
Efficient Markov Chain Monte Carlo Methods for Decoding
Neural Spike Trains

Yashar Ahmadian1, Jonathan W. Pillow2, and Liam Paninski3

Yashar Ahmadian: yashar@stat.columbia.edu; Jonathan W. Pillow: pillow@mail.utexas.edu; Liam Paninski:
liam@stat.columbia.edu
1Department of Statistics, Columbia University

2Departments of Psychology and Neurobiology, University of Texas at Austin

3Department of Statistics and Center for Theoretical Neuroscience, Columbia University

Abstract

Stimulus reconstruction or decoding methods provide an important tool for understanding how

sensory and motor information is represented in neural activity. We discuss Bayesian decoding

methods based on an encoding generalized linear model (GLM) that accurately describes how

stimuli are transformed into the spike trains of a group of neurons. The form of the GLM

likelihood ensures that the posterior distribution over the stimuli that caused an observed set of

spike trains is log-concave so long as the prior is. This allows the maximum a posteriori (MAP)

stimulus estimate to be obtained using efficient optimization algorithms. Unfortunately, the MAP

estimate can have a relatively large average error when the posterior is highly non-Gaussian. Here

we compare several Markov chain Monte Carlo (MCMC) algorithms that allow for the calculation

of general Bayesian estimators involving posterior expectations (conditional on model

parameters). An efficient version of the hybrid Monte Carlo (HMC) algorithm was significantly

superior to other MCMC methods for Gaussian priors. When the prior distribution has sharp edges

and corners, on the other hand, the “hit-and-run” algorithm performed better than other MCMC

methods. Using these algorithms we show that for this latter class of priors the posterior mean

estimate can have a considerably lower average error than MAP, whereas for Gaussian priors the

two estimators have roughly equal efficiency. We also address the application of MCMC methods

for extracting non-marginal properties of the posterior distribution. For example, by using MCMC

to calculate the mutual information between the stimulus and response, we verify the validity of a

computationally efficient Laplace approximation to this quantity for Gaussian priors in a wide

range of model parameters; this makes direct model-based computation of the mutual information

tractable even in the case of large observed neural populations, where methods based on binning

the spike train fail. Finally, we consider the effect of uncertainty in the GLM parameters on the

posterior estimators.

1 Introduction

Understanding the exact nature of the neural code is a central goal of theoretical

neuroscience. Neural decoding provides an important method for comparing the fidelity and

HHS Public Access
Author manuscript
Neural Comput. Author manuscript; available in PMC 2016 February 04.

Published in final edited form as:
Neural Comput. 2011 January ; 23(1): 46–96. doi:10.1162/NECO_a_00059.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

robustness of different codes (Rieke et al., 1997). The decoding problem, in its general form,

is the problem of estimating the relevant stimulus, x, that elicited the observed spike trains,

r, of a population of neurons over a course of time. Neural decoding is also of crucial

importance in the design of neural prosthetic devices (Donoghue, 2002).

A large literature exists on developing and applying different decoding methods to spike

train data, both in single cell and population decoding. Bayesian methods lie at the basis of a

major group of these decoding algorithms (Sanger, 1994; Zhang et al., 1998; Brown et al.,

1998; Maynard et al., 1999; Stanley and Boloori, 2001; Shoham et al., 2005; Barbieri et al.,

2004; Wu et al., 2004; Brockwell et al., 2004; Kelly and Lee, 2004; Karmeier et al., 2005;

Truccolo et al., 2005; Pillow et al., 2010; Jacobs et al., 2006; Yu et al., 2009; Gerwinn et al.,

2009). In such methods the a priori distribution of the sensory signal, p(x), is combined, via

Bayes’ rule, with an encoding model describing the probability, p(r|x), of different spike

trains given the signal, to yield the posterior distribution, p(x|r), that carries all the

information contained in the observed spike train responses about the stimulus. A Bayesian

estimate is one that, given a definite cost function on the amount of error, minimizes the

expected error cost under the posterior distribution. Assuming the prior distribution and the

encoding model are appropriately chosen, the Bayes estimate is thus optimal by

construction. Furthermore, since the Bayesian approach yields a distribution over the

possible stimuli that could lead to the observed response, Bayes estimates naturally come

equipped with measures of their reliability or posterior uncertainty.

In a fully Bayesian approach, one has to be able to evaluate any desired functional of the

high dimensional posterior distribution. Unfortunately, calculating these can be

computationally very expensive. For example, most Bayesian estimates involve integrations

over the (often very high-dimensional) space of possible signals. Accordingly, most work on

Bayesian decoding of spike trains has either focused on cases where the signal is low

dimensional (Sanger, 1994; Maynard et al., 1999; Abbott and Dayan, 1999; Karmeier et al.,

2005) or on situations where the joint distribution, p(x, r), has a certain Markov tree

decomposition, so that computationally efficient recursive techniques may be applied

(Zhang et al., 1998; Brown et al., 1998; Barbieri et al., 2004; Wu et al., 2004; Brockwell et

al., 2004; Kelly and Lee, 2004; Shoham et al., 2005; Eden et al., 2004; Truccolo et al., 2005;

Ergun et al., 2007; Yu et al., 2009; Paninski et al., 2010). The Markov setting is extremely

useful; it lends itself naturally to many problems of interest in neuroscience and has thus

been fruitfully exploited. In particular, this setting is very useful in an important class of

decoding problems where stimulus estimation is performed online, i.e., the stimulus at some

time, t, is estimated conditioned on the observation of the spike trains only up to that time,

as opposed to the entire spike train.

However, some decoding problems can not be formulated in the online estimation

framework. In such cases quantities of interest should naturally be conditioned on the entire

history of the spike train. In this paper, we focus on this latter class of problems (although

many of the methods we discuss can potentially be adopted to the online case as well).

Furthermore, it is awkward to cast many decoding problems of interest in the Markov

setting. A more general method that does not require such tree decomposition properties is

to calculate the maximum a posteriori (MAP) estimate xMAP (Stanley and Boloori, 2001;

Ahmadian et al. Page 2

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jacobs et al., 2006; Gerwinn et al., 2009) – see the companion paper (Pillow et al., 2010) for

further review and discussion. The MAP estimate requires no integration, but only

maximization of the posterior distribution, and can remain computationally tractable even

when the stimulus space is very high-dimensional. This is the case for general log-concave

posterior distributions; many problems in sensory and motor coding fall in this class (it

should be noted, however, that in many cases of interest where this condition is not satisfied,

e.g., when the distributions are inherently multi-modal, posterior maximization can become

highly intractable). The MAP is a good estimator when the posterior is well-approximated

by a Gaussian distribution centered at xMAP (Tierney and Kadane, 1986; Kass et al., 1991).

As the mode and the mean of a Gaussian distribution are identical, in this case the MAP is

approximately equal to the posterior mean as well. This Gaussian approximation is expected

to be sufficiently accurate, e.g., when the prior distribution and the likelihood function (i.e.,

p(r|x) as function of x) are not very far from Gaussian, or when the likelihood is sharply

concentrated around xMAP. However, in cases where the prior distribution has sharp

boundaries and corners and the likelihood function does not constrain the estimate away

from such non-Gaussian regions, the Gaussian approximation can fail, resulting in a large

average error in the MAP estimate. In such cases, one expects the MAP to be inferior to the

posterior mean E(x|r), which is the optimal estimate under squared error loss.

Accordingly, in Sec. 3 of this paper we develop efficient Markov chain Monte Carlo

(MCMC) techniques for sampling from general log-concave posterior distributions, and

compare their performance in situations relevant to our neural decoding setting (for

comprehensive introductions to MCMC methods, including their application in Bayesian

problems, see, e.g., Robert and Casella (2005) and Gelman (2004)). By providing a tool for

approximating averages (integrals) over the exact posterior distribution, p(x|r, θ) (where θ

are the parameters of the encoding forward model, in principle obtained by fitting to

experimental data), these techniques allow us to calculate general Bayesian estimates such

as E(x|r, θ), and provide estimates of their uncertainty. Although, in principle many of the

MCMC methods we discuss in this paper are applicable even to posterior distributions that

are not log-concave, they may lose their efficiency in such cases, and furthermore estimates

based on them may not even converge to true posterior averages. In Sec. 4 we compare the

MAP and the posterior mean stimulus estimates based on the simulated response of a

population of retinal ganglion cells (RGC). In Sec. 5 we discuss the applications of MCMC

for calculating more complicated properties of p(x|r, θ) beyond marginal statistics, such as

the statistics of first-passage times. We also discuss an MCMC-based method known as

“bridge sampling” (Bennett, 1976; Meng and Wong, 1996) that provides a tool for a direct

calculation of the mutual information. Using this technique, we show that for Gaussian

priors the estimates of (Pillow et al., 2010) for this quantity based on the Laplace

approximation are robust and accurate. Finally, in Sec. 6 we discuss the effect of uncertainty

in the parameters of the forward model, θ, on the MAP and posterior mean estimate. We

proceed by first introducing the forward model used to calculate the likelihood p(r|x, θ), in

the next section.

Ahmadian et al. Page 3

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2 The encoding model, the MAP, and the stimulus ensembles

In this section we give an overview of neural encoding models based on generalized linear

models (GLM) (Brillinger, 1988; McCullagh and Nelder, 1989; Paninski, 2004; Truccolo et

al., 2005), and briefly review the treatment of (Pillow et al., 2010) for MAP based decoding.

(Note that much of the material in this section was previously covered in (Pillow et al.,

2010), but we include a brief review here to make this paper self-contained.) A neural

encoding model is a model that assigns a conditional probability to the neural response

given the stimulus. We take the stimulus to be an artificially discretized, possibly multi-

component, function of time, x(t, n), which will be represented as a d-dimensional vector x.1

In response to x, the i-th neuron emits a spike train response

(1)

where ti,α is the time of the α-th spike of the i-th neuron. We represent this function by ri

(we will use bold face symbols for both continuous time and discretized, finite-dimensional

vectors), and the collection of response data of all cells by r.

The response, r, is not fully determined by x, and is subject to trial to trial variations. We

model r as a point process whose instantaneous firing rate is the output of a generalized

linear model (Brillinger, 1988; McCullagh and Nelder, 1989; Paninski, 2004). This class of

models has been extensively discussed in the literature. Briefly, it is a generalization of the

popular Linear-Nonlinear-Poisson model that includes feedback and interaction between

neurons, with parameters that have natural neurophysiological interpretations (Simoncelli et

al., 2004) and has been applied in a wide variety of experimental settings (Brillinger, 1992;

Dayan and Abbott, 2001; Chichilnisky, 2001; Theunissen et al., 2001; Brown et al., 2003;

Paninski et al., 2004; Truccolo et al., 2005; Pillow et al., 2008). The model gives the

conditional (on the stimulus, as well as the history of the observed spike train) instantaneous

firing rate of the i-th observed cell as

(2)

which we write more concisely as

(3)

1The dimension of x is thus d = NT, where T is the number of time steps, and N is the total number of components at each time step.

