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A variant of spiking neural P systems with positive or negative weights
on synapses is introduced, where the rules of a neuron fire when the
potential of that neuron equals a given value. The involved values—
weights, firing thresholds, potential consumed by each rule—can be real
(computable) numbers, rational numbers, integers, and natural numbers.
The power of the obtained systems is investigated. For instance, it is
proved that integers (very restricted: 1,−1 for weights, 1 and 2 for fir-
ing thresholds, and as parameters in the rules) suffice for computing all
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Turing computable sets of numbers in both the generative and the ac-
cepting modes. When only natural numbers are used, a characterization
of the family of semilinear sets of numbers is obtained. It is shown that
spiking neural P systems with weights can efficiently solve computation-
ally hard problems in a nondeterministic way. Some open problems and
suggestions for further research are formulated.

1 Introduction

Membrane computing is one of the recent branches of natural computing; it
was initiated in Păun (2000) and has developed rapidly (as early as 2003, the
Institute for Scientific Information considered membrane computing a “fast
emerging research area in computer science”; see http://esi-topics.com).
The aim is to abstract computing ideas (data structures, operations with
data, ways to control operations, computing models) from the structure and
the functioning of a single cell and from complexes of cells, such as tissues
and organs, including the brain. The models are distributed and parallel
computing devices, usually called P systems. There are three main classes of
P systems: cell-like P systems (Păun, 2000), tissue-like P systems (Martin-
Vide, Pazos, Păun, & Rodriguez-Patón, 2003), and neural-like P systems.
Many variants of these systems have been considered. An overview of the
field can be found in Păun (2002) and Păun, Rozenberg, and Salomaa (2010),
with up-to-date information available at the membrane computing Web site
(http://ppage.psystems.eu). For an introduction to membrane computing,
one may consult Păun and Rozenberg (2002, 2010). This letter deals with a
class of neural-like P systems called spiking neural P systems (SN P systems,
for short), introduced in Ionescu, Păun, and Yokomori (2006).

SN P systems are a class of distributed and parallel computing models
inspired by spiking neurons. As we know, spiking neurons are currently
much investigated in neural computing (Gerstner & Kistler, 2002; Maass,
2002; Maass & Bishop, 1999). An SN P system consists of a set of neurons
placed in the nodes of a directed graph, where neurons send signals (spikes,
denoted by the symbol a in what follows) along synapses (arcs of the graph).
Thus, the architecture of an SN P system is that of a tissue-like P system,
with only one kind of object present in the cells. The objects evolve by
means of spiking rules, which are of the form E/ac → a; d , where E is a
regular expression over {a} and c, d are natural numbers, c ≥ 1, d ≥ 0. In
other words, a neuron containing k spikes, such that ak ∈ L(E), k ≥ c, can
consume c spikes and produce one spike, after a delay of d steps. This
spike is sent to all neurons connected by an outgoing synapse from the
neuron where the rule was applied. There are also forgetting rules, of the
form as → λ, with the meaning that s ≥ 1 spikes are forgotten if the neuron
contains exactly s spikes. The system works in a synchronized manner: in
each time unit, the rule to be applied in each neuron is nondeterministically
chosen, a chosen rule must be applied for each neuron with applicable rules,
and the work of the system is sequential in each neuron: only (at most) one

http://esi-topics.com
http://ppage.psystems.eu
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rule is applied in each neuron. One of the neurons is considered to be the
output neuron, and its spikes are also sent to the environment. The moments
of time when a spike is emitted by the output neuron are marked with 1,
and the other moments are marked with 0. This binary sequence is called
the spike train of the system; it might be infinite if the computation does
not stop. Various numbers can be associated with a spike train, which can
be considered as computed (or generated) by an SN P system. In this work,
the result of a computation is encoded by the time span elapsed between
the first two consecutive spikes sent into the environment by the (output
neuron of the) system.

In SN P systems, the applicability of each rule is determined by checking
the number of spikes in the neuron against a regular set associated with the
rule. Considerable computational power is hidden in the implicit mecha-
nism that SN P systems use to decide whether a given rule can be applied.
For instance, it is proved that deciding whether a rule can be applied is at
least NP-hard (Leporati, Zandron, Ferretti, and Mauri, 2007).

In this work, a variant of SN P systems is presented, with the goal of
identifying an easy way to determine the applicability of rules. To this aim,
we do not count spikes, as in usual SN P systems; instead, we consider that
each neuron contains a potential, which generally can be expressed by a
real number (to avoid any complication, for example, in building a hyper-
computation device by using arbitrary real numbers; in what follows we
always use computable real numbers). Each neuron fires when its potential
is equal to a given firing value (we call it a threshold, because it reminds
us of the firing threshold in neurobiology, although the two notions are not
identical, as we will briefly note below); at that time, part of the potential is
consumed, and a unit potential (a spike) is produced. This unit potential is
passed to neighboring neurons and multiplied by the weights of synapses.
The weights can also be real numbers—hence, both positive and negative.
In this way, we can define computations and the result of computations as
is usual in SN P systems (the result is associated with the spike train of the
computation; here we consider the number of steps elapsed between the
first two spikes, which leave the output neuron; SN P systems working in
the accepting mode are also considered).

An important convention is assumed: when the potential of a neuron is
higher than its firing threshold, the potential remains unchanged (it can be
changed, that is, increased or decreased, by adding new potential from other
neurons; the value of the potential can be positive or negative, depending
on the weights of the synapses). But when the potential of a neuron is
smaller than the firing threshold, this potential vanishes (i.e., the potential
of the neuron is set to zero). These assumptions are essentially used in the
proofs in this letter.

As we will see, SN P systems with integer values for weights and po-
tentials are computationally universal, and the proofs are simpler than for
usual SN P systems. Also, they use very small numbers—only 1,−1 as
weights and 1, 2 as parameters in the rules.
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Considering SN P systems with weights and firing thresholds also has a
biological motivation. Like most of the other cells in the body, the plasma
membrane of excitable cells exhibits a membrane potential (an electrical
voltage difference across the membrane), called a resting membrane poten-
tial, and its typical value is −70 mV. Moreover, each neuron has its own
threshold potential, which is the membrane potential. A membrane must
be depolarized to initiate an action potential. If the membrane potential of a
neuron reaches or exceeds its threshold potential, the neuron will fire, send-
ing out an action potential (signal), and its membrane potential will return
to the resting membrane potential. If the membrane potential is smaller than
the threshold potential, no signal is emitted and the membrane potential
will also return to the resting membrane potential. (For more details, see
Gerstner & Kistler, 2002, and Maass & Bishop, 1999.)

We stress here that this work does not intend to propose a platform
for modeling biological processes. Actually the initial goal of membrane
computing was to bring something useful to (theoretical) computer science
from biology, although many applications of P systems were reported later,
especially in modeling biological and biomedical processes. Spiking neural
P systems are currently a subject of investigation for theoretical computer
science, without any claim concerning their possible relevance for biological
modeling. In particular, the notion of a threshold used here is borrowed
from the real neurons, but this notion is used in a slightly different way:
as in biology, a neuron fires when its membrane potential is equal to the
threshold; potentials lower than the threshold vanish. However, unlike the
biological fact, a neuron does not fire in an SN P system when its membrane
potential exceeds the threshold.

The letter organized as follows. In section 2, some necessary prerequisites
are introduced. The computation model investigated in the letter, spiking
neural P systems with weights, is defined in section 3. An example spiking
neural P system with weights is given in section 4. Some preliminary results
are given in section 5. In section 6, we prove that spiking neural P systems
with integers as weights are universal. In section 7, the family of semilinear
sets is characterized by spiking neural P systems with natural numbers
as weights. The efficiency of spiking neural P systems with weights is
investigated in section 8. Final remarks are presented in section 9.

2 Prerequisites

It is useful for readers to have some familiarity with basic elements of
language theory (e.g., from Rozenberg & Salomaa, 1997), as well as basic
membrane computing (Păun, 2002). A quick introduction to mem-
brane computing can be found in Păun and Rozenberg (2002).
(For more updated information about membrane computing, refer to
http://ppage.psystems.eu.) We introduce here most of the necessary pre-
requisites; the definitions in the subsequent sections are self-contained.

http://ppage.psystems.eu
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By N, Z, Q, Rc we denote the sets of natural, integer, rational, and com-
putable real numbers, respectively. For an alphabet, V, V∗ denotes the set
of all finite strings of symbols from V, the empty string is denoted by λ, and
the set of all nonempty strings over V is denoted by V+. When V = {a} is a
singleton, we write simply a∗ and a+ instead of {a}∗, {a}+.

