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Abstract

We consider the scenario of deep clustering, in which the available prior knowledge is
limited. In this scenario, few existing state-of-the-art deep clustering methods can per-
form well for both non-complex topology and complex topology datasets. To address
the problem, we propose a constraint utilizing symmetric InfoNCE, which helps an ob-
jective of deep clustering method in the scenario train the model so as to be efficient
for not only non-complex topology but also complex topology datasets. Additionally,
we provide several theoretical explanations of the reason why the constraint can en-
hances performance of deep clustering methods. To confirm the effectiveness of the
proposed constraint, we introduce a deep clustering method named MIST, which is a
combination of an existing deep clustering method and our constraint. Our numerical
experiments via MIST demonstrate that the constraint is effective. In addition, MIST
outperforms other state-of-the-art deep clustering methods for most of the commonly
used ten benchmark datasets.

1 Introduction

1.1 Background
Clustering is one of the most popular and oldest research fields of machine learning.
Given unlabeled data points, the goal of clustering is to group them according to some
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criterion. In addition, in most of the cases clustering is performed with unlabeled
datasets. Until today, many clustering algorithms have been proposed (MacQueen,
1967; Day, 1969; Girolami, 2002; Wang et al., 2003; Ng et al., 2002; Ester et al., 1996;
Sibson, 1973). For a given unlabeled dataset, the number of clusters, and a distance
metric, K-means (MacQueen, 1967) aims to partition the dataset into the given number
clusters. Especially when the squared Euclidean distance is employed as the metric, it
returns convex-shaped clusters within short running time. GMMC (Gaussian Mixture
Model Clustering) (Day, 1969) assigns labels to estimated clusters after fitting GMM
to an unlabeled dataset, where the number of clusters can be automatically determined
by Bayesian Information Criterion (Schwarz, 1978). The kernel K-means (Girolami,
2002), kernel GMMC (Wang et al., 2003) and SC (Spectral Clustering) (Ng et al., 2002)
can deal with more complicated shapes compared to K-means and GMMC. On the other
hand, as examples categorized into a clustering method that does not require the number
of clusters, DBSCAN (Ester et al., 1996) and Hierarchical Clustering (Sibson, 1973) are
listed.

Although the above-mentioned classical clustering methods are useful for low-dimensional
small datasets, they often fail to handle large and high-dimensional datasets (e.g., im-
age/text datasets). Due to the development of deep learning techniques for DNNs (Deep
Neural Networks), we can now handle large datasets with high-dimension (Lecun et al.,
2015). Note that a clustering method using DNNs is refereed to as Deep Clustering
method.

1.2 Our Scenario with Deep Clustering
The most popular scenario for deep clustering is the domain-specific scenario (Scenario1)
(Mukherjee et al., 2019; Ji et al., 2019; Asano et al., 2019; Van Gansbeke et al., 2020;
Caron et al., 2020; Yang et al., 2020; Monnier et al., 2020; Li et al., 2021; Dang et al.,
2021). In this scenario, an unlabeled dataset of a specific domain and its number of clus-
ters are given, while specific rich knowledge in the domain can be available. The dataset
is often represented by raw data. An example of the specific knowledge in the image
domain is efficient domain-specific data-augmentation techniques (Ji et al., 2019). It
is also known that CNN (Convolutional Neural Network) (LeCun et al., 1989) can be
an efficient DNN to extract useful features from raw image data. In this scenario, most
of the authors have proposed end-to-end methods, while some have done sequential
methods. In the category of the end-to-end methods, a model is defined by an efficient
DNN for a specific domain, where the input and output of the DNN are (raw) data and
its predicted cluster label, respectively. The model is trained under a particular criterion
as utilizing the domain-specific knowledge. In the category of the sequential methods,
the clustering DNN is often constructed in the following three steps: 1) Create a DNN
model that extracts features from data in a specific domain, followed by an MLP (Multi-
Layer Perceptron) predicting cluster labels. 2) Train the feature-extracting DNN using
an unlabeled dataset and domain-specific knowledge. Then, freeze the set of trainable
parameters in the feature extracting DNN. 3) Train the MLP with the features obtained
from the feature extracting DNN, and domain-specific knowledge.

The secondly important scenario is called the non-domain-specific scenario (Scenario2)
(Springenberg, 2015; Xie et al., 2016; Jiang et al., 2017; Guo et al., 2017; Hu et al.,
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Table 1: Representative deep clustering methods (either sequential or end-to-end). They
are categorized into six types; T1 to T6. The example methods are shown for each type.
Here, Seq. is abbreviation of the word ”Sequential”.

Type Explanation Example(s)
Se

q. T1 Plain embedding based DEC (Xie et al., 2016), SCAN (Van Gansbeke et al., 2020)
T2 Spectral embedding based SpectralNet (Shaham et al., 2018)

E
nd

-t
o-

E
nd T3 Variational bound based VaDE (Jiang et al., 2017)

T4 Mutual information based IMSAT (Hu et al., 2017), IIC (Ji et al., 2019)
T5 Generative adversarial net based CatGAN (Springenberg, 2015)
T6 Optimal transport based SELA (Asano et al., 2019)

2017; Shaham et al., 2018; Nazi et al., 2019; Gupta et al., 2020; McConville et al.,
2020). In this scenario, an unlabeled dataset and the number of clusters are given, while
a few generic assumptions for a dataset can be available, such as 1) the cluster assump-
tion, 2) the manifold assumption, and 3) the smoothness assumption; see Chapelle et al.
(2006) for details. In addition, unlabeled data is often represented by a feature vec-
tor. As well as Scenario1, many authors have proposed end-to-end methods where
an MLP model is trained by utilizing some generic assumption, while some have done
sequential methods.

A scenario apart from Scenario1 and Scenario2 is reviewed in Appendix A.1.
In this study, we focus on Scenario2 due to the following two reasons. The first

reason is that we do not always encounter Scenario1 in practice. The second one is
that if we prepare an efficient deep clustering algorithm of Scenario2, this algorithm
can be incorporated into the third step of the sequential method of Scenario1.

1.3 Motivation behind and Goal
To understand the pros and cons of the recent state-of-the-art methods under Sce-
nario2, we conduct preliminary experiments with eight deep clustering methods shown
in Table 1. Among the eight methods, SCAN, IIC, CatGAN, and SELA are originally
proposed in Scenario1. Therefore, we redefined the four methods to keep fairness in
comparison; see Appendix E.3 for details of the alternative definitions that fit to our
setting. For the datasets, we employed ten datasets as shown in the first row of Ta-
ble 2. Here, Two-Moons and Two-Rings are synthetic, and the remaining eight are
real-world; see more details in Section 4.2 and Appendix E.1. Throughout our experi-
ments, we have found that the real-world datasets can be clustered well by performing
K-means with the Euclidean distance, while the synthetic datasets cannot. We there-
fore regard the synthetic (resp. real-world) datasets as having complex topology (resp.
non-complex topology). Intuitively, a dataset is topologically non-complex if it is clus-
tered well by K-means with the Euclidean distance. Otherwise, the dataset is thought
to have a complex topology. For more details of complex and non-complex topologies,
see Appendix E.2.

The experimental results are shown in Table 2. As shown in the table, for the com-
plex topology datasets, all the eight deep clustering methods of Table 1 except for Spec-
tralNet fail to cluster data points, compared to SC of a classical method. Note that,
among the eight compared deep clustering methods, ones that incorporate the K-NN
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Table 2: Comparison of classical and deep clustering methods in terms of clustering
accuracy (% One and seven trials are respectively conducted for the classical (top 3
methods) and the deep clustering methods, respectively. Mean and standard deviation
of their accuracy are reported. Symbol ”-” means that result was not returned by the
clustering algorithm within one hour of running. Numbers with † are copied from the
corresponding studies. The symbol § means that an original method is redefined for
Scenario2.

Two-Moons Two-Rings MNIST STL CIFAR10 CIFAR100 Omniglot 20news SVHN Reuters10K

C
la

ss
ic

al
M

et
ho

ds K-means 75.1 50.0 53.2 85.6 34.4 21.5 12.0 28.5 17.9 54.1
SC 100.0 100.0 63.7 83.1 36.6 - - - 27.0 43.5

GMMC 85.9 50.3 37.7 83.5 36.7 22.5 7.6 39.0 14.2 67.7

R
ep

re
se

nt
at

iv
e

E
xi

st
in

g
D

ee
p

M
et

ho
ds DEC 70.3(7.1) 50.7(0.3) †84.3 †78.1(0.1) †46.9(0.9) †14.3(0.6) †5.7(0.3) 30.1(2.8) †11.9(0.4) †67.3(0.2)

SpectralNet 100(0) 99.9(0.0) †82.6(3.0) 90.4(2.1) 44.3(0.6) 22.7(0.3) 2.5(0.1) 6.3(0.1) 10.4(0.1) †66.1(1.7)
VaDE 50.0(0.0) 50.0(0.0) 83.0(2.6) 68.8(12.7) 39.5(0.7) 12.13(0.2) 1.0(0.0) 12.7(5.1) 32.9(3.2) 70.5(2.5)

IMSAT 86.3(14.8) 71.3(20.4) 98.4(0.4) 93.8(0.5) 45.0(0.5) 27.2(0.4) 24.6(0.7) 37.4(1.4) 54.8(5.1) 72.7(4.6)
IIC§ 77.2(18.4) 66.2(21.5) 45.4(8.3) 39.0(8.7) 23.9(4.8) 4.4(0.9) 2.3(0.4) 14.9(5.3) 17.1(1.1) 58.3(2.2)

CatGAN§ 81.6(5.3) 53.7(2.5) 15.2(3.5) 32.9(3.0) 15.1(2.4) 5.1(0.5) 3.3(0.2) 19.5(6.5) 20.4(0.9) 43.6(7.3)
SELA§ 62.7(9.5) 52.6(0.1) 46.1(3.4) 68.6(0.4) 29.7(0.1) 18.8(0.3) 11.3(0.2) 20.2(0.1) 19.3(0.3) 49.1(1.7)
SCAN§ 85.7(22.6) 75.1(23.1) 82.1(3.7) 92.8(0.5) 43.3(0.6) 24.6(0.1) 17.6(0.4) 38.4(1.1) 23.2(1.6) 63.4(4.2)

MIST via Înce 100(0) 95.2(2.0) 98.0(1.0) 94.2(0.4) 48.9(0.7) 27.8(0.5) 24.0(1.0) 38.3(2.8) 58.7(3.5) 72.7(3.3)
MIST (ours) 100(0) 93.3(16.3) 98.6(0.1) 94.5(0.1) 49.8(2.1) 27.8(0.5) 24.6(1.1) 38.8(2.3) 60.4(4.2) 73.4(4.6)

(K-Nearest Neighbor) graph tend to perform better for the complex topology datasets
than ones that do not. Here, the methods incorporating the graph are SpectralNet, IM-
SAT, IIC, and SCAN. On the other hand, for the non-complex topology datasets, only
IMSAT sufficiently outperforms the three classical methods on average. In addition,
the average clustering performance of IMSAT over the ten datasets is the best among
the eight methods. As Table 2 suggests, to the best of our knowledge, almost none of
previous deep clustering methods sufficiently perform well for both non-complex and
complex datasets. Those results motivate our study.

Our aim is to propose a constraint that helps an objective of deep clustering method
in Scenario2 train the model so as to be efficient for not only non-complex topology
but also complex topology datasets. Such a versatile deep clustering objective can be
helpful for users.

1.4 Contributions
To achieve our goal, we propose the constraint for topological invariance. For two data
points close to each other, the corresponding class probabilities computed by an MLP
should be close. For example, in b) of Figure 1, any pair of two red points is close, while
any pair of a red and a blue point are apart from each other. This constraint is introduced
as a regularization based on the maximization of symmetric InfoNCE between the two
probability vectors; see Section 3.3. In order to define the two probability vectors, we
introduce two kinds of paired data. One is used for a non-complex topology dataset,
which is based on a K-NN graph with the Euclidean metric; see Definition 3. The
other is used for a complex topology dataset, and it is based on a K-NN graph with the
geodesic metric on the graph; see Definition 4. Both graphs are defined only with an
unlabeled dataset. The geodesic metric is defined by the graph-shortest-path distance
on the K-NN graph constructed with the Euclidean distance.
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1Figure 1: Two-dimensional visualizations of clustering results. In the first row except
for a), three visualizations are obtained via the following procedure: using the trained
MLP, compute the output for each feature in MNIST, where dimension of the feature
is 784. Then, the outputs are transformed into two-dimensional vectors by UMAP.
Thereafter, true labels are assigned to those vectors. As for a), the original features are
directly transformed into two-dimensional vectors by UMAP, and then the labels are
assigned to the transformed vectors. For the second row, the true labels (resp. predicted
cluster labels by the trained MLP) are assigned to the original features for obtaining b)
(resp. d), f), and h)). Note that the original features of Two-Rings belong to R2.

We emphasize that under Scenario2, it is impossible to incorporate powerful domain-
specific knowledge into a deep clustering method. In addition, the maximization of
the symmetric InfoNCE has not been studied yet in the context of deep clustering.
Moreover, we present the legitimacy of our topological invariant constraint by showing
several theoretical findings from mainly two perspectives: 1) in Section 3.1, the mo-
tivations and the potential of the proposed constraint are clarified from the standpoint
of statistical dependency measured by MI (Mutual Information), and 2) in Section 3.2,
an extended result of the theory on contrastive representation learning derived from
Wang et al. (2022) is presented to discuss advantages of the symmetric InfoNCE over
InfoNCE for deep clustering. Note that InfoNCE (van den Oord et al., 2018) was inini-
tially used for domain-specific representation learning such as vision tasks, NLP, and
reinforcement learning. Here, a purpose of representation learning is to extract useful
features that can be applied to a variety range of machine learning methods (Bengio
et al., 2013). Whereas, the purpose of clustering is to annotate the cluster labels to
unlabeled data points.

The main contributions are summarized as follows:

1) We propose a topological invariant constraint via the symmetric InfoNCE for
the purpose of deep clustering in Scenario2, and then show the advantage by
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providing analysis from several theoretical aspects.

2) To evaluate the proposed constraint in numerical experiments, by applying the
constraint to IMSAT, we define a deep clustering method named MIST (Mu-
tual Information maximization with local Smoothness and Topologically invari-
ant constraints). In the experiments, we confirm that the proposed constraint
enhances the accuracy of a deep clustering method. Furthermore, to the best of
our knowledge, MIST achieves state-of-the-art clustering accuracy in Scenario2
for not only non-complex topology datasets but also complex topology datasets.

In Figure 1, a positive impact of the topological invariant constraint toward IMSAT is
visualized via UMAP (McInnes et al., 2018); compare d) and h) in the figure. See
further details of Figure 1 and more two-dimensional visualizations of MIST for other
datasets in Appendix E.4.

