1) = trace((

N∑
n=1

F T
n Fn)Λ−1). (28)

24

It turns out that it is more convenient to write Fnµ in terms of pn = (pnx, pny)
T

and the mean transformation parameters µ = (t̂x, t̂y, ŝc, ŝs)
T , where ŝc is the posterior

mean of s cos θ, and ŝs is the same for s sin θ. Hence we have that

Fnµ =

(
t̂x
t̂y

)
+

(
ŝc ŝs
−ŝs ŝc

)(
pnx
pny

)
def
= t̂ + T̂pn. (29)

Hence xm − Fnµ = xm − t̂ − T̂pn = x̃m − T̂pn, where x̃m = xm − t̂, and the
quadratic form (xm−Fnµ)T (xm−Fnµ) can be rewritten as (x̃m− T̂pn)T (x̃m− T̂pn).

We can now rewrite the term Q =
∑

m

∑
n rmn(xm − Fnµ)T (xm − Fnµ) in eq.

26 as

Q =
∑
m

∑
n

rmn(x̃m − T̂pn)T (x̃m − T̂pn) (30)

=
∑
m

∑
n

rmn

(
pT
n T̂

T T̂pn − pT
n T̂

T x̃m − x̃T
mT̂ pn + x̃T

mx̃m

)
. (31)

Using
∑

m rmn = 1 and defining x̃r
n =

∑
m rmnx̃m, we obtain

Q =
∑
n

pT
n T̂

T T̂pn − pT
n T̂

T x̃r
n − (x̃r

n)T T̂pn + (
∑
m,n

rmnx̃
T
mx̃m). (32)

This can be further simplified by noting that T̂ T T̂ = ŝ2I2, where ŝ2 = ŝ2c + ŝ2s.
The above derivation is all for one example X . Now summing Q over all training

examples {Xi} we obtain

Qtot =
∑
i

Qi =
∑
i

∑
n

(
ŝ2ip

T
npn − pT

n T̂
T x̃r

ni − (x̃r
ni)

T T̂pn +
∑
m

rmnx̃
T
mix̃mi

)
,

(33)
where x̃r

ni denotes x̃r
n in the ith example, and similarly for x̃mi.

Now consider the trace term Si = trace((
∑N

n=1 F
T
n Fn)Λ−1i), where Λi is the preci-

sion matrix for y on the ith example. We have that

F T
n Fn =


1 0
0 1
pnx pny
pny −pnx

(1 0 pnx pny
0 1 pny −pnx

)
=


1 0 pnx pny
0 1 pny −pnx
pnx pny p2nx + p2ny 0
pny −pnx 0 p2nx + p2ny

 .

(34)

Assume that the template is centered so that
∑

n pnx =
∑

n pny = 0, and scaled so that∑
n p

2
nx + p2ny = N . Hence we have that

∑
n F

T
n Fn = NI4. From eq. 27 and taking

Λ0 = αI4 we have

Λ = Λ0 +
∑
m

∑
n

rmnF
T
n Fn = (α + λN)I4. (35)

Hence

trace((
N∑

n=1

F T
n Fn)Λ−1) = N trace(Λ−1) =

4N

α + λN
. (36)

25

Crucially, this term is independent of {pn}, as long as the template is centered and
scaled correctly. Hence this term can be ignored when optimizing the pns.

Thus optimizing the ELBO wrt pn comes down to optimizing Qtot wrt pn. Differ-
entiating eq. 33 wrt pn and setting it equal to zero we obtain

∂Qtot

∂pn

=
∑
i

(
2ŝ2ipn − 2T̂ T

i x̃
r
ni

)
= 0, (37)

which gives the update formula

pn =
1∑
i ŝ

2
i

∑
i

T̂ T
i x̃

r
ni. (38)

It can also be shown that T̂ T = ŝ2T̂−1, yielding the update equation

pn =

∑
i ŝ

2
i T̂
−1
i x̃r

ni∑
i ŝ

2
i

. (39)

This is quite intuitive—we first remove the effect of the translation t̂ by computing
x̃m, then take into account the weighted assignments rmn to give x̃r

ni, and then apply
T̂−1i to remove the effect of the scaling and rotation. The summations are weighted by
ŝ2i , which has the effect giving higher weight to examples with larger scale, where the
relative effect of the noise N(0, λ−1) is smaller.

