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Abstract

Hyperdimensional computing (HDC) has become popular for light-weight and energy-
efficient machine learning, suitable for wearable Internet-of-Things (IoT) devices and
near-sensor or on-device processing. HDC is computationally less complex than tra-
ditional deep learning algorithms and achieves moderate to good classification perfor-
mance. This article proposes to extend the training procedure in HDC by taking into ac-
count not only wrongly classified samples, but also samples that are correctly classified
by the HDC model but with low confidence. As such, a confidence threshold is intro-
duced that can be tuned for each dataset to achieve the best classification accuracy. The
proposed training procedure is tested on UCIHAR, CTG, ISOLET and HAND dataset
for which the performance consistently improves compared to the baseline across a
range of confidence threshold values. The extended training procedure also results in
a shift towards higher confidence values of the correctly classified samples making the
classifier not only more accurate but also more confident about its predictions.

1 Introduction
Hyperdimensional computing (HDC) has gained a lot of interest in the field of low-
power, brain-inspired artificial intelligence (AI). It tries to mimic the human brain by
distributing the information across thousands of vector elements in analogy to the large
number of neurons present in our brains. HDC is a light-weight and energy-efficient al-
gorithm that has already been used in several applications which can be divided in three
categories according to Ge and Parhi (2020): (i) text classification (Rachkovskij, 2007;
Rahimi, Kanerva, and Rabaey, 2016), (ii) signals such as speech recognition (Imani

1

ar
X

iv
:2

30
5.

19
00

7v
2 

 [
cs

.L
G

] 
 3

0 
N

ov
 2

02
3



et al., 2017), human activity recognition (Kim et al., 2018), handgesture recognition
(Moin et al., 2021; Rahimi, Benatti, et al., 2016; Zhou et al., 2021) and time series
classification (Schlegel et al., 2022), and (iii) images such as classification of medical
images (Kleyko et al., 2017; Watkinson et al., 2021), character recognition (Manabat et
al., 2019) and robotics (Neubert et al., 2019). It has been shown that HDC is suitable for
wearable Internet-of-Things (IoT) devices, near-sensor AI applications and on-device
processing due to few data requirement (Rahimi et al., 2019), robustness to noise (Kan-
erva, 2009; Rahimi et al., 2019; Widdows and Cohen, 2015), low latency (Rahimi et al.,
2019) and fast processing (Rahimi et al., 2019). This avoids the limitations of IoT ar-
chitectures in which data is sent to the cloud and consequently processed causing high
latencies, large communication energy and privacy concerns (Basaklar et al., 2021).

Although HDC has the advantage of being computationally less complex than tradi-
tional deep learning algorithms, it is only able to achieve moderate to good performance
in classification tasks. Hence, research is ongoing to adjust and improve HDC to boost
its performance. This article aims to contribute to this research by proposing a simple,
yet effective extended training procedure in the binary HDC framework to improve its
performance on signal applications, suitable for wearable IoT devices. The next sec-
tion gives a detailed introduction to HDC after which HDC adjustments that are already
proposed in literature are discussed in Section 3. Thereafter, the proposed extended
training procedure is introduced in Section 4. In the fifth section, an overview of the
performed experiments is given of which the results are presented and discussed in the
sixth section. Finally, the conclusions of the article are presented.

2 Hyperdimensional Computing
HDC is a mathematical framework using hyperdimensional (HD) vectors (i.e., vectors
with very high dimension typically up to ten thousands, also called hypervectors (HVs))
and simple HD arithmetic operations to represent data. The focus of this article is on
dense binary HVs (i.e., the elements are 0 or 1 with an equal probability of occurrence
of both values). The analysis of data relies on the similarity between HVs which is
calculated using the normalized Hamming distance between two binary HVs v1 and
v2

1:

s(v1, v2) = 1− h(v1, v2)

D
(1)

with s the similarity between v1 and v2, D the dimensionality (e.g., D = 10, 000)
and h the Hamming distance between v1 and v2 which counts the number of elements
for which the coordinates differ (i.e., the sum of elements of the exclusive disjunction
(XOR)):

h(v1, v2) =
D∑

d=1

(v1[d] XOR v2[d]). (2)