This paper is organized as follows. In Section 2, we overview related works. In
Section 3, we explain details of the topological invariant constraint, and then show
the theoretical properties. In numerical experiments of Section 4, we define MIST.
Then, we evaluate the proposed constraint via MIST using two synthetic datasets and
eight real-world datasets. In the same section, some case studies are also provided. In
Section 4.7, we conclude this paper.

2 Related Works
In Section 2.1, we briefly explain representative deep clustering methods shown as ex-
amples in Table 1 since they are compared methods in numerical experiments of Sec-
tion 4. Then, details of InfoNCE, which is closely related to our topological invariant
constraint, is introduced in Section 2.2.

2.1 Representative Deep Clustering Methods
Let us start from sequential methods of T1 and T2 in Table 1. In DEC (Xie et al., 2016)
of T1, at first, a stacked denoising Auto-Encoder (AE) is trained with a set of unlabeled
data points to extract the feature. Using the trained encoder, we can have the feature
vectors. Then, K-means is used on the vectors in order to obtain the set of centroids.
After that, being assisted by the centroids, the encoder is refined for the clustering. In
SCAN (Van Gansbeke et al., 2020) of T1, a ResNet (He et al., 2016) is trained using
augmented raw image datasets under SimCLR (Chen et al., 2020) criterion to extract
the features. Then, the clustering MLP added to the trained ResNet is tuned by maxi-
mizing Shannon-entropy of the cluster label while two data points in a nearest neighbor
relationship are forced to have same cluster label. Then, in SpectralNet (Shaham et al.,
2018) of T2, at first, a Siamese network is trained by the predefined similarity scores
on the K-NN graph. Then, being assisted by the trained Siamese network, a clustering
DNN is trained. Note that the two networks (i.e., Siamese net and clustering net) are
categorized into this method.

With regard to end-to-end methods of T3 to T6, in VaDE (Jiang et al., 2017) of T3, a
variational AE is trained so that the latent representation of unlabeled data points has the
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Gaussian mixture distribution. Here, the number of mixture components is equal to the
number of clusters. For IMSAT and IIC of T4, in IMSAT (Hu et al., 2017), the clustering
model is trained via maximization of the MI between a data point and the cluster label,
while regularizing the model to be locally smooth; see Appendix A.3. Likewise, IIC (Ji
et al., 2019) returns the estimated cluster labels using the trained model for clustering.
The training criterion is based on maximization of the MI between the cluster label of
a raw image and the cluster label of the transformed raw image; see Appendix A.2.
IIC employs a CNN-based clustering model to take advantages of image-specific prior
knowledge. Furthermore, in CatGAN (Springenberg, 2015) of T5, the neural network
for clustering is trained to be robust against noisy data. Here, the noisy data is defined
as a set of fake data points obtained from the generator that is trained to mimic the
distribution of original data. Lastly, in SELA (Asano et al., 2019) of T6, a ResNet is
trained for clustering using an augmented unlabeled dataset with pseudo labels under
the cross-entropy minimization criterion. The pseudo labels are updated at the end of
every epoch by solving an optimal transporting problem.

2.2 Info Noise Contrastive Estimation
In representation learning, InfoNCE (Info Noise Contrastive Estimation) based on NCE
has recently become a popular objective. The (q-)InfoNCE of the random variables Z
and Z ′ is defined by

Ince,q(Z;Z ′) = E[q(Z,Z ′)]− EZ
[

logEZ′ [eq(Z,Z
′)]
]
, (1)

where q is called critic function that quantifies the dependency between Z and Z ′. For
any critic, q-InfoNCE provides a lower bound of an MI. Furthermore, we can see that
the maximum value of Ince,q is the MI, which is attained by q(z, z′) = log p(z|z′) +
[any function of z]; see Poole et al. (2019); Belghazi et al. (2018) and Eq.(16) for de-
tails. Here, p(z|z′) is the conditional probability of z given z′. When it comes to the
image processing (Chen et al., 2020; Grill et al., 2020), the observations, z and z′, are
often given as different views or augmentations of an image. For example, z and z′ are
observed by rotating, cropping, or saturating the same source image. Such a pair of
images are regarded as positive samples (pair). A pair of transformed images coming
from different source images are negative samples (pair).

Suppose we have samples z1, · · · , zm and z′1, · · · , z′m, such that zi and z′i are all
positive samples for i = 1, · · · ,m and zi and z′j for i 6= j are negative samples. Then,
InfoNCE is empirically approximated by

Înce,q =
1

m

m∑
i=1

log
eq(zi,z

′
i)

1
m

∑m
j=1 e

q(zi,z′j)
. (2)

In order to approximate the MI by InfoNCE, one can use a parameterized model with a
critic function q. In the original work of InfoNCE (van den Oord et al., 2018) the critic
qW (z, z′) = zTWz′ with the weight matrix W is employed. Then, the maximum value
of Înce,qW w.r.t. W is computed to estimate the MI. As pointed out by van den Oord
et al. (2018); Poole et al. (2019); Tschannen et al. (2019), The empirical InfoNCE is
bounded above by logm, making the bound loose when m is small, or the MI I(Z;Z ′)
is large.
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3 Proposed Constraint and its Theoretical Analysis

3.1 Notations
In the following, D = {xi}ni=1 (∀i;xi ∈ Rd) is a set of unlabeled data, where n is the
number of data points and d is the dimension of a data point. The number of clusters
is denoted by C. Here, let yi denote the true label of xi. Let us define p (y|x) as
the conditional discrete probability of a cluster label y ∈ {1, 2, ..., C} for a data point
x ∈ Rd. The random variable corresponding to x (resp. y) is denoted by X (resp. Y ).
Let ∆C−1 = {z ∈ RC | z ≥ 0, z>1 = 1} be the (C − 1)-dimensional probability
simplex, where 1 is the C-dimensional vector (1, 1, ..., 1)>.

Definition 1 (MLP model gθ) Consider a DNN model gθ(x) : Rd → ∆C−1 with train-
able set of parameters θ, where the activation for the last layer is defined by the C-
dimensional softmax function. The y-th element of gθ(x) is denoted by gyθ (x). Let θ∗ de-
note the trained set of parameters via a clustering objective, using an unlabeled dataset
D. The predicted cluster label of xi ∈ D is defined by ŷi = argmaxy∈{1,··· ,C}g

y
θ∗(xi).

3.2 Preliminary
Consider Scenario2 of Section 1.2, where a set of unlabeled dataD = {xi}ni=1, xi ∈ Rd

and the number of clusters C are given, while a few generic assumptions for the dataset
can be available. We firstly in Section 3.3 introduce the topological invariant constraint
based on symmetric InfoNCE and an MLP model gθ. Then, in Section 3.4, some re-
lations between the symmetric InfoNCE and the corresponding MI are theoretically
analyzed. Thereafter, based on the analysis, we explain theoretical advantages of the
symmetric InfoNCE over existing popular constraints such as IIC and InfoNCE in terms
of deep clustering.

Before stating the mathematical definitions and the properties, we briefly explain
why the symmetric InfoNCE can enhance a deep clustering method as a topological
invariant constraint. As mentioned in Section 1.4, the topological invariant constraint
is expected to regularize gθ so as to be gθ(X) ≈ gθ(X

′) ∈ ∆C−1 for any geodesically-
close two data points X,X ′ ∈ D in the original space Rd. In other words, predicted
cluster labels of X and X ′ are enforced to be same. For the regularization, InfoNCE
and its variants are potentially useful. The reason is that in representation learning
InfoNCE is empirically successful for making the following two feature vectors close
to each other: 1) a feature vector returned by a DNN with a raw data as an input, 2) a
feature returned by the same DNN with an augmented data from the raw data (van den
Oord et al., 2018; Chen et al., 2020). Note that feature vectors described in 1) and 2)
are not in ∆C−1 but usually in the high-dimensional Euclidean space. In this study,
the symmetric InfoNCE between X and X ′ is proposed as a constraint for topological
invariance. The pair (X,X ′) is given by (X,T (X)), where T (X) is a transformation of
X: some practical tranformations are introduced in Definition 3 and 4 of Section 3.3.
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3.3 Topological Invariant Constraint
We aim to design a constraint for topological invariance that should satisfy the following
condition; if clusters of D have a non-complex (resp. complex) topology, the constraint
assists a model gθ to predict the same cluster labels for x ∈ D and x′ ∈ D whenever
x and x′ are close to each other in terms of the Euclidean (resp. geodesic) distance. In
the sequel, we define the constraint via symmetric InfoNCE. Then, we investigate its
theoretical properties.

Firstly, let us define a function q : ∆C−1 ×∆C−1 → R as follows:

q(z, z′) = log
(
expα

(
τ(z>z′ − 1)

))
, (3)

where α ∈ R and 0 ≤ τ ≤ |1 − α|−1. In addition, for u ∈ R, expα(u) is defined by
[1 + (1 − α)u]

1/(1−α)
+ for α 6= 1 and eu for α = 1, where [ · ]+ = max{·, 0}. The

function q of Eq.(3) w.r.t. z and z′ is maximized if and only if z and z′ are the same
one-hot vector. On the other hand, it is minimized if and only if z>z′ = 0 (i.e., z and z′

are orthogonal to each other).
We then define transformation T for constructing a pair of geodesically-close two

data points (X,T (X)) based on X as follows.

Definition 2 (Transformation T ) Let X be a d-dimensional random variable. Then,
T : Rd → Rd denote the transformation of X , and it is also a random variable. The
realization is denoted by t : Rd → Rd. Given a data point x, the function t is sampled
from the conditional probability p(t|x).

The probability p(t|x) is defined through a generative process. In this study, two
processes, Te and Tg, are considered. The first (resp. second) one, Te (resp. Tg), is
defined using the K-NN graph with the Euclidean (resp. geodesic) distance, and is
employed for non-complex (resp. complex) topology datasets.

Definition 3 (Generative process Te) Given an unlabeled dataset D = {xi}ni=1, a nat-
ural number K0, and β ∈ [0, 1) as inputs, then the generative process of a transforma-
tion is defined as follows. 1) At the beginning, build a K-NN graph with K = K0 on D
based on the Euclidean distance. 2) For all k = 1 + bβK0c, · · · , K0, define a function
t(i→k) : Rd → Rd by x(k)

i = t(i→k)(xi), where x(k)
i is a k-th nearest neighbor data

points of xi on the graph. 3) Define the conditional distribution p(t|xi) as the uniform
distribution on t(i→k), k = 1 + bβK0c, · · · , K0.

Definition 4 (Generative process Tg) Given an unlabeled datasetD = {xi}ni=1, a nat-
ural number K0, and β ∈ [0, 1) as inputs, then firstly build a K-NN graph based
on the Euclidean distance with K = K0 on D. Then, in order to approximate the
geodesic distance between xi and xj , compute the graph-shortest-path distance. Let
gij be the approximated geodesic distance between xi and xj , and G be an n × n
matrix (gij)i,j=1,··· ,n. For each i, let Mi = {j | 0 < gij < ∞} be the set of in-
dices whree each xj is a neighborhood of xi under the geodesic distance. For each
i, the generative process of the transformation t is given as follows. 1) For all k =

|Mi| − bβKgc+ 1, · · · , |Mi|, define a function t(i→k) : Rd → Rd by x(k)
i = t(i→k)(xi),

9



i) ii)

1
Figure 2: Illustration of the effect by minimizing point-wise positive loss `ps(xi) and
point-wise negative loss `ng(xi). In both i) and ii), the colors (blue, magenta, and yel-
low) mean different labels, and the light-colored manifolds express true clusters. For
i) (resp. ii)), the set of clusters builds Three-Blobs (resp. Two-Rings), and it is an ex-
ample of non-complex (resp. complex) topology datasets. A pair of the small circle
and triangle symbols with the same color means a pair of a data point x and the trans-
formed data point t(x), where such pair is constructed by Te of Definition 3 (resp. Tg of
Definition 4) in i) (resp. ii)). The two data points connected by the red dash line (resp.
blue straight or curved line) are enforced to be distant (resp. close) to each other by
minimizing `ng(xi) (resp. `ps(xi)).

where x(k)
i is a k-th geodesically nearest neighbor data points from xi on G except in

the case of gij = ∞ and gij = 0. 2) Define the conditional distribution p(t|xi) as the
uniform distribution on t(i→k), k = |Mi| − bβKgc+ 1, · · · , |Mi|.

The time and memory complexities with Te and Tg are provided in Appendix D.2. In-
tuitively, when β = 0, Te picks a random neighbor of x as T (x) in the K0-nearest
neighbor graph, while Tg picks the a random neighbor by the geodesic metric induced
by the K0-nearest neighbor graph. Larger β disables Te and Tg from picking closest
neighbors.

Using the function q of Eq.(3), let us define Ince ≡ Ince,q(gθ(X); gθ(T (X))) and
I ′nce ≡ Ince,q(gθ(T (X)); gθ(X)); see Ince,q in Eq.(1). We then define the symmetric
InfoNCE by (Ince + I ′nce) /2. Then, the topological invariant constraint is defined as
follows:

−M ≤ −Ince + I ′nce

2
≤ −M + δ, (4)

where δ is a small fixed positive value, and M = supθ (Ince + I ′nce) /2.
In practice, given a mini-batch B ⊆ D, we can approximate − (Ince + I ′nce) /2 by

−(Înce + Î ′nce)/2 (recall Eq.(2) for Înce), where −Înce is given by

−Înce = − 1

|B|
∑
xi∈B

log
eq(gθ(xi),gθ(ti(xi)))

1
|B|
∑

xj∈B e
q(gθ(xi),gθ(tj(xj)))

(5)

with the sampled transformation function ti from p(t|xi) and−Î ′nce is given by switching
two inputs in the function q of Eq.(5). Here, |B| denotes the cardinality of B.
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To understand the above empirical symmetric InfoNCE more, we decompose−(Înce+
Î ′nce)/2 into the following three terms:

− log |B|− 1

|B|
∑
xi∈B

q (gθ(xi), gθ (ti(xi)))︸ ︷︷ ︸
Lps: positive loss

+
1

|B|
∑
xi∈B

1

2
log

∑
xj∈B

∑
xi′∈B

ea(i,i′,j)


︸ ︷︷ ︸

Lng: negative loss

,
(6)

where a (i, i′, j) = q (gθ(xi), gθ (tj(xj))) + q (gθ(xi′), gθ (ti(xi))). Note that the decom-
position is based on the fact that q(z, z′) = q(z′, z) for all z, z′ ∈ ∆C−1. In Eq.(6), we
call the second and the third term positive loss and negative loss, respectively. These
names are natural in the sense of metric learning (Sohn, 2016). Indeed, making Lps

smaller w.r.t. θ leads to gθ(xi) ≈ gθ (ti(xi)) for all i due to the definition of q. Thus,
since ti(xi) is a neighbor data point of xi, via minimization of Lps, the model predicts
the same cluster labels for xi and ti(xi). Here, the neighborhood is defined with the
Euclidean (resp. the geodesical) neighborhood on K-NN graph of D through Te (resp.
Tg). On the other hand, making Lng smaller leads to gθ(xi) 6= gθ (tj(xj)) for all i, j and
gθ(xi′) 6= gθ (ti(xi)) for all i′ and i due to the definition of q. Thus, via minimization
of Lng, the model can return non-degenerate clusters (i.e., not all the predicted cluster
labels are the same).