Ahmadian et al. Page 4

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Here, the linear operators (filters) Ki, and ℋij have causal,2 time translation invariant kernels

ki(t, n) and hij(t) (we note that the causality condition for ki(t, n) is only true for sensory

neurons). The kernel ki(t, n) represents the i-th cell’s linear ‘receptive field’, and hij(t)

describe possible excitatory or inhibitory post-spike effect of the j-th observed neuron on the

i-th. The diagonal components hii describe the post-spike feedback of the neuron to itself,

and can account for refractoriness, adaptation and burstiness depending on their shape (see

(Paninski, 2004) for details). The constant bi is the DC bias of the i-th cell, such that f(bi)

may be considered as the i-th cell’s constant “baseline” firing rate. Finally, f(·) is a

nonlinear, nonnegative, increasing function.3

Given the firing rate, Eq. (3), the forward probability, p(r|x, θ), can be written as (Snyder

and Miller, 1991; Paninski, 2004; Truccolo et al., 2005)

(4)

where θ = {bi, ki, hij} is the set of GLM parameters. The constant term serves to normalize

the probability and does not depend on x or θ. We will restrict ourselves to f(u) that are

convex and log-concave (e.g., this is the case for f(u) = exp(u)). Then the log-likelihood

function L(x, θ) is guaranteed to be a separately concave function of either the stimulus x or

the model parameters,4 irrespective of the observed spike data r. The log-concavity with

respect to the model parameters makes maximum likelihood fitting of this model very easy,

as concave functions on convex parameter spaces have no nonglobal local maxima.

Therefore simple gradient ascent algorithms can be used to find the maximum likelihood

estimate.

The prior distribution describes the statistics of the stimulus in the natural world or that of an

artificial stimulus ensemble used by the experimentalist. In this paper we only consider

priors relevant for the latter case. Given a prior distribution, p(x), and having observed the

spike trains, r, the posterior probability distribution over the stimulus is given by Bayes’

rule

(5)

where

(6)

2That is, the kernels ki(t, n) and hij(t) vanish for t < 0.
3We note that even though the nonlinearity, f(·), has to be an increasing function, with appropriately chosen negative post-spike
feedback filters, hii, the mean firing rate of the GLM modeled neurons will still exhibit saturation as a function of the input strength, x.
4That is, for fixed θ is a concave function of x, and vice versa, but in general not a concave function of (x, θ) jointly.

Ahmadian et al. Page 5

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The MAP estimate is by definition

(7)

(Except for in Sec. 6, in the following sections we will drop θ from the arguments of xMAP

or the distributions, it being understood that they are conditioned on the specific θ obtained

from the experimental fit). As discussed above, for the GLM nonlinearities that we consider,

the likelihood, p(r|x, θ), is log-concave in x. If the prior, p(x), is also log-concave, then the

posterior distribution is log-concave as a function of x, and its maximization (Eq. (7)) can

also be achieved using simple gradient ascent techniques. The class of log-concave prior

distributions is quite large, and it includes exponential, triangular, and general Gaussian

distributions as well as uniform distributions with convex support.5

The MAP is a good, low-error estimate when Laplace’s method provides a good

approximation for the posterior mean, which has the minimum mean square error. This

method is a general asymptotic method for approximating integrals when the integrand

peaks sharply at its global maximum and is exponentially suppressed away from it. In the

Bayesian setting this corresponds to posterior integrals of interest (e.g., posterior averages,

and so-called Bayes factors) receiving their dominant contribution from the vicinity of the

main mode of p(x|r, θ), i.e., xMAP – for a comprehensive review of Laplace’s method in

Bayesian applications see Kass et al. (1991), and books on Bayesian analysis, such as Berger

(1993). In that case, we can Taylor expand the log-posterior to the first non-vanishing order

around xMAP (i.e., the second order, since the derivative vanishes at the maximum),

obtaining the Gaussian approximation (hereinafter also referred to as the Laplace

approximation)

(8)

Here the matrix J is the Hessian of the negative log-posterior at xMAP

(9)

Normally, in the statistical setting the Laplace approximation is formally justified in the

limit of large samples due to the central limit theorem, leading to a likelihood function with

a very sharp peak (in neural decoding the meaning of “large samples” depends, in general,

on the nature of the stimulus – we will discuss this point further in Sec. 4). However, this

approximation often proves adequate even for moderately strong likelihoods, as long as the

posterior is not grossly nonnormal. An obvious case where the approximation fails is for

strongly multimodal distributions where no particular mode dominates. Here, we restrict our

5Let us mention, however, that no first principle dictates that the posterior distribution over a biologically or behaviorally relevant
variable (e.g., an external variable that a part of the brain seeks to estimate) should be log-concave. In fact, distributions which are not
log-concave, such as multi-modal or very fat-tailed distributions, can be highly relevant in biological settings.

Ahmadian et al. Page 6

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

attention to the class of log-concave posteriors which as mentioned above are unimodal. For

this class, and for a smooth enough GLM nonlinearity, f(·), we expect Eq. (8) to hold for

prior distributions that are close to normal, even when the likelihood is not extremely sharp.

However, for flatter priors with sharp boundaries or “corners” we expect it to fail unless the

likelihood is narrowly concentrated away from such non-Gaussian regions.

In this paper, we set out to verify this intuition by studying two extreme cases within the

class of log-concave priors, namely Gaussian and at distributions with convex support, given

by

(10)

and

(11)

respectively.6 Here, is the d × d covariance matrix, and I is the indicator function of a

convex region, , of Rd. In particular, for the white-noise stimuli we consider in Sec. 4, =

c2Id×d in the Gaussian case, and is the d-dimensional cube , in the flat case

(this choice for corresponds to a uniformly distributed white noise stimulus). Here, c is

the standard deviation of the stimulus on a subinterval, and in the case where x(t) is the

normalized light intensity (with the average luminosity removed), it is referred to as the

contrast. We will compare the performance of the MAP and posterior mean estimates in

each case, in Sec. 4. In Sec. 5.2 we will verify the adequacy of this approximation for the

estimation of the mutual information in the case of Gaussian priors.

3 Monte Carlo techniques for Bayesian estimates

For the sake of completeness, we start this section by reviewing the basics of the Markov

chain Monte Carlo (MCMC) method (for comprehensive textbooks on MCMC methods,

see, e.g., Gelman (2004); Robert and Casella (2005)). However, the main point of this

section is the discussion of the applications of this method to the neural case and ways of

making the method more efficient, as well as a comparison of the efficiency of different

MCMC algorithms, in this specific setting. As noted in the introduction, the posterior

distribution, Eq. (5), represents the full information about the stimulus as encoded in the

prior distribution and carried by the observed spike trains, r. However, a much simpler (and

therefore less complete) representation of this information can be provided by a so-called

6White or correlated Gaussian priors are often used in neural applications (e.g., Gaussian stimuli are widely used in
neurophysiological experiments). Flat priors with infinitely sharp boundaries, are less biologically motivated. However, at priors are
the best log-concave approximation to binary priors, which are also quite common in sensory physiology – both as binary white noise
and M-sequences (Pillow et al., 2008; Reid et al., 1997). In this paper, we consider the at prior mainly as a limiting case of concave
log-priors with sharp derivatives when we check the accuracy of the Laplace approximation and compare the efficiency of various
MCMC chains (see Sec. 3.5) in different regimes.

Ahmadian et al. Page 7

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bayesian estimate for the stimulus, possibly accompanied by a corresponding estimate of its

error. A commonly used Bayesian estimate is the posterior mean,

(12)

which is the optimal estimator with respect to average square error. The uncertainty of this

estimator is in turn provided by the posterior covariance matrix. When the posterior

distribution can be reasonably approximated as Gaussian, the posterior mean can be

approximated by its mode, i.e. the MAP estimate, Eq. (7), and the inverse of the log-

posterior Hessian, Eq. (9), can represent its uncertainty. In this paper we adopt the posterior

mean, E(x|r), as a benchmark for comparing the performance of the two estimates, and we

take the deviation of the MAP from the latter as a measure of the validity of the Gaussian

approximation for the posterior distribution.

To calculate the posterior mean Eq. (12), we have to perform a high-dimensional integral

over x. Computationally, this is quite costly. The Monte Carlo method is based on the idea

that if one could generate N i.i.d. samples, xt (t = 1, …, N), from a probability distribution,

π(x),7 then one could approximate integrals involved in expectations such as Eq. (12) by

sample averages. This is because, by the law of large numbers, for any R g(x) (such that ∫|

g(x)|π(x)dx < ∞)

(13)

Also, to decide how many samples are sufficient, we may estimate

(14)

when N is large enough that this variance is sufficiently small, we may stop sampling.

However, it is often quite challenging to sample directly from a complex multi-dimensional

distribution, and the efficiency of methods yielding i.i.d. samples often decreases

exponentially with the number of dimensions.

Fortunately, Eq. (13) (the law of large numbers) still holds if the i.i.d. samples are replaced

by an ergodic Markov chain, xt, whose equilibrium distribution is π(x). This is the idea

behind the Markov chain Monte Carlo (MCMC) method based on the Metropolis-Hastings

(MH) algorithm (Metropolis et al., 1953; Hastings, 1970). In the general form of this

algorithm, the Markov transitions are constructed as follows. Starting at point x, we first

sample a point y from some “proposal” density q(y|x), and then accept this point as the next

point in the chain, with probability

7We are, of course, interested in calculating posterior expectations corresponding to the case π(x) = p(x|r), but as the present
discussion is general, we will use π(x) in the rest of this section for ease of notation.

Ahmadian et al. Page 8

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(15)

If y is rejected, the chain stays at point x, so that the conditional Markov transition

probability, T(y|x), is given by

(16)

where

(17)

is the rejection probability of proposals from x. The reason for accepting the proposals

according to Eq. (15) is that doing so guarantees that π(x) is invariant under the Markov

evolution (see, e.g., Robert and Casella (2005) for details). It is important to note that, from

Eq. (15), to execute this algorithm we only need to know π(x) up to a constant, which is an

advantage because often, particularly in Bayesian settings, normalizing the distribution itself

requires the difficult integration for which we are using MCMC (we will discuss a method

of calculating the normalization constant in Sec. 5.2).

The major drawback of the MCMC method is that the generated samples are dependent and

thus it is harder to estimate how long we need to run the chain to get an accurate estimate,

and in general we may need to run the chain much longer than the i.i.d. case. Thus, we

would like to choose a proposal density, q(y|x), which gives rise to a chain that explores the

support of π(x) (i.e., mixes) quickly, and has a small correlation time (roughly the number of

steps separation to yield i.i.d samples), to reduce the number of steps the chain has to be

iterated and hence the computational time (see Sec. 3.5 and (Gelman, 2004) and (Robert and

Casella, 2005) for further details). In general, a good proposal density q(y|x) should allow

for large jumps with higher probability for falling in regions of larger π(x) (so as to avoid a

high MH rejection rate). A good rule of thumb is for the proposals q(.|x) to resemble the true

density π(.) as well as possible. We review a few useful well-known proposals below, and

explore different ways of boosting their efficiency in the GLM-based neural decoding

setting. We note here, that these algorithms can be applied to general distributions, and do

not require the log-concavity condition for π(x). However, some of the enhancements that

we consider can only be implemented, or are only expected to boost up the performance of

the chain, when the distribution π(x) is log-concave – see the discussion of non-isotropic

proposals in Sec. 3.1 and Sec. 3.2, and that of adaptive rejection sampling in Sec. 3.4.