The HD arithmetic operations include:
(a) bundling ⊕: B × H → B: (B, v) → B + v where B = ND and H = {0, 1}D

1A list of used symbols can be found in the appendix (Table A1).
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(i.e., element-wise addition) after which the bundle B is binarized into the HV v with
the majority rule [.] : B → H: B → v according to:

v[d] = [B[d]] =


1 if B[d] > n

2

0 if B[d] < n
2

rand(0, 1) if B[d] = n
2

(3)

with n the number of HVs bundled in B and rand(0, 1) means that the component v[d]
is randomly assigned to 0 or 1 in the presence of ties (which can only occur when the
number of bundled vectors is even);
(b) binding ⊗: H×H → H: (v1, v2) → v1 XOR v2 (i.e., XOR in binary HDC); and
(c) permutation ρ (i.e., cyclic shift in binary HDC).

Figure 1 gives a schematic overview of the framework of HDC in which five main
steps are distinguished: (1) mapping, (2) encoding, (3) initial prototype construction,
(4) training and (5) inference, which will be explained in more detail in the following
section.

Figure 1: Schematic overview of the HDC framework in which five main steps are
distinguished: (1) mapping, (2) encoding, (3) initial prototype construction, (4) training
and (5) inference.

(1) Mapping. The way of mapping depends on the type of data:
(a) For nominal data, each possible category is mapped to a randomly chosen atomic
HV and stored in an Item Memory (IM). These random HVs are pseudo-orthogonal
in high dimensional spaces which converges to exact orthogonality with increasing di-
mensionality (Kleyko et al., 2022).
(b) In the case of ordinal or discrete data, there is a natural ordering of levels of cate-
gories or integer values such that closer levels should be mapped to more similar HVs
than levels further apart. This is typically achieved by a Continuous Item Memory
(CIM) applying linear mapping of levels to atomic HVs (Kleyko et al., 2018; Rahimi,
Benatti, et al., 2016). Figure 2 illustrates the similarity of values to the lowest level
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(feature value = −100) that decreases linearly up until orthogonality (similarity = 0.5)
and the similarity of values to the feature value equal to −30 that decreases linearly for
smaller and larger feature values.

Figure 2: Example of linear mapping for a feature with discrete values ranging from
-100 to 100 with steps of 10. The similarity of each feature value’s level hypervector
to the lowest level hypervector (feature value = −100) and to the hypervector for the
feature value of −30 is shown.

(c) Continuous data is quantized with a quantization step into a predefined number of
discrete levels to which linear mapping can be applied.

(2) Encoding. Input data is encoded in HVs using the atomic vectors made in the
previous step, and HD arithmetic operations. An input sample x having n features is
encoded as (Figure 3):
For each feature (j = 1...n), a CIM translates the feature value to an HV vx[j]. Next, all
vx[j]’s are bundled together to form the sample bundle S by initializing

B0 = {0}D (4)

and bundling each vx[j] one at a time:

Bj = Bj−1 ⊕ vx[j]. (5)

The sample bundle S is then simply:

S = Bn. (6)

For notation purposes, this iterative bundling (Equation 4-6) will be written in short as:

S =
n⊕

j=1

vx[j] (7)

which is binarized into the HV s = [S] with the majority rule (Equation 3).
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Figure 3: Schematic overview of the encoding with a separate CIM for the values of
each feature.

Additionally, when the input data is encoded as n-grams, permutations can be used for
the encoding (Rahimi, Benatti, et al., 2016):

B0 = {0}D

Bj = ρ(Bj−1)⊕ sj (8)

sn−gram = [Sn−gram] = [Bn]

where j = 1...n, sn−gram is the encoded, binarized HV of the n-gram of samples, and
sj is a sample HV calculated with Equation 7 followed by binarization (Equation 3).

(3) Initial prototype construction. Sample HVs si belonging to the same class l are
bundled to form a class bundle Cl representing the considered class:

Cl =
m⊕
i=1

{si|yi = l} (9)

with yi the ith sample’s class. After binarization of the class bundle Cl, the lth class
prototype cl = [Cl] is obtained and stored in the Associative Memory (AM). This is
repeated for each class present in the dataset.