In Figure 2, for simplicity, we illustrate effects brought by minimizing point-wise
positive loss `ps(xi) and point-wise negative loss `ng(xi), which are defined in Eq.(6) as

follows; `ps(xi) = −q (gθ(xi), gθ (ti(xi))) , `ng(xi) = 1
2

log
(∑

xj∈B
∑

xi′∈B e
a(i,i′,j)

)
.

3.4 Theoretical Analysis
In this section, we investigate theoretical properties of the symmetric InfoNCE loss. In
Section 3.1, we study the relationship between MI and symmetric InfoNCE. In Sec-
tion 3.2, we show a theoretical difference between InfoNCE and symmetric InfoNCE.

3.1 Relationship between Symmetric InfoNCE and MI

First we make clear the reason for selecting Eq.(3) as a critic function. Our explanation
begins by deriving the optimal critic of the symmetric InfoNCE loss.

Proposition 1 Let Z and Z ′ denote two random variables having the joint proba-
bility density p. Let Ince,q(Z;Z ′) the InfoNCE loss defined in Eq.(1). Let us define
Ince,q(Z

′;Z) by switchingZ andZ ′ of Ince,q(Z;Z ′). Then, the following MI, I(Z;Z ′) :=

Ep(Z,Z′)
[
log p(Z,Z′)

p(Z)p(Z′)

]
, is an upper bound of the symmetric InfoNCE, Ince,q(Z;Z′)+Ince,q(Z′;Z)

2
.

Moreover, if the function q satisfies

q(z, z′) = log
p(z, z′)

p(z)p(z′)
+ c, c ∈ R, (7)

then the equality I(Z;Z ′) = Ince,q(Z;Z′)+Ince,q(Z′;Z)

2
holds. In other words, q satisfying

Eq.(7) is the optimal critic.

11



The proof is shown in Appendix B.1.
Consider gθ(X) and gθ(T (X)) as Z and Z ′ of Proposition 1, respectively. Then, the

symmetric InfoNCE (Ince + I ′nce) /2 of Eq.(4) can be upper-bounded by

I(gθ(X); gθ(T (X))). (8)

Thus, maximization of the symmetric InfoNCE (i.e., the constraint of Eq.(4)) is a rea-
sonable approach to maximize the MI. Note that the computation of I(gθ(X); gθ(T (X)))
is difficult, since density-estimation on ∆C−1 is required.

It is interesting that the optimal critic of the symmetric InfoNCE loss is the point-
wise MI of gθ(X) and gθ(T (X)) up to an additive constant. Moreover, we remark that
the function q of Eq.(3) is in fact designed based on the optimal critic, Eq.(7), of the
symmetric InfoNCE. As shown in the equation, the optimal critic of the symmetric In-
foNCE is q∗(z, z′) = log p(z,z′)

p(z)p(z′) + c, c ∈ R. Thus, the joint probability density p(z, z′)
is expressed by p(z, z′) ∝ p(z)p(z′)eq

∗(z,z′). Hence, the critic function adjusts the sta-
tistical dependency between z and z′. In our study, we suppose that z, z′ ∈ ∆C−1,
and the critic q(z, z′) is expressed as an increasing function of z>z′. When z and z′

are both the same one-hot vector in ∆C−1, p(z, z′) is assumed to be large. On the
other hand, if z>z′ = 0, p(z, z′) is assumed to take a small value. We also introduce a
one-dimensional parameter α for the critic qα to tune the intensity of the dependency.
Although there are many choices of critic functions, we here employ the α-exponential
function, because expα can express a wide range of common probabilities in statistics
only by one parameter; see details of α-exponential function in Naudts (2009); Amari
and Ohara (2011); Matsuzoe and Ohara (2012). Eventually, the model of the critic is
given by pα(z, z′) ∝ p(z)p(z′) expα

(
τ(z>z′−1)

)
, where α ∈ R and 0 ≤ τ ≤ |1−α|−1.

Note that the normalization constant of pα is no need when we compute the symmetric
InfoNCE. In our experiments, we consider both α and τ as the hyper-parameters.

Remark 1 The cosine-similarity function s(z, z′) = z>z′/‖z‖2‖z′‖2, z, z
′ ∈ ∆C−1 is

commonly used in the context of representation learning (Chen et al., 2020; Bai et al.,
2021). However, we do not use the cosine-similarity function as the critic function q
in Eq.(3). This is because in our problem the cosine-similarity function is not relevant
to estimate the one-hot vector by the model gθ(x). Indeed, for q(z, z′) = s(z, z′) and
C = 2, the pair (z, z′) satisfying z = z′ = (1/2, 1/2)> ∈ ∆C−1 is a maximizer of
q(z, z′), i.e., there exists a pair of non-one-hot vectors z and z′ that minimizes Lps in
Eq.(6).

Next, we investigate a few more properties of the symmetric InfoNCE loss from
the perspective of MI. First we present a theoretical comparison between the symmetric
InfoNCE loss and IIC (see IIC in Section 2.1 and Appendix A.2).

Proposition 2 Consider a feature X and its transformation function T of Definition 2.
Let Y (resp. Y ′) denote a cluster label of X (resp. T (X)). Then, the following inequal-
ity holds:

I(Y ;Y ′) ≤ I(gθ(X); gθ(T (X))), (9)

where gθ is the same model as introduce in Definition 1.
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The proof is shown in Appendix B.2.
The above data processing inequality guarantees that I(gθ(X); gθ(T (X))) brings

richer information than I(Y ;Y ′) used in IIC. Since our constraint is related to I(gθ(X); gθ(T (X))),
Eq.(9) indicates the advantage of ours over IIC. To discuss the consequence of Proposi-
tion 2 in more detail, we provide a statistical analysis on the gap between the following
two quantities:

1) The maximum value I(gθ(X); gθ(T (X))) w.r.t. θ,

2) The mutual information evaluated at θ̂, where θ̂ is the parameter maximizing the
empirical symmetric InfoNCE.

To the best of our knowledge, such statistical analysis is not provided in previous theo-
retical studies related to InfoNCE.

Theorem 1 (Informal version) Consider the empirical symmetric InfoNCE of Section 3.3
with a critic q ∈ Q for a dataset D = {xi}ni=1. Here, Q is a set of critics defined as
follows: Q = {φ(α,τ) : (α, τ) ∈ Ξ}, where φ(α,τ)(z

>z′) = log
(
expα

(
τ(z>z′ − 1)

))
(see Eq.(3)), and Ξ is a set of all possible (α, τ) pairs. Let Îsym nce,q(θ) denote the em-
pirical symmetric InfoNCE, where θ is a set of parameters in gθ of Definition 1. Let
us define θ̂ by θ̂ = arg maxθ supq∈Q Îsym nce,q(θ). We define θ∗ as the maximizer of
I(gθ(X); gθ(T (X))) w.r.t θ. Suppose that 0 ≤ δ is a constant. Then, with the probabil-
ity greater than 1− δ, the gap between I(gθ∗(X); gθ∗(T (X))) and I(gθ̂(X); gθ̂(T (X)))
is given by

I(gθ∗(X); gθ∗(T (X)))− I(gθ̂(X); gθ̂(T (X)))

≤ (Approx. Err.) + (Gen. Err.) + c

√
log(1/δ)

n
,

(10)

where c > 0 is a constant, and Approx. Err. (resp. Gen. Err.) is short for Approximation
Error (resp. Generalization Error). Note that the generalization error term (Gen. Err.)
consists of Rademacher complexities with a set of neural network models.

See Appendix B.3 for the proof of the formal version.
From Theorem 1, the gap indeed gets close if the following A1) and A2) hold:

A1) (Approx. Err.) of Eq.(10) is small (i.e., the setQ contains a rich quantity of critic
functions).

A2) (Gen. Err.) and
√

log(1/δ)
n

of Eq.(10) are small.

It is known that the Rademacher complexity of a kind of neural network models is
O(n−1/2); see Bartlett and Mendelson (2002). Thus, the condition A2) can be satis-
fied if the sample size n is large enough. Moreover, by combining Proposition 2 with
Theorem 1, we obtain the following implication: if n is sufficiently large, then the gap
between the MI, I(gθ∗(X); gθ∗(T (X))), and the plug-in estimator with the optimal es-
timator θ̂ of the empirical symmetric InfoNCE is reduced. On the other hand, from
Proposition 2, the MI of the pair Y and Y ′ is always less than or equal to that of the
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pair gθ(X) and gθ(T (X)). Since IIC is an empirical estimator of the MI, I(Y, Y ′), the
statistical dependency via MI of the probability vectors gθ(X) and gθ(T (X)) obtained
by optimizing the symmetric InfoNCE can be greater than that of Y and Y ′ learned
through the optimization of IIC. Therefore, the symmetric InfoNCE has a more poten-
tial to work as a topologically invariant constraint for deep clustering than other MIs
such as IIC.

Note that in the almost same way as Theorem 1, it is possible to derive a sim-
ilar result for the gap between the following two: 1) I(gθ∗(X); gθ∗(T (X))) and 2)
maxθ supq∈Q Îsym nce,q(θ). This fact indicates that if the upper bound derived in a simi-
lar way to Eq.(10) is small enough, then the empirical symmetric InfoNCE has a poten-
tial to strengthen the dependency between gθ(X) and gθ(T (X)).

3.2 Further Motivations behind the Symmetric InfoNCE Loss

We also leverage the theoretical result on contrastive representation learning from Wang
et al. (2022), in order to explain the difference between InfoNCE and symmetric In-
foNCE.

Theorem 2 Let us define X ∈ Rd and Y ∈ {1, · · · , C} as described in Section 3.1.
Let Z = gθ(X) and Z ′ = gθ(T (X)), where gθ : Rd → ∆C−1 and T : Rd → Rd

are given by Definition 1 and 2, respectively. The symmetric InfoNCE (Ince + I ′nce)/2
of Eq.(4) is supposed to set α = 1 and a fixed τ for the critic function of Eq.(3). As-
sume that p(Y ) is a uniform distribution. Let Lµ̃CE,Raw(gθ) denote the mean super-

vised loss, which is given by Lµ̃CE,Raw(gθ) = −Ep(Z,Y )

[
log exp(Z>µ̃Y )∑C

k=1 exp(Z>µ̃k)

]
, where µ̃k =

τ ·Ep(Z′|Y=k)[Z
′], k ∈ {1, · · · , C}. In other words, Lµ̃CE,Raw(gθ) is the cross-entropy loss

via a linear evaluation layer, whose parameters are µ̃ = (µ̃1, · · · , µ̃C) ∈ RC×C . Sim-
ilarly we define Lµ̃CE,Aug(gθ) by LµCE,Aug(gθ) = −Ep(Z′,Y )

[
log exp(Z′>µY )∑C

k=1 exp(Z′>µk)

]
, where

µk = τ · Ep(Z|Y=k)[Z], k ∈ {1, · · · , C}, and µ = (µ1, · · · , µC). Let us introduce the
symmetric mean supervised loss as Lµ,µ̃SCE(gθ) = (Lµ̃CE,Raw(gθ) +LµCE,Aug(gθ))/2. Then,
we have

− Ince + I ′nce

2
− 1

2

(√
Var(Z|Y ) +

√
Var(Z ′|Y )

)
− 1

2e
Var(exp(τZ>Z ′))

≤ Lµ,µ̃SCE(gθ)− logC

≤ −Ince + I ′nce

2
+

1

2

(√
Var(Z|Y ) +

√
Var(Z ′|Y )

)
,

where

Var(Z|Y ) = Ep(Y )[Ep(Z|Y )[‖τZ − µY ‖2
∞]],

Var(Z ′|Y ) = Ep(Y )[Ep(Z′|Y )[‖τZ ′ − µY ‖2
∞]],

Var(exp(τZ>Z ′)) = Ep(Z)p(Z′)[(exp(τZ>Z ′)− Ep(Z)p(Z′)[exp(τZ>Z ′)])2].

The proof is shown in Appendix B.4.
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Remark 2 In Theorem 2, the critic function with α = 1 is considered for the sake of
simplicity. We can derive almost the same upper and lower bounds for the symmetric
InfoNCE using the critic of Eq.(3) with α such that 1− 1/τ < α < 1. The proof is the
same as that of Theorem 2. We use the concavity of the function u 7→ log expα(u) and
the inequality log expα(x+y) ≤ log expα(x)+|y|/(1−(1−α)τ) for x, x+y ∈ [−τ, 0].

Our result includes four technical differences and modifications from Wang et al.
(2022) as follows: 1) Theorem 2 is intended for the symmetric InfoNCE loss. 2) We do
not assume that any positive pair (Z,Z ′) ∼ p(Z,Z ′) has the identical label distribution
given the representation (i.e., we do not rely on the assumption p(Y |Z) = p(Y |Z ′)).
Note that the assumption of p(Y |Z) = p(Y |Z ′) will not hold in practical settings.
For instance, suppose that we have an image X . If X is cropped, then the cropped
image T (X) may have lost some information included in X , which would result in
the case where the distribution of X and that of T (X) do not agree. 3) In the proof
of Theorem 2 (see Proposition 4 in Appendix B.4), we use the sharpened Jensen’s
inequality (Liao and Berg, 2019) in order to make our proof simpler. On the other hand,
Theorem 4.2 of Wang et al. (2022) is obtained by utilizing Corollary 3.5 of Budimir
et al. (2000). 4) We consider the case in which the distribution of a random variable
representing unlabeled data and one of its augmentation data are the same. In our setup,
if p(Z, Y ) = p(Z ′, Y ) holds, then we have Lµ̃CE,Raw(gθ) = LµCE,Aug(gθ). In general,
however, the probability distribution of Z and Z ′ are not necessarily the same. More
precisely, let (Ω,F , P ) be a probability space and X be a random variable on Ω. Then
let us consider the push-forward distribution Z#P and Z ′#P . Since the transformation
map T is also a random variable, generally these distributions are distinct from each
other. We avoid this issue by starting from the general setting.

Furthermore, our result gives the following novel insight into the theoretical under-
standing of the symmetric InfoNCE: the symmetric InfoNCE reduces both Lµ̃CE,Raw(gθ)
and LµCE,Aug(gθ) at the same time. This property could explain why the symmetric In-
foNCE performs more stable in practice than InfoNCE as a constraint of deep clustering
methods: see also Table 2 that shows the comparison of InfoNCE (MIST via Înce) and
symmetric InfoNCE (MIST).

For further comparison between symmetric InfoNCE, InfoNCE, and SimCLR (Chen
et al., 2020), see Appendix C.