3.1 Non-isotropic random-walk Metropolis (RWM)

Perhaps the most common proposal is of the random walk type: q(x|y) = q(x − y), for some

fixed density q(.). Centered isotropic Gaussian distributions are a simple choice, leading to

proposals

Ahmadian et al. Page 9

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(18)

where z is Gaussian of zero mean and identity covariance, and σ determines the proposal

jump scale. (In this simple form, the RWM chain was used in a recent study to fit a

hierarchical model of tuning curves of neurons in the primary visual cortex to experimental

data (Cronin et al., 2009).) Of course, different choices of the proposal distribution will

affect the mixing rate of the chain. To increase this rate, it is generally a good idea to align

the axes of q(.) with the target density, if possible, so that the proposal jump scales in

different directions are roughly proportional to the width of π(x) along those directions.

Such proposals will reduce the rejection probability and increase the average jump size by

biasing the chain to jump in more favorable directions. For Gaussian proposals, we can thus

choose the covariance matrix of q(.) to be proportional to the covariance of π(x). Of course,

calculating the latter covariance is often a difficult problem (which the MCMC method is

intended to solve!), but we can exploit the Laplace approximation, Eq. (8), and take the

inverse of the Hessian of the log-posterior at MAP, Eq. (9), as a first approximation for the

covariance. This is equivalent to modifying the proposal rule (18) into

(19)

where A is the Cholesky decomposition of J−1

(20)

and J was defined in Eq. (9). We refer to chains with such jump proposals as non-isotropic

Gaussian RWM. Figure 2 compares the isotropic and nonisotropic proposals. The

modification Eq. (19) is equivalent to running a chain with isotropic proposals Eq. (18), but

for the auxiliary distribution π̃ (x̃) = |A|π(Ax̃) (whose corresponding Laplace approximation

corresponds to a standard Gaussian with identity covariance), and subsequently transforming

the samples, x̃t, by the matrix A to obtain samples xt = Ax̃t from π(x). Implementing non-

isotropic sampling using the transformed distribution π̃ (x̃), instead of modifying the

proposals as in Eq. (19), is more readily extended to chains more complicated than RWM

(see below) and therefore we used this latter method in our simulations using different

chains.

As we will see in the next section, in the flat prior case and for weak stimulus filters or a

small number of identical cells, the Laplace approximation can be poor. In particular, the

Hessian, Eq. (9), does not contain any information about the prior in the flat case, and

therefore the approximate distribution, Eq. (8), can be significantly broader than the extent

of the prior support in some directions. To take advantage of the Laplace approximation in

this case, we regularized the Hessian by adding to it the inverse covariance matrix of the flat

prior, obtaining a matrix that would be the Hessian if the flat prior was replaced by a

Gaussian with the same mean and covariance. Even though the Gaussian with this

regularized Hessian is still not a very good approximation for the posterior, we saw that in

many cases it improved the mixing rate of the chain.

Ahmadian et al. Page 10

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In general, the multiplication of a vector of dimensionality d by a matrix involves (d2), and

the inversion of a d×d matrix involves (d3) basic operations. In the decoding examples we

consider, the dimension of x is most often proportional to the temporal duration of the

stimulus. Thus, naively, the one-time inversion of J and calculation of A takes (T3) basic

operations, where T is the duration of the stimulus, while the multiplication of x by A in

each step of the MCMC algorithm takes (T2) operations. This would make the decoding of

stimuli with even moderate duration forbidding. Fortunately, the quasi-locality of the GLM

model allows us to overcome this limitation. Since the filters Ki in the GLM have a finite

temporal duration, Tk, the Hessian of the GLM log-likelihood Eqs. (4) is banded in time: the

matrix element vanishes when |t1 − t2| ≥

2Tk − 1. The Hessian of the log-posterior Eq. (9) is the sum of the Hessians of the log-prior

and the log-likelihood, which in the Gaussian case is

(21)

where is the prior covariance (see Eq. (10)). Thus, if −1 is also banded, J will be banded

in time as well. As an example, Gaussian autoregressive processes of any finite order form a

large class of priors which have banded C−1. In particular, for white-noise stimuli, C−1 is

diagonal, and therefore J will have the same bandwidth as JLL. Efficient algorithms can find

the Cholesky decomposition of a banded d×d matrix, with bandwidth nb, in a number of

computations , instead of ∝ d3 (for example, the command chol in Matlab uses the

(d) method automatically if J is banded and is encoded as a sparse matrix). Likewise, if B is

a banded matrix with bandwidth nb, the linear equation Bx = y can be solved for x in ∝ nbd

computations. Therefore, to calculate x = Ax̃ from x̃ in each step of the Markov chain, we

proceed as follows. Before starting the chain, we first calculate the Cholesky decomposition

of J, such that J = BTB and x = Ax̃ = B−1x̃. Then, at each step of the MCMC, given x̃t, we

find xt by solving the equation Bxt = x̃t. Since both of these procedures involve a number of

computations that only scale with d (and thus with T), we can perform the whole MCMC

decoding in (T) computational time. This allows us to decode stimuli with durations on the

order of many seconds. Similar methods with (T) computational cost have been used

previously in applications of MCMC to inference and estimation problems involving state-

space models (Shephard and Pitt, 1997; Davis and Rodriguez-Yam, 2005; Jungbacker and

Koopman, 2007), but these had not been generalized to non-state-space models (such as the

GLM model we consider here) where the Hessian has a banded structure nevertheless. For a

review of applications of state-space methods to neural data analysis see Paninski et al.

(2010). That review also elucidates the close relationship between methods based on state-

space models, and methods exploiting the bandedness of the Hessian matrix, as described

here. Exploiting the bandedness of the Hessian matrix in the optimization problem of

finding the MAP was discussed in Pillow et al. (2010).

3.2 Hybrid Monte Carlo and MALA

A more powerful method for constructing rapidly mixing chains is the so-called hybrid or

Hamiltonian Monte Carlo (HMC) method. In a sense, HMC is at the opposite end of the

spectrum with respect to RWM, in that it is designed to suppress the random walk nature of

Ahmadian et al. Page 11

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the chain by exploiting information about the local shape of π(x), via its gradient, to

encourage steps towards regions of higher probability. This method was originally inspired

by the equations of Hamiltonian dynamics for the molecules in a gas (Duane et al., 1987),

but has since been used extensively in Bayesian settings (for its use in sampling from

posteriors based on GLM see Ishwaran (1999); see also Neal (1996) for further applications

and extensions).

This method starts with augmenting the vector x with an auxiliary vector of the same

dimension z. Let us define the “potential energy” as ℰ(x) = −log π(x) up to a constant, and a

“Hamiltonian function” by . Instead of sampling points, {xt}, from

π(x), the HMC method constructs an MH chain that samples points, {(xt, zt)}, from the joint

distribution . But since this distribution is factorized

into the products of its marginals for x and z, the x-part of the obtained samples yield

samples from π(x). On the other hand, sampling from the marginal over z is trivial, since z is

normally distributed. In a generic step of the Markov chain, starting from (xt, zt), the HMC

algorithm performs the following steps to generate (xt+1, zt+1). First, to construct the MH

proposal.

1. Set x0:= xt, and sample z0 from the isotropic Gaussian distribution d(0, 1).

2. Set (x, z) := (x0, z0), and evolve (x, z) according to the equations of Hamiltonian

dynamics8 discretized based on the “leapfrog” method, by repeating the following

steps, L times

•

• x: = x + σz

•

Finally, to implement the MH acceptance step, Eq. (15),

3. with probability min {1, exp (−ΔH)}, where ΔH ≡ H(x, z) − H(x0, z0), accept the

proposal x as xt+1. Otherwise reject it and set xt+1 = xt. (It can be shown that this is

a bonafide Metropolis-Hastings rejection rule, ensuring that the resulting MCMC

chain indeed has the desired equilibrium density (Duane et al., 1987).)

This chain has two parameters, L and σ, which can be chosen to maximize the mixing rate of

the chain while minimizing the number of evaluations of ℰ(x) and its gradient. In practice,

even a small L, requiring fewer gradient evaluations, often yields a rapidly mixing chain,

and therefore in our simulations we used L ∈ {1, …, 5}. The special case of L = 1

corresponds to a chain that has proposals of the form

8The continuous Hamiltonian equations are

(22)

under which the Hamiltonian function is conserved.

Ahmadian et al. Page 12

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(23)

where z is normal with zero mean and identity covariance, and the proposal y is accepted

according to the MH rule Eq. (15). In the limit σ → 0, this chain becomes a continuous

Langevin process with the potential function ℰ(x) = −log π(x), whose stationary distribution

is the Gibbs measure, π(x) = exp(−ℰ(x)), without the Metropolis-Hastings rejection step. For

a finite σ, however, the Metropolis-Hastings acceptance step is necessary to guarantee that

π(x) is the invariant distribution. The chain is thus refered to as the “Metropolis-adjusted

Langevin” algorithm (MALA) (Roberts and Tweedie, 1996).

The scale parameter σ, which also needs to be adjusted for the RWM chain, sets the average

size of the proposal jumps: we must typically choose this scale to be small enough to avoid

jumping wildly into a region of low π(x), and therefore wasting the proposal, since it will be

rejected with high probability. At the same time, we want to make the jumps as large as

possible, on average, in order to improve the mixing time of the algorithm. See (Roberts and

Rosenthal, 2001) and (Gelman, 2004) for some tips on how to find a good balance between

these two competing desiderata for the RWM and MALA chains. For the HMC chains with

L > 1, we chose σ, by trial and error, to obtain an MH acceptance rate of 60%–70%. We

adopted this rule of thumb, based on a qualitative extrapolation of the results of (Roberts and

Rosenthal, 1998) for the special cases of L = 0 and 1 (corresponding to the RWM and

MALA chains, respectively), and their suggestion to tune the acceptance rate in those cases

to ~25% and ~55%, respectively, for optimal mixing (for further discussion see Sec. 3.5; for

a study on tuning the σ parameter for HMC with general L, see, e.g., (Kennedy et al., 1996)).

For highly non-isotropic distributions, the HMC chains can also be enhanced by exploiting

the Laplace approximation (or its regularized version in the uniform prior case, as explained

in the RWM case) by modifying the HMC proposals. Equivalently, as noted after Eq. (20),

we can sample from the auxiliary distribution π̃(x̃) = |A|π (Ax̃) (where A is given in Eq. (20))

using the unmodified HMC chain, described above, and subsequently transforming the

samples by A. As explained in the final paragraph of Sec. 3.1, we can perform this

transformation efficiently in (T) computational time, where T is the stimulus duration.

Another practical advantage of this transformation by A is that the process of finding the

appropriate scale parameter σ simplifies considerably, since π̃(x̃) may be approximated as a

Gaussian distribution with identity covariance irrespective of the scaling of different

dimensions in the original distribution π(x). To our knowledge, this (T) enhancement of the

HMC chain using the Laplace approximation is novel. This chain turned out to be the most

efficient in most of the decoding examples we explored – we will discuss this in more detail

in Sec. 3.5.

It is worth noting that when sampling from high-dimensional distributions with sharp

gradients, the MALA, HMC, and RWM chains have a tendency to be trapped in “corners”

where the log-posterior changes suddenly. This is because when the chain eventually

ventures close to the corner, a jump proposal will very likely fall on the exterior side of the

sharp high-dimensional corner (the probability of jumping to the interior side from the tip of

Ahmadian et al. Page 13

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

a cone decreases exponentially with increasing dimensionality). Thus most proposals will be

rejected, and the chain will effectively stop. As we will see below, the “hit-and-run” chain is

known to have an advantage in escaping from such sharp corners (Lovasz and Vempala,

2004). We will discuss this point further in Sec. 3.4.