A regular expression over an alphabet V is defined as follows: λ and
each a ∈ V is a regular expression; if E1, E2 are regular expressions over
V, then (E1)(E2), (E1) ∪ (E2), and (E1)+ are regular expressions over V;
and nothing else is a regular expression over V. With each regular ex-
pression E, we associate a language L(E), defined in the following way:
L(λ) = {λ} and L(a ) = {a}, for all a ∈ V, and L((E1) ∪ (E2)) = L(E1) ∪ L(E2),
L((E1)(E2)) = L(E1)L(E2), and L((E1)+) = (L(E1))+, for all regular expres-
sions E1, E2 over V. Unnecessary parentheses can be omitted when writing
a regular expression, and (E)+ ∪ {λ} can also be written as E∗.

By SLIN, NRE we denote the families of semilinear and Turing com-
putable sets of numbers. (SLIN is the family of length sets of regular lan-
guages, that is, languages characterized by regular expressions, and NRE is
the family of length sets of recursively enumerable languages, that is, those
recognized by Turing machines.)

In the university proofs, we use the notion of a register machine, which
is a construct M = (m, H, l0, lh, R), where m is the number of registers, H is
the set of instruction labels, l0 is the start label, lh is the halt label (assigned
to instruction HALT ), and R is the set of instructions. Each label from H labels
only one instruction from R, thus precisely identifying it. The instructions
are of the following forms:

� li : (ADD(r ), l j , lk) (add 1 to register r and then go to one of the instruc-
tions with labels l j , lk).

� li : (SUB(r ), l j , lk) (if register r is nonzero, then subtract 1 from it, and
go to the instruction with label lj; otherwise, go to the instruction with
label lk).

� lh : HALT (the halt instruction).

A register machine M computes (generates) a number n in the following
way. We start with all registers empty (i.e., storing the number 0), apply the
instruction with label l0, and proceed to apply instructions as indicated by
labels (and, in the case of SUB instructions, by the content of registers). If
we reach the halt instruction, the number n stored at that time in the first
register is said to be computed by M. The set of all numbers computed by
M is denoted by N(M). It is known that register machines compute all sets
of numbers that are Turing computable, hence they characterize NRE (see,
e.g., Minsky, 1967).

Without loss of generality, we may assume that l0 labels an ADD in-
struction and that in the halting configuration, all registers different from
the first one are empty, and that the output register is never decremented
during the computation (we only add to its content).
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We can also use a register machine in the accepting mode. A number
is stored in the first register (all other registers are empty). If the com-
putation starting in this configuration eventually halts, the number is ac-
cepted. Again, all sets of numbers in NRE can be obtained, even using
deterministic register machines, that is, with the ADD instructions of the
form li : (ADD(r ), l j , lk) with l j = lk (in this case, the instruction is written in
the form li : (ADD(r ), l j )).

We use the following convention. When comparing the power of two
number generating or accepting devices, D1, D2, the number 0 is ignored,
that is, we write N(D1) = N(D2) if and only if N(D1) − {0} = N(D2) − {0}
(this corresponds to the usual practice of ignoring the empty string in
language and automata theory).

3 Spiking Neural P Systems with Weights

In this section, we introduce the type of SN P systems investigated in this
letter. The definition is complete, but familiarity with the basic elements of
classic SN P systems (e.g., from Păun & Pérez-Jiménez, 2008) is helpful.

An SN P system with weights (from now on, we deal only with such
systems and call them SN P systems for brevity; when it is necessary to
stress the new type of systems, we use WSN P systems), of degree m ≥ 1, is
a construct of the form

� = (σ1, . . . , σm, syn, in, out),

where:
� σ1, . . . , σm are neurons, of the form σi = (pi , Ri ), 1 ≤ i ≤ m, where (1)

pi ∈ Rc is the initial potential in neuron σi and (2) Ri is a finite set of
spiking rules of the from Ti/ds → 1, s = 1, 2, . . . , ni for some ni ≥ 1,
where Ti ∈ Rc , Ti ≥ 1, is the firing threshold potential of neuron σi ,
and ds ∈ Rc with the restriction 0 < ds ≤ Ti .

� syn ⊆ {1, 2, . . . , m} × {1, 2, . . . , m} × Rc are synapses between neu-
rons, where i 
= j , r 
= 0 for each (i, j, r ) ∈ syn, and for each (i, j) ∈
{1, 2, . . . , m} × {1, 2, . . . , m} there is at most one synapse (i, j, r ) in
syn.

� in, out ∈ {1, 2, . . . , m} indicate the input and output neurons, respec-
tively.

The spiking rules are applied as follows. Assume that at a given moment,
neuron σi has a potential equal to p. If p = Ti , then any rule Ti/ds → 1 ∈ Ri

can be applied. The execution of this rule consumes an amount of ds of
the potential (thus, the potential becomes Ti − ds) and produces one unit
potential (we also say a spike) to be delivered to all the neurons σ j such that
(i, j, r ) ∈ syn. Specifically, each of these neurons σ j receives a quantity of
potential equal to r, which is added to the existing potential in σ j . Note that
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r can be positive or negative; hence, the potential of the receiving neuron
is increased or decreased. The potential emitted by a neuron σi passes
immediately to all neurons σ j such that (i, j, r ) ∈ syn, that is, the transition
of potential takes no time. If a neuron σi spikes and it has no outgoing
synapse, then the potential emitted by neuron σi is lost.

We stress that (1) each neuron σi has only one fixed threshold potential
Ti; (2) if a neuron has the potential equal to its threshold potential, then
all rules associated with this neuron are enabled, and only one of them is
nondeterministically chosen to be applied; and (3) when a neuron spikes,
there is always only one unit potential emitted.

If neuron σi has a potential p such that p < Ti , then the neuron σi returns
to the resting potential 0. If neuron σi has a potential p such that p > Ti , the
potential p remains unchanged.

To sum up, if neuron σi has potential p and receives potential k at step t,
then at step t + 1, it has the potential p′, where

p′ =

⎧⎪⎨
⎪⎩

k, if p < Ti ;
p − ds + k, if p = Ti and rule Ti/ds → 1 is applied;
p + k, if p > Ti .

As usual in membrane computing, a global clock is assumed, mark-
ing the time for the whole system; hence, the functioning of the system is
synchronized. Each neuron uses at most one rule in each step, nondeter-
ministically chosen among its rules, provided that its potential equals the
firing threshold, but all neurons that have applicable rules must choose and
apply a rule.

The configuration of the system is described by the distribution of po-
tentials in neurons. The initial configuration of the system is the tuple
〈p1, . . . , pm〉. Applying the rules as suggested above, we can define tran-
sitions among configurations. Any sequence of transitions starting from
the initial configuration is called a computation. A computation halts if it
reaches a configuration where no rule can be used. With any computation,
halting or not, we associate a spike train, the binary sequence with occur-
rences of 1 indicating time instances when the output neuron sends one
unit potential (a spike) out of the system (we also say that the system itself
spikes at that time).

The result of a computation can be defined in several ways. In this letter,
with any spike train containing at least two spikes, the first two being
emitted at step t1, t2, one associates a result in the form of the number
t2 − t1; we say that this number is computed by �. The set of all numbers
computed in this way by � is denoted by N2(�) (the subscript indicates
that we consider only the distance between the first two spikes of any
computation; note that 0 cannot be computed, which is why we disregard
this number when investigating the computing power of any device).
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SN P systems can also work in the accepting mode. We start the compu-
tation from the initial configuration and introduce in the input neuron two
spikes, in steps t1 and t2 (hence, we introduce in σin one unit of potential
in each step t1 and t2); the number t2 − t1 is accepted by the system if the
computation eventually halts. We denote by Nacc(�) the set of numbers
accepted by �.

When dealing with decidability problems, as in section 8, various values
of potential are input into σin, at precise time units, instead of single spikes;
such a sequence of potentials is used as an encoding of the (instance of the)
problem to solve.

In the generative case, the neuron with label in is ignored. In the accepting
mode, the neuron with label out is ignored. For simplification, occasionally,
“neuron i” is used to denote “neuron σi ”; that is, when we say “neuron i,”
we mean a reference to “neuron σi .”