4 Numerical Experiments
Throughout this section, we aim to evaluate the efficiency of the symmetric InfoNCE
as topological invariant constraint for a deep clustering method. To this end, at first
in Section 4.1, we define a deep clustering method of Scenario2 named MIST by
applying the symmetric InfoNCE to IMSAT (Hu et al., 2017). The reason why we
employ IMSAT is that it performs the best on average among deep clustering methods
in Table 1. Then, in Section 4.5, we compare MIST and IMSAT in terms of clustering
accuracy to observe the benefits of the symmetric InfoNCE, while comparing MIST
with the other representative methods as well. Thereafter in Section 4.6, we conduct
ablation studies on MIST objective to understand the effect of each term in Eq.(11). At
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last in Section 4.7, using MIST, we examine robustness of important hyper-parameters
in the symmetric InfoNCE.

4.1 MIST: Application of Symmetric InfoNCE to IMSAT
Given a mini-batch B ⊆ D, by applying our empirical symmetric InfoNCE of Eq.(6) to
the objective of IMSAT (see the objective in Eq.(15) of Appendix 1.2), we define the
following objective of MIST:

θ∗ = argminθ

[
Rvat (B; θ)︸ ︷︷ ︸

A©
−µ
{
η H(Y )︸ ︷︷ ︸

B©
−H(Y |X)︸ ︷︷ ︸

C©
−γ (Lps + Lng)︸ ︷︷ ︸

D©

}]
, (11)

where µ, η and γ are positive hyper-parameters. The symbol A© expresses VAT (Vir-
tual Adversarial Training) loss (Miyato et al., 2019); see Eq.(13) of Appendix 1.1. In
addition, B© and C© mean Shannon entropy (Cover, 1999) w.r.t. a cluster label Y and
conditional entropy of Y given a featureX , respectively. Moreover, minimization of the
symbol D© is equivalent to maximization of the empirical symmetric InfoNCE. Note that
the major difference between MIST and IMSAT is the introduction of term D©. The min-
imization problem of Eq.(11) is solved via SGD (Stochastic Gradient Descent) (Shalev-
Shwartz and Ben-David, 2013) in our numerical experiments. See Appendix D.1 for
further details of MIST objective, the pseudo algorithm (Algorithm 1), and the diagram
(Table 5).

4.2 Dataset Description and Evaluation Metric
We use two synthetic datasets and eight real-world benchmark datasets in our exper-
iments. All the ten datasets are given as feature vectors. For the synthetic datasets,
we employ Two-Moons and Two-Rings of scikit-learn (Géron, 2019). The real-world
datasets are MNIST (LeCun et al., 1998), SVHN (Netzer et al., 2011), STL (Coates
et al., 2011), CIFAR10 (Torralba et al., 2008), CIFAR100 (Torralba et al., 2008), Om-
niglot (Lake et al., 2011), 20news (Lang, 1995) and Reuters10K (Lewis et al., 2004).
The first six real-world datasets originally belong to the image domain and the last two
originally belong to the text domain. As for the characteristic of each dataset, Two-
Moons and Two-Rings are low-dimensional datasets with complex topology. MNIST,
STL, and CIFAR10 are balanced datasets with the small number of clusters. CIFAR100,
Omniglot, and 20news are balanced datasets with the large number of clusters. SVHN
and Reuters10K are imbalanced datasets. For further details of the above ten datasets,
see Appendix E.1.

In the unsupervised learning scenario, we adopt the standard metric for evaluating
clustering performance, which measures how close the estimated cluster labels are to
the ground truth under a permutation. For an unlabeled dataset {xi}ni=1, let {yi}ni=1 and
{ŷi}ni=1 be its true cluster label set and estimated cluster label set, respectively. Suppose
that the both true yi and estimated cluster labels ŷi take the same range {1, · · · , C}. The
clustering accuracy ACC is defined by ACC (%) = 100×maxσ

∑n
i=1 I[yi=σ(ŷi)]

n
, where

σ ranges over all permutations of cluster labels, and I[ · ] is the indicator function. The
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optimal assignment of σ can be computed using the Kuhn-Munkres algorithm (Kuhn,
1955).

4.3 Statistical Model and Optimization
Throughout all our experiments, we fix our clustering neural network model gθ(x) ∈
∆C−1 to the following simple and commonly used MLP architecture with softmax (Hin-
ton et al., 2012): d− 1200− 1200− C, where d is the dimension of the feature vector.
We apply the ReLU activation function (Nair and Hinton, 2010) and BatchNorm (Ioffe
and Szegedy, 2015) for all hidden layers. In addition, the initial set with θ is defined
by He-initialization (He et al., 2015). For optimizing the model, we employ Adam
optimizer (Kingma and Ba, 2015), and set 0.002 as the learning rate.

We implemented MIST1 using Python with PyTorch library (Ketkar and Moolayil,
2017). All experiments are evaluated with NVIDIA TITAN RTX GPU, which has a
24GiB GDDR6 video memory.

4.4 Compared Methods
As baseline methods, we employ the following three classical clustering methods: K-
means (MacQueen, 1967), SC (Ng et al., 2002) and GMMC (Day, 1969). For deep
clustering methods, we employ representative deep clustering methods from T1 to T6

of Table 1, MIST via Înce, and MIST (our method) of Eq.(11). Here, MIST via Înce

is defined by replacing −(Lps + Lng) of Eq.(11) by −Înce of Eq.(5). The reason why
MIST via Înce is employed is to check how much more efficiently symmetric InfoNCE
can enhance a deep clustering method over the original InfoNCE. In both MIST and
MIST via Înce, Tg of Definition 4 (resp. Te of Definition 3) is employed for synthetic
datasets (resp. real-world datasets). For further details of hyper-parameter tuning with
MIST and MIST via Înce, see Appendix E.5. Moreover, from T2, T3, T5, and T6, Spec-
tralNet (Shaham et al., 2018), VaDE (Jiang et al., 2017), CatGAN (Springenberg, 2015)
and SELA (Asano et al., 2019) are respectively examined. From T1, DEC (Xie et al.,
2016) and SCAN (Van Gansbeke et al., 2020) are examined. From T4, IMSAT (Hu
et al., 2017) and IIC (Ji et al., 2019) are examined. Note that SCAN, IIC, CatGAN, and
SELA were originally proposed in Scenario1 of Section 1.2. Therefore, we redefine
those methods to make them fit to Scenario2 in our experiments. The redefinitions and
implementation details of all the existing methods are described in Appendix E.3

4.5 Analysis from Table 2
As briefly explained in Section 1.3, the average clustering accuracy and its standard
deviation on each dataset for the corresponding clustering method are reported in Ta-
ble 2. At first, since MIST clearly outperforms IMSAT for almost all the dataset, we
can observe benefit of the symmetric InfoNCE. Especially for Two-Moons and Two-
Rings (two complex topology datasets), it should be emphasized that the symmetric

1https://github.com/betairylia/MIST [Last accessed 23-July-2022]
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Table 3: Results of the ablation study for MIST objective. The number outside (resp.
inside) of brackets expresses clustering accuracy (resp. standard deviation) over three
trials. In the first column, six combinations based on A© to D© in Eq.(11) are shown, and
each of the six defines a variant of MIST objective of Eq.(11).

Two-Rings MNIST CIFAR10 20news SVHN
( D©) 76.4(16.7) 72.7(4.8) 40.7(2.9) 21.9(3.2) 23.3(0.2)

( B©, C©) 58.7(9.6) 58.5(3.5) 40.3(3.5) 25.1(2.8) 26.8(3.2)
( B©, D©) 83.4(23.5) 81.9(4.3) 44.1(0.5) 40.1(1.1) 24.9(0.2)
( A©, D©) 100(0) 70.6(2.9) 35.8(4.9) 35.7(1.7) 44.8(4.8)

( A©, B©, C©) 69.0(21.9) 98.7(0.0) 44.9(0.6) 35.8(1.9) 54.8(2.8)
( B©, C©, D©) 83.4(23.4) 75.0(4.3) 45.1(1.8) 31.6(0.4) 21.0(2.5)

InfoNCE with Tg of Definition 4 brings significant enhancement to IMSAT. In addition,
for CIFAR10 and SVHN, it brings a noticeable gain to IMSAT.

With comparison between MIST and SpectralNet, MIST cannot perform as stable as
SpectralNet for Two-Rings dataset. However, MIST with a DNN needs a smaller mem-
ory complexity than SpectralNet with two DNNs. Moreover, the average performance
of MIST on the eight real-world datasets are much better than that of SpectralNet.

Furthermore, through comparison between MIST and MIST via Înce, we can ob-
serve that the symmetric InfoNCE enhances IMSAT more than InfoNCE does on aver-
age. The observation matches Theorem 2.

4.6 Ablation Study for MIST Objective
Recall A© to D© in Eq.(11). Here, we examine six variants of MIST objective of Eq.(11),
which are shown in the first column of Table 3. For example, ( B©, C©) means that only
B© and C© are used to define a variant of the MIST objective, where B© and C© are

linearly combined using a coefficient hyper-parameter. The detail of hyper-parameter
tuning for each combination is described in Appendix E.5. For the study, Two-Rings,
MNIST, CIFAR10, 20news, and SVHN are employed.

Firstly, by two comparisons of ( B©, C©) vs. ( B©, C©, D©) and ( A©, B©, C©) vs. MIST
results in Table 2, we see positive effect of the symmetric InfoNCE across the five
datasets on average. Especially for the complex topology dataset (i.e., Two-Rings), the
effect is very positive. Secondly, the result of ( B©, C©) vs. ( A©, B©, C©) indicates that
VAT (Miyato et al., 2019) positively works for clustering tasks. Thirdly, via ( D©) vs.
( B©, D©), effect of maximizing H(Y ) is positive. For further analysis with A© to D©, see
Appendix D.

To sum up, although the combination of ( A©, B©, C©), i.e., IMSAT, provides competi-
tive clustering performance for non-complex topology datasets, the symmetric InfoNCE
can bring benefit to the combination for not only the non-complex topology datasets but
also the complex topology dataset.
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Table 4: Results of robustness study for number of neighbors K0 in Definition 3 and 4.
The average clustering accuracy and std over three trials are shown. In the first column,
hyper-parameter value outside (resp. inside) of brackets is used for Two-Rings, MNIST,
CIFAR10 and SVHN (resp. 20news).

K0 Two-Rings MNIST CIFAR10 20news SVHN
5(10) 83.5(23.4) 98.2(0.4) 48.0(0.9) 34.2(1.5) 55.1(2.0)
10(50) 83.5(23.3) 96.6(5.7) 47.5(0.9) 36.5(1.0) 55.9(1.7)
15(100) 100(0) 98.4(0.0) 47.8(1.4) 38.8(0.9) 56.3(3.2)
50(150) 50.7(0.5) 93.6(7.2) 48.6(1.8) 36.9(2.2) 63.3(1.2)

Table 5: Results of robustness study for α in Eq.(3). The average clustering accuracy
and std over three trials are shown.

α Two-Rings MNIST CIFAR10 20news SVHN
0 67.2(23.2) 98.7(0.0) 49.5(0.3) 38.1(1.8) 61.4(2.1)
1 100(0) 97.6(1.1) 48.4(0.4) 39.9(3.3) 57.0(1.5)
2 66.7(23.5) 97.8(1.3) 46.6(0.4) 39.5(2.5) 57.6(2.4)

Table 6: Results of robustness study for γ in MIST objective of Eq.(11). The average
clustering accuracy and std over three trials are shown. In the first column, number
outside (resp. inside) of brackets means value of γ used for real-world datasets (resp.
synthetic dataset).

γ Two-Rings MNIST CIFAR10 20news SVHN
0.1(1) 83.8(22.9) 93.7(7.0) 49.0(1.5) 40.7(1.1) 52.5(4.6)
0.5(5) 94.4(8.0) 98.0(1.0) 48.7(1.0) 35.0(2.3) 59.6(3.6)
1.0(10) 100(0) 97.9(1.1) 46.5(0.8) 37.4(0.7) 59.8(3.5)

4.7 Robustness for K0, α, and γ
Let us consider the influence of the hyper-parameters, K0, α, and γ, in the MIST objec-
tive of Eq.(11) on the clustering performance. We evaluate how these hyper-parameters
affect the clustering accuracy when other hyper-parameters are unchanged. In the study,
some candidates of the three hyper-parameters are examined for Two-Rings, MNIST,
CIFAR10, 20news, and SVHN.

1) The number of neighbors, K0, is used in both Te of Definition 3 and Tg of Def-
inition 4. For Two-Rings, MNIST, CIFAR10, and SVHN (resp. 20news), the
candidates, K0 = 5, 10, 15, 50 (resp. K0 = 10, 50, 100, 150), are examined. The
results are shown in Table 4.

2) The hyper-parameter α is used in the critic function of Eq.(3). The candidates,
α = 0, 1, 2, are examined. The results are shown in Table 5.

3) The importance weight, γ, is used for the symmetric InfoNCE in MIST objective
Eq.(11). The candidates for real-world datasets (resp. synthetic dataset) are γ =
0.1, 0.5, 1.0 (resp. γ = 1, 5, 10). The results are shown in Table 6.
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Other hyper-parameters are the same as those used in MIST of Table 2. Details are
shown in Table 10 of Appendix E.5.

Firstly, as we can see that for most datasets in Table 4, MIST is robust to the change
of K0. The exception is Two-Rings. The clustering accuracy of MIST with K0 = 50 is
much lower than that with K0 = 15. A possible reason is that the K-NN graph with a
large K0 has edges connecting two data points belonging to different rings. Therefore,
maximization of the symmetric InfoNCE based on such a K-NN graph can negatively
affect the clustering performance. Secondly, Table 5 indicates that for all real-world
datasets, MIST is robust to the change of α that controls the intensity of the correlation.
For Two-Rings, however, the performance of MIST is sensitive to α. Finally, Table 6
shows that for all the datasets, MIST is stable to the change of γ.

Conclusion
In this study, to achieve the goal described in the end of Section 1.3, we proposed topo-
logical invariant constraint, which is based on the symmetric InfoNCE, in Section 3.3.
Then, the theoretical advantages are intensively discussed from a deep clustering point
of view in Section 3.4. In numerical experiments of Section 4, the efficiency of topolog-
ically invariant constraint is confirmed, using MIST defined by combining the constraint
and IMSAT.

Future work will refine the symmetric InfoNCE to have fewer hyper-parameters for
better and more robust generalization across datasets. Also, it is worthwhile to inves-
tigate a more advanced transformation function to deal with high-dimensional datasets
with complex topology. Furthermore, developing an efficient way of incorporating in-
formation than the MI will enhance the reliability and prediction performance of deep
clustering methods.
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Appendix

A Review of Related Works

A.1 Deep Clustering Methods without Number of Clusters
Except for Scenario1 and Scenario2 where the number of clusters is given, some
authors assume that the number of clusters is not given (Chen, 2015; Yang et al.,
2016; Caron et al., 2018; Mautz et al., 2019; Avgerinos et al., 2020). For example,
in DLNC (Chen, 2015), for a given unlabeled dataset, the feature is extracted by a
deep belief network. Then, the obtained feature vectors are clustered by NMMC (Non-
parametric Maximum Margin Clustering) with the estimated number of clusters. In
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DeepCluster (Caron et al., 2018), starting from an excessive number of clusters, the
appropriate number of clusters is estimated.