3.3 The Gibbs sampler

Gibbs sampling (Geman and Geman, 1984) is an important MCMC scheme. It is particularly

efficient when, despite the complexity of the distribution π(x) = p(x|r, θ), its one-

dimensional conditionals p(xm|x⊥m, r, θ) are easy to sample from. Here, xm is the m-th

component of x, and x⊥m denotes the other components, i.e., the projection of x on the

subspace orthogonal to the m-th axis. The Gibbs update is defined as follows: first choose

the dimension m randomly or in order. Then update x along this dimension, i.e., sample xm

from π(xm|x⊥m) (while leaving the other components fixed). This is equivalent to sampling a

one-dimensional auxiliary variable, s, from

(24)

and setting y = x+sem, where em is the unit vector along the m-th axis (we will discuss how

to sample from this one-dimensional distribution in Sec. 3.4). It is well-known that the

Gibbs rule is indeed a special case of the MH algorithm where the proposals, Eq. (24), is

always accepted. For applications of the Gibbs algorithm for sampling from posterior

distributions involving GLM-like likelihoods see Chan and Ledolter (1995); Gamerman

(1997, 1998); see also Smith et al. (2007) for some related applications in neural data

analysis (discussed further below in section 5.1).

It is important to note that the Gibbs update rule can sometimes fail to lead to an ergodic

chain, i.e., the chain can get “stuck” and not sample from π(x) properly (Robert and Casella,

2005). An extreme case of this is when the conditional distributions pm(xm|x⊥m, r, θ) are

deterministic. then the Gibbs algorithm will never move, clearly breaking the ergodicity of

the chain. More generally, in cases where strong correlations between the components of x
lead to nearly deterministic conditionals, the mixing rate of the Gibbs method can be

extremely low (panel (a) of Fig. 3, shows this phenomenon for a 2-dimensional distribution

with strong correlation between the two components). Thus, it is a good idea to choose the

parameterization of the model carefully before blindly applying the Gibbs algorithm. For

example, we can change the basis, or more systematically, exploit the Laplace

approximation, as described above, to sample from the auxiliary distribution π̃(x̃) instead.

3.4 The hit-and-run algorithm

The hit-and-run algorithm (Boneh and Golan, 1979; Smith, 1980; Lovasz and Vempala,

2004) can be thought of as “random-direction Gibbs”: in each step of the hit-and-run

algorithm, instead of updating x along one of the coordinate axes, we update it along a

random general direction not necessarily parallel to any coordinate axis. More precisely, the

sampler is defined in two steps: first, choose a direction n from some positive density ρ(n)

(with respect to the normalized Lebesgue measure) on the unit sphere nTn = 1. Then, similar

Ahmadian et al. Page 14

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

to Gibbs, sample the new point on the line defined by n and x, with a density proportional to

the underlying distribution. That is sample s from

(25)

and set y = x + sn.9 Even though the hit-and-run chain is well known in the statistics

literature, it has not been used in neural decoding.

The main gain over RWM or HMC is that instead of taking small local steps (of size

proportional to σ, in eq. 18 or 23)), we may take very large jumps in the n direction; the

jump size is set by the underlying distribution itself, not an arbitrary scale, σ, which has to

be tuned by the user to achieve optimal efficiency. there is no jump scale to be set by the

user, and the jump size in a given direction, n, is set by the scale of the “slice” distribution

Eq. (25).

This, together with the fact that all hit-and-run proposals are accepted, makes the chain

better at escaping from sharp high-dimensional corners (see (Lovasz and Vempala, 2004)

and the discussion at the end of Sec. 3.2 above). The advantage over Gibbs is in situations

such as depicted in Fig. 2, where jumps parallel to coordinates lead to small steps but there

are directions that allow long jumps to be made by hit-and-run. The price to pay for these

possibly long nonlocal jumps, however, is that now (as well as in the Gibbs case) we need to

sample from the one-dimensional density , which is in general non-trivial.

Fortunately, as we mentioned above (see the discussion leading to Eqs. (5)–(7) and

following it), in the case of neurons modeled by the GLM, the posterior distribution and thus

all its “slices” are log-concave, and efficient methods such as adaptive rejection sampling

(ARS) (Gilks, 1992; Gilks and Wild, 1992) can be used to sample from the one-dimensional

slice in the hit-and-run step. Let us emphasize, however, that the hit-and-run algorithm, by

itself, does not require the distribution π(x) to be log-concave. Given a method other than

ARS for sampling from the one-dimensional conditional distributions, π(x + sn), hit-and-run

can be applied to general distributions that are not log-concave, as well.

Regarding the direction density, ρ(n), the easiest choice is the isotropic ρ(n) = 1. More

generally it is easy to sample from ellipses, by sampling from the appropriate Gaussian

distribution and normalizing. Thus, again, a reasonable approach is to exploit the Laplace

approximation: we sample n by sampling an auxiliary point x̃ from (0, J−1), where J is the

Hessian, Eq. (9), and setting n = x̃/||x̃|| (see Fig. 2). This prescription is equivalent to

sampling n from the distribution , which is referred to as the

angular central Gaussian distribution in the statistical literature (see e.g., (Tyler, 1987)). This

adds to hit-and-run’s advantage over Gibbs by giving more weight to directions that allow

larger jumps to be made.

9As with the Gibbs case, it can be shown again that this proposal leads to a MH acceptance probability of one. Hence hit-and-run is
also a special case of MH.

Ahmadian et al. Page 15

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3.5 Comparison of different MCMC chains

Above, we pointed out some qualitative reasons behind the strengths and weaknesses of the

different MCMC algorithms, in terms of their mixing rates and computational costs. Here

we give a more quantitative account, and also compare the different methods based on their

performance in the neural decoding setting.

From a practical point of view, the most relevant notion of mixing is how fast the estimate

 of Eq. (13) converges to the true expectation of the quantity of interest, f. As one always

has access to finitely many samples, N, even in the optimal case of i.i.d. samples from π,

has a finite random error, Eq. (14). For the correlated samples of the MCMC chain, and for

large N, the error is larger, and Eq. (14) generalizes to (see (Kipnis and Varadhan, 1986))

(26)

for N ≥ τcorr, independent of the starting point.10 Here, τcorr is the equilibrium

autocorrelation time of the scalar process g(xi), based on the chain xi. It is defined by

(27)

where we refer to γt as the lag-t autocorrelation for g(x). Thus the smaller the τcorr, the more

efficient is the MCMC algorithm, as one can run a shorter chain to achieve a desired

estimated error.

Another measure of mixing speed which has the merit of being more amenable to analytical

treatment is the mean squared jump size of the Markov chain

(28)

this has been termed the first-order efficiency (FOE) by (Roberts and Rosenthal, 1998). Let

us define to be the lag-1 autocorrelation of the m-th component of x, xm. From the

definition Eq. (28), it follows that the weighted average of over all components (with

weights Var[xm]), is given by . Thus maximizing the FOE is roughly

equivalent to minimizing correlations. One analytical result concerning the mixing

performance of different MCMC chains was obtained in (Roberts and Rosenthal, 1998) for

the FOE of RWM and MALA when sampling from the restricted class of product

distributions , and asymptotically large dimension d = dim(x) (often a

relevant limit in neural decoding). Based on their results, the authors also argue that in

general, the jump scales of RWM and MALA proposals may be chosen such that their

10Strictly speaking this independence is only true for Harris recurrent chains, but this is the case in most practical examples (see e.g.,
(Geyer, 1992) and (Tierney, 1991)).

Ahmadian et al. Page 16

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

acceptance rates are roughly 0.25 and 0.55, respectively. For the special case of sampling

from a d dimensional standard Gaussian distribution, π(x) ∝ exp (−||x||2/2), and for

optimally chosen proposal jump scales they show that the FOE of Gaussian MALA and

RWM are asymptotically equal to 1.6d2/3 and 1.33, respectively.

To enable a comparison with hit-and-run, we can calculate its FOE directly. Using y = x +

sn, with s sampled as in Eq. (25), we see that

(29)

Now, from Eq. (25), , and using E (s2|n, x) = E (s|

n, x)2 + Var (s|n, x), we obtain E (s2|n, x) = (n · x)2 + 1. Thus

(30)

(31)

where we used Eπ(xnxm) = δnm for the standard Gaussian distribution d(0, 1), and n · n =

1. Therefore, while hit-and-run has higher FOE than RWM in this case, we see that for

unimodal, nearly Gaussian distributions, MALA will mix much faster (by a factor ∝ d2/3)

than both RWM and hit-and-run in large dimensions. Although we know of no such result

for general HMC chains with higher-order leapfrog steps than the onestep MALA algorithm,

we expect their mixing speed to increase even further for higher leapfrog steps. The

superiority of HMC over the other chains is clearly visible in panel (a) of Fig. 4, which

shows a plot of the estimated autocorrelation function γt for the sampling of the three chains

from the GLM posterior with standard Gaussian priors, and a weak stimulus filter leading to

a weak likelihood. More generally, in our simulations with Gaussian priors and smooth

GLM nonlinearities, HMC (including MALA) had an order of magnitude advantage over the

other chains for most of the relevant parameter ranges. Thus we used this chain in Sec. 5.2

for evaluating the mutual information with Gaussian priors.

The situation can be very different, however, for highly non-Gaussian (but still log-concave)

distributions, such as those with sharp boundaries. In our GLM setting this can be the case

with flat priors on convex sets, Eq. (11), when the likelihood is broad and does not restrict

the posterior support away from the boundaries and corners of the prior support . In this

case, HMC and MALA lose their advantage because they do not take advantage of the

information in the prior distribution, which has zero gradient within its support.

Furthermore, as mentioned in Secs. 3.2 and 3.4, when the convex body has sharp corners,

hit-and-run will have an advantage over both RWM and HMC in avoiding getting trapped in

those corners, which can otherwise considerably slow down the chain in large

dimensionality (see the arguments in (Lovasz and Vempala, 2004)). Finally, we mention that

the MALA or HMC proposals can in principle be inefficient in regions of sharp gradient

changes; for example, in the GLM setting, if the nonlinearity f(.) is very sharp, then the log-

Ahmadian et al. Page 17

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

likelihood might vary much more quickly than quadratic. In such cases the HMC proposal

jumps can be too large, falling in regions where π(x) is very low and leading to high

rejection rates. This can potentially reduce HMC’s advantage significantly even in case that

the prior is Gaussian. However, in our experience, with f(.) = exp(.), this did not occur.

Figure 4, panel (b), shows the estimated autocorrelation function for different chains in

sampling from the posterior distribution in GLM-based decoding with a flat stimulus prior

distribution, Eq. (11), with cubic support.11 For this prior, the correlation time of the hit-

and-run chain was consistently lower than those of the RWM, MALA, and Gibbs (not

shown in the figure) chains, unless the likelihood was sharp and concentrated away from the

boundaries of the prior cube. As we mentioned above (also see the next section), the Laplace

approximation is adequate in this latter case. Thus we see that hit-and-run is the faster chain

when this approximation fails, which is also the case where MCMC is more indispensable.