(4) Training. The HDC classifier predicts the class for all training samples by calcu-
lating the similarity between the training sample’s HV si and each class prototype ck
stored in the AM. The predicted class ŷi of the input sample is the class with the highest
similarity to the input sample’s HV:

ŷi = argmax
k

s(si, ck) (10)

If the predicted class is correct (i.e., ŷi = yi = l), nothing happens. However, if the

5



sample HV si is wrongly classified (i.e., ŷi ̸= yi), it is bundled again in the class bundle
of the correct class Cl and bundled out of the class bundle of the wrong class Cl̂:

Cl = Cl ⊕ si (11)

Cl̂ = Cl̂ ⊖ si (12)

with ⊖: B × H → B: (B, v) → B − v the bundling out operation which is element-
wise subtraction. As such, the class prototypes are adjusted to better classify wrongly
classified samples.
The training procedure is performed iteratively until either a predefined accuracy on the
training set is reached or either a predefined number of iterations is performed. After
each iteration, the updated class bundles are binarized into updated class prototypes to
be used in the next iteration or finally, in the inference phase.

(5) Inference. The ith test sample is encoded in a query HV qi following the same
encoding procedure as for the training samples. The predicted class is obtained similarly
as during the training procedure with Equation 10 where si = qi, i.e., the predicted class
label of the test sample is the class with the highest similarity to the test samples’s HV
qi.

3 Previously proposed adjustments to HDC
Already several suggestions have been made to improve the initial prototype construc-
tion and the training procedure in the HDC framework. For instance, Rahimi, Benatti,
et al. (2016) only add a sample vector to the class bundle if the similarity between the
sample vector and class vector is smaller than 0.9 such that a sample vector is not added
to the class bundle if the class vector is already highly similar to the sample vector. Con-
sequently, no redundant information is added and the initial prototypes are assumed to
be better, reducing the training time afterwards. Imani et al. (2019) propose to perform
the training procedure with an adaptive learning rate that depends (1) on the average er-
ror rate over the last few training iterations (= iteration-dependent learning), (2) on the
difference in similarity between query and wrong class on the one hand and query and
right class on the other hand (= data-dependent learning) or (3) a combination of both
(= hybrid learning). During the training process explained by Hernández-Cano et al.
(2021), sample vectors are added to or subtracted from class bundles with a weight de-
pending on the similarity of that sample vector to the considered class vector. As such,
a sample with high similarity will be added with smaller weight than a sample with low
similarity, since the sample is already highly represented by the class vector in case of
high similarity and thus redundant information in the class prototype is limited.

In addition, more complex methods to improve HDC have been introduced in literature
such as applying manifold learning for unsupervised non-linear dimensionality reduc-
tion to project the original data to a smaller dimension before applying HD encoding
(Zou et al., 2021). Hsiao et al. (2021) use a learnable projection to train the HDC in a
similar way as a binary neural network. The trained binary weights are then transformed
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into learned IM and CIM. A different way of linear mapping is proposed by Basaklar
et al. (2021) where a variable number of bits are flipped between levels to emphasize
the distinct levels, instead of flipping a uniform number of bits. Chuang et al. (2020)
use a confidence metric to decide whether binary HDC is suitable for a specific sample,
i.e., samples predicted with low confidence in binary HDC will be predicted with non-
binary HDC to improve the classification performance. On the other hand, Duan et al.
(2022) map the HDC framework to an equivalent binary neural network (BNN) which
is trained to minimize the training loss to increase the confidence in predictions. These
methods in general achieve higher accuracies, but as they are more complex, they also
have a large computational overhead.

In contrast, the focus of this article is on a simple, yet effective extension of the bi-
nary HDC training procedure that consistently improves the baseline performance, but
without additional complexity. Its basic idea is to not only take into account wrong pre-
dictions when updating the class bundles, but also samples that are correctly classified
but for which the class with the second highest similarity is only slightly less similar to
the sample than the correct class. This simple extension of the HDC training procedure
is explained in the next section.

4 Our proposal: confidence-based training procedure
As indicated by Duan et al. (2022), for a correctly classified sample the similarity to the
class with the second highest similarity could only be slightly lower than the similarity
to the class with the highest similarity. In such cases, the HDC classifier is less confident
about its prediction for that specific sample. Knowing this, a confidence metric ci is
introduced by Chuang et al. (2020) as the difference between similarity of the sample
vector si to the class vector with the highest similarity and the similarity to the class
vector with the second highest similarity:

ci = max
k

s(si, ck)−max
k ̸=l

s(si, ck). (13)

The confidence metric reflects with how much certainty the HDC model classifies a
specific sample, i.e., if the confidence is low, the HDC model is less certain about its
prediction of a specific sample.