A.2 Invariant Information Clustering
Given image dataD = {xi}ni=1 and the number of clustersC, IIC (Invariant Information
Clustering) (Ji et al., 2019) returns the estimated cluster labels {ŷi}ni=1 using the trained
model for clustering. The training criterion is based on the maximization of the MI
between the cluster label of a raw image and the cluster label of the transformed raw
image. IIC employs the clustering model of gθ(x) (see Definition 1), where a CNN is
used so at to take advantages of image-specific prior knowledge.

To be more precise, to learn the parameter θ of the model, IIC maximizes the MI,
I(Y ;Y ′), between random variables Y and Y ′ that take an element in {1, · · · , C}.
Here, Y denotes the random variable of the cluster label with raw image X ∈ X . Let
T : X → X be an image-specific transformation function, and then Y ′ denotes the
random variable of the cluster label for the transformed raw image; T (X). In IIC, the
conditional probability p(y|x) is modeled by gθ(x). During the SGD-based optimiza-
tion stage, given a mini-batch B ⊆ D, I(Y ;Y ′) is computed as follows:

1) Define p (y, y′|x, T (x)) = gyθ (x)gy
′

θ (T (x)), where y and y′ are the cluster labels
of x and T (x), respectively.

2) Compute p(y, y′) = 1
|B|
∑

xi∈B g
y
θ (xi)g

y′

θ (T (xi)).

3) Define p̄(y, y′) as the symmetrized probability (p(y, y′) + p(y′, y))/2.

4) Compute the MI I(Y ;Y ′) from p̄(y, y′).

Then, the parameter θ of the model is found by maximizing I(Y ;Y ′) w.r.t. θ. Note that
an appropriate transformation T is obtained using image-specific knowledge, such as
scaling, skewing, rotation, flipping, etc.

A.3 Information Maximization for Self-Augmented Training
In this section, we introduce IMSAT (Information Maximization for Self-Augmented
Training) (Hu et al., 2017). To do so, in Appendix 1.1, firstly we introduce VAT (Miyato
et al., 2019), which is an essential regularizer for IMSAT. Then, we explain the objective
of IMSAT in Appendix 1.2.

1.1 Virtual Adversarial Training

Virtual Adversarial Training is a regularizer forcing the smoothness on a given model
in the following sense:

xi ≈ xj ⇒ ∀y ∈ {1, · · · , C}; gyθ (xi) ≈ gyθ (xj), (12)

where gθ is defined by Definition 1. It should be emphasized that we can train with VAT
without labels. Let DKL (p1‖p2) denote the KL (Kullback–Leibler) divergence (Cover,
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1999) between two probability vectors p1 ∈ ∆C−1 and p2 ∈ ∆C−1. During the SGD
based optimization stage, given a mini-batch B ⊆ D, the VAT loss, Rvat(B; θ), is de-
fined as,

Rvat(B; θ) =
1

|B|
∑
xi∈B

DKL

(
gθl(xi)‖gθ(xi + radv

i )
)
, (13)

where radv
i = arg max‖r‖2≤εi DKL (gθl(xi)‖gθl(xi + r)), and θl is the parameter ob-

tained at the l-th update. The radius εi depends on xi, and in practice it is estimated via
K-NN graph on D; see Hu et al. (2017) for details.

The approximated radv
i can be computed by the following three steps;

1) Generate a random unit-vector u ∈ Rd,

2) Compute vi = ∇rDKL (gθl(xi)‖gθl(xi + r)) |r=ξu using the back-propagation,

3) radv
i = εivi/‖vi‖2,

where ξ > 0 is a small positive value.

1.2 Objective of IMSAT

Given D = {xi}ni=1 and the number of clusters C, IMSAT provides estimated cluster
labels, {ŷi}ni=1, ŷi ∈ {1, · · · , C}, using gθ(x) of Definition 1 (statistical model for
clustering). In IMSAT, gθ(x) is the simple MLP with the structure d−1200−1200−C.
Using the trained model gθ∗(x), we have ŷi = argmaxy∈{1,··· ,C}g

y
θ∗(xi).

As for training criterion of the parameter θ, IMSAT maximizes the MI, I(X;Y ),
with the VAT regularization. In order to compute I(X;Y ), we assume the following
two assumptions: 1) the conditional probability p(y|x) is modeled by gθ(x), and 2) the
marginal probability p(x) is approximated by the uniform distribution onD. Thereafter,
I(X;Y ) is decomposed into I(X;Y ) = H(Y ) − H(Y |X). Here H(Y ) is Shannon
entropy and H(Y |X) is the conditional entropy (Cover, 1999). During the SGD-based
optimization, given a mini-batchB ⊆ D,H(Y ) andH(Y |X) are respectively computed
as follows:

−
C∑
y=1

pθ(y) log pθ(y) and − 1

|B|
∑
xi∈B

C∑
y=1

gyθ (xi) log gyθ (xi), (14)

where pθ(y) is the approximate marginal probability, 1
|B|
∑

xi∈B g
y
θ (xi). The parameter

θ of the model is found by solving the following minimization problem,

minθ {Rvat(B; θ)− µ (ηH(Y )−H(Y |X))} , (15)

where µ and η are positive hyper-parameters.
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B Proofs for Section 3

B.1 Proof of Proposition 1
From the definition of the MI, I(Z;Z ′) = I(Z ′;Z) holds. In addition, we have
I(Z;Z ′) ≥ Ince,q(Z;Z ′) and I(Z ′;Z) ≥ Ince,q(Z

′;Z) for any function q. Therefore,
the following inequality holds:

I(Z;Z ′) =
I(Z;Z ′) + I(Z ′;Z)

2

≥ Ince,q(Z;Z ′) + Ince,q(Z
′;Z)

2
.

Next, check the optimality. In order to do so, let us review the following inequal-
ity (Poole et al., 2019):

Ince,q(Z;Z ′) = E
[
log

p(Z ′)eq(Z,Z
′)

EZ′ [eq(Z,Z′)]
− log p(Z ′)

]
= E

[
log

p(Z ′)eq(Z,Z
′)

EZ′ [eq(Z,Z′)]

]
+H(Z ′)

≤ E [log p(Z ′|Z)] +H(Z ′)

= Ep(Z,Z′)
[
log

p(Z,Z ′)

p(Z)p(Z ′)

]
.

The last inequality comes from the non-negativity of the KL-divergence. Therefore, for
any q, InfoNCE provides a lower bound of I(Z;Z ′). The equality holds if

q(z, z′) = log p(z|z′) + [function of z]. (16)

Thus, if q satisfies q(z, z′) = q(z′, z), i.e., log p(z|z′) +h0(z) = log p(z′|z) +h1(z′) for
some function h0(z) and h1(z′), then the equality between the symmetric InfoNCE and
I(Z;Z ′) holds. As a result, the critic q, which is defined as q(z, z′) = log p(z,z′)

p(z)p(z′) +
c, c ∈ R, is the optimal critic.

B.2 Proof of Proposition 2
Let us introduce data processing inequality. Suppose that the random variables X,Z
are conditionally independent for a given Y . This situation is expressed by

X ↔ Y ↔ Z.

Under the above assumption, the data processing inequality I(X;Y ) ≥ I(X;Z) holds
for the MI. In our formulation, the pair of random variables, X and X ′, is transformed
to the conditional probabilities, p(·|X) = gθ(X) and p(·|X ′) = gθ(X

′), on the C-
dimensional simplex ∆C−1. Then, the cluster label Y (resp. Y ′) is assumed to be gen-
erated from p(·|X) (resp. p(·|X ′)). This data generation process satisfies the following
relationship:

Y ↔ p(· | X)↔ (X,X ′)↔ p(· | X ′)↔ Y ′.
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Therefore, for X ′ = T (X), the data processing inequality leads to

I(Y ;Y ′) ≤ I(p(· | X); p(· | X ′)) = I(gθ(X); gθ(T (X))).

B.3 Estimation Error of the Symmetric InfoNCE
The symmetric InfoNCE provides an approximation of MI. Here, let us theoretically
investigate the estimation error rate of the symmetric InfoNCE with a learnable critic.

Suppose we have training data x1, . . . , xn and their perturbation, x′i := ti(xi), i ∈
[n] := {1, . . . , n}, where ti is a randomly generated map. We assume that t1, . . . , tn are
i.i.d. Recall that the empirical approximation of the InfoNCE loss Ince,q is given by

Înce,q(θ) =
1

n

∑
i

q(gθ(xi), gθ(x
′
i))−

1

n

∑
i

log

(
1

n

∑
j

eq(gθ(xi),gθ(x′j))

)
.

The symmetric InfoNCE is defined as (Ince,q +I ′nce,q)/2 and its empirical approximation
is

Înce,q(θ) + Î ′nce,q(θ)

2

=
1

n

∑
i

q(gθ(xi), gθ(x
′
i))−

1

2n

(∑
i

log

(
1

n

∑
j

eq(gθ(xi),gθ(x′j))

)

+
∑
i

log

(
1

n

∑
j

eq(gθ(x′i),gθ(xj))

))
.

Let Isym nce,q and Îsym nce,q denote the symmetric InfoNCE and the empirical approxi-
mation, respectively. Let Q be a set of critics. The MI is approximated by

IQ(θ) = sup
q∈Q

Isym nce,q(θ).

The empirical approximation of IQ(θ) is given by ÎQ(θ) = supq∈Q Îsym nce,q(θ). Then,
the parameter θ̂ of the model is given by the maximizer of ÎQ(θ), i.e.,

max
θ∈Θ

ÎQ(θ) −→ θ̂.

Let I(θ) be the mutual information between gθ(X) and gθ(X ′). The maximizer of I(θ)
(resp. IQ(θ)) is denoted by θ∗ (resp. θQ ∈ Θ).

We evaluate the mutual information at θ̂, i.e., I(θ̂). From the definition, we have

0 ≤ I(θ∗)− I(θ̂) ≤ I(θ∗)− IQ(θ̂) ≤ I(θ∗)− IQ(θQ)︸ ︷︷ ︸
approximation error≥0

+ IQ(θQ)− IQ(θ̂)︸ ︷︷ ︸
estimation error≥0

. (17)

We consider the estimation error bound. The optimality of θ̂ leads to

0 ≤ IQ(θQ)− IQ(θ̂) ≤ IQ(θQ)− ÎQ(θQ) + ÎQ(θQ)− ÎQ(θ̂) + ÎQ(θ̂)− IQ(θ̂)
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≤ IQ(θQ)− ÎQ(θQ) + ÎQ(θ̂)− IQ(θ̂) ≤ 2 sup
θ∈Θ
|IQ(θ)− ÎQ(θ)|. (18)

Let us evaluate the worst-case gap between IQ(θ) and ÎQ(θ):

IQ(θ)− ÎQ(θ) = sup
q

inf
q′
Isym nce,q(θ)− Îsym nce,q′(θ)

≤ sup
q
Isym nce,q(θ)− Îsym nce,q(θ).

Likewise, we have ÎQ(θ)− IQ(θ) ≤ supq Îsym nce,q(θ)− Isym nce,q(θ). Therefore,

sup
θ∈Θ
|IQ(θ)− ÎQ(θ)| ≤ sup

θ∈Θ,q∈Q
|Isym nce,q(θ)− Îsym nce,q(θ)|.

To derive the convergence rate, we use the Uniform Law of Large Numbers (ULLN)
(Mohri et al., 2018) to the following function classes,

G = {(x, t) 7→ q(gθ(x), gθ(t(x))) : θ ∈ Θ, q ∈ Q},
exp ◦G = {(x, t) 7→ exp{q(r, gθ(t(x)))} : θ ∈ Θ, q ∈ Q, r ∈ ∆C−1}.

Suppose that the model (gyθ )y∈[C] with any permutation of cluster label is realized by
the other parameter θ′. For instance, when C = 2, for any θ there exists θ′ such that
(g2
θ , g

1
θ) = (g1

θ′ , g
2
θ′) holds. Then, let us define the following function class N by

N = {x 7→ gθ,1(x) : θ ∈ Θ},

where gθ,1 is the first element of gθ. We evaluate the estimation error bound in terms
of the Rademacher complexity of N . See Bartlett and Mendelson (2002); Mohri et al.
(2018) for details of Rademacher complexity.

We assume the following conditions:

(A) Any q(r, r′) in Q is expressed as q(r, r′) = φq(r
>r′) for r, r′ ∈ ∆C−1, where

φq : [0, 1] → [a, b]. We assume that the range of φq is uniformly bounded in the
interval [a, b].

(B) The Lipschitz constant ‖φq‖Lip of φq is uniformly bounded, i.e.,

sup
q∈Q
‖φq‖Lip ≤ L <∞.

We consider the Rademacher complexity of G and exp ◦G. Let σi, i ∈ [n] be i.i.d.
Rademacher random variables. GivenD = {(xi, x′i), i ∈ [n]}, the empirical Rademacher
complexity is

R̂D(G) = Eσ
[

sup
θ∈Θ,q∈Q

1

n

∑
i

σiq(gθ(xi), gθ(xi))

]
≤ Eσ

[
sup

θ∈Θ,q∈Q,r∈∆C−1

1

n

∑
i

σiq(r, gθ(xi))

]
,
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R̂D(exp ◦G) = Eσ
[

sup
θ∈Θ,q∈Q,r∈∆C−1

1

n

∑
i

σi exp{q(r, gθ(xi))}
]

≤ ebEσ
[

sup
θ∈Θ,q∈Q,r∈∆C−1

1

n

∑
i

σiq(r, gθ(xi))

]
.

The inequality in the second line is obtained by Talagrand’s lemma (Mohri et al., 2018).
Due to the assumption on the function q(r, r′), for gθ = (gθ,1, . . . , gθ,C) ∈ ∆C−1 we
have

Eσ
[

sup
θ,q,r

1

n

∑
i

σiq(r, gθ(xi))

]
= Eσ

[
sup
θ,q,r

1

n

∑
i

σiφq(r
>gθ(xi))

]
≤ LEσ

[
sup
θ,r

1

n

∑
i

σir
>gθ(xi)

]
= LEσ

[
sup
θ

max
c∈[C]

1

n

∑
i

σigθ,c(xi)

]
= LEσ

[
sup
θ

1

n

∑
i

σigθ,1(xi)

]
.