We thus used the hit-and-run algorithm in our decoding examples for the flat prior case

presented in the next section.

Finally, we note that other methods of diagnosing mixing and convergence, such as the so-

called r-hat (R̂) statistic (Brooks and Gelman, 1998) gave consistent results with those based

on the autocorrelation time, τcorr, presented here.

4 Comparison of MAP and Monte Carlo decoding

In this section we compare Bayesian stimulus decoding using the MAP and the posterior

mean estimates, Eqs. (7) and (12), based on the response of a population of neurons modeled

via the GLM introduced in section 2. We will show that in the flat prior case, Eq. (11), the

MAP estimate, in terms of its mean squared error, is much less efficient than the posterior

mean estimate. We contrast this with the Gaussian prior case, where the Laplace

approximation is accurate in a large range of model parameters, and thus the two estimates

are close. Furthermore, for both kinds of priors, in the limit of strong likelihoods (e.g., due

to a strong stimulus filter or a large number of neurons) the posterior distribution will be

sharply concentrated, the Laplace approximation becomes asymptotically more and more

accurate, and both estimates will eventually converge to the true stimulus (more precisely

the part of the stimulus that is not outside the receptive field of all the neurons; see footnote

13, below).

In the first two examples (Figs. 5–6), the stimulus estimates were computed given the

simulated spike trains of a population of pairs of ON and OFF retinal ganglion cells (RGC),

in response to a spatially uniform, full-field fluctuating light intensity signal. The stimuli

were discretized white-noise with Gaussian and flat distributions (see the paragraph after Eq.

(11)). Spike responses were generated by simulating the GLM point process encoding

model, described by Eqs. (3)–(4), with exponential nonlinearity, f(u) = exp (u). The coupling

between different cells (ℋij of Eq. (3) for i ≠ j) were set equal to zero, but the diagonal

kernels, ℋii, representing the spike history feedback of each cell to itself were closely

matched to those found with fits to macaque ON and OFF RGC’s reported in Pillow et al.

11Although this prior belongs to the class of product densities considered in (Roberts and Rosenthal, 1998), it does not satisfy the
stringent smoothness conditions crucial for the part of their theorem regarding the (fast) mixing of MALA.

Ahmadian et al. Page 18

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(2008), and so were the DC biases, bi; the value of the DC biases were such that the baseline

firing rate, exp (bi), in the absence of stimulus was approximately 7 Hz (see the appendix of

Pillow et al. (2010) for a more detailed description of the fits for stimulus and spike history

filters). However, for demonstration purposes, the stimulus filters, Ki, were set to positive

and negative delta functions (for ON and OFF cells, respectively), resulting in Ki · x being

proportional to the light stimulus, x(t), so that band-pass filtering of the stimulus did not

result in information loss, and convergence of the estimates to the true stimulus could be

observed more easily. For a fixed number of cells, the parameter of relevance here, which

determines the signal to noise ratio of the RGCs’ spike trains, is the strength of the filtered

stimulus input, Ki · x, to the GLM nonlinearity. The magnitude of this input is proportional

to c||k||, where c is the stimulus contrast, and ||k|| is the norm of the receptive field filter

(which we have taken to be the same for all cells in this example). Figure 5 shows the

stimulus, the spike trains, and the two estimates for three different magnitudes of c||k||, based

on the response of one pair of ON and OFF cells. Figure 6 shows the same based on the

response of ten identical pairs of RGCs.

Because the prior distribution here is flat on the 50-dimensional cube centered at the origin,

the Laplace approximation, Eq. (8), will be justified only when the likelihood is sharp and

supported away from the edges of the cube.12 Moreover, since the flat prior is only “felt” on

the boundaries of the cube (the horizontal dashed lines in Figs. 5–6), the MAP will lie in the

interior of the cube only if the likelihood has a maximum there. For filtered stimulus inputs

with small magnitude, c||k||, the log-likelihood, Eqs. (3)–(4), becomes approximately linear

in the components of x. With a flat prior, the almost linear log-posterior will very likely be

maximized only on the boundaries of the cube (since linear functions on convex domains

attain their maxima at the “corners” of the domain). Thus in the absence of a strong,

confining likelihood, the MAP has a tendency to stick to the boundaries, as seen in the first

two columns of Fig. 5; in other words, the MAP falls on a corner of the cube, where the

Laplace approximation is worst and where MALA and RWM are least efficient. We note

that the likelihood will be further weakened in fact, if we replace the delta function stimulus

filters with more realistic filters, as the band-pass filtering will remove the dependence of

the likelihood on the features of the stimulus that were filtered out – c.f. a similar discussion

in our companion paper on MAP decoding (Pillow et al., 2010).

On the other hand, a sharp likelihood confines the posterior away from the boundaries of the

prior support, and solely determines the position of both the MAP and the posterior mean. In

this case the Gaussian approximation for the posterior distribution is valid and the two

estimates will in fact be very close (as the mean and the mode of a Gaussian are one and the

same). This can be seen in the right column of Fig. 5, where the large value of the stimulus

filter has sharpened the likelihood. Also, as is generally true in statistical parameter

estimation, when the number of data points becomes large the likelihood term gets very

sharp, leading to accurate estimates.13 In our case this corresponds to increasing the number

12More precisely, “sharp” here means that the curvature of the log-posterior is large enough so that the Taylor expansion of the log-
posterior involved in the Laplace approximation, Eq. (8), is accurate for deviations from xMAP on a scale determined by the inverse
square root of the smallest eigenvalue of the Hessian matrix, Eq. (9).

Ahmadian et al. Page 19

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

of cells with similar receptive fields, leading to the smaller error bars in Fig. 6 and the more

accurate and closer MAP and mean estimates.

To compare the performance of the two estimates more quantitatively, in Fig. 7, we have

plotted the average squared errors of the two estimates under the full stimulus-response

distribution, p(x, r) (for the same type of stimulus and cell pair as in the Fig. 5 simulations),

as function of the magnitude of the filtered stimulus input, c||k||. This was done by

generating 5 samples of the stimulus in each case, and then simulating the GLM to generate

the spike train response of the pair of ON and OFF cells to each stimulus, leading to sample

pairs (xi, ri) for i = 1, · · ·, 5. For each of the responses, ri, the MAP and MCMC mean were

computed based on the posteriors p(x|ri). The average (over p(x, r)) square error, 〈||x̂(r) −

x||2〉, was then approximated by its sample mean, . The left and right

panels in Fig. 7 show plots of the squared error per dimension, for MAP and mean estimates,

as a function of the stimulus filter strength for the case of the flat and Gassian white-noise

stimulus ensembles, respectively. As is evident from the plots, in the former ensemble, the

MAP is inferior to the mean, due to its higher mean squared error, unless the filter strength

is large. For the Gaussian ensemble, the plot shows that the error of the MAP and posterior

mean estimates are very close, throughout the range of stimulus filter strength. Thus, due to

its much lower computational cost, the MAP-based decoding method of (Pillow et al., 2010)

is superior for this prior. Let us mention that the magnitude of the filtered stimulus, c||k||, in

the experimental data reported in Pillow et al. (2008) (which is also the basis of the final

example in this section – see Fig. 8) was in the range 3 ± 1, depending on the cell; smaller

values of c||k|| can be achieved experimentally by lowering the contrast of the visual

stimulus as needed. Thus the values of this parameter used in Fig. 7, as well as in Figs. 5–6,

are on the same order of magnitude as those used in that experiment, and cover a range of

values that is experimentally and biologically relevant.

Finally, we compared the MAP and posterior mean estimates in decoding of experimentally

recorded spike trains. The spike trains were recorded from a group of 11 ON and 16 OFF

RGCs (whose receptive fields fully cover a patch of the visual field) in response to the light

signal of the optically reduced image of a cathode ray display which refreshes at 120 Hz,

and is projected on the retina (Litke et al., 2004; Shlens et al., 2006). The stimlulus, x, in this

case, is a spatiotemporally fluctuating binary white-noise, with x(t, n) representing the

contrast of the pixel n at time t. In Pillow et al. (2008), 20 minutes of this data were used to

fit the GLM model parameters including cross-couplings, hij, to these cells – see that

reference for details about the recording and the fitting method, and a full description of the

fit GLM parameters. Here, we took a 500 ms portion of the recorded spike trains of 6

neighboring RGCs (3 ON and 3 OFF), and using the fit GLM parameters for them, decoded

the filtered inputs,

13This is obviously not the case, however, for parameter directions along which the data is non-informative, and the likelihood
function does not vary much. In the RGC case, these correspond to stimulus features (directions in the stimulus space) that fall
orthogonal to the cells’ spatiotemporal filters Ki.

Ahmadian et al. Page 20

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(32)

to these cells using the MAP and posterior mean (calculated using an HMC chain). The

inputs are a priori correlated due to the overlaps between the cell’s receptive fields, and the

covariance matrix of the yi is given by , where x = c21 is the covariance of

the white-noise visual stimulus. More explicitly

(33)

Notice that with the experimentally fit ki, which have a finite temporal duration Tk, the

covariance matrix, y is banded: it vanishes when |t1 − t2| ≥ 2Tk − 1. Since x is binary, yi is

not a Gaussian vector. However, because the filters Ki(t, n) have a relatively large

spatiotemporal dimension, yi(t) are weighted sums of many independent identically

distributed binary random variables, and their prior marginal distributions can be well

approximated by Gaussian distributions. For this reason, and because the likelihood was

relatively strong for this data (and hence the dependence on the prior relatively weak), we

replaced the true (highly non-Gaussian) joint prior distribution of yi with a Gaussian

distribution with zero mean and covariance Eq. (33). This allowed us to implement the

efficient non-isotropic HMC chain, described above, so that its computational cost scales

only linearly with the stimulus duration T, allowing us to decode very long stimuli.

However, in this case the details of the procedure explained in the final paragraph of Sec.

3.1 have to be modified as follows. The Hessian for y is given by

(34)

where the Hessian of the negative log-likelihood term, , is now diagonal, because yi(t)

affects the conditional firing rate instantaneously (see Eq. (3)). Let , similar to Eq.

(20). The non-isotropic chain requires the calculation of Aỹ for some vector ỹ at each step

of the MCMC. In order to carry this out in (T) computational time, we proceed as follows.

First we calculate the Cholesky decomposition, L, of y, satisfying LLT = y. As mentioned

in Sec. 3.1, since y is banded this can be performed in (T) operations. Then we can

rewrite Eq. (34) as

(35)

Since L is banded (due to the bandedness of y) and is diagonal, it follows that Q is also

banded. Therefore its Cholesky decomposition, B, satisfying BTB = Q, can be calculated in

(T) time, and is also banded. Using this definition and inverting Eq. (35), we obtain

, from which we deduce A = LB−1, or

Ahmadian et al. Page 21

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(36)

The calculation of L and B can be performed before running the HMC chain. Then at each

step we need to perform Eq. (36). As described in the final paragraph of Sec. 3.1, calculating

B−1ỹ and the multiplication of the resulting vector by L, both require only (T) elementary

operations due to the bandedness of B and L.

Figure 8 shows the spike trains, as well as the corresponding true inputs and MAP and

posterior mean estimates. The closeness of the posterior mean to the MAP (the L2 norm of

their difference is only about 9% of the L2 norm of the MAP) is an indication of the

accuracy of the Laplace approximation in this case.