While Chuang et al. (2020) use the confidence metric only to measure certainty of
classification on the test set, our proposal is to use this confidence metric in a simple
way to extend the training procedure in HDC resulting in a more accurate binary HDC
model. In all the basic HDC training frameworks, class bundles are only updated in
case of a wrong prediction. However, in our proposal a training sample’s HV si that is
correctly classified (i.e., ŷi = yi = l) but with a confidence smaller than a threshold
α (i.e., ci < α), is also added again to the class bundle of the correct class Cl and
bundled out of the class bundle of the class with second highest similarity Cl̂′ with
l̂′ = argmaxk ̸=l s(si, ck):

Cl = Cl ⊕ si (14)
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Cl̂′ = Cl̂′ ⊖ si (15)

Note that if α = 0, no correctly classified samples are used in the training procedure
since the confidence is non-negative. As a consequence, this threshold setting corre-
sponds to the baseline HDC classifier. Updating the class bundles with samples cor-
rectly classified with low confidence could be seen as pulling the wrong class further
away from the considered sample and pushing the right class closer to the sample. As
such, the main idea of this updating procedure has some analogies to prototype learning
(Chang et al., 2006; Ji et al., 2021), prototype alignment (Hersche et al., 2022), distance
metric learning (Kulis, 2012; Weinberger and Saul, 2009), linear discriminant analysis
(Weinberger and Saul, 2009) and support vector machines (Weinberger and Saul, 2009)
where the goal is to minimize the distance between samples from the same class while
maximizing the distance between samples from different classes.

With this proposal of a simple extended training procedure, an improved classification
performance is expected since the class prototypes are not only adjusted to better clas-
sify wrongly classified samples (Equation 11-12), but also samples that are correctly
classified with low confidence (Equation 14-15).

5 Experiments
Four datasets, that are publicly available and commonly or previously used in other
HDC-related research, are selected to test the proposed extended training procedure (a
more detailed summary of the datasets can be found in Table 1):
(1) UCIHAR dataset (Anguita et al., 2013; Dua and Graff, 2019). To obtain this
dataset, 30 subjects performed six activities (walking, walking upstairs, walking down-
stairs, sitting, standing and laying) during which the acceleration and velocity were
recorded with the accelerometer and gyroscope of a smartphone attached to the chest
of the subjects.
(2) Cardiotocography (CTG) dataset (Dua and Graff, 2019). This dataset consists of
features for 2,126 fetal cardiotocograms that are classified with respect to one of three
fetal states (normal, suspect or pathologic).
(3) ISOLET dataset (Dua and Graff, 2019). This dataset includes features extracted
from speech signals that were collected for 150 subjects speaking each letter of the al-
phabet twice.
(4) Hand gesture (HAND) dataset (Rahimi, Benatti, et al., 2016). EMG signals with
four channels of five subjects are included in this dataset. During the recording, the sub-
jects performed four hand gestures (closed hand, open hand, 2-finger pinch and point
index) ten times for three seconds each. Between each hand gesture contraction, a pe-
riod of three seconds in the rest position is included which serves as the fifth class.

To quantize the feature / signal values of all datasets, a step size is chosen such that
they are quantized into 21 quantization levels. As such, a step size of 0.1 is chosen
for UCIHAR because values are between -1 and 1, a step size of 5 for CTG’s values
ranging from 0 to 100, a step size of 10 for ISOLET since the values range from -100
to 100 and a step size of 1 for HAND because the signals can take amplitudes from 0
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to 20. The samples of UCIHAR, CTG and ISOLET are encoded following Equation
7 followed by binarization (Equation 3), whereas 4 − grams (Equation 8) are created
for the encoding of HAND samples that are also encoded according to Equation 7 with
binarization (Equation 3) where the four channels are treated as four features.