In the last inequality, again Talagrand’s lemma is used. Note that since we deal with a
general case in which the probability distribution of xi and x′i may not be equal to each
other, it is worth considering a counterpart w.r.t. the probability distribution of xi, i.e.,
we have

R̂D(G) = Eσ
[

sup
θ∈Θ,q∈Q

1

n

∑
i

σiq(gθ(xi), gθ(x
′
i))

]
≤ Eσ

[
sup

θ∈Θ,q∈Q,r∈∆C−1

1

n

∑
i

σiq(r, gθ(x
′
i))

]
,

R̂′D(exp ◦G) = Eσ
[

sup
θ∈Θ,q∈Q,r∈∆C−1

1

n

∑
i

σi exp{q(r, gθ(x′i))}
]

≤ ebEσ
[

sup
θ∈Θ,q∈Q,r∈∆C−1

1

n

∑
i

σiq(r, gθ(x
′
i))

]
,

and,

Eσ
[

sup
θ,q,r

1

n

∑
i

σiq(r, gθ(x
′
i))

]
= Eσ

[
sup
θ,q,r

1

n

∑
i

σiφq(r
>gθ(x

′
i))

]
≤ LEσ

[
sup
θ,r

1

n

∑
i

σir
>gθ(x

′
i)

]
= LEσ

[
sup
θ

max
c∈[C]

1

n

∑
i

σigθ,c(x
′
i)

]
= LEσ

[
sup
θ

1

n

∑
i

σigθ,1(x′i)

]
.
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For our purpose it is sufficient to find the Rademacher complexity Rn(N ) (resp. R′n(N ))
of N w.r.t. the probability distribution of xi (resp. x′i). For the standard neural network
models, both the Rademacher complexities Rn(N ) and R′n(N ) are of the order of n−1/2

and the coefficient depends on the maximum norm of the weight (Shalev-Shwartz and
Ben-David, 2013). From the above calculation, we have

Rn(G) ≤ cRn(N ), Rn(exp ◦G) ≤ cRn(N ),

where c is a positive constant depending on b and L. Note that the same argument holds
for R′n(N ). In the below, c is a positive constant that can be different line by line.
Furthermore, let us evaluate the Rademacher complexity of the function set

x 7−→ logEX′
[
eq(gθ(x)>gθ(X′))

]
.

We use the upper bound of Rn(exp ◦G). The logarithmic function is Lipschitz continu-
ous on the bounded interval [ea, eb] and Lipschitz constant is bounded above by e−a on
the interval. The empirical Rademacher complexity is given by

Eσ
[

sup
θ,q

1

n

n∑
i=1

σi logEX′
[
eq(gθ(xi)

>gθ(X′))

]]
≤ e−aEσ

[
EX′
[

sup
θ,q

1

n

n∑
i=1

σie
q(gθ(xi)

>gθ(X′))

]]
≤ e−aEσ

[
sup
θ,q,r

1

n

n∑
i=1

σie
q(gθ(xi)

>r)

]
≤ Leb−a Eσ

[
sup
θ

1

n

n∑
i=1

σigθ,1(xi)

]
. (19)

From the above calculation, the following theorem holds.

Theorem 3 Assume the condition (A) and (B). Let us define εNδ,n as

εNδ,n =
1

2
(Rn(N ) + R′n(N )) +

√
log(1/δ)

n
,

where Rn(N ) (resp. R′n(N )) is the Rademacher complexity of N for n samples fol-
lowing the probability distribution of xi (resp. the probability distribution of x′i). Then,
with the probability greater than 1− δ, we have

IQ(θQ)− IQ(θ̂) ≤ c εNδ,n,

where c is a positive constant depending on a, b and L.

Proof. The proof of Theorem 3 is the following. From the definition of the symmetric
InfoNCE, we have

sup
θ
|IQ(θ)− ÎQ(θ)|
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≤ sup
θ,q
|Isym nce,q(θ)− Îsym nce,q(θ)|

≤ sup
θ,q

∣∣∣∣ 1n
n∑
i=1

q(gθ(xi), gθ(x
′
i))− E[q(gθ(X), gθ(X

′))]

∣∣∣∣
+

1

2
sup
θ,q

∣∣∣∣ 1n
n∑
i=1

log
1

n

n∑
j=1

eq(gθ(xi),gθ(x′j)) − EX logEX′
[
eq(gθ(X)>gθ(X′))

]∣∣∣∣
+

1

2
sup
θ,q

∣∣∣∣ 1n
n∑
i=1

log
1

n

n∑
j=1

eq(gθ(x′i),gθ(xj)) − EX′ logEX
[
eq(gθ(X′)>gθ(X))

]∣∣∣∣.
From the Rademacher complexity of Rn(G), the first term in the above is bounded
above by εNn,δ up to a positive constant. Next, let us define the following:

εN ,1n,δ = Rn(N ) +

√
log (1/δ)

n
εN ,2n,δ = R′n(N ) +

√
log (1/δ)

n
.

It is clear that 2εNn,δ = εN ,1n,δ + εN ,2n,δ . Then, the ULLN with the upper bound of Eq.(19)
leads to the following with the probability greater than 1− δ/4 that

sup
θ,q

∣∣∣∣ 1n
n∑
i=1

logEX′
[
eq(gθ(xi),gθ(X′))

]
− EX logEX′

[
eq(gθ(X),gθ(X′))

]∣∣∣∣ ≤ c εN ,1n,δ .

Hence, with the probability greater thatn 1− δ/2 we have∣∣∣∣ 1n
n∑
i=1

log
1

n

n∑
j=1

eq(gθ(xi),gθ(x′j)) − EX logEX′
[
eq(gθ(X)>gθ(X′))

]∣∣∣∣
≤
∣∣∣∣ 1n

n∑
i=1

log
1

n

n∑
j=1

eq(gθ(xi),gθ(x′j)) − 1

n

n∑
i=1

logEX′
[
eq(gθ(xi),gθ(X′))

]∣∣∣∣
+

∣∣∣∣ 1n
n∑
i=1

logEX′
[
eq(gθ(xi)

>gθ(X′))
]
− EX logEX′

[
eq(gθ(X),gθ(X′))

]∣∣∣∣
≤ e−a

1

n

n∑
i=1

∣∣∣∣ 1n
n∑
j=1

eq(gθ(xi),gθ(x′j)) − EX′
[
eq(gθ(xi),gθ(X′))

]∣∣∣∣+ c εN ,1n,δ

≤ e−a sup
r∈∆C−1

∣∣∣∣ 1n
n∑
j=1

eq(r,gθ(x′j)) − EX′
[
eq(r,gθ(X′))

]∣∣∣∣+ c εN ,1n,δ

≤ c εNn,δ.

Similarly, with the probability greater than 1− δ/2 we have∣∣∣∣ 1n
n∑
i=1

log
1

n

n∑
j=1

eq(gθ(x′i),gθ(xj)) − EX′ logEX
[
eq(gθ(X′)>gθ(X))

]∣∣∣∣ ≤ c εNn,δ.

Eventually, the worst-case error supθ |IQ(θ) − ÎQ(θ)| is bounded above by εNn,δ up to
a positive factor. The above bound with inequalities in Eq.(17) and (18) lead to the
conclusion. 2
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We then show that the critic functions defined in Eq.(3) satisfy both the condition
(A) and (B). Recall the definition of the critic functions:

q(z, z′) = log
(
expα

(
τ(z>z′ − 1)

))
, where α ∈ R, τ ≥ 0.

Lemma 1 Given real values l ≥ 0, w > 0, 0 < d < 1 and s < 0, define Ξ = {(α, τ) ∈
R × R≥0 : τ ≤ l, w ≤ |α − 1|, s ≤ (1 − α)τ ≤ 1 − d} ∪ {(1, τ) : 0 ≤ τ ≤ l},
φ(α,τ) = log

(
expα

(
τ(z>z′ − 1)

))
and Q = {q : ∆C−1 × ∆C−1 → R : ∃(α, τ) ∈

Ξ s.t. q = φ(α,τ)}. Then every q ∈ Q satisfies both the condition (A) and (B).

Proof. Let q ∈ Q. From the definition ofQ, there exists some (α, τ) ∈ Ξ such that q is
expressed as q(r, r′) = φ(α,τ)(r

>r′) for any r, r′ ∈ ∆C−1. Moreover, φ(α,τ) is uniformly
bounded in the following closed interval

[min{log d1/(1−α), log (1− s)1/(1−α)},max{log d1/(1−α), log (1− s)1/(1−α)}],

when α 6= 1, and in [−l, 0] when α = 1. Therefore, q satisfies the condition (A). Let
us show every q = φ(α,τ) ∈ Q also satisfies the condition (B). When α = 1, from the
definition of the function expα, we have φ(α,τ)(x) = τ(x − 1) on x ∈ [0, 1]. Hence,
‖φ(α,τ)‖Lip ≤ τ ≤ l < ∞. When α 6= 1, since φ(α,τ)(x) = (1 − α)−1 log(1 + (1 −
α)τ(x− 1)) on x ∈ [0, 1] we have:

• When 0 ≤ (1−α)τ ≤ 1−d, we have ‖φ(α,τ)‖Lip ≤ τ/(1−(1−α)τ) ≤ τ/d <∞.

• When s ≤ (1− α)τ < 0, then we have ‖φ(α,τ)‖Lip ≤ τ <∞.

Therefore, there exists a non-negative constant L such that

sup
φ(α,τ)∈Q

‖φ(α,τ)‖Lip ≤ L <∞.

This implies that q = φ(α,τ) satisfies the condition (B). 2

Now we are ready to show the main result on the statistical analysis in this section.

Theorem 4 (Formal version of Theorem 1) Let Q be the set defined in the setting of
Lemma 1. Then, with the probability greater than 1− δ, we have

IQ(θQ)− IQ(θ̂) ≤ c εNδ,n,

where c is a positive constant depending on a, b and L. As a result, with probability at
least 1− δ the gap between I(θ∗) and I(θ̂) is given by

0 ≤ I(θ∗)− I(θ̂) ≤ I(θ∗)− IQ(θQ) + c εNn,δ.

Proof. From Theorem 3 and Lemma 1, we obtain the claim. 2
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B.4 Proof of Theorem 2
We show Theorem 2 based on the results by Wang et al. (2022). Recall the definition of
the critic function Eq.(3); when α = 1, the critic function q(gθ(X), gθ(T (X))) is just
q(gθ(X), gθ(T (X))) = τ(gθ(X)>gθ(T (X))− 1). In this case, the symmetric InfoNCE
loss, −1

2
(Ince + I ′nce), is written as

− Ep(Z,Z′)[τ(Z>Z ′ − 1)] +
1

2
(Ep(Z)[logEp(Z′)[exp(τ(Z>Z ′ − 1))]

+ Ep(Z′)[logEp(Z)[exp(τ(Z>Z ′ − 1))]]]).

The following Proposition 3 provides an upper bound of the symmetric mean supervised
loss involving the symmetric InfoNCE loss.

Proposition 3 We have,

Lµ,µ̃SCE(gθ) ≤ −
1

2
(Ince + I ′nce) +

1

2

(√
Var(Z|Y ) +

√
Var(Z ′|Y ) + 2 logC

)
,

where Var(Z|Y ) = Ep(Y )[Ep(Z|Y )[‖τZ − µY ‖2
∞]], Var(Z ′|Y ) = Ep(Y )[Ep(Z′|Y )[‖τZ ′ −

µY ‖2
∞]].

Proof. The proof of Proposition 3 is mainly due to Theorem A.3 of Wang et al. (2022),
but slightly different because we now focus on the symmetric InfoNCE with the critic
function of Eq.(3). We show the detail of our proof based on Wang et al. (2022) for the
sake of completeness.

− 1

2
(Ince + I ′nce)

= −Ep(Z,Z′)[τZ>Z ′ − τ ] +
1

2
(Ep(Z)[logEp(Z′)[exp(τZ>Z ′ − τ)]

+ Ep(Z′)[logEp(Z)[exp(τZ>Z ′ − τ)]]])

= −Ep(Z,Z′)[τZ>Z ′] +
1

2
(Ep(Z)[logEp(Z′)[exp(τZ>Z ′)]

+ Ep(Z′)[logEp(Z)[exp(τZ>Z ′)]]])

= −Ep(Z,Z′)[τZ>Z ′] +
1

2
(Ep(Z)[logEp(Y )[Ep(Z′|Y )[exp(τZ>Z ′)]]]

+ Ep(Z′)[logEp(Y )[Ep(Z|Y )[exp(τZ>Z ′)]]])

≥ −Ep(Z,Z′)[τZ>Z ′] +
1

2
(Ep(Z)[logEp(Y )[exp(Ep(Z′|Y )[τZ

>Z ′])]]

+ Ep(Z′)[logEp(Y )[exp(Ep(Z|Y )[τZ
>Z ′]]]))

= −1

2

(
Ep(Z,Z′,Y )[Z

>µ̃Y + Z>(τZ ′ − µ̃Y )]

+ Ep(Z,Z′,Y )[Z
′>µY + Z ′

>
(τZ − µY )]

)
+

1

2

(
Ep(Z)[logEp(Y )[exp(Z>µ̃Y )]] + Ep(Z′)[logEp(Y )[exp(Z ′

>
µY )]]

)
=

1

2

(
−Ep(Z,Z′,Y )[Z

>µ̃Y + Z>(τZ ′ − µ̃Y )] + Ep(Z)[logEp(Y )[exp(Z>µ̃Y )]]
)
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+
1

2

(
−Ep(Z,Z′,Y )[Z

′>µY + Z ′
>

(τZ − µY )] + Ep(Z′)[logEp(Y )[exp(Z ′
>
µY )]]

)
≥ 1

2

(
−Ep(Z,Z′,Y )[Z

>µ̃Y + ‖τZ ′ − µ̃Y ‖∞] + Ep(Z)[logEp(Y )[exp(Z>µ̃Y )]]
)

+
1

2

(
−Ep(Z,Z′,Y )[Z

′>µY + ‖τZ − µY ‖∞] + Ep(Z′)[logEp(Y )[exp(Z ′
>
µY )]]

)
≥ 1

2

(
− Ep(Z,Y )[Z

>µ̃Y ]−
√
Ep(Z′,Y )‖τZ ′ − µ̃Y ‖2

∞ + Ep(Z)[logEp(Y )[exp(Z>µ̃Y )]]
)

+
1

2

(
− Ep(Z′,Y )[Z

′>µY ]−
√
Ep(Z,Y )‖τZ − µY ‖2

∞ + Ep(Z′)[logEp(Y )[exp(Z ′
>
µY )]]

)
=

1

2

(
−Ep(Z,Y )[Z

>µ̃Y ]−
√

Var(Z ′|Y ) + Ep(Z)[logEp(Y )[exp(Z>µ̃Y )]]
)

+
1

2

(
−Ep(Z′,Y )[Z

′>µY ]−
√

Var(Z|Y ) + Ep(Z′)[logEp(Y )[exp(Z ′
>
µY )]]

)
=

1

2

(
Lµ̃CE,Raw(gθ) + LµCE,Aug(gθ)−

√
Var(Z ′|Y )−

√
Var(Z|Y )

)
− logC

= Lµ,µ̃SCE(gθ)−
1

2

(√
Var(Z ′|Y ) +

√
Var(Z|Y ) + 2 logC

)
.