We denote by NαWXSNPm the families of all sets Nα(�), α ∈ {2, acc},
computed by WSN P systems with at most m ≥ 1 neurons, using weights,
thresholds, and amounts of consumed potentials in the rules taken from the
set X, for X ∈ {N, Z, Q, Rc}. When the number of neurons is not bounded,
the subscript m is replaced with ∗.

Usually, in the area of SN P systems, one takes into account several other
parameters describing the size of the used systems, such as the maximal
number of rules in a neuron and the maximal number of spikes consumed
by a rule. Here we can also consider the maximal firing threshold, the
maximal positive weight, and the minimal negative weight of a synapse.
However, as we will see in the following sections, these parameters will
have very small values in all results we obtain, so we prefer to simplify the
notation and ignore these parameters.

4 An Example of WSN P Systems

In order to show the function of WSN P systems, we give an SN P system
with rational numbers as weights.

Consider the SN P system � shown in Figure 1, which consists of three
neurons denoted by rounded rectangles with the initial potential and spik-
ing rules inside. Arrows between these rounded rectangles represent the
synapses; these arrows are marked with numbers indicating the weights.
The input neuron has an incoming arrow, and the output neuron has an
outgoing arrow, suggesting their communication with the environment.
When the weight on a synapse is 1, it is omitted.

At step 1, only output neuron σout spikes, while the other two neurons
σ1, σ2 maintain their potentials, because their potentials are greater than
their corresponding firing thresholds. Neurons σ1 and σ2 receive potentials
−1.5 and −1, respectively, from neuron σout . At step 2, neurons σ1 and σ2

have potentials 1.5 and 1, respectively, which equal their corresponding
firing thresholds; hence, both neurons σ1 and σ2 spike.
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Figure 1: Example of a WSN P system �.

When neuron σ2 spikes, it consumes one unit of potential and at the
same time receives one unit of potential from neuron σ1; hence, at the
next step, it still has potential 1 and spikes again. Neuron σ1 has two rules,
1.5/1.5 → 1 and 1.5/1 → 1, and one of them is nondeterministically chosen.
If rule 1.5/1.5 → 1 is applied, then by consuming potential 1.5 and receiving
potential 1.5 from neuron σ2, the potential of neuron σ1 is still 1.5; hence,
it will spike again. In this way, neurons σ1 and σ2 can spike as long as
rule 1.5/1.5 → 1 is chosen to be applied. At each step during this process,
neuron σout receives potential −0.5 from σ1 and potential 0.5 from σ2, which
means that neuron σout has potential 0 and does not spike.

If at step t ≥ 2, rule 1.5/1 → 1 is chosen to be applied, then at step
t + 1, neuron σ1 has the potential 1.5 − 1 + 1.5 = 2, which is greater than
its threshold, and it will not spike. At step t + 1, neuron σ2 has potential
1 and spikes; neuron σout receives potential 1 from neuron σ2 at step t + 1
and spikes at step t + 2. At step t + 2, neuron σ1 receives potential −1.5
from neuron σout ; its potential changes to 2 − 1.5 = 0.5, which is less than
its threshold potential 1.5; and the neuron returns to resting potential 0 at
step t + 3. At step t + 2, neuron σ2 receives potential −1 from neuron σout ;
its potential changes to 0 − 1 = −1, which is less than its threshold potential
1; and it returns to resting potential 0 at step t + 3. So the system halts after
step t + 3.

The number generated by system � is (t + 2) + 1 = t + 3, where t ≥ 2,
and the value of t depends on the nondeterministic choice of rules 1.5/1.5 →
1 or 1.5/1 → 1 in neuron σ1. Thus, N2(�) = N − {1, 2} (recall that the number
0 is ignored when investigating the computational power of devices).

5 Preliminary Results

We start by noting some immediate relations, following from the definitions:

Lemma 1. (i) NαWNSNPm ⊆ NαWZSNPm ⊆ NαWQSNPm ⊆ NαWRc SNPm ⊆
NRE, for all α ∈ {2, acc} and m ≥ 1 or m = ∗. (ii) NαWXSNPm ⊆
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NαWXSNPm′ ⊆ NαWXSNP∗, for all α ∈ {2, acc}, m′ ≥ m ≥ 1, and X ∈
{N, Z, Q, Rc}.

All relations are obvious, with the inclusion of NαWRc SNPm ⊆ NRE being
a consequence of the fact that we use only computable real numbers and
the Turing-Church thesis.

For a given WSN P system � = (σ1, . . . , σm, syn, in, out) and a constant
k ∈ Rc , let us denote by k� the system obtained by multiplying by k all
weights, thresholds, and potentials from �. (If a rule of � is of the form
Ti/ds → 1, then in k�, we use the rule kTi/kds → 1; a synapse (i, j, r ) will
become (i, j, kr ) in k�, hence transporting a potential equal to kr when
neuron σi produces one spike.)

Lemma 2. For any WSN P system � and constant k ∈ Rc , with k� constructed
as above, we have Nα(�) = Nα(k�), for all α ∈ {2, acc}.

The assertion directly follows from the way k� is defined and has the
next interesting consequence:

Corollary 1. NαWZSNPm = NαWQSNPm for all α ∈ {2, acc} and m ≥ 1 or
m = ∗.

One inclusion is pointed out in lemma 1, and the opposite one follows
from lemma 2: take an arbitrary WSN P system with all constants in Q, let k
be the least common multiple of all denominators of rational numbers in �

(weights, thresholds, and potentials), and consider k�. The system k� has
all integers used, so it is equivalent to �.

6 Universality of WSN P Systems with Integers

In this section, WSN P systems with integers are proved to be universal in
both the generative and the accepting case. However, these results cannot
be obtained as particular cases of universality results known for usual
SN P systems: the weights bring additional possibilities to “program” the
computation of an SN P system, but instead we are very much restricted by
the fact that all the rules of a neuron are enabled at the same time, when the
firing threshold is reached. This corresponds to typical SN P systems with a
finite number of spikes in each neuron (and only one regular expression—
identifying a singleton), and such systems are known to compute only
semilinear sets of numbers (Ionescu et al., 2006).

6.1 The Generative Case. Consider first the case of sets N2(�). We have
the following result:

Theorem 1. N2WZSNP∗ = NRE.
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Figure 2: Module ADD (simulating li : (ADD(r ), l j , lk)).

Proof. We have only to prove the inclusion NRE ⊆ N2WZSNP∗. To this
aim, we use the characterization of NRE by means of register machines
used in the generating mode.

Let us consider a register machine M = (m, H, l0, lh, R) as introduced in
section 2. It is assumed that in the halting configuration, all registers are
empty except the first register and that output register is never decremented
during the computation. We construct a WSN P system � to simulate M as
follows. We construct modules ADD and SUB to simulate the instructions
of M, as well as an output module FIN, which provides the result (in the
form of a suitable spike train). Each register r of M will have a neuron σr in
�, and if the register contains the number n, the associated neuron will have
the potential 2n + 2. A neuron σli is associated with each label li ∈ H, and
some auxiliary neurons σl( j)

i
, j = 1, 2, 3, . . . , will also be considered (each

li ∈ H is associated with a unique instruction of M; hence all neurons σli , σl( j)
i

are precisely associated with a unique instruction of M).
The modules will be given in graphic form. In the initial configuration,

all neurons have the potential 0, except that the neuron associated with the
label l0 of M has potential 1 and the neurons associated with the registers
have potential 2. In general, when a neuron σli , where li ∈ H, has potential
1, the neuron becomes active, and the module associated with the respective
instruction of M starts to work, simulating the instruction.

Module ADD: Simulating an ADD Instruction li : (ADD(r ), l j , lk). Module
ADD, shown in Figure 2, is composed of eight neurons: neuron σr for
register r; neurons σli , σl j , σlk for instructions with labels li , l j , lk ; and four
auxiliary neurons.

The initial instruction of M, the one with label l0, is an ADD instruc-
tion. Let us assume that at step t, we have to simulate an instruction
li : (ADD(r ), l j , lk), with neuron σli having potential 1 and other neurons
having resting potential 0, except those neurons associated with registers.
Having potential 1, neuron σli fires by rule 1/1 → 1. Simultaneously, neu-
rons σl(1)

i
, σl(2)

i
, and σr receive potentials 1, 2, 2, respectively. In this way, the
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potential of neuron σr increased by two, thus simulating the increase of the
number stored in register r by one.