Table 1: Summary of the four datasets used to test the proposed extended training pro-
cedure. The table includes the number of training samples, the number of test samples,
the number of classes, the number of features or channels, the range of values of the
features, the step size that is used to quantize the feature values and the number of vec-
tors (i.e., quantization levels) that are stored in the CIM.

UCIHAR CTG ISOLET HAND
# training samples 7,352 1,701 6,238 526,396

# test samples 2,947 425 1,559 131,608
# classes 6 3 26 5

# features / channels 561 21 617 4
range of feature values [-1,1] [0,100] [-100,100] [0,20]

quantization step size 0.1 5 10 1
# vectors in CIM 21 21 21 21

The training procedure is performed iteratively for a maximum of 2500 iterations while
saving the classifier with the best accuracy. After every 100 iterations, it is evaluated
whether this best training accuracy exceeds 99%. If this is the case, the training pro-
cedure is terminated and the classifier with the best accuracy is used in the inference
phase. The HDC classifier is performed for 50 independent runs for UCIHAR, CTG
and ISOLET, and for 10 independent runs for each subject of HAND (thus, also 50 in-
dependent runs in total) since it starts from random vectors to form the atomic vectors.

For each dataset, the distribution of confidence values of all correctly classified train-
ing samples after initial prototype construction is investigated to decide the range of
confidence thresholds to be tested (Figure 4). This figure illustrates that the confidence
values are rather low for all datasets (i.e., < 8%). Hence, the choice for the thresholds
to be tested are α = {0.00; 0.25; 0.50; 0.75; 1.00; 1.25; 1.50} for UCIHAR, α = {0.00;
1.00; 2.00; 3.00; 4.00; 5.00; 6.00} for CTG, α = {0.00; 0.25; 0.50; 0.75; 1.00; 1.25;
1.50} for ISOLET and α = {0.00; 1.00; 2.00; 3.00; 4.00; 5.00} for HAND, since these
values include most correctly classified samples for the considered datasets. The per-
formance of the HDC classifier for each confidence threshold setting is documented as
the classification accuracy and error rate on the test set averaged over all performed
independent runs.

6 Results and discussion
The accuracies on the train and test set and the error rate on the test set averaged over
all independent runs for each of the chosen confidence threshold settings and each of
the four datasets are given in Table 2. The introduction of the confidence metric in the
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(a) UCIHAR. (b) CTG.

(c) ISOLET. (d) HAND.

Figure 4: Distribution of the confidence values of all correctly classified training sam-
ples of (a) UCIHAR, (b) CTG, (c) ISOLET and (d) HAND after initial prototype con-
struction.

training procedure improves the baseline classification accuracy (α = 0.00) for each
dataset for all tested confidence thresholds. The mean test accuracy for all datasets in-
creases with increasing α up to the point where maximal performance is reached after
which the mean test accuracy decreases for larger α.
(1) UCIHAR. The obtained baseline accuracy of 92.75% is improved by 1.58% with
α = 0.75 reaching an accuracy of 94.33%. (A 21.79% relative decrease in error rate
from 7.25% for the baseline to 5.67%.)
(2) CTG. The obtained baseline accuracy of 73.65% is improved by 13.24% with
α = 4.00 reaching an accuracy of 86.89%. (A 50.25% relative decrease in error rate
from 26.35% for the baseline to 13.11%.)
(3) ISOLET. The obtained baseline accuracy of 92.12% is improved by 2.18% with
α = 1.00 reaching an accuracy of 94.30%. (A 27.66% relative decrease in error rate
from 7.88% for the baseline to 5.70%.)
(4) HAND. The obtained baseline accuracy of 95.38% is improved by 0.93% with
α = 5.00 reaching an accuracy of 96.31%. (A 20.13% relative decrease in error rate
from 4.62% for the baseline to 3.69%.)

The effect of introducing the confidence threshold in the training procedure of HDC is
visualized in Figure 5. This figure gives for each of the four datasets (one column for
each) the distribution of the confidence values of all correctly classified training sam-
ples after training with α = 0.00 (baseline, top row) and after training with the setting
of α resulting in the best performance for the considered dataset (bottom row). When
comparing with Figure 4, already larger confidence values are seen after training with
α = 0.00 for all four datasets. However, there is an even more clear shift in the dis-
tribution towards higher confidence values for the best settings of α for each dataset
illustrating nicely the effect of the proposed simple extended training procedure in the
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Table 2: Averaged accuracy (%) on the train and test set and averaged error rate (%) on
test set over 50 independent runs (for UCIHAR, CTG and ISOLET) and 10 independent
runs (for each subject of HAND, thus 50 in total) of the four datasets for the tested
settings of the confidence threshold α. Data are mean (± standard deviation), in bold
are the test accuracies (and error rates) that are higher (and lower) than the baseline
(α = 0.00) and underlined is the best test accuracy and error rate.