One can also re-estimate λ using the variational EM algorithm. Differentiating eq.
26 wrt λ we obtain

1

λ
=

1

2NS

S∑
i=1

∑
m,n

rimn(xmi − Fnµi)
T (xmi − Fnµi), (40)

where S denotes the number of examples. As λ−1 is a variance, this equation makes
sense in terms of an average of squared residuals. In the derivation of eq. 40 the
dependence of the trace term 4Nλ/(α +Nλ) on λ has been omitted, as for Nλ� α
this dependence is negligible.

C Evaluation metrics for the constellations data
In a given scene X there are M points, but we know that there are N ≥ M possible
points that can be produced from all of the templates. Assume that K ′ ≤ K templates
are active in this scene. Then the points in the scene are labelled with indices 1, . . . , K ′,
and we assign the missing points index 0. Denote the ground truth partition as V =
{V0, V1, . . . VK′}. An alternative partition output by one of the algorithms is denoted
by V̂ = {V̂0, V̂1, . . . V̂K̂′}. The predicted partition V̂ may instantiate objects or points
that were in fact missing, thus it is important to handle the missing data properly.

In Information Theory, the variation of information (VI) (Meilă, 2003) is a mea-
sure of the distance between two partitions of elements (or clusterings). For a given

26

set of elements, the variation of information between two partitions V and V̂ , where
N =

∑
i |Vi| =

∑
j |V̂j| is defined as:

V I(V, V̂) = −
∑
i,j

rij

[
log

rij
pi

+ log
rij
qj

]
(41)

where rij =
|Vi∩V̂j |

N
, pi = |Vi|

N
and qj =

|V̂j |
N

. In our experiments we report the average
variation of information of the scenes in the dataset.

The Rand index (Rand, 1971) is another measure of similarity between two data
clusterings. This metric takes pairs of elements and evaluates whether they do or do
not belong to the same subsets in the partitions V and V̂

RI =
TP + TN

TP + TN + FP + FN
, (42)

where TP are the true positives, TN the true negatives, FP the false positives and
FN the false negatives. The Rand index takes on values between 0 and 1. We use
instead the adjusted Rand index (ARI) (Hubert and Arabie, 1985), the corrected-
for-chance version of the Rand index. It uses the expected similarity of all pair-wise
comparisons between clusterings specified by a random model as a baseline to correct
for assignments produced by chance. Unlike the Rand index, the adjusted Rand
index can return negative values if the index is less than the expected value. In our
experiments, we compute the average adjusted Rand index of the scenes in our dataset.

The segmentation accuracy (SA) is based on obtaining the maximum bipartite
matching between V and V̂ , and was used by Kosiorek et al. (2019) to evaluate the
performance of CCAE. For each set Vi in V and set V̂j in V̂ , there is an edge wij

with the weight being the number of common elements in both sets. Let W (V, V̂) be
the overall weight of the maximum matching between V and V̂ . Then we define the
average segmentation accuracy as:

SA =
I∑

i=1

W (Vi, V̂i)

W (Vi, Vi)
=

1

N

I∑
i=1

W (Vi, V̂i), (43)

where I is the number of scenes. Notice that W (Vi, Vi) represents a perfect assignment
of the ground truth, both the observed and missing subsets, and thus W (Vi, Vi) = N .

There are some differences on how we compute the SA metric compared to Kosiorek
et al. (2019). First, they do not consider the missing points as part of their ground truth,
but as we argued above this is necessary. They evaluate the segmentation accuracy in
terms of the observed points in the ground truth, disregarding possible points that were
missing in the ground truth but predicted as observed in V̂ . Second, they average the
segmentation accuracy across scenes as

SA =

∑I
i=1W (Vi, V̂i)∑I
i=1W (Vi, Vi)

. (44)

For them, W (Vi, Vi) = Mi, where Mi is the number of points present in a scene. In our
case, both averaging formulae are equivalent since our W (Vi, Vi) is the same across
scenes.

27

D Failures of rotation equivariance for SCAE
We trained the SCAE model with digit “4” images from the training set of the MNIST
dataset10, after they had been uniformly rotated by up to 360◦ and uniformly translated
by up to 6 pixels on the x and y axes. Since we used a single class in the dataset we
modified the SCAE architecture to use only a single object capsule.