At the next step, the computation of M passes nondeterministically to
one of the instructions with labels lj and lk; that is, we have to ensure the
firing of neurons σl j or σlk in system �, nondeterministically choosing one of
them. To this aim, we use the nondeterministic choice of rules 2/2 → 1 and
2/1 → 1 in σl(2)

i
. Because neuron σl(2)

i
has potential 2 (received from neuron

σli at the last step), it has to choose nondeterministically one of these rules.
We have two cases:

1. If rule 2/2 → 1 is applied at step t + 1, then neuron σl(2)
i

consumes its
potential for spiking. Which receiving potential 1 from neuron σl(1)

i
at step t + 1, neuron σl(2)

i
has potential 1 at step t + 2, which is less

than its threshold potential; hence, the neuron returns to the resting
potential 0. At step t + 1, neuron σl j receives potential −1 from neuron
σl(2)

i
, which is less than its firing threshold, and it returns to the resting

potential 0 at step t + 2. At step t + 1, neuron σl(4)
i

receives potential −1
from neuron σl(1)

i
and potential 1 from neuron σl(2)

i
; hence, its potential

is still 0. At step t + 1, neuron σl(3)
i

receives potential 2 from neurons
σl(1)

i
and σl(2)

i
, and at step t + 2 it spikes by rule 2/2 → 1. Receiving

potential 1 from neuron σl(3)
i

, neuron σl j becomes active and starts to
simulate the instruction lj of M.

2. If rule 2/1 → 1 is applied at step t + 1, then neuron σl(2)
i

consumes
one unit of its potential for spiking. When receiving potential 1 from
neuron σl(1)

i
at step t + 1, neuron σl(2)

i
still has potential 2 at step t + 2

and spikes again. At step t + 1, neuron σl j receives potential −1 from
neuron σl(2)

i
, which is less than its threshold potential, and returns to

the resting potential 0 at step t + 2. At step t + 2, neuron σl j receives
potential −1 from neuron σl(2)

i
and potential 1 from neuron σl(3)

i
, so its

potential is 0. At step t + 1, neuron σl(4)
i

receives potential −1 from
neuron σl(1)

i
and potential 1 from neuron σl(2)

i
, so its potential remains

0. At step t + 2, neuron σl(4)
i

receives one unit of potential from neuron
σl(2)

i
and it spikes at step t + 3. Receiving potential 1 from neuron σl(4)

i
at step t + 3, neuron σlk becomes active and starts to simulate the
instruction lk of M.

Therefore, from firing neuron σli , the system nondeterministically fires
one of neurons σl j , σlk , which correctly simulates the ADD instruction li :
(ADD(r ), l j , lk).

Module SUB: Simulating a SUB Instruction li : (SUB(r ), l j , lk). Module SUB,
shown in Figure 3, is composed of seven neurons: neuron σr for register r;
neurons σli , σl j , σlk for instructions with labels li , l j , lk ; and three auxiliary
neurons σl(1)

i
, σl(2)

i
, σl(3)

i
.

Instruction li is simulated in � in the following way. Initially, neuron
σli has potential 1, and other neurons have potential 0, except neurons
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Figure 3: Module SUB (simulating instruction li : (SUB(r ), l j , lk).

associated with registers. Let t be the moment when neuron σli fires. At step
t, neurons σl(1)

i
and σr receive potentials 1 and −1, respectively. At step t + 1,

neuron σl(1)
i

fires, and neurons σl(2)
i

and σl(3)
i

receive potential 1 from neuron
σl(1)

i
. For neuron σr , there are the following two cases:

1. The potential of neuron σr is 2 at step t (i.e., the number stored in
register r is 0). Then, at step t + 1, neuron σr has potential 1 (it has
received potential −1 from neuron σli at the previous step), and it
spikes by rule 1/1 → 1. At step t + 1, neuron σl(2)

i
receives potential −1

from neuron σr and potential 1 from neuron σl(1)
i

, so it has potential
0. At step t + 1, neuron σl(3)

i
receives potential 2 (one unit of potential

from neuron σr and another one from neuron σl(1)
i

), and it spikes at
step t + 2. Receiving potential 1 from neuron σl(3)

i
, neuron σlk becomes

active and starts to simulate instruction lk of M. Note that at step t + 2,
neuron σr receives potential 2 from neuron σl(3)

i
, and in this way, it

correctly ends with potential 2, which corresponds to the fact that the
number stored in register r is 0.

2. The potential of neuron σr is 2n + 2 (n > 0) at step t. At step t + 1,
neuron σr has potential 2n + 1, which is greater than its threshold, and
will remain unchanged. At step t + 1, neuron σl(3)

i
receives potential 1

from neuron σl(1)
i

, which is less than its threshold potential; hence, it
will not spike and has potential 0 at step t + 2. At step t + 1, neuron
σl(2)

i
receives potential 1 from neuron σl(1)

i
, and it spikes at step t + 2.

Receiving potential −1 from neuron σl(2)
i

at step t + 2, the potential
of neuron σr changes to 2n, and in this way, it simulates that the
number stored in register r is decreased by one. Receiving potential 1
from neuron σl(2)

i
at step t + 2, neuron σl j becomes active, and starts to

simulate the instruction lj of M.
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Figure 4: Module FIN: Outputting the result of computation.

The simulation of SUB instruction is correct: we started from σli and
ended in σl j (if the register r is not empty and decreased by one) or in σlk (if
the register is empty).

Note that there is no interference between neurons used in the ADD and
the SUB modules other than correctly firing the neurons σl j or σlk , which
may label instructions of the other kind. However, it is possible to have
interference between neurons in two SUB modules. Specifically, if there are
several SUB instructions lt that act on register r, then neurons σl(2)

t
and σl(3)

t
re-

ceive potentials −1 and 1 from neuron σr , respectively, while simulating the
instruction li : (SUB(r ), l j , lk). After receiving these potentials, neurons σl(2)

t

and σl(3)
t

have potentials that are less than their corresponding firing thresh-
olds, so both return to resting potential 0 at the next step. Consequently, the
interference among SUB modules will not cause undesired steps in � (i.e.,
steps that do not correspond to correct simulations of instruction of M).

Module FIN: Outputting the Result of the Computation. Module FIN is
shown in Figure 4. Assume that the computation in M halts, which means
that the halting instruction is reached. This means that neuron σlh in � has
potential 1 and fires by rule 1/1 → 1. At that moment, neuron σ1 has poten-
tial 2n + 2, where n ≥ 1 is the number stored in register 1 of M. When σlh

fires, each neuron σc1 , σc2 , σc3 receives potential 1; neuron σ1 receives poten-
tial −1, changing its potential to 2n + 1. Suppose that this is step t. At step
t + 1, neuron σc1 spikes; neuron σout receives potential 1 from neuron neuron
σc1 and spikes at step t + 2 (this is the first spike sent out by system �).

From step t + 1 on, consuming one unit potential, neurons σc2 and σc3

send potential 1 to each other, and this process continues until they receive
potential −1 from neuron σ1. During this process, at each step, neuron σ1

receives potential −1 from neuron σc2 and −1 from σc3 , which corresponds
to decreasing by 1 the value of the register 1. At step t + n + 1, neuron σ1 has
potential 1 and spikes; neurons σc2 and σc3 have potential 0 after receiving
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potential −1 from neuron σ1. Receiving potential 1 from σ1 at step t + n + 1,
neuron σout spikes again at step t + n + 2, and the system sends the second
spike to the environment. The interval between these two spikes sent out by
the system is (t + n + 2) − (t + 2) = n, which is exactly the number stored
in register 1 of M at the moment when the computation of M halts.

Note that after system � sends out the second spike, all neurons in
� have potential 0 except that neurons σi , 2 ≤ i ≤ m, have potential 2.
For mathematical elegance, we can return the potentials of neurons σi ,
2 ≤ i ≤ m) to 0 when the computation of � halts. To this end, we need to
add synapses (out, i,−2) (i = 2, 3, . . . , m) in system �: when σout spikes for
the first time, the potential it sends to each σi , 2 ≤ i ≤ m, is equal to −2;
hence, it cancels the potential of the target neuron.

If the number stored in register 1 is 0 when register machine M halts, then
at step t + 1, neuron σout has potential 2, which is greater than its threshold
potential 1. In this case, neuron σout is blocked, and system � sends no spike
to the environment. Remember that 0 is ignored when we investigate the
power of our systems

From this description of the modules and their work, it is clear that
the register machine M is correctly simulated by the system �. Therefore,
N2(�) = N(M), and this completes the proof.