5 Other applications: estimation of non-marginal quantitites

So far we focused on using the MCMC samples to estimate E(x|r) or the posterior

covariance. Both of these quantities involve separate averaging over the marginal

distribution of single components or pairs of components of x. However, since MCMC

provides samples from the joint distribution p(x|r), we can also calculate quantities that

cannot be reduced to averages over one or two dimensional marginal distributions, and

involve the whole joint distribution p(x|r). We consider two examples below.

5.1 Posterior statistics of crossing times

One important example of these non-marginal computations involves the statistics (e.g.,

mean and variance) of some crossing time for the time series x, e.g., the time that xt first

crosses some threshold value. (First-passage time computations are especially important, for

example, in the context of integrate-and-fire-based neural encoding models Paninski et al.

(2008).) In Smith et al. (2004), the authors proposed a hidden state-space model that

provides a dynamical description for the learning process of an animal in a task learning

experiment (with binary responses), and yields suitable statistical indicators for establishing

the occurrence of learning or determining the “learning trial.” In the proposed model, the

state variable, xt, evolves according to a Gaussian random walk from trial to trial (labeled by

t), and the probability of a correct response on every trial, qt, is given by a logistic function

of the corresponding state variable, xt. Given the observation of the responses in all trials,

the hidden state variable trajectory can be inferred. In Smith et al. (2007), the authors carried

out this inference in Bayesian fashion by using Gibbs sampling from the posterior

distribution over the state variable time-series and the model parameters conditioned on the

observed responses. There, the learning trial was defined as the first trial after which the

ideal (Bayesian) observer can state with 95% confidence that the animal will perform better

than chance. More mathematically, using the MCMC samples (using the winBUGS

package), they obtained the sequence of the lower 95% confidence bounds for qt for all t’s

(for each t, this bound depends only on the one-dimensional marginal distribution of qt). The

authors defined the learning trial as the t for which the value of this lower confidence bound

crosses the probability value corresponding to chance performance, and stays above it in all

the following trials.

Ahmadian et al. Page 22

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

However, it is reasonable to consider several alternative definitions of the “learning trial” in

this setting. One plausible approach is to define the learning trial, tL, in terms of certain

passage times of qt, e.g., the trial in which qt first exceeds the chance level and does not

become smaller than this value at later trials. In this definition, tL is a random variable

whose value is not known by the ideal observer with certainty, and its statistics is

determined by the full joint posterior distribution and can not be obtained from its marginals.

The posterior mean of tL provides an estimate for this quantity, and its posterior variance, an

estimate of its uncertainty. These quantities involve nonlinear expectations over the full joint

posterior distribution of {xt}, and can be estimated by the MCMC samples from that

distribution.

Figure 9 shows a simulated example in which we used our MCMC methods to decode the

crossing times of the input to a Poisson neuron, based on the observation of its spike train.

The neuron’s rate was given by λ(t) = exp(xt + b) and the threshold corresponded to a value

xt = x0. The hidden process xt was assumed to evolve according to a Gaussian AR(1)

process, as in Smith et al. (2007). Having observed a spike train, samples from the posterior

distribution of xt were obtained by an HMC chain. To estimate the first and the last times

that xt crosses x0 from below, we calculate these times for each MCMC sample, obtaining

samples from the posterior distribution of these times. Then we calculate their sample mean

to estimate when learning occurs. Fig. 9 shows the full histograms of these passage times,

emphasizing that these statistics are not fully determined by a single observation of the spike

train.

As a side note, to obtain a comparison between the performance of the Gibbs-based

winBUGS package employed in Smith et al. (2007) versus the HMC chain used here, we

simulated a Gibbs chain for y(t) on the same posterior distribution. The estimated correlation

time of the Gibbs chain was ≈ 130 — i.e., Gibbs mixes a hundred times slower than the

HMC chain here, due to the nonnegligible temporal correlations in xt (Fig. 9); recall Fig. 3.

In addition, due to the state-space nature of the prior on xt here, the Hessian of the log-

posterior on x is tridiagonal, and therefore the HMC update requires just (T) time, just like

a full Gibbs sweep.

5.2 Mutual Information

Our second example is the calculation of the mutual information. Estimates of information

transfer rates of neural systems, and the mutual information between the stimulus and

response of some neural population, are essential in the study of the neural encoding and

decoding problems (Bialek et al., 1991; Warland et al., 1997; Barbieri et al., 2004).

Estimating this quantity is known to be often computationally quite difficult, particularly for

high-dimensional stimuli and responses (Paninski, 2003). In (Pillow et al., 2010), the authors

presented an easy and efficient method for calculating the mutual information for neurons

modeled by the GLM, Eqs. (3)–(4), based on the Laplace approximation Eq. (8). As

discussed above, this approximation is expected to hold in the case of Gaussian priors, in a

broad region of the GLM parameter space. Our goal here is to verify this intuition, by

comparing the Laplace approximation for the mutual information with an exact direct

estimation using MCMC integration. As we will see, the main difficulty in using MCMC to

Ahmadian et al. Page 23

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

estimate the mutual information lies in the fact that we can only calculate p(x|r) up to an

unknown normalization constant. Estimating this unknown constant turns out to be tricky, in

that naive methods for calculating it lead to large sampling errors. Below, we use an

efficient, low error method, known as bridge sampling, for estimating this constant.

The mutual information is by definition equal to the average reduction in the uncertainty

regarding the stimulus (i.e., the entropy, H, of the distribution over the stimulus) of an ideal

observer having access to the spike trains of the RGC, from its prior state of knowledge

about the stimulus:

(37)

Here, p(r) is given by Eq. (6), and the posterior probability p(x|r) is given by Bayes’ rule Eq.

(5). The logarithms are assumed to be in base 2, so that information is measured in bits. We

consider Gaussian priors given by Eq. (10), for which we can compute the entropy H[x]

explicitly,

(38)

Thus the real problem is to evaluate the second term in Eq. (37). The integral involved in the

definition of H[x|r] is in general hard to evaluate. One approach which is computationally

very fast, is to use the Laplace approximation, Eq. (8), if it is justified – we took this

approach in Pillow et al. (2010). In that case, from Eq. (8), we obtain

(39)

where J(r) is the Hessian Eq. (9).

More generally, we can use the MCMC method developed in Sec. 3 to estimate H[x|r]

directly. The integral involved in H[x|r], Eq. (37), (before averaging over p(r)) has the form

(40)

i.e., one representing the posterior expectation of a function g(x). If we could evaluate g(x)

for arbitrary x, we could evaluate this expectation by the MCMC method, via Eq. (13). As

we mentioned above, however, the difficulty lies in that in general we can only evaluate an

unnormalized version of the posterior distribution, and thus g(x) = −log p(x|r), only up to an

additive constant. Suppose we can evaluate

(41)

Ahmadian et al. Page 24

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

for some Z(r) at any arbitrary x. Then H[x|r] can be rewritten as

(42)

From the normalization condition for p(x|r), Z(r) is given by

(43)

The main difficulty in calculating the mutual information lies in estimating Z(r); for a

discussion of the difficulties involved in estimating normalization constants and marginal

probabilities, see Meng and Wong (1996), the discussion of the paper by Newton and

Raftery (1994), and Neal (2008). By contrast, the first term in Eq. (42) already has the form

Eq. (40) (with q(x|r) replacing g(x)) and can be estimated using Eq. (13). In the following

we introduce an efficient method for estimating Z(r) and I(r).

As noted above, if in Eqs. (42)–(43), we replace q(x|r) with the Laplace approximation

(44)

we obtain the result Eq. (39), as a first approximation to the mutual information. Here we

defined

(45)

and from the normalization condition for pL(x|r) we must have

(46)

We included the constant ℒ0 in the exponent in Eq. (44) so that when the Laplace

approximation is accurate we have log qL(x|r) ≈ log q(x|r), and log Z(r) ≈ log ZL(r).

We now write the exact mutual information as I[x; r] = 〈I(r)〉p(r), and write I(r) ≡ H[x] −

H[x|r] as the Laplace approximation for it plus a difference

(47)

where

(48)

Using the general formula (42) both for the true distribution, Eq. (41), and its Gaussian

approximation, Eq. (44), we obtain

Ahmadian et al. Page 25

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(49)

with η ≡ Z(r)/ZL(r). Thus, after averaging over p(r), δI(r), calculated using Eq. (49), gives

the correction to the Laplace approximation to the mutual information, Eq. (39). When the

Laplace approximation is justified, this correction will be small (even before averaging over

p(r)). Also, note that in that case η ≈ 1, and the last term in Eq. (49) is small on its own.

The second term in Eq. (49) is readily evaluated:

(50)

and the first term can be evaluated using the MCMC, via Eq. (13). To evaluate the third

term, we use the following trick. For any well-behaved function α(x), we have

(51)

Using this formula we can estimate η by estimating the numerator and denominator on the

right hand side according to Eq. (13) with samples drawn from p(x|r) and pL (x|r),

respectively, e.g., by MCMC. However, as we only have access to finitely many samples

from each distribution care must be taken in the choice of the function α to avoid large

estimation errors. For example, if the support of p(x|r) and pL(x|r) have a small overlap, α(x)

has to be chosen such that it amplifies the contribution from the region of overlap of the two

distributions, thus acting like a bridge connecting the two supports. Otherwise (e.g., if α(x)

is a constant), both the numerator and denominators in Eq. (51) can be very small in such a

case, leading to an almost indeterminate ratio with large random error.14 A method of

evaluating η using Eq. (51) by employing an optimal α (x), was originally developed by

(Bennett, 1976) and was further refined by (Meng and Wong, 1996), and is referred to as

“bridge sampling” for the above reason. These authors have shown that the asymptotically

optimal (for large number of samples from each distribution) choice of α(x) is

(52)

where si = Ni/(N1 + N2) (i = 1, 2), and N1,2 are the number of samples drawn from p(x|r) and

pL(x|r), respectively. As this choice for α(x) itself depends on η, it suggests an iterative

solution, namely

14For a similar reason a “brute force” method for computing Z, such as a simple Monte Carlo integration of the high-dimensional
distribution q(x|r), gives rise to an estimate with slow convergence and a large error (Meng and Wong, 1996).

Ahmadian et al. Page 26

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(53)

where xij (i = 1, 2) are samples drawn from p(x|r) and pL(x|r) respectively, and lij ≡ q(xij|

r)/qL(xij|r). Since we expect Z ≈ ZL, we take η̂(0) = 1. In our calculations, we stopped the

bridge sampling iterations when , where d is the stimulus dimension.

Figure 10 shows a plot of IL and δI per stimulus dimension, calculated as described above,15

as a function of the standard deviation of the filtered stimulus input (which, for the white

noise stimulus, is the contrast, c, times the magnitude of ki(t)). It is seen that IL grows as c||

ki|| grows, but δI does not change significantly, and remains small. Thus the Laplace

approximation for the mutual information is very accurate for moderately large c||ki||.