Here, in the first and the third inequality we use Jensen’s inequality, and in the second
inequality we use the Hölder’s inequality. 2

We next present a lower bound of the symmetric mean supervised loss.

Proposition 4 We have,

Lµ,µ̃SCE(gθ)− logC

≥ −1

2
(Ince + I ′nce)−

1

2

(√
Var(Z|Y ) +

√
Var(Z ′|Y )

)
− 1

2e
Var(exp(τZ>Z ′)),

where Var(exp(τZ>Z ′)) = Ep(Z)p(Z′)[(exp(τZ>Z ′)− Ep(Z)p(Z′)[exp(τZ>Z ′)])2].

Proof. The proof of Proposition 3 is mainly due to Theorem A.5 of Wang et al. (2022),
but also slightly different. Here, we show the detail of our proof based on Wang et al.
(2022) for the sake of completeness.

1

2
Lµ,µ̃SCE(gθ)

=
1

2

(
Lµ̃CE,Raw(gθ) + LµCE,Aug(gθ)

)
=

1

2
Ep(Z′,Y )[Z

′>µY ]− 1

2
Ep(Z,Y )[Z

>µ̃Y ]

+
1

2

(
Ep(Z)[logEp(Y )[exp(Z>µ̃Y )]] + Ep(Z′)[logEp(Y )[exp(Z ′

>
µY )]]

)
+ logC

= −1

2
Ep(Z,Z′,Y )[τZ

′>Z + Z ′
>

(µY − τZ)]− 1

2
Ep(Z,Z′,Y )[τZ

>Z ′ + Z>(µ̃Y − τZ ′)]

+
1

2

(
Ep(Z)[logEp(Y )[exp(Z>µ̃Y )]] + Ep(Z′)[logEp(Y )[exp(Z ′

>
µY )]]

)
+ logC

≥ −1

2
Ep(Z,Z′,Y )[τZ

′>Z + ‖µY − τZ‖∞]− 1

2
Ep(Z,Z′,Y )[τZ

>Z ′ + ‖µ̃Y − τZ ′‖∞]
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+
1

2

(
Ep(Z)[logEp(Y )[exp(Z>µ̃Y )]] + Ep(Z′)[logEp(Y )[exp(Z ′

>
µY )]]

)
+ logC

≥ −Ep(Z,Z′)[τZ ′>Z]− 1

2

√
Ep(Z,Y )[‖µY − τZ‖2

∞]− 1

2

√
Ep(Z′,Y )[‖µ̃Y − τZ ′‖2

∞]

+
1

2

(
Ep(Z)[logEp(Y )[exp(Z>µ̃Y )]] + Ep(Z′)[logEp(Y )[exp(Z ′

>
µY )]]

)
+ logC

= −Ep(Z,Z′)[τZ ′>Z]− 1

2

√
Var(Z|Y )− 1

2

√
Var(Z ′|Y )

+
1

2

(
Ep(Z)[logEp(Y )[exp(Z>µ̃Y )]] + Ep(Z′)[logEp(Y )[exp(Z ′

>
µY )]]

)
+ logC

≥ −Ep(Z,Z′)[τZ ′>Z]− 1

2

√
Var(Z|Y )− 1

2

√
Var(Z ′|Y )

+
1

2

(
Ep(Z)[Ep(Y )[Z

>µ̃Y ]] + Ep(Z′)[Ep(Y )[Z
′>µY ]]

)
+ logC

= −Ep(Z,Z′)[τZ ′>Z]− 1

2

√
Var(Z|Y )− 1

2

√
Var(Z ′|Y )

+
1

2

(
Ep(Z)[Ep(Z′)[τZ>Z ′]] + Ep(Z′)[Ep(Z)[τZ

>Z ′]]
)

+ logC

= −Ep(Z,Z′)[τZ ′>Z]− 1

2

√
Var(Z|Y )− 1

2

√
Var(Z ′|Y )

+
1

2

(
Ep(Z)[Ep(Z′)[log exp(τZ>Z ′)]] + Ep(Z′)[Ep(Z)[log exp(τZ>Z ′)]]

)
+ logC

≥ −Ep(Z,Z′)[τZ ′>Z]− 1

2

√
Var(Z|Y )− 1

2

√
Var(Z ′|Y )

+
1

2

(
Ep(Z)[logEp(Z′)[exp(τZ>Z ′)]] + Ep(Z′)[logEp(Z)[exp(τZ>Z ′)]]

)
− 1

2e
Var(exp(τZ>Z ′)) + logC

= −1

2
(Ince + I ′nce)−

1

2

√
Var(Z|Y )− 1

2

√
Var(Z ′|Y )− 1

2e
Var(exp(τZ>Z ′)) + logC.

Where, in the first inequality we use Hölder’s inequality, and in the second and the third
inequality we apply Jensen’s inequality. In the last inequality, we utilize the sharpened
Jensen’s inequality (Liao and Berg, 2019). 2

As a direct result of Proposition 3 and Proposition 4, we obtain the claim of Theo-
rem 2.

C Further Comparison between Symmetric InfoNCE,
InfoNCE, and SimCLR

Let us see additional differences between the symmetric InfoNCE and the original In-
foNCE. To do so, let us recall the following property: due to the symmetrization, the
degree of freedom of optimal critics is greatly reduced. Thus, from comparison between
−(Înce + Î ′nce)/2 and −Înce,q of Eq.(2), the symmetrization is expected to stabilize the
parameter learning; see Figure 3.
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a) b) c)

d)

Symmetric InfoNCE InfoNCE SimCLR

e) f)

1
Figure 3: Illustration of positive / negative pairs of the proposed and baseline methods.
From a) to f), the colors (blue, magenta, and yellow) mean different cluster labels.
The light-colored manifolds in a) and d) express true clusters. In a) (reps. d)), the set
of clusters composes Three-Blobs (resp. Two-Rings). A pair of the small circle and
triangle symbols with the same color means a pair of a data point x and the transformed
data point t(x) (i.e., so-called positive pair). The two data points connected by the red
dash line (resp. blue straight or curved line) are enforced to be distant (resp. close) to
each other. Especially in a) and d), the effect expressed by the red dash lines (resp. blue
straight or curved line) are brought by making `ng(xi) (resp. `ps(xi)) of Eq.(20) to be
small. In b) and e), the effect expressed by the red dash lines (resp. blue straight or
curved line) are brought by making `′ng(xi) (resp. `′ps(xi)) of Eq.(21) to be small. In c)
and f), the effect expressed by the red dash lines (resp. blue straight or curved line) are
brought by making `′′ng(xi) (resp. `′′ps(xi)) of Eq.(22) to be small.

For the comparison, we decompose Eq.(5) into three terms like Eq.(6). This de-
composition can be expressed as a variant of Eq.(6), where the last term of Eq.(6) is
replaced by 1

|B|
∑

xi∈B log
(∑

xj∈B e
q(gθ(xi),gθ(tj(xj)))

)
. In the decomposition, following

notations of Eq.(6), the corresponding positive and negative losses in Eq.(5) are de-
noted by L′ps and L′ng, respectively. Moreover, let us re-write Lps + Lng and L′ps + L′ng

as 1
|B|
∑

xi∈B `ps(xi) + `ng(xi) and 1
|B|
∑

xi∈B `
′
ps(xi) + `′ng(xi), respectively. Here, we

name both `ps(xi) + `ng(xi) and `′ps(xi) + `′ng(xi), point-wise contrastive loss. The four
terms: `ps, `ng, `′ps, and `′ng are defined as follows:

−q (gθ(xi), gθ (ti(xi)))︸ ︷︷ ︸
`ps(xi): point-wise positive loss

+
1

2
log

∑
xj∈B

∑
xi′∈B

ea(i,i′,j)


︸ ︷︷ ︸
`ng(xi): point-wise negative loss

, (20)

−q (gθ(xi), gθ (ti(xi)))︸ ︷︷ ︸
`′ps(xi): point-wise positive loss

+ log

∑
xj∈B

eq(gθ(xi),gθ(tj(xj)))


︸ ︷︷ ︸

`′ng(xi): point-wise negative loss

. (21)

Suppose that values of the point-wise contrastive losses are small enough. In this case,
we can see the difference on stability between−(Înce+Î ′nce)/2 and−Înce,q by comparing
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a) vs. b) and d) vs. e) in Figure 3. In this figure, it is observed that the empirical sym-
metric InfoNCE produces more stable contrastive effects than the empirical InfoNCE.

We also compare−(Înce + Î ′nce)/2 and the loss of SimCLR introduced in Chen et al.
(2020). To do so, consider the loss of SimCLR defined by a mini-batch B. Let LBSimCLR

denote the loss of SimCLR with the mini-batch B. Then, let `′′ps(xi) and `′′ng(xi) (xi ∈ B)
denote the point-wise positive loss and point-wise negative loss by,

LBSimCLR =
1

|B|
∑
xi∈B

`′′ps(xi) + `′′ng(xi). (22)

In this case, we can see the difference via a) vs. c) and d) vs. f) in Figure 3. Since
the symmetric InfoNCE produces similar contrastive effects to SimCLR does, the sym-
metric InfoNCE is interpreted as a simplified variant of SimCLR. We however note that
it is not easy to theoretically analyze SimCLR unlike our symmetric InfoNCE, since
LBSimCLR is designed based on heuristics.

D Details of MIST

D.1 Details of MIST Objective
To understand Eq.(11), let us see an effect brought by minimization of each term (Rvat,
−H(Y ), H(Y |X), Lps, and Lng) via Figure 4. In this figure, the left pictures a) and
c) show true clusters defined by the set of data points in the original space Rd. Each
color expresses a distinct true label. The pictures b) and d) show what kind of effects
is brought by minimization of each term in the representation space RC . We here sup-
pose that the appropriate hyper-parameters are used for Eq.(11). In both b) and d),
minimization of Rvat makes the model gθ acquire the local smoothness; see Eq.(12). In
addition, minimization of Lps makes the model predict the same cluster labels for the
topologically close two data points. Note that, while minimization of Lps defined by Te
in Definition 3 brings the similar effect (see b) in Figure 4) to the effect of Rvat, mini-
mization of Lps defined by Tg in Definition 4 brings clearly different effect from Rvat.
For understanding this clear difference, observe that xi and ti(xi) in d) are forced to be
close via minimization of Lps. Minimization of −H(Y ) (i.e., forcing pθ(y) ∈ ∆C−1

to be uniform) makes the model return the non-degenerate clustering result. Moreover,
minimization of H(Y |X) makes the model return a one-hot vector. Thus, it assists
each cluster to be distant. At last, as discussed at Section 3.3, minimization of Lng also
makes the model return the non-degenerate clustering result.

As recently proposed methods that are similar to MIST, we list Van Gansbeke et al.
(2020); Li et al. (2021); Dang et al. (2021). The above three methods focus on the image
domain (i.e., Scenario1 of Section 1.2). In the above three methods, either InfoNCE
or SimCLR is employed to enhance the clustering performance. Moreover, the scenario
these related works focus on is different from Scenario2. Furthermore, all the three
studies do not provide any theoretical analysis of their proposed methods.
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Algorithm 1 : MIST

Input Unlabeled dataset: D = {xi}ni=1. Model of p(y|x): gθ(x). Hyper-
parameters: µ, γ, η > 0. Generative process: T with a conditional probability
p(t|x), where x ∈ Rd and t : Rd → Rd. If D is complex dataset, employ Tg of
Definition 4. Otherwise, employ Te of Definition 3. Mini-batch size m. Number of
epochs: nep.
Output Set of estimated cluster labels with D: {ŷi}ni=1.

1: Initialize the trainable parameter θ.
2: for epoch = 1, · · · , nep do
3: for l = 0, 1, · · · , b n

m
c do

4: Randomly pick up xi1 , · · · , xim ∈ D.
5: Compute x′ik = tik(xik), i = 1, · · · ,m, where tik ∼ p(t|xik), and p(t|xik) is

defined via either Te or Tg.
6: Update the parameter θ by the SGD for the loss function in Eq.(11) com-

puted using the mini-batch B = {xik}mk=1 and {x′ik}
m
k=1.

7: Let θ∗ be the estimated parameter.
8: ŷi = arg maxy∈{1,··· ,C} g

y
θ∗(xi) for i = 1, · · · , n.

Original Rd

MIST MIST

Representation RC Original Rd Representation RC

Lng

Lng

H(Y |X)

H(Y |X)

Rvat

Rvat

Rvat

H(Y )

H(Y )
H(Y )

Lps

Lps
xi

xj

ti(xi), Tg

a) b) c) d)

1Figure 4: Intuitive illustration of MIST. Effect of each term in Eq.(11) is displayed for
Three-Blobs and Two-Rings. In a) and c), the true clusters in the original space are
shown, where colors mean cluster labels. In b) and d), effect of each term in Eq.(11) in
the representation space is shown.

(neighbor datapoints)

concatenate

(neighbor of other datapoints)

  Virtual Adversarial Training

  Marginal Entropy

  Conditional Entropy

  Symmetric InfoNCE

Figure 5: MIST architecture.
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Table 7: Summary of the ten datasets used in our experiments.
#Points #Cluster Dimension %Largest Cluster %Smallest Cluster

Two-Moons 5000 2 2 50% 50%
Two-Rings 5000 2 2 50% 50%

MNIST 70000 10 784 11% 9%
SVHN 99289 10 960 19% 6%
STL 13000 10 2048 10% 10%
CIFAR10 60000 10 2048 10% 10%
CIFAR100 60000 100 2048 1% 1%
Omniglot 40000 100 441 1% 1%
20news 18040 20 2000 5% 3%
Reuters10K 10000 4 2000 43% 8%

D.2 Time and Memory Complexities with Te and Tg
Suppose that we construct the non-approximated K-NN graph onD by using Euclidean
distance. Then, the time complexity with Te is O(dn2), where d is the dimension of
a feature vector. The memory complexity is O(K0n). As for Tg, time and memory
complexities are O ((K0 + log n)n2) and O(n2), respectively (Moscovich et al., 2017).
Note that if we construct the approximated K-NN graph onD by the Euclidean distance,
the time complexity with Te is reduced to O(dn log n) (Wang et al., 2013; Zhang et al.,
2013).

E Experiment Details

E.1 Details of Datasets
We used Two-Moons2 and Two-Rings3 in scikit-learn. For the former dataset, we set
0.05 as the noise parameter. For the latter dataset we set 0.01 and 0.35 as noise and
factor parameters respectively. For SVHN, STL, CIFAR10, CIFAR100, Omniglot and
Reuters10K, we used the datasets on GitHub4. As for MNIST and 20news, Keras (Géron,
2019) was used. The summary of all the datasets is shown in Table 7. In the following,
we review how features of the eight real-world datasets are obtained.