Let us now examine the weights used in the previous proof. In the
ADD module, we have two synapses with weight 2. This value can
be avoided, so that the module uses only weights 1 and −1 in the
following way. Consider two new neurons, say σa and σb , intermedi-
ate between σli and its neighboring neurons (specifically, with synapses
(li , a , 1), (li , b, 1), (a , r, 1), (b, r, 1), (a , l (1)

i , 1), (a , l (2)
i , 1), (b, l (2)

i , 1). Each of the
new neurons holds the rule 1/1 → 1. In this way, both σr and σl(2)

i
get two

potential units, two steps after activating σli , simultaneously with one po-
tential unit coming to σl(1)

i
. From now on, the work of the module continues

as described above. The same trick can be used in the SUB module in order
to remove the single synapse with weight 2, noting that no synchroniza-
tion problem appears; hence, the synapse is removed, and two intermediate
neurons are introduced, similar to σa , σb above, between σl(3)

i
and σr . Module

FIN contains only synapses with weights 1 and −1.
Consequently, the universality is obtained with WSN P systems of a

rather restricted form. This observation may be be formulated as a normal
form result:

Corollary 2. The universality of WSN P systems is preserved if we use only
(i) weights 1 and −1 for synapses, (ii) at most two rules per neuron, and (iii) all
rules are of one of the following three forms: 1/1 → 1, 2/2 → 1, and 2/1 → 1.

The use of two rules in at least one neuron cannot be avoided because in
the generative case, the system should be nondeterministic. If the system is
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Figure 5: Module INPUT: Initializing the computation.

deterministic, the system generates nothing or a singleton. Nondeterminism
originates from choosing between rules; hence, at least two rules are needed
in the same neuron.

6.2 The Accepting Case. The number of rules per neuron can be de-
creased to one in this case due to the fact that the ADD instructions of a
register machine used in the accepting mode can be assumed to be deter-
ministic. The construction follows the same ideas as the one from the proof
of theorem 1.

The number to be computed is introduced in the system as the distance
between the first two unit potentials that the input neuron receives. This is
done by means of a module INPUT, as indicated in Figure 5. The first unit
potential entering the neuron σi0 of the module passes to neurons a1, a2, a3.
The last two neurons will feed each other until one further unit potential
is received from σi0 (the system stops at this moment). In the time span
when the two spikes enter the system, neuron σ1 receives two potential
units in each time unit. Note that neuron σa4 does not spike this time: either
it receives potential from both σa1 and σa2 and they cancel each other, or
only from σa2 , which is under the threshold of σa4 , and it is reset to 0.
However, when the second spike enters the system, because σa2 does not
spike, σa4 receives only one potential unit, from σa1 ; hence it fires, adding
two potential units to σ1 and activating σl0 by sending one potential unit
to it. Note that σ1 contains 2n + 2 units of potential, exactly what is needed
in view of the construction in the proof of theorem 1. If the system halts,
the number n is accepted, so we do not need a module for outputting the
result of computation. For a SUB instruction li : (SUB(r ), l j , lk), we use the
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2

Figure 6: Module ADD in the deterministic case.

same module as in Figure 3. For a deterministic ADD instruction of the form
li : (ADD(r ), l j ), we consider the simple module given in Figure 6. Initially
all neurons in all these modules have the potential 0, with the exception
of neurons σi , 2 ≤ i ≤ m (associated with the registers), which contain two
potential units. The way the modules work can be checked in a similar way
as in the proof of theorem 1.

We conclude with the following counterpart of theorem 1 (actually, the
assertions in corollary 2 also hold true, with point ii stating that exactly one
rule is used in each neuron; removal of synapses with weight 2 is done in
the same way as described above):

Theorem 2. Nacc WZSNP∗ = NRE.

The previous results can be summarized as follows:

Corollary 3. NαWNSNPm ⊆ NαWZSNPm = NαWQSNPm = NαWRc SNPm =
NRE, for all α ∈ {2, acc} and m ≥ 1 or m = ∗.

7 Systems with Natural Numbers as Weights

The only case that has remained unsettled concerns systems with natural
numbers as weights, thresholds, and potentials. Somewhat surprisingly at
first sight, such systems characterize the family of semilinear sets. For the
proof of this assertion, we use a series of lemmas.

Lemma 3. Every finite set of natural numbers is in the family N2WNSNP∗.

Proof. Let us take a finite set of natural numbers, U = {n1, n2, . . . , nk}, all
of them different from 0. We construct a WSN P system as suggested in
Figure 7. Specifically, for each number ni we have a “subsystem” composed
of neurons σ(i,a ), σ(i,b), σ(i,c), σ(i,0), σ(i,1), . . . , σ(i,ni +1), with synapses, rules, and
initial potentials as indicated in Figure 7. A synapse exists from neuron
σ(i,ni +1) to the output neuron σout . There also exists one further neuron, σ0,
for which only two synapses exist: ((1, 0), 0, 1) and (0, out, 1). Figure 7 shows
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Figure 7: A WSN P system generating a finite set of numbers.

only two generic subsystems and the subsystem that helps in generating
number nk = 1.

This system works as follows. All neurons behave deterministically, ex-
cept σ(i,c), for each 1 ≤ i ≤ k. As long as such a neuron uses its second rule,
2/1 → 1, it can spike again in the next step. One potential unit remains
inside, and a further one is received from σ(i,b); hence, the initial amount,
equal to the firing threshold, is restored. In turn, as long as σ(i,c) spikes,
the sequence of neurons σ(i,1), . . . , σ(i,ni +1) continues to work, moving to the
right toward σout , the neuron that can fire. A neuron in this sequence must
receive two spikes in order to fire: one from the preceding neuron (initially
σ(i,0) fires, because it has inside one potential unit) and one from σ(i,c). Note
that each time unit, σ(i,c) is fed with one potential unit by σ(i,b), which works
perpetually in cooperation with σ(i,a ). (They can be stopped, for example,
when σout spikes, by sending them a further spike, but this detail is not
important for our result. It can be important when the output is defined
differently, for instance, if halting is relevant.) If all neurons in the sequence
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σ(i,1), . . . , σ(i,ni +1) work, then in step ni + 2, a spike is set to σout , and in step
ni + 3, a spike is sent to the environment. Note, however, that the first spike
is sent out of the system in step 3, on the path σ(1,0), σ0, σout . Consequently,
the distance between these spikes is (ni + 3) − 3 = ni .

However, any of these processes of sending a spike toward σout along
the path σ(i,1), . . . , σ(i,ni +1) can be stopped at any step after the first one by
applying rule 2/2 → 1 in neuron σ(i,c). This rule consumes both potential
units of σ(i,c); only one unit is received from σ(i,b), which is removed; and
σ(i,c) remains idle. Therefore, nondeterministically, we can stop all but one
sequence σ(i,1), . . . , σ(i,ni +1) of neurons, 1 ≤ i ≤ k, so that the output neuron
receives only two spikes: the one in step 3, along the path σ(1,0), σ0, σout ,
and the one along the path σ(i,1), . . . , σ(i,ni +1), which remain unblocked. In
conclusion, each number in the set {n1, n2, . . . , nk} can be generated, that is,
N2(�) = U; hence F I N ⊆ N2WTNSNP∗.

The number of neurons depends on the sum of numbers in the set U,
but some neurons in the previous construction can be saved (a unique pair
σ(i,a ), σ(i,b) can feed up all neurons σ(i,c)), but this aspect is not relevant for
us.

Lemma 4. Any arithmetical progression Pk,l = {kn + l | n ≥ 1} with k ≥ 2,

l ≥ 2 is in the family N2WNSNP∗.

Proof. Let us consider system � in Figure 8. It generates the set N2(�) =
{2n + 2 | n ≥ 1}.

The output neuron spikes in the first step and then only after receiving a
spike from neuron σ4. In turn, this neuron spikes only after receiving a spike
from each neuron σ2 and σ3 (if we have only one spike in σ4, it is removed).
Then neuron σ2 can send a spike to σ4 simultaneously with σ3 only if it,
after receiving two spikes from σ0 (note that the synapse (0, 2, 2) is the
only one with weight 2), first uses rule 2/1 → 1, so that one spike remains
inside, making the firing possible in the next step. If neuron σ2 uses rule
2/2 → 1, its spike will reinitiate the work of neuron σ0, and the spikes from
σ2 (received from σ1) and, after one step from σ4, are removed. Thus, the
output neuron fires for the second time after a number of passings through
the cycle σ0, σ1, σ0 (which means two steps), then ending the computation,
which needs two further steps. The precise checking of the functioning of
the system in Figure 8 is left to the reader.