Furthermore, for vanishing c||ki||, the posterior is equal to the Gaussian prior in this case, and

this approximation is exact. Therefore the error δI has a maximum at a finite value of the

stimulus filter, away from which the Laplace approximation is accurate. For comparison

with our real spike data example presented in Sec. 4 and Fig. 8, we note that in that case the

standard deviation of the filtered stimulus to different cells was in the range c||k|| ~ 3 ± 1,

depending on the cell, and the Laplace approximation did indeed provide an accurate

approximation for the mutual information, with δI/IL = 0.09.

6 Effect of uncertainty in the model parameters

In the previous sections we assumed the values of the parameters involved in the GLM

likelihood, Eqs. (3)–(4), were known exactly. Of course, in reality these parameters

themselves are obtained by fitting the GLM to experimental data, and are thus only known

with a finite accuracy. In this section we investigate the effect of uncertainty in the GLM

parameters θ (see Sec. 2), on the posterior mean estimate for the stimulus. We represent this

uncertainty by a probability distribution, p(θ). In the presence of parameter uncertainty, the

posterior mean of the stimulus, x, is modified to

(54)

(in this section, unlike in sections 3–5, we write θ explicitly when a distribution is

conditioned on it – when there is no θ in the argument of the distribution, it means it has

been marginalized). We assume the uncertainty in the parameters is small enough that a

Laplace approximation for p(θ) applies, i.e., it can be taken to be Gaussian with mean θML,

and a small covariance I−1(θML). Here, θML is the maximum likelihood fit to data, and

I−1(θML) is the Hessian of the negative log-likelihood (as a function of GLM parameters,

given the experimental data) at θML. For simplicity we assume the GLM nonlinearity (see

15In principle, according to Eqs. (37)–(39), one has to average IL(r) and δI(r) over the marginal response distribution p(r). But due to
the intensive nature of IL(r)/d and δI(r)/d, and the large d, they depended on the specific realization of r only weakly, and were to a
good degree self-averaging, so that averaging over p(r) would not considerably alter the plot of Fig. 10. A similar argument appeared
in Strong et al. (1998).

Ahmadian et al. Page 27

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Eq. (3)) is exponential: f(u) = exp (u). We also assume that the prior stimulus ensemble is

Gaussian, with probability distribution described by Eq. (10).

We would like to understand how the uncertainty in θ will affect the posterior estimate. This

uncertainty broadens the likelihood (as a function of x) and therefore, we expect that as it

increases the posterior estimate E(x|r) will move towards the prior mean (in our case zero).

Intuitively, this is because as the Bayesian decoder’s knowledge of the encoding mechanism

(represented by the parameters θ) decreases, it discounts the information that the observed

spike train, r, carries about the stimulus and instead relies more strongly on its prior

information. To verify this intuition analytically, we consider the case where E(x|r, θ) ≈

xMAP (r, θ) (e.g., as we saw in the last section, the Laplace approximation is often quite

adequate in the case of Gaussian priors, and this approximation therefore holds in that case).

Assuming this, we can replace E(x|r, θ) with xMAP(r, θ) in Eq. (6), and obtain

(55)

In the following we will drop r from the arguments of xMAP when it is understood. We will

denote the average over p(θ) in Eq. (55) by 〈xMAP〉θ.

Using the Bayes rule in the form log p(x|r) = log p(x) + log p(r|x) + const., with Eq. (10),

and Eqs. (3)-(4) with exponential nonlinearity, we obtain

(56)

up to an additive constant. Here, is the covariance of the Gaussian prior, Eq. (10), and θ =

{bi, Ki, ℋij} are the GLM parameters introduced in Sec. 2. The MAP satisfies

(57)

which yields the equation

(58)

When the contrast or the stimulus filter are small (corresponding to the regime of low signal

to noise ratio), the exponential can be expanded to first order in xMAP (θ), yielding the linear

equation (a similar expansion also appeared in (Pillow et al., 2010))

(59)

where we defined

Ahmadian et al. Page 28

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(60)

(61)

and

(62)

(63)

Notice that (θ) is the Hessian of the negative log-posterior Eq. (56) at x = 0. Assuming the

matrix (θ) is invertible,16 we then obtain

(64)

We write θ = θML + δθ, where δθ has zero mean, and expand Eq. (64) in δθ up to second

order, to obtain

(65)

where

(66)

and

(67)

(68)

such that is homogeneously of order n in δθ. Here, we defined 0 ≡ (θML), ℬ0 ≡

ℬ (θML), and d and dℬ (d2 and d2ℬ) are the random first (second) order variations of

(θ) and ℬ(θ) in δθ. The first order variations, d and dℬ, are thus Gaussian with zero

mean and a covariance determined by the covariance of θ. After averaging over θ, will

vanish, and we have

16This is true, at least when when Si are not too large.

Ahmadian et al. Page 29

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(69)

To gain some intuition, we now set out to evaluate in the regime of small baseline

firing rates, so that are small, and we also assume we can neglect the

uncertainty of the baseline firing rates and the post-spike feedback filters (i.e., we set δbi =

δℋij = 0). In this case, d2ℬ = 0, and ignoring terms beyond the leading order in , we take

, and obtain

(70)

(71)

Here, we denoted the maximum likelihood fit for the stimulus filters by K̄
i, and in deriving

the second line, we used , and

, and in the last line we assumed the stimulus is white, i.e., ∝ 1.

Equation (6) is not very enlightening, so we look at the special case where δKi = αK̄
i, and α

is a noisy Gaussian scalar with zero mean (this arises for example in the case of delta

function kernels, as in the example of the last section – or more generally when only the

over all scale of Ki is uncertain). Replacing for δKi, and using Eq. (66) with

to write , for this case we obtain

(72)

Therefore, to the first non-vanishing order, the change in the L2 norm of the estimate is

(73)

where the inequality followed from the fact that , and therefore are

positive definite operators. Thus we see that, at least in the special regime that we

considered, parameter uncertainty will shrink the norm of the posterior mean estimate

sending it towards the prior mean at the origin. This result is in agreement with the intuition

stated above, and was further corroborated by our numerical results in more general

parameter regimes.

Ahmadian et al. Page 30

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 11 shows a numerical plot of the norm of the posterior estimate as a function of the

size of the uncertainty in Ki. Here, δKi was not constrained to be proportional to K̄
i.

However, again, as uncertainty in model parameters increases, leading to broadening of the

likelihood, the posterior mean moves towards the prior mean.

7 Discussion

Markov chain Monte Carlo allows for the calculation of general, fully Bayesian posterior

estimates. The main goal of this paper was to survey the performance of a number of

efficient MCMC algorithms in the context of model-based neural decoding of spike trains.

Using these methods, we also verified and extended the results of (Pillow et al., 2010) on

MAP based decoding and information estimation via Laplace approximation, in GLM based

neural decoding problems. Although MCMC integration is more general in this sense, it is at

the same time significantly more computationally expensive than the optimization

algorithms used to find the MAP. As we explained in Sec. 2, the MAP is in general a good

estimator when the Laplace approximation is accurate. The MAP also comes with natural

error bars estimated through the Hessian matrix of the log-posterior at MAP, Eq. (9).

Furthermore, when it is valid, this approximation provides a very efficient way of estimating

the mutual information through Eq. (39). Thus it is important to have a clear knowledge of

when this approximation holds, since when it does, it can be exploited to dramatically

reduce the computational cost of stimulus decoding or information estimation.

In Sec. 3, we introduced the RWM, HMC, Gibbs, and hit-and-run Markov chains, all special

cases of the Metropolis-Hastings algorithm. Although these methods allow for sampling

from general posterior distributions, regardless of the forward model, we also took

advantage of the specific properties of the distributions involved in our GLM-based

decoding to increase the efficiency of these chains. The ARS algorithm, which exploits the

log-concavity property of the GLM likelihood and the prior distribution, was used to

significantly reduce the computational cost of the one-dimensional sampling in each hit-and-

run step. We took advantage of the Laplace approximation (or a regularized version of it in

the at prior case), to shape the proposal distributions to roughly match the covariance

structure of the underlying distribution. Furthermore, we were able to carry this out in (T)

computational time (i.e., scaling only linearly with the stimulus duration, T), by exploiting

the bandedness of the log-posterior Hessian in these settings. To the best of our knowledge,

the use of (T), Laplace-enhanced HMC in neural applications is novel. Similarly, even

though the hit-and-run algorithm is well-known in the statistics literature, we are unaware of

any previous application of it in the context of high-dimensional neural decoding.

We mention that these chains with (T), Laplace-based enhancement can also be

implemented in decoding posterior distributions based on state-space models with

Markovian structure; an example of such an application was presented in Fig. 9, based on

the state-space model used in Smith et al. (2007). However, in cases where the posterior

distribution turns out to be non-concave, obtaining the Laplace approximation may be

unfeasible or it may not improve the chain’s mixing. Even though MCMC without this

enhancement is still applicable in such cases, other methods such as sequential Monte Carlo

(“particle-filtering”) (Doucet et al., 2001; Brockwell et al., 2004; Kelly and Lee, 2004;

Ahmadian et al. Page 31

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Godsill et al., 2004; Shoham et al., 2005; Ergun et al., 2007; Vogelstein et al., 2008; Huys

and Paninski, 2009) which are solely applicable in models with Markovian structure may

prove to be more efficient.

It is worth noting a connection between this (T) non-isotropic MCMC sampling and the

Bayesian adaptive regression splines (BARS) method (DiMatteo et al., 2001; Wallstrom et

al., 2007), which has become a popular tool in neursocientific applications. The BARS

algorithm is a powerful non-parametric regression method designed to infer the shape of a

smooth underlying curve that has produced noisy observations. This method assumes the

curve can be approximated by a spline, and outputs samples from the posterior distribution

of the spline knots and coefficients. Specifically, in the case of neural spike trains, it is

assumed that the observed spikes, r(t), are produced by an inhomogeneous Poisson process

with a rate λ(t) = exp (B(t)Tβ) where Bi(t) is a cubic B-spline basis, and βi are the spline

coefficients. Here, i runs from 1 to k + 2, where k is the number of spline knots with

positions τi; the spline basis functions, Bi(t), implicitly depend on k and τi. Conditioned on

fixed τi and k, the prior distribution of the spline coefficients β is taken to be Gaussian with

zero mean and inverse covariance (a unit information prior). Thus

conditioned on fixed spline knots, the BARS model involves Poisson observations from a

Gaussian latent variable β; this is directly analogous to our GLM model with Gaussian

stimuli, x, with β and B(t) replacing x and K in the analogy, respectively. In particular,

sampling from the posterior distribution of the a priori Gaussian β (given τi and k) is very

similar to sampling from the posterior over the Gaussian stimulus, x, in our examples in this

paper. Furthermore, to obtain conditional samples of β, the BARS code uses an RWM chain

(Wallstrom et al., 2007), which as in Eq. (19)–(20), employs the Hessian at the MAP point

for the spline coefficients to produce non-isotropic proposals. Using the form of the prior

covariance, mentioned above, and the standard likelihood expression for a Poisson process,

the Hessian of the negative log-posterior for β (given r(t), τi and k) is given by

(74)

where the first term is the inverse prior covariance, and a is some positive constant. Since,

by definition, Bi(t) is non-zero only when t ∈ [τi, τi+4], we see that Hij vanishes when |i − j|

> 3, and hence, is banded. Again, the bandedness of the Hessian is exploited (Wallstrom et

al., 2007) to obtain the RWM proposals in (T) computational time, by the method

described after Eq. (21). We note that the BARS package could potentially be improved by

using a faster-mixing chain such as HMC, which can out-perform RWM by orders of

magnitude (Fig. 4).