(a) UCIHAR.

α Train accuracy Test accuracy Test error rate
0.00 99.43 (± 0.24) 92.75 (± 0.51) 7.25
0.25 99.11 (± 0.20) 93.94 (± 0.50) 6.06
0.50 98.96 (± 0.51) 94.03 (± 0.53) 5.97
0.75 98.62 (± 0.61) 94.33 (± 0.49) 5.67
1.00 98.32 (± 0.99) 94.25 (± 0.70) 5.75
1.25 97.13 (± 1.15) 94.16 (± 0.62) 5.84
1.50 95.99 (± 1.19) 93.45 (± 0.90) 6.55

(b) CTG.

α Train accuracy Test accuracy Test error rate
0.00 99.57 (± 0.21) 73.65 (± 2.48) 26.35
1.00 98.91 (± 0.17) 77.52 (± 2.53) 22.48
2.00 98.05 (± 0.13) 80.44 (± 1.79) 19.56
3.00 96.39 (± 0.17) 85.14 (± 1.28) 14.86
4.00 94.47 (± 0.29) 86.89 (± 1.04) 13.11
5.00 93.19 (± 0.27) 86.19 (± 0.94) 13.81
6.00 92.47 (± 0.14) 84.97 (± 1.01) 15.03

(c) ISOLET.

α Train accuracy Test accuracy Test error rate
0.00 100.00 (± 0.00) 92.12 (± 0.47) 7.88
0.25 100.00 (± 0.00) 93.19 (± 0.42) 6.81
0.50 99.99 (± 0.03) 93.80 (± 0.45) 6.20
0.75 99.83 (± 0.27) 94.13 (± 0.55) 5.87
1.00 99.81 (± 0.22) 94.30 (± 0.73) 5.70
1.25 99.70 (± 0.28) 93.98 (± 0.75) 6.02
1.50 99.47 (± 0.25) 93.68 (± 0.76) 6.32

(d) HAND.

α Train accuracy Test accuracy Test error rate
0.00 97.05 (± 1.84) 95.38 (± 1.82) 4.62
1.00 96.94 (± 1.92) 95.77 (± 1.83) 4.23
2.00 96.73 (± 1.85) 95.60 (± 2.25) 4.40
3.00 96.45 (± 2.01) 95.81 (± 2.03) 4.19
4.00 96.07 (± 2.20) 96.11 (± 1.65) 3.89
5.00 95.83 (± 2.26) 96.31 (± 1.34) 3.69
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HDC framework.

The abovementioned results show the impact of the parameter α on the test set. To
determine the optimal α for a particular dataset, the standard procedure of using a val-
idation set should be used. Table A2 in the appendix illustrates the procedure for the
ISOLET dataset when performing 10-fold cross validation, resulting in an optimal α of
1.25.

The obtained highest accuracy of 94.30% for ISOLET is an improvement compared
to the accuracy of 92.4% obtained by Imani et al. (2019) using an adaptive learning
rate during training procedure and by Hsiao et al. (2021) who project original HDC to
learnable HDC that is trained similarly as a BNN. Also for the CTG dataset, the highest
accuracy of 86.89% is higher compared to the accuracy of 82% obtained by Basaklar
et al. (2021) who flip a variable number of bits between levels when applying linear
mapping.

While our method consistently improves the accuracy compared to baseline, some other
studies in literature report slightly better results on the considered datasets but with of-
ten more complex methods. For example, Imani et al. (2019) report an accuracy of 96%
on the UCIHAR dataset with their adaptive learning rate, Hernández-Cano et al. (2021)
use weighted bundling in and out of class bundles and obtain an accuracy of 96.5%
for UCIHAR and 94.6% for ISOLET, learnable HDC of Hsiao et al. (2021) results in
an accuracy of 95.54% for UCIHAR, Zou et al. (2021) obtain an accuracy of 98% for
UCIHAR and 95% for ISOLET applying manifold learning and Duan et al. (2022) map
HDC into a BNN achieving 95.23% and 94.89% accuracy for UCIHAR and ISOLET,
respectively.