Thus, we can generate the arithmetical progression P2,2. If we want to
generate a progression Pk,l with k = 2 + i and l = 2 + j , we add i neurons
between σ2 and σ0, (instead of the synapse (2, 0, 1)) and j neurons between
σ4 and σout , arranged in a sequence, with rule 1/1 → 1 in each of them.
These neurons will lengthen the cycle σ0, σ2, . . . , σ0 with further i steps and
the path from σ4 to σout with j steps. We denote by �i, j the resulting system.
We have N2(�i, j ) = {(2 + i)n + (2 + j) | n ≥ 1} = Pk,l .
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Figure 8: A WSN P system generating an infinite set of numbers.

Lemma 5. If �1, . . . ,�n are WSN P systems with natural numbers as weights
and potentials, and for each 1 ≤ i ≤ n, there is Tj ≥ 1 such that all computations
in �i spike for the first time at the same step Ti, then

⋃n
i=1 N2(�i ) ∈ N2WNSNP∗.

Proof. Let us take separately neurons σ1, σ2, σ3, σ4, σout from Figure 8, with
two spikes present in σ2 and one in σ1 from the beginning; also change the
label of σout , for instance, to σ5, without having here any spike in the initial
configuration. This system behaves like a trigger: it sends, or not, a spike
out of σ5, depending on the nondeterministic behavior of σ2.

Consider now a finite set of WSN P systems �1, . . . , �n as in the state-
ment of the lemma. Let T be the maximum of all Ti , 1 ≤ i ≤ n. From the
output neuron of each �i we consider a chain of additional T − Ti neurons
with the unique rule 1/1 → 1, ending with a new output neuron. Regardless
of the length of this chain, the set of numbers generated by �i remains the
same, as the first two spikes leaving the system remain at the same distance
in time; they leave the system only later. Moreover, in this way, all modified
systems spike for the first time at step T.

Take a trigger as above for each of the modified systems �i (we continue
to denote them by �i ). Assume that a neuron σs from some �i contains
rs ≥ 1 spikes in the initial configuration of �i . We remove these spikes from
σs and establish a synapse (5, s, rs). In this way, when the neuron σ5 of the
trigger spikes, the system � is loaded with exactly as many spikes as it
contained initially.

In this way, nondeterministically, the triggers will load one or more of the
systems �i , 1 ≤ i ≤ n. Now take an additional neuron that will be consid-
ered the output neuron of the whole system—let us call it σ f —and connect
all output neurons of systems �i to it. With a delay of one step, the spike
train of each �i , 1 ≤ i ≤ n, is produced by the new system. It is important
that all systems �i spike for the first time at the same moment. Only one of
the triggers has to activate a system �i . All other systems � j , j 
= i , should
remain idle, without any spike inside; otherwise the system produces no
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output. Indeed, if two spikes arrive at the same time in neuron σ f (this is
the case if two systems �i ,� j were activated), then σ f is blocked forever,
since its potential is higher than its firing threshold.

Note that it is crucial here that a trigger behaves nondeterministically; it
sends, or not, a spike out of his neuron σ5.

Consequently, the system whose construction was suggested above gen-
erates the union of sets N2(�i ), 1 ≤ i ≤ n.

Theorem 3. N2WNSNP∗ = SLIN.

Proof. (i) In order to obtain the inclusion SLIN ⊆ N2WNSNP∗ we use the
known fact that any semilinear set is a finite union of a finite set with a
finite number of arithmetical progressions. From the previous lemmas, we
know that finite sets and arithmetical progressions of the form Pk,l with
k ≥ 2 and l ≥ 2 are in N2WNSNP∗. Let us note that the systems constructed
in the proofs of lemmas 3 and 4 have the property in the statement of lemma
5 to have all computations spiking for the first time at the same step. What
remains to show is that arithmetical progressions that are not of the form
Pk,l with k ≥ 2 and l ≥ 2 are also in N2WNSNP∗.

Such progressions are P2,1, P2,0, and P1,l for all l ≥ 0. However, we have

P2,1 = {3} ∪ P2,3, P2,0 = {2} ∪ P2,2,

Consequently, with lemmas 4 and 5, they belong to N2WNSNP∗. Moreover,

P1,l = (P1,l ∩ {1, 2, 3}) ∪ (P1,l ∩ P2,2) ∪ (P1,l ∩ P2,3).

Let l1 = min(P1,l ∩ P2,2) and l2 = min(P1,l ∩ P2,3). (Note that l1 ≥ 4 and l2 ≥
5.) Then we have

(P1,l ∩ P2,2) = {l1} ∪ P2,l1 , (P1,l ∩ P2,3) = {l2} ∪ P2,l2 .

Using again lemmas 4 and 5, we get L1,l ∈ N2WNSNP∗, and this completes
the proof of the inclusion SLIN ⊆ N2WNSNP∗.

(ii) The inclusion N2WNSNP∗ ⊆ SLIN is somewhat straightforward, after
making the observation that because all weights are positive, the potential
accumulated in a neuron can be decreased only if it is smaller than or equal
to the firing threshold of that neuron. Otherwise stated, if a neuron σi accu-
mulates a potential strictly larger than Ti, the potential remains larger than
Ti forever (and no rule can be applied in σi ). Therefore, the configurations of
a system � = (σ1, . . . , σm, syn, out) can be described by a vector 〈α1, . . . , αm〉
where αi ∈ {0, 1, . . . , Ti } ∪ {T̄}, where T̄ is just a symbol indicating that the
potential of σi is strictly greater than Ti. If new amounts of potential are
brought to a neuron whose content is already described by T̄ , the same
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symbol will describe that neuron at the next step. In this way, the func-
tioning of the system can be described by a finite state device, for example,
by a regular (actually, right-linear, because we also need rules producing
no terminal symbol) grammar. We start from the initial configuration (its
description is the axiom of the grammar), and to each transition, we asso-
ciate a rule. Because we have finitely many configurations, we have finitely
many rules. As long as no spike is sent to the environment, no terminal is
produced. When the first spike exits the system, the reached nonterminal
is marked, and from now on, we produce a terminal symbol in each step
(and we carry on the marking of nonterminals). When a second spike is
produced by the output neuron, the derivation stops, and we no longer
introduce a nonterminal. The number of terminals produced is exactly the
number generated by the system. The formal details are left to the reader.

A similar result is expected for the case when WSN P systems with
natural numbers are used in the accepting mode.

8 Efficiency of WSN P Systems

The trigger subsystem mentioned at the beginning of the proof of lemma 5
suggests the possibility of using WSN P systems in order to solve compu-
tationally hard problems nondeterministically. This possibility is explored
below and illustrated with two well-known NP-complete problems: Subset
Sum and SAT .

8.1 Time Complexity for Nondeterministic SN P Systems. We first re-
call some basic definitions concerning the solution of decision problems by
means of SN P systems (Leporati, Mauri, Zandron, Păun, & Pérez-Jiménez,
2009):

Definition 1. Let X = (IX, θX) be a decision problem, where IX is the set of
instances and θX is a total Boolean function over IX. Let p : N → N be a computable
function. We say that X is solvable by a family � = (�(n))n∈N of SN P systems, in
time bounded by p, in a nondeterministic and uniform way, if the following holds:

� The family � is polynomially uniform by Turing machines; that is, there
exists a deterministic Turing machine working in polynomial time with
respect to n, which constructs the SN P system �(n) from n ∈ N.

� There exist polynomial time computable functions, cod and s, over IX, such
that:
� For each instance w ∈ IX, s(w) is a natural number, and cod(w) is a

sequence of integers, representing potentials, which enter one by one
the input neuron of �(s(w)) in the first steps of the computation (the
computation starts when the first digit, negative, zero, or positive, of
cod(w) enters the system).
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� The family � is p-bounded with respect to (X, cod, s); that is, for each
instance w ∈ IX, the minimum length of an accepting computation of
�(s(w)) with input cod(w) is bounded by p(|w|); a computation is
accepting if during the output neuron of �(s(w)) it fires, hence it sends
some potential units out of the system.