We compared the mixing rates of the mentioned MCMC chains, in sampling from the

posterior stimulus distributions for GLM modeled neurons. In this setting, when the

posterior is smooth throughout its support, the HMC algorithm outperforms the other chains

by an order of magnitude. On the other hand, when sampling from posteriors based on at

priors with sharp corners, the hit-and-run chain mixed consistently faster than the others.

Ahmadian et al. Page 32

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In Sec. 4, we compared the performance of the MAP and the posterior mean, calculated

using MCMC, in different settings. In one example, we decoded simulated spike trains

(generated in response to Gaussian and flat white-noise stimuli), in a range of stimulus input

strengths and for different numbers of identical cells. We also decoded the filtered stimulus

input into six retinal ganglion cells, based on their experimentally recorded spike trains. The

average squared error of the MAP and mean estimates were in general quite close in the case

of Gaussian stimuli, justifying MAP decoding in this case. In the flat prior case, however,

the posterior mean can often have a much smaller average squared error than the MAP.

In Sec. 5, we applied MCMC to the problem of estimating properties of the joint distribution

p(x|r) which cannot be obtained form its low dimensional marginals. In particular, we

investigated the reliability of the Laplace approximation for the mutual information between

the stimulus and spike trains (model-based calculations of the mutual information with

Gaussian priors have been previously presented in Barbieri et al. (2004)). We found that the

Laplace approximation for the mutual information was adequate in the case of Gaussian

priors, except in a small range of moderate stimulus input strengths.

In the last section we dealt with the effect of uncertainty in GLM parameters (e.g., based on

fits to experimental data) on the decoding. Intuitively, it is expected that when the forward

model parameters become uncertain, information coming from the spike train and hence the

likelihood becomes less reliable, and therefore the estimate will rely more heavily on the

prior information. Thus the posterior mean is expected to revert towards the prior mean as

parameter uncertainty increases. We verified this intuition analytically in the special case of

localized stimulus filters (with no band-pass filtering) and small baseline firing rates. Our

numerics showed that indeed the main systematic effect of increasing parameter uncertainty

on the mean estimate, E(x|r) is to shrink its magnitude (thus sending to the origin which was

the prior mean in our case) in a wide range of parameter values.

The methods developed in this paper and in (Pillow et al., 2010) can be used for a variety of

applications. In future work we plan to further apply these techniques to other experimental

data, and to compare different “codebooks” (as mentioned in the introduction) based on

different reductions of the full spike trains, according to their robustness and fidelity.

Acknowledgments

Thanks to M. Kennel, E. Simoncelli, E.J. Chichilnisky, T. Teravainen, and K. Rahnama Rad for helpful
conversations. We are grateful to Y. Ding for her implementation of the bridge sampling method. YA is supported
by the Robert Leet and Clara Guthrie Patterson Trust Postdoctoral Fellowship, Bank of America, Trustee. LP is
supported by NEI R01 EY018003, an Alfred P. Sloan Research Fellowship, and the McKnight Scholar award. JP is
supported by a Royal Society USA/Canada Research Fellowship.

References

Abbott L, Dayan P. The effect of correlated variability on the accuracy of a population code. Neural
Computation. 1999; 11:91–101. [PubMed: 9950724]

Barbieri R, Frank L, Nguyen D, Quirk M, Solo V, Wilson M, Brown E. Dynamic analyses of
information encoding in neural ensembles. Neural Computation. 2004; 16:277–307. [PubMed:
15006097]

Ahmadian et al. Page 33

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bennett CH. Efficient estimation of free energy divergences from Monte Carlo data. Journal of
Computational Physics. 1976; 22:245–268.

Berger, J. Statistical Decision Theory and Bayesian Analysis. Springer; 1993.

Bialek W, Rieke F, de Ruyter van Steveninck R, Warland D. Reading a neural code. Science. 1991;
252:1854–1857. [PubMed: 2063199]

Boneh, A.; Golan, A. Constrainsts’ redundancy and feasible region boundedness by random feasible
point generator (rfpg). Presented at the Third European Congress on Operations Research (EURO
III); Amsterdam. 1979.

Brillinger D. Maximum likelihood analysis of spike trains of interacting nerve cells. Biological
Cyberkinetics. 1988; 59:189–200.

Brillinger D. Nerve cell spike train data analysis: a progression of technique. Journal of the American
Statistical Association. 1992; 87:260–271.

Brockwell A, Rojas A, Kass R. Recursive Bayesian decoding of motor cortical signals by particle
filtering. Journal of Neurophysiology. 2004; 91:1899–1907. [PubMed: 15010499]

Brooks S, Gelman A. General methods for monitoring convergence of iterative simulations. J Comput
Graph Statist. 1998; 7:434–455.

Brown, E.; Barbieri, R.; Eden, U.; Frank, L. Likelihood methods for neural data analysis. In: Feng, J.,
editor. Computational Neuroscience: A Comprehensive Approach. London: CRC; 2003. p.
253-286.

Brown E, Frank L, Tang D, Quirk M, Wilson M. A statistical paradigm for neural spike train decoding
applied to position prediction from ensemble firing patterns of rat hippocampal place cells. Journal
of Neuroscience. 1998; 18:7411–7425. [PubMed: 9736661]

Chan KS, Ledolter J. Monte Carlo EM estimation for time series models involving counts. Journal of
the American Statistical Association. 1995; 90(429):242–252.

Chichilnisky E. A simple white noise analysis of neuronal light responses. Network: Computation in
Neural Systems. 2001; 12:199–213.

Cronin B, Stevenson IH, Sur M, Kording KP. Hierarchical Bayesian modeling and Markov chain
Monte Carlo sampling for tuning curve analysis. J Neurophysiol. 2009:00379.2009.

Davis R, Rodriguez-Yam G. Estimation for state-space models: an approximate likelihood approach.
Statistica Sinica. 2005; 15:381–406.

Dayan, P.; Abbott, L. Theoretical Neuroscience. MIT Press; Cambridge: 2001.

DiMatteo I, Genovese C, Kass R. Bayesian curve fitting with free-knot splines. Biometrika. 2001;
88:1055–1073.

Donoghue J. Connecting cortex to machines: recent advances in brain interfaces. Nature Neuroscience.
2002; 5:1085–1088. [PubMed: 12403992]

Doucet, A.; de Freitas, N.; Gordon, N., editors. Sequential Monte Carlo in Practice. Springer; 2001.

Duane S, Kennedy AD, Pendleton BJ, Roweth D. Hybrid monte carlo. Physics Letters B. 1987;
195(2):216–222.

Eden UT, Frank LM, Barbieri R, Solo V, Brown EN. Dynamic analysis of neural encoding by point
process adaptive filtering. Neural Comput. 2004; 16(5):971–998. [PubMed: 15070506]

Ergun A, Barbieri R, Eden U, Wilson M, Brown E. Construction of point process adaptive filter
algorithms for neural systems using sequential Monte Carlo methods. IEEE Transactions on
Biomedical Engineering. 2007; 54:419–428. [PubMed: 17355053]

Gamerman D. Sampling from the posterior distribution in generalized linear mixed models. Statistics
and Computing. 1997; 7(1):57–68.

Gamerman D. Markov chain monte carlo for dynamic generalised linear models. Biometrika. 1998;
85(1):215–227.

Gelman, A. Bayesian Data Analysis. Chapman and Hall/CRC; Boca Raton, FL: 2004.

Geman S, Geman D. Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images.
IEEE Transactions on Pattern Analysis and Machine Intelligence. 1984; 6:721–741. [PubMed:
22499653]

Gerwinn S, Macke JH, Bethge M. Bayesian population decoding of spiking neurons. Front Comput
Neurosci. 2009; 3(21)

Ahmadian et al. Page 34

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Geyer CJ. Practical Markov chain Monte Carlo. Statistical Science. 1992; 7:473–483.

Gilks W, Wild P. Adaptive rejection sampling for Gibbs sampling. Applied Statistics. 1992; 41:337–
348.

Gilks, WR. Derivative-free adaptive rejection sampling for Gibbs sampling. In: Bernardo, J.; Berger,
J.; Dawid, A.; Smith, A., editors. Bayesian Statistics. Vol. 4. Oxford University Press; Oxford:
1992. p. 641-649.

Godsill S, Doucet A, West M. Monte Carlo smoothing for non-linear time series. Journal of the
American Statistical Association. 2004; 99:156–168.

Hastings WK. Monte Carlo sampling methods using Markov chains and their applications. Biometrika.
1970; 57:97–109.

Huys Q, Paninski L. Smoothing of, and parameter estimation from, noisy biophysical recordings.
PLoS Comput Biol. 2009; 5(5):e1000379. [PubMed: 19424506]

Ishwaran H. Applications of hybrid monte carlo to bayesian generalized linear models: quasicomplete
separation and neural networks. Journal of Computational and Graphical Statistics. 1999; 8:779–
799.

Jacobs A, Grzywacz N, Nirenberg S. Decoding the parallel pathways of the retina. SFN Abstracts.
2006

Jungbacker B, Koopman SJ. Monte Carlo Estimation for Nonlinear Non-Gaussian State Space Models.
Biometrika. 2007; 94(4):827–839.

Karmeier K, Krapp H, Egelhaaf M. Population coding of self-motion: Applying Bayesian analysis to a
population of visual interneurons in the fly. Journal of Neurophysiology. 2005; 94:2182–2194.
[PubMed: 15901759]

Kass, R.; Tierney, L.; Raftery, A. Laplace’s method in Bayesian analysis. In: Flournoy, N.; Tsutakawa,
R., editors. Statistical Multiple Integration. Providence: Springer; 1991. p. 89-99.

Kelly R, Lee T. Decoding V1 neuronal activity using particle filtering with Volterra kernels. Advances
in Neural Information Processing Systems. 2004; 15:1359–1366.

Kennedy A, Edwards R, Mino H, Pendleton B. Tuning the generalized hybrid monte carlo algorithm.
Nuclear Physics B - Proceedings Supplements. 1996; 47(1–3):781–784.

Kipnis C, Varadhan SRS. Central limit theorem for additive functionals of reversible Markov
processes and applications to simple exclusions. Comm Math Phys. 1986; 104:1–19.

Litke A, Bezayiff N, Chichilnisky E, Cunningham W, Dabrowski W, Grillo A, Grivich M, Grybos P,
Hottowy P, Kachiguine S, Kalmar R, Mathieson K, Petrusca D, Rahman M, Sher A. What does
the eye tell the brain? development of a system for the large scale recording of retinal output
activity. IEEE Trans Nucl Sci. 2004:1434–1440.

Lovasz, L.; Vempala, S. Hit-and-run from a corner. Proc. of the 36th ACM Symposium on the Theory
of Computing (STOC ‘04); Chicago. 2004.

Maynard E, Hatsopoulos N, Ojakangas C, Acuna B, Sanes J, Normann R, Donoghue J. Neuronal
interactions improve cortical population coding of movement direction. Journal of Neuroscience.
1999; 19:8083–8093. [PubMed: 10479708]

McCullagh, P.; Nelder, J. Generalized linear models. Chapman and Hall; London: 1989.

Meng XL, Wong WH. Simulating