As future work, the proposed training procedure could possibly be extended with an
adaptive confidence threshold. Namely, the distribution of confidence values shift to-
wards higher confidence while correcting for low-confident correctly classified training
samples (Figure 5) such that the threshold could increase along with this shift in dis-
tribution. Moreover, it might be interesting to combine the proposed extended training
procedure with previously proposed adjustments to the training procedure (Hernández-
Cano et al., 2021; Imani et al., 2019) and investigate whether this would further improve
the HDC performance.

Conclusion
A simple, yet effective extension to the training procedure in binary HDC is introduced
which takes into account not only wrongly classified samples, but also samples that are
correctly classified by HDC but with a low confidence. A threshold on the confidence
value is introduced and tested on four datasets for which the performance consistently
improves compared to the baseline across a range of confidence threshold values. The
extended training procedure also results in a shift towards higher confidence values of
the correctly classified samples making the classifier not only more accurate but also
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(a) UCIHAR
α = 0.00.

(b) CTG
α = 0.00.

(c) ISOLET
α = 0.00.

(d) HAND
α = 0.00.

(e) UCIHAR
α = 0.75.

(f) CTG
α = 4.00.

(g) ISOLET
α = 1.00.

(h) HAND
α = 5.00.

Figure 5: Distribution of the confidence values of all correctly classified training sam-
ples of UCIHAR (first column), CTG (second column), ISOLET (third column) and
HAND (last column) after training with α = 0.00 (first row) and with α yielding the
best accuracy for the considered dataset (second row).

more confident about its predictions.
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Appendix

A.1 Notation
A summary of notation can be found in Table A1.

A.2 Cross-Validation
Table A2 contains the results of 10-fold cross validation (CV) on the training set of
ISOLET for the different settings of α. The table includes the training accuracy, valida-
tion accuracy and validation error rate, averaged over the ten folds of 10-fold CV. This
shows that the optimal α value with 10-fold CV is α = 1.25, resulting in a test accuracy
of 93.98% (Table 2c) which is very near to the best test accuracy achieved in Table 2c,
i.e., 94.30% for α = 1.00.
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Table A1: List of symbols. (HD = hyperdimensional, CIM = Continuous Item Memory)
Symbol Definition Symbol Definition

x vector in input space
m number of samples i 1...m
n number of features j 1...n
K number of classes k 1...K
D HD vector dimension d 1...D
s similarity yi true class of ith sample
h Hamming distance ŷi predicted class of ith sample
c confidence value l true class label
α confidence threshold l̂ predicted class label

l̂′ class label with second highest similarity

v vector in HD space H B bundle in HD space B
s sample vector S sample bundle
c class vector/prototype C class bundle
q query vector

H vector HD space, {0, 1}D B bundle HD space, ND

CIMj CIM of jth feature ⊕ bundling operator
⊗ binding operator ⊖ bundling out operator
ρ permutation operator [.] majority rule

Table A2: Averaged accuracy (%) on the train and validation folds and averaged error
rate (%) on the validation folds of 10-fold cross validation for ISOLET for the tested
settings of the confidence threshold α. Data are mean (± standard deviation), in bold
are the validation accuracies (and error rates) that are higher (and lower) than the base-
line (α = 0.00) and underlined is the best validation accuracy and error rate.

α Train accuracy Validation accuracy Validation error rate
0.00 100.00 (± 0.00) 90.56 (± 1.97) 9.44
0.25 100.00 (± 0.00) 92.43 (± 1.96) 7.57
0.50 99.99 (± 0.01) 93.14 (± 1.85) 6.86
0.75 99.92 (± 0.13) 93.64 (± 1.30) 6.36
1.00 99.62 (± 0.29) 93.41 (± 2.06) 6.59
1.25 99.78 (± 0.21) 93.83 (± 1.93) 6.17
1.50 99.61 (± 0.24) 93.68 (± 1.55) 6.32
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