We repeated the training of SCAE multiple times for 8K epochs, and collected
distinct sets of learned 11× 11 parts that the digit “4” can be decomposed into. Two
example part-sets are shown in Fig. 2. We then evaluated PCAE’s ability to detect these
parts in MNIST digit “4” images that had been rotated by multiples of 45◦. Our results
indicate that the PCAE model is not equivariant to rotations. This is apparent from Fig.
2, where the learned parts are inconsistently assigned to the regions of the digit-object,
depending on the angle of rotation. We hypothesize that this phenomenon stems from
the fact that PCAE seems to generate parts that are either characterized by an intrinsic
symmetry, and thus their pose is ambiguous, as in the line features of part-set-a in Fig.
2); or pairs of parts that are transformed versions of themselves, and thus can be used
interchangeably (e.g. the first and third templates of part-set-b in Fig. 2). This leads to
identifiability issues, where the object can be decomposed into its parts in numerous
ways.

E Examples of Noisy Cases
Figure 6 shows several examples of objects generated from noisy templates with a
corruption level of σ = 0.25. GCM-DS and RANSAC do not allow for deformable
objects to try to fit the points exactly, contrary to CCAE. Both methods try to find the
closest reconstruction of the noisy points in the image by selecting the geometrical
shapes that are a best fit to those points. Nonetheless, both methods can determine
that which parts belong together to form a given object, even when the matching is not
perfect.

References
Basri, R. (1996). Paraperspective ≡ Affine. International Journal of Computer Vision,

19:169–179.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum Learning.
In Proc. 26th International Conference on Machine Learning.

Biederman, I. (1987). Recognition-by-Components: A Theory of Human Image
Understanding. Psychological Review, 94:115–147.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

De Sousa Ribeiro, F., Duarte, K., Everett, M., Leontidis, G., and Shah, M. (2022).
Learning with Capsules: A Survey. arXiv:2206.02664.

10http://yann.lecun.com/exdb/mnist .

28

Figure 6: Reconstruction examples from CCAE, GCM-DS and RANSAC with Gaus-
sian noise σ = 0.25.

De Sousa Ribeiro, F., Leontidis, G., and Kollias, S. (2020a). Capsule Routing via
Variational Bayes. In Proc. Thirty-Fourth AAAI Conference on Artificial Intelligence
(AAAI-20), pages 3749–3756.

De Sousa Ribeiro, F., Leontidis, G., and Kollias, S. (2020b). Introducing Routing
Uncertainty in Capsule Networks. In Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M., and Lin, H., editors, Advances in Neural Information Processing Systems,
volume 33, pages 6490–6502. Curran Associates, Inc.

Felzenszwalb, P., Girshick, R., McAllester, D., and Ramanan, D. (2009). Object
Detection with Discriminatively Trained Part Based Models. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 32(9):1627–1645.

Fergus, R., Perona, P., and Zisserman, A. (2003). Object Class Recognition by Un-
supervised Scale-Invariant Learning. In IEEE Computer Society Conference on
Computer Vision and Pattern Recognition.

Fischler, M. A. and Bolles, R. C. (1981). Random Sample Consensus: A Paradigm
for Model Fitting with Applications to Image Analysis and Automated Cartography.
Communications of the ACM, 24(6):381–395.

Fischler, M. A. and Elschlager, R. A. (1973). The Representation and Matching of
Pictoral Structures. IEEE Transactions on Computers, 22(1):67–92.

Hinton, G. E., Ghahramani, Z., and Teh, Y. W. (2000). Learning to Parse Images. In
Solla, S. A., Leen, T. K., and Müller, K.-R., editors, Advances in Neural Information
Processing Systems 12, pages 463–469. MIT Press, Cambridge, MA.

Hinton, G. E., Krizhevsky, A., and Wang, S. D. (2011). Transforming Auto-encoders.
In Proceedings ICANN 2011.

29

Hinton, G. E., Sabour, S., and Frosst, N. (2018). Matrix Capsules with EM Routing. In
International Conference on Learning Representations.

Hubert, L. and Arabie, P. (1985). Comparing partitions. Journal of Classification,
2(1):193–218.

Jordan, M. I., Ghahramani, Z., and Jaakkola, T. S. Saul, L. K. (1999). An Introduction
to Variational Methods for Graphical Models. Machine Learning, 37:183–233.

Kosiorek, A., Sabour, S., Teh, Y. W., and Hinton, G. E. (2019). Stacked Capsule
Autoencoders. In Advances in Neural Information Processing Systems, pages 15512–
15522.