� The family � is sound and complete with respect to (X, cod, s); that
is, for every w ∈ IX, θX(w) = 1 if and only if there exists an accepting
computation of �(s(w)) with input cod(w).

We say that a decision problem X = (IX, θX) is solvable in polynomial time
by a family � = (�(n))n∈N of SN P systems, in a nondeterministic and uniform
way, if X is solvable by the family � in time bounded by a polynomial, in a
nondeterministic and uniform way.

Note that, as usual when dealing with the nondeterministic computa-
tions of deciding problems, the computations are considered accepting if
they send out a signal, whereas the rejecting computations (i.e., computa-
tions that never fire the output neuron of the system) are ignored.

Definition 2. Let X = (IX, θX) be a decision problem and p : N → N a com-
putable function. We say that X is solvable by a family � = (�(w))w∈IX of SN P
systems, in time bounded by p, in a nondeterministic and semiuniform way, if the
following holds:

� The family � is polynomially uniform by Turing machines; that is, there
exists a deterministic Turing machine working in polynomial time that
constructs the SN P system �(w) from the instance w ∈ IX.

� The family � is p-bounded with respect to X; that is, for each w ∈ IX, the
minimum length of an accepting computation of �(w) is bounded by p(|w|).

� The family � is sound and complete with respect to X; that is, for every
w ∈ IX, θX(w) = 1 if and only if there exists an accepting computation of
�(w).

We say that a decision problem X = (IX, θX) is solvable in polynomial time by a
family � = (�(w))w∈IX of SN P systems, in a nondeterministic and semiuniform
way, if X is solvable by the family � in time bounded by a polynomial, in a
nondeterministic and semi-uniform way.

Some informal explanations are provided here for readers unfamiliar
with computational complexity. Problems can be solved by deterministic (in
each step, at most one continuation is possible) or nondeterministic devices
from a given class: a solving “machine” can be constructed in a uniform way
(starting from the problem itself) or in a nonuniform way (starting from the
specific instance to solve). In all cases, we distinguish the precomputation
(building the “machine” starting from the problem or from the instance to
solve) from the computation (the work of the “machine,” after receiving
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as input the code of the instance, for solving it). The precomputation is in
general done by a Turing machine, and its duration must not be “too long”;
that is why one requests that the computation time is at most polynomial
time with respect to the length of the problem instance. The computation
time is the main goal of the investigation, and this can be parallel time in
the case of distributed and parallel devices—which is also the case for SN
P systems.

The soundness property requires that if we obtain an acceptance re-
sponse from the system (associated with an instance) through some com-
putation, then the answer of the problem (for that instance) is affirmative.
The completeness property means that if the answer to that instance of the
problem is positive, there exists an accepting computation of the system
(associated with that instance).

8.2 Semiuniform Solution to Subset Sum . Let us start by recalling the
NP-complete problem Subset Sum (Garey & Johnson, 1979).

Problem 1

NAME: Subset Sum

INSTANCE: A (multi)set V = {v1, v2, . . . , vn} of positive integer num-
bers, and a positive integer number S.
QUESTION: Is there a sub(multi)set B ⊆ V such that

∑
b∈B b = S?

Let us consider the WSN P system depicted in Figure 9. Initially neurons
σdi , σei , σout contain the resting potential 0; neurons σai have potential 1;
neurons σbi have potential 1; neurons σci have potential 2; and neurons σi

have potential vi + 1, for i = 1, 2, . . . , n. The system solves the Subset Sum

problem nondeterministically, where the nondeterminism originates from
the choice of rules 2/2 → 1 and 2/1 → 1 in neurons σci .

At step 1, all neurons σai , σbi , σci spike. Receiving two unit potentials from
neurons σai and σci , neuron σdi spikes at step 2, sending one unit potential
to neuron σe1 . For neuron σci , we have two cases:

1. If in neuron σci , at step 1, rule 2/2 → 1 is applied, then the initial two-
unit potential is consumed; at the same time, neuron σci receives one
unit potential from neuron σbi , which is less than its threshold, and
vanishes to the resting potential 0 at the next step without sending any
potential out. In this case, neuron σei receives only one unit potential
from σdi , which is less than its threshold, and returns to the resting po-
tential 0, without firing. Neuron σi does not fire, and this corresponds
to the case when the number vi does not appear in the corresponding
subset.

2. If in neuron σci , at step 1, rule 2/1 → 1 is used, one initial unit potential
is consumed; at the same time, neuron σci receives one unit potential
from neuron σbi . So with potential 2, neuron σci spikes again at step
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Figure 9: A WSN P system solving the Subset Sum problem.

2, sending one unit potential to neuron σei . In this case, having poten-
tial 2, neuron σei spikes. Neuron σi receives potential −1 by synapse
(ei , i,−1), and its potential becomes vi. With potential vi, neuron σi

spikes, sending one unit potential to neuron σout . This corresponds to
selecting the number vi in a subset (whose total sum remains to be
compared with S).

Neuron σout checks whether the sum of the chosen numbers equals S.
If this is the case, one unit potential is sent to the environment by rule
S/S → 1. Hence, the instance of the problem encoded in the system, by
means of the initial potential in neurons σ1, σ2, . . . , σn as well as of the
rules of these neurons (and also of σout , which “knows” the value of
S), has a solution if and only if there is a computation that spikes in
step 4.

Although the system is rather simple, it is nonuniformly constructed;
the instance is encoded in the system. As we see, the subsystems that
consist of neurons σai , σbi , σci , σdi , σei work for nondeterministically choosing
some numbers among v1, v2, . . . , vn. They are independent of the instance
of the problem and necessary for the nondeterministic behavior of the
system.



2640 J. Wang et al.

In the instance of the problem, the numbers v1, v2, . . . , vn and S are all
positive integers. From the solution, it is not difficult to see that the systems
also work for real numbers. This is a new aspect in membrane computing:
dealing with real numbers.

It remains open how to construct WSN P systems that solve Subset Sum

in a uniform way.

8.3 Uniform Solution to SAT. Let us now move on to SAT, one of
the most popular NP-complete problems. The instances of SAT depend
on two parameters: the number of variables n and the number of clauses
m. As a consequence, SAT will be uniformly solved by means of a family
(�(〈n, m〉))n,m∈N of WSN P systems, where 〈n, m〉 is a primitive recursive
and bijective function from N2 to N: 〈n, m〉 = ((m + n)(m + n + 1)/2) + m,
and �(〈n, m〉) solves all the instances composed by m clauses, built using n
variables.

We recall that a clause is a disjunction of literals, occurrences of xi or
¬xi , built on a given set X = {x1, x2, . . . , xn} of Boolean variables. In what
follows, we will require that no repetitions of the same literal may occur in
any clause; in this way, a clause can be seen as a subset of all possible literals.
A truth assignment of the variables x1, x2, . . . , xn is a mapping a : X → {0, 1}
that associates to each variable a truth value. The number of all possible
assignments to the variables of X is 2n. We say that a truth assignment
satisfies the clause C if, after assigning the truth values to all the variables
that occur in C, the evaluation of C (considered as a Boolean formula) gives
1 (true) as a result.

Problem 2

NAME: SAT
INSTANCE: A set C = {C1, C2, . . . , Cm} of clauses, built on a finite set
{x1, x2, . . . , xn} of Boolean variables
QUESTION: Is there a truth assignment of the variables x1, x2, . . . , xn

that satisfies all the clauses in C?

Associated with such an instance, it is customary to consider the proposi-
tional formula γ = C1 ∧ C2 ∧ · · · ∧ CM, with each clause being a disjunction
of literals; this is said to be a propositional formula in the conjunctive normal
form.

In what follows, we show that a family of WSN P systems can be con-
structed in a uniform manner that solves SAT in a number of steps that is
linear with respect to max{n, m}, working nondeterministically, where n is
the number of variables, and m is the number of clauses. The general struc-
ture of such system is given in Figure 10. Several modules appear in this
figure, which will be explained below.