• MNIST: It is a hand-written digits classification dataset with 28 × 28 single-
channel images. The value of each pixel is linearly normalized into [0, 1] and
then flattened to a 784 dimensional feature vector.

• STL: It is a labelled subset of ImageNet (Jia Deng et al., 2009) with 96 × 96
colored images. We adopted features from Hu et al. (2017), which is extracted by
pre-trained 50-layer ResNets.

2https://scikit-learn.org/stable/modules/generated/sklearn.
datasets.make_moons.html [Last accessed 23-July-2022]

3https://scikit-learn.org/stable/modules/generated/sklearn.
datasets.make_circles.html [Last accessed 23-July-2022]

4https://github.com/weihua916/imsat [Last accessed 23-July-2022]
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• CIFAR10: It is a dataset with ten clusters, 32 × 32 colored images. We adopted
features from Hu et al. (2017), which is extracted by pre-trained 50-layer ResNets.

• CIFAR100: It is a dataset with one hundred clusters, 32× 32 colored images. We
adopted features from Hu et al. (2017), which is extracted by pretrained 50-layer
ResNets.

• Omniglot: It is a hand-written character recognition dataset. We adopted the
processing results from Hu et al. (2017), which is an one hundred clusters dataset
with twenty unique data points per class. Twenty times affine augmentations
were applied as in Hu et al. (2017), so there are 100 × 20 × 20 = 40000 images
available. Images were sized 21 × 21 single-channel, linearly normalized into
[0, 1] and flattened into feature vectors.

• 20news: It is a dataset of news documents across twenty newsgroups. We adopted
the processing code from Hu et al. (2017). It used the data from python package
scikit-learn (Géron, 2019) and processed using tf-idf features with ’english’ stop-
words.

• SVHN: It is a dataset with street view house numbers. Following Hu et al.
(2017), we used the features they have extracted with 960-dimensional GIST fea-
ture (Oliva and Torralba, 2001).

• Reuters10K: It is a dataset with English news stories. We adopted the process-
ing results from Hu et al. (2017). It contains four categories as labels: corpo-
rate/industrial, government/social, markets and economics. ten-thousands docu-
ments were randomly sampled, and processed without stop words. tf-idf features
were used as in Hu et al. (2017).

E.2 Complex and Non-Complex Topology Datasets
In order to characterize each dataset from some geometric point of view, we performed
experiments with the K-means algorithm for these ten datasets; see the top row of Ta-
ble 2. Here, in the K-means algorithm we use the Euclidean distance to measure how
far two points are apart from each other: see Chapter 22 of Shalev-Shwartz and Ben-
David (2013) for a general objective function of the K-means algorithm. Hence, if the
Top-1 accuracy with the K-means algorithm is low, then the dataset can have a complex
structure so that the K-means algorithm fails to group the data points into meaningful
clusters. Utilizing the results with K-means algorithm (see the second row of Table 2),
we define (non-)complex topology of a dataset as follows: 1) we say a dataset has non-
complex topology if the Top-1 accuracy (% According to these definitions, we classify
the ten datasets into two categories; two synthetic datasets, Two-Moons and Two-Rings,
are of complex topology, and the others are of non-complex topology.

Note that, strictly speaking, it is difficult to provide a rigorous definition of (non-
)complex topology for a real-world dataset. Instead, we state a definition inspired by
our empirical observations with the K-means algorithm for the ten different datasets.
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E.3 Implementation Details with Compared Methods
• K-means: sklearn.cluster.KMeans from scikit-learn.

• SC: sklearn.cluster.SpectralClustering from scikit-learn with 50 - ’nearest neigh-
bors’ Graph and ’amg’ eigen solver.

• GMMC: sklearn.mixture.GaussianMixture from scikit-learn with diagonal co-
variance matrices.

• DEC5: Keras implementation of Xie et al. (2016) is used.

• SpectralNet6: We used the version at commit ce99307 with tensorflow 1.15,
keras 2.1.6, Ubuntu 18.04 since we found that this is the only configuration that
reproduces paper result in our environments. For real-world datasets, we used the
10-dimensional VaDE representation obtained in this work (see implementation
details of VaDE) as input to SpectralNet. 10 neighbors were used with approxi-
mated nearest neighbor search. For Toy-sets, we have used the raw 2-dimensional
input with official hyper-parameter setups for ”CC” dataset in SpectralNet.

• VaDE7: We added the constraint that Gaussian Mixture component weight π > 0
to avoid numerical instabilities. We did not use the provided pretraining weights
since we cannot reproduce the pretraining process for all datasets.

• IMSAT8: Given an unlabeled dataset D and the number of clusters, we train
a clustering model of IMSAT by using D via Eq.(15). In addition, we define
the adaptive radius εi in VAT as same with one defined in MIST: see also Ap-
pendix E.5. Moreover, for synthetic datasets, we set (0.1, 0.5) to (λ1, λ2) of
Eq.(15), and set 0.1 to ξ in VAT. For real-world datasets, we set (0.1, 4) to (λ1, λ2)
of Eq.(15), and set 10 to ξ in VAT.

• IIC9: Since we consider Scenario2, we cannot define the transformation func-
tion via the domain-specific knowledge. Therefore, we define it via Te of Defi-
nition 3 for all ten datasets as follows. For the synthetic datasets and the image
datasets, K0 = 10 is used. For the text datasets, K0 = 100 is used. The above
values of K0 are selected by the hyper-parameter tuning.

• CatGAN: We adopted the implementation from here10 and moved it to GPU.
Since the original CatGAN experiments have used CNNs and cannot be applied
to general-purpose datasets, we substituted CNNs in both generator and discrim-
inator with a 4-layer MLP.

5https://github.com/XifengGuo/DEC-keras [Last accessed 23-July-2022]
6https://github.com/KlugerLab/SpectralNet [Last accessed 23-July-2022]
7https://github.com/GuHongyang/VaDE-pytorch [Last accessed 23-July-2022]
8https://github.com/betairylia/IMSAT_torch [Last accessed 23-July-2022]
9https://github.com/betairylia/MIST [Last accessed 23-July-2022]

10https://github.com/xinario/catgan_pytorch [Last accessed 23-July-2022]

38

https://github.com/XifengGuo/DEC-keras
https://github.com/KlugerLab/SpectralNet
https://github.com/GuHongyang/VaDE-pytorch
https://github.com/betairylia/IMSAT_torch
https://github.com/betairylia/MIST
https://github.com/xinario/catgan_pytorch


• SELA: We used the official implementation11 with single head and known clus-
ter numbers. We replaced the Convolutional Network in the original work by
a simple MLP identical to our MIST implementation as we focusing on gen-
eral purpose unsupervised learning instead of images. We also disabled data-
augmentation steps presented in the original work of SELA.

• SCAN: We adopted the loss computation part from official implementation12 and
used MIST’s framework to implement SCAN. Since we focus on generic datasets
without specific domain knowledge, data augmentations are removed and SCAN
learns solely on nearest neighbors. Same input data (and feature extraction steps)
as MIST are used for our SCAN implementation.

E.4 Two-Dimensional Visualization
Panels a)∼h) in Figure 1 were obtained by the following procedure. For two-dimensional
visualization with real-world datasets, we employ UMAP (McInnes et al., 2018), and
implement it using the public code13, where we set ten and two to ”n neighbors” and
”n components”. In addition, we fix the above two parameters with UMAP for all vi-
sualization of real-world datasets.

• a): Input MNIST dataset Dmnist = {xi}ni=1, where xi ∈ R784 and n = 70000, to
UMAP. Then, we obtain the two-dimensional vectors ofDmnist. Then, assign true
labels to the vectors.

• c): Firstly, usingDmnist, train IMSAT of Eq.(15) where (λ1, λ2) = (0.1, 4). More-
over, for VAT in IMSAT, we set ten to ξ, and define the adaptive radius εi as same
with one defined in MIST; see also Appendix E.5. Input Dmnist to the trained
clustering model whose last layer (a softmax function) is removed. Then, get the
output whose dimension is C = 10. Thereafter, we feed the output to UMAP,
and we obtain the two-dimensional vectors. Thereafter, assign true labels to the
vectors.

• e): Firstly, using Dmnist, train a clustering MLP of SpectralNet. SpectralNet’s
official hyper-parameter setups are used. Input Dmnist to the trained clustering
model whose last layer (a softmax function) is removed. Then, get the output
whose dimension is C = 10. Thereafter, we feed the output to UMAP, and we
obtain the two-dimensional vectors. Thereafter, assign true labels to the vectors.

• g): Firstly, using Dmnist, train clustering neural network model with MIST whose
hyper-parameters are defined in Appendix E.5. InputDmnist to the trained cluster-
ing model whose last layer defined by the softmax is removed, and get the output.
Then, we input the output to UMAP, and we obtain the two-dimensional vectors.
Thereafter, assign true labels to the vectors.

11https://github.com/yukimasano/self-label [Last accessed 23-July-2022]
12https://github.com/wvangansbeke/Unsupervised-Classification [Last ac-

cessed 19-July-2022]
13https://pypi.org/project/umap-learn/ [Last accessed 23-July-2022]
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1Figure 6: Two-dimensional visualizations of original datasets and their representations
by MIST. Visualization of a original dataset is obtained via the same manner with panel
a) of Figure 1, while that of MIST representation is obtained via the same manner with
panel g) of Figure 1.

• b), d), f), h): Since a data point in Two-Rings dataset Dtwo rings already belongs
to two-dimensional space, we just visualize the data point location with its la-
bel information in the panel b). With detail of Dtwo rings, see Appendix E.1. For
the panels d), f) and h), we firstly predict the cluster labels by using correspond-
ing clustering method. Then, visualize the data point location with its predicted
cluster label.
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Table 8: All hyper-parameters related to MIST of Algorithm 1. In the first (resp. sec-
ond) column, the hyper-parameters (resp. reference) are shown.

Hyper-Parameters Reference

(µ, η, γ) MIST objective of Eq.(11)
(α, τ) Critic function of Eq.(3)

(K0, β) Definition 3 and 4
(ξ, εi) VAT of Eq.(13)

(m,nep) Algorithm 1

Table 9: Candidates with some hyper-parameters related in MIST and MIST with Înce

of Table 2. The symbol of← indicates the same value to the cell in the left. Real-world
& Image means MNIST, SVHN, STL, CIFAR10, CIFAR100, Omniglot. Real-world
& Text means 20news and Reuters10K. Synthetic means both Two-Moons and Two-
Rings.

Hyper-Parameters Real-world & Image Real-world & Text Synthetic

(µ, η, γ)
{(0.045, 5, 1.5), (0.045, 6, 1.5), ← {(0.1, 15, 10), (0.1, 15.5, 10),

(0.05, 5, 1.5), (0.04, 6, 1.5)} (0.1, 16, 10)}
α {0, 1, 2} ← ←
τ {0.01, 0.05, 0.1, 1, 10} ← ←

(K0, β) {(5, 0), (7, 0), (10, 0), (15, 0)} {(50j, 2/3), (50j, 4/5) | j ∈ {1, .., 4}} {(15, j/10) | j ∈ {0, .., 10}}
ξ {0.1, 1, 10, 100} ← ←

In Figure 6, we additionally show two-dimensional visualization results of all eight
real-world datasets. In this figure, visualizations of the first row were obtained by the
same manner with the panel a) of Figure 1. Visualizations (by MIST) of the second row
in Figure 6 were obtained by the same manner with the panel g) of Figure 1.

E.5 Hyper-Parameter Tuning
Table 8 shows all hyper-parameters related to MIST algorithm. Throughout numerical
experiments of Section 4, we set 250, 50 as m,nep, respectively. In addition, follow-

ing Hu et al. (2017), we respectively fix εi of VAT to εi = 0.25×
∥∥∥xi − x(10)

i

∥∥∥
2
, where

xi ∈ D and x(10)
i is the tenth nearest neighbor data point from xi on D with the Eu-

clidean metric. Note that for the synthetic datasets (resp. real-world datasets), the
generative process Tg of Definition 4 (resp. the generative process Te of Definition 3) is
employed.

In numerical experiments of Table 2, the other hyper-parameters are tuned within
the corresponding candidates shown in Table 9. Those candidates were decided by the
following procedure:

• (µ, η, γ): Since MIST is based on IMSAT, following Hu et al. (2017), for real-
world datasets, we manually search efficient candidates, which safisfy the fol-
lowing criterion, inside the region including µη = 0.4 and µ = 0.1: candidates
which work well for MIST and MIST with Înce of Table 2. Note that, in IMSAT
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Table 10: Selected hyper-parameters with MIST of Table 2. The symbol of← indicates
the same value to the cell in the left.

MNIST, SVHN, STL, CIFAR100, Omniglot CIFAR10 20news Reuters10K Two-Moons Two-Rings

(µ, η, γ) (0.045, 5, 1.5) ← ← ← (0.1, 15.5, 10) ←
(α, τ) (1, 0.05) ← ← ← ← ←

(K0, β) (7, 0) (15, 0) (200, 4/5) (50, 4/5) (15, 0) (15, 0.6)
ξ 10 ← ← ← 0.1 ←

Table 11: Selected value for each hyper-parameter with experiments related to Ta-
ble 3. From the second to sixth columns, hyper-parameter values selected for real-world
datasets are shown. The symbol of ”−” means that the hyper-parameter is not needed.
The symbol of ← indicates the same value to the cell in the left. In the last column,
hyper-parameter values to define six combinations are shown. As for (α,K0, β, ξ), the
same values shown in Table 10 are employed.

( D©) ( B©, D©) ( A©, D©) ( B©, C©, D©) ( A©, B©, C©) Two-Rings

µ − ← 0.045 − 0.1 0.1
η − 1 − 1 4 15.5
γ − 10 1.5 10 − 10
τ 1.0 ← ← 0.1 − 1.0

objective of Eq.(15), the authors set µ = 0.1 and η = 4 in their official code. For
the synthetic datasets, the candidates were decided via totally manual searching.

• (α, τ) and (K0, β): We essentially conducted manual searching for candidates,
which can be efficient for both MIST and MIST with Înce. When we select the
candidates of K0, we follow the same strategy of Shaham et al. (2018).

• ξ: We chose values that are around ten, since ten is set as ξ in the official IMSAT
code.

As for criterion of hyper-parameter tuning of the MIST and MIST with Înce, we
employed the following: for each (either real-world or synthetic), the most efficient
(µ, η, γ, α, τ, ξ) should be found, while (K0, β) can be adaptive for ten datasets. To find
the best efficient one, we used a tuning method described in Appendix G of Hu et al.
(2017), where a set of hyper-parameters, that can have the highest average clustering
accuracy over several datasets, are selected. The tuning result of the MIST is shown in
Table 10.

Moreover, for all combinations except for ( B©, C©) in Table 3, we at first manually
selected the candidates of hyper-parameters. Then, for each combination, we conducted
hyper-parameter tuning, whose criterion is same with one employed for tuning hyper-
parameters in MIST of Table 2. The tuning results are shown in Table 11.
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