Lee, D. D. and Seung, H. S. (1999). Learning the parts of objects by non-negative
matrix factorization. Nature, 401:788–791.

Lee, J., Lee, Y., Kim, J., Kosiorek, A. R., Choi, S., and Teh, Y.-W. (2019). Set
Transformer: A Framework for Attention-based Permutation-invariant Neural Net-
works. In Proc. of the 36th International Conference on Machine Learning, pages
3744–3753.

Li, Y. and Zhu, X. (2019). Capsule Generative Models. In Tetko, I. V. et al., editors,
ICANN, pages 281–295. LNCS 11727.

Li, Y., Zhu, X., Naud, R., and Xi, P. (2020). Capsule Deep Generative Model That
Forms Parse Trees. In 2020 International Joint Conference on Neural Networks
(IJCNN). IEEE.

Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979). Multivariate Analysis. Academic
Press, London.

Marino, J., Yue, Y., and Mandt, S. (2018). Iterative Amortized Inference. In ICML.

Meilă, M. (2003). Comparing Clusterings by the Variation of Information. In Learning
Theory and Kernel Machines, pages 173–187. Springer.

Mena, G., Varol, E., Nejatbakhsh, A., Yemini, E., and Paninski, L. (2020). Sinkhorn
Permutation Variational Marginal Inference. In Symposium on Advances in Approxi-
mate Bayesian Inference, pages 1–9. PMLR.

Nazabal, A., Tsagkas, N., and Williams, C. K. I. (2022). Inference and Learning for
Generative Capsule Models. arXiv:2209.03115.

Powell, B. and Smith, P. A. (2019). Computing expectations and marginal likelihoods
for permutations. Computational Statistics, pages 1–21.

Rand, W. M. (1971). Objective Criteria for the Evaluation of Clustering Methods.
Journal of the American Statistical Association, 66(336):846–850.

Rao, R. P. N. and Ballard, D. H. (1999). Predictive coding in the visual cortex:
a functional interpretation of some extra-classical receptive-field effects. Nature
Neurosci., 2(1):79–87.

Revow, M., Williams, C. K. I., and Hinton, G. E. (1996). Using Generative Models
for Handwritten Digit Recognition. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 18(6):592–606.

30

Ross, D. and Zemel, R. (2006). Learning Parts-Based Representations of Data. Journal
of Machine Learning Research, 7:2369–2397.

Sabour, S., Frosst, N., and Hinton, G. (2017). Dynamic Routing Between Capsules. In
Advances in Neural Information Processing Systems, pages 3856–3866.

Sinkhorn, R. and Knopp, P. (1967). Concerning nonnegative matrices and doubly
stochastic matrices. Pacific Journal of Mathematics, 21(2):343–348.

Smith, L., Schut, L., Gal, Y., and van der Wilk, M. (2021). Capsule Networks—A
Generative Probabilistic Perspective. https://arxiv.org/pdf/2004.03553.pdf.

Storkey, A. J. and Williams, C. K. I. (2003). Image Modelling with Position-Encoding
Dynamic Trees. IEEE Trans Pattern Analysis and Machine Intelligence, 25(7):859–
871.

Torr, P. H. S. (1998). Geometric Motion Segmentation and Model Selection. Philo-
sophical Trans. of the Royal Society A, 356:1321–1340.

Vincent, E. and Laganière, R. (2001). Detecting planar homographies in an image pair.
In Proceedings of the 2nd International Symposium on Image and Signal Processing
and Analysis (ISPA).

Williams, C. K. I., Nash, C., and Nazabal, A. (2019). Autoencoders and Probabilistic
Inference with Missing Data: An Exact Solution for The Factor Analysis Case.
arXiv:1801.03851.

Wolfson, H. J. and Rigoutsos, I. (1997). Geometric Hashing: An Overview. IEEE
Computational Science and Engineering, 4(4):10–21.

31

	Introduction
	Overview
	A Generative Capsules Model (GCM)
	Variational Inference
	Comparison with other objective functions

	A RANSAC Approach to Inference
	Related Work
	Learning Generative Capsule Models
	Experiments and Results
	Constellations: experiments and results
	Constellations experiments
	Constellation Inference Experiments
	Learning Constellations

	Faces: experiments and results
	Parts-based face model
	Face Experiments

	Discussion
	Details for Variational Inference
	Learning for the Constellations Model
	Evaluation metrics for the constellations data
	Failures of rotation equivariance for SCAE
	Examples of Noisy Cases