Because the construction is uniform, we need a way to encode a given
instance of SAT . Let us consider a propositional formula in the conjunctive
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normal form, γ = C1 ∧ C2 ∧ · · · ∧ Cm. Clause Cj is encoded as code(C j ) =
00α j,1(−2)α j,2(−2) · · · (−2)α j,n, where

α j,i =
⎧⎨
⎩

0, if xi and ¬xi do not appear in C j

1, if xi appears in C j

2, if ¬xi appears in C j

for i = 1, 2, . . . , n. Actually, we consider m input neurons (one for each
clause), and in each of them, we introduce a sequence of 2n + 2 digits
−2, 0, 1, 2 (with a corresponding potential sent inside at each step), where
00 at the first two positions of the sequence is used as a delay, number
−2 separates each consecutive pair of α j,i and α j,i+1, and numbers 0, 1, 2
describe the situation of each variable x1, x2, . . . , xn in the corresponding
clause.

For instance, for the formula γ = (x1 ∨ x2) ∧ (¬x2 ∨ x3), we have two
input neurons—the first one receiving the potential sequence code(C1) =
001(−2)1(−2)0, and the second one receiving the potential sequence
code(C2) = 001(−2)2(−2)1. In general, it takes 2n + 2 steps to introduce the
input for a formula with n variables.

A module Xi (shown in Figure 11) exists for each variable xi, 1 ≤ i ≤ n,
and a module Yj (shown in Figure 12) is associated with each clause Cj,
1 ≤ j ≤ m. Each module Xi has a synapse going to each module Yj.

These modules nondeterministically produce a truth assignment for the
variables x1, . . . , xn, using the same idea as in the case of Subset Sum : the
nondeterministic choice between rules 2/2 → 1 and 2/1 → 1 in neuron σdi,5 .
If rule 2/2 → 1 is used, neuron σdi,3 will not spike. If rule 2/1 → 1 is used,
then neuron σdi,3 spikes, and this unit potential moves to neuron σ f j,1 in
module Yj along the path σei,1 , . . . , σei,2(i−1) , σ f j,1 .
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In order to synchronize the check performed in neurons σ f j,1 (i.e., to
bring here the truth assignment of variable xi in the moment when the
code describing the possible occurrence of xi in Cj arrives in this neuron),
we put 00 at the beginning of the input sequence and use the delaying
neurons σei,1 , . . . , σei,2(i−1) . No such neurons appear in module X1; two neu-
rons σe2,1 , σe2,2 appear in X2; and in general, 2(i − 1) neurons σei,1 , . . . , σei,2(i−1)

appear in module Xi. In this way, a delay of 2(i − 1) steps is enforced, thus
ensuring the synchronization: at steps 2i + 1, all neurons σ f j,1 receive both
the truth assignment of xi and the code of xi related with Cj.

As one can see from the previous explanations, at steps 3, 5, . . . , 2n + 1,
neurons σ f j,1 , 1 ≤ j ≤ m, receive a number of spikes as follows:

0, if xi = 0 and xi ,¬xi do not appear in Cj

1, if xi = 1 and xi ,¬xi do not appear in Cj

1, if xi = 0 and xi appears in Cj

2, if xi = 1 and xi appears in Cj

2, if xi = 0 and ¬xi appears in Cj

3, if xi = 1 and ¬xi appears in Cj

Thus, the rule in σ f j,1 is enabled and produces one unit potential only
in the case when the clause Cj becomes true for the corresponding truth
assignment of variable xi. This unit potential reaches both the neuron σacc

and the “flooding neurons” σ f j,2 , σ f j,3 . From now on, at each step, neurons
σ f j,2 and σ f j,3 send one unit potential to each other, and neuron σ f j,1 receives
potential 5 from σ f j,2 . In this way, the potential of neuron σ f j,1 keeps more
than 2 and does not spike anymore, which ensures that neuron σacc receives
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at most potential 2 from each module Yj, only if clause Cj has been satisfied.
Consequently, the potential of neuron σacc reaches 2m (at step 2n + 1) only if
the truth assignment produced nondeterministically by modules Xi satisfies
formula γ .

It should be noted that before neuron σ f j,1 spikes, at each step 2i + 1,
neuron σ f j,1 receives at most potential 3. If its potential equals 2, it spikes;
after that moment, it keeps a potential greater than 3 and does not spike
again. If its potential does not equal 2, then receiving potential −2 (corre-
sponding to the digit −2 in the input sequences) at the next step, it returns
to the resting potential 0. So the check performed in neurons σ f j,1 pro-
cesses in the order of x1, x2, . . . , xn (first x1, then x2, and so on), and the
check process corresponding to each variable does not interfere with each
other.

From step 2n + 2 on, we check whether the potential of neuron σacc equals
2m. Suppose that the potential of neuron σacc equals 2l at step 2n + 1. The
unit potential in neuron σa1 arrives in neuron σc1 at step 2n + 1, and neuron
σc1 spikes at step 2n + 2. Neuron σb1 receives one unit potential from neuron
σc1 , and this unit potential moves along the path σb1 , . . . , σbm , σout , arriving in
neuron σout at step 2n + m + 2. At step 2n + 2, neuron σacc receives potential
−1; from step 2n + 2 on, at each step, it receives potential −2 from neuron
σc2 . Hence, neuron σacc has potential 1 at step 2n + l + 1 and spikes at
step 2n + l + 2. Neuron σout receives one unit potential from σbm at step
2n + m + 2 and one unit potential from σacc at step 2n + l + 2. If l 
= m, then
these two unit potentials do not arrive in neuron σout at the same time and
they vanish, and the potential of σout is always less than 2, hence neuron
σout does not spike. If l = m, these two potential units meet in neuron σout

at step 2n + m + 2, and neuron σout spikes at step 2n + m + 3. Therefore, the
system spikes only if the truth assignment produced nondeterministically
by modules Xi satisfies the formula γ .

9 Conclusion

We have introduced a variant of SN P systems with weighted synapses,
where the potentials of neurons are processed by spiking rules, and the
applicability of spiking rules is under the control of given firing thresholds.
WSN P systems are universal if integers are used to represent the values of
these parameters—weights, potentials and thresholds. When natural num-
bers are used for weights, potentials, and thresholds, a characterization of
semilinear sets of natural numbers is obtained.

We also investigated the possibility of using WSN P systems as a frame-
work for solving computationally hard problems. A semiuniform solution
to Subset Sum problem is given, which works in constant time. A uniform
solution to the SAT problem is presented, which is linear with respect to
max{n, m}, where n is the number of variables and m is the number of
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clauses. Note that the systems solving Subset Sum and SAT work in a non-
deterministic way.

Several issues about WSN P systems remain to be clarified. In this work,
noncomputable real numbers are ignored; their effect on the functioning
and the computing power of WSN P systems remains an open question.

The result of a computation is encoded by the number of computation
steps (i.e., time elapsed) between the first two spikes in the spike train pro-
duced by the system. If the result of a computation is associated with the
potential of the output neuron in the halting configuration (in this case,
the system computes real numbers, a rather new concept in membrane
computing), it is of interest to investigate what results can be obtained. In
particular, it deserves to be investigated whether the feature of computing
real numbers is useful for applications of SN P systems in learning and pat-
tern recognition. This suggests a question formulated in other contexts (see,
e.g., Păun, 2007): bring problems and techniques from the neural computing
area to the SN P systems area; we know of no attempt in this respect.

In the definition of WSN P systems and in the proofs, the following fact is
assumed and essentially used: if the potential of a neuron is strictly smaller
than its firing threshold, then it vanishes (it is reset to 0). If this resetting
does not hold but the potential remains as is, in the same way as a potential
greater than the threshold remains unmodified, it is open as to what results
can be obtained. The same question holds for when a neuron fires when its
potential is higher than the threshold, thus getting closer to the situation
in biology. The decaying of potential is an important feature of neurons.
It deserves to investigate WSN P systems with decaying of potential (as
in Freund, Ionescu, & Oswald, 2008): the unused potential, irrespective
of its size, decreases in each step with a specified amount—(one unit, for
instance).

We end with the belief that SN P systems with weights and potentials
deserve further research efforts.
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Martin-Vide, C., Pazos, J., Păun, Gh., & Rodriguez-Patón, A. (2003). Tissue P systems.
Theoretical Computer Sci., 296, 295–326.

Minsky, M. (1967). Computation: Finite and infinite machines. Englewood Cliffs, NJ:
Prentice Hall.
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Păun, Gh., & Pérez-Jiménez, M. J. (2008). Spiking neural P systems. An overview. In
A. B. Porto, A. Pazos, & W. Buno (Eds.), Advancing artificial intelligence through bi-
ological process applications (pp. 60–73). Hershey, PA: Medical Information Science
Reference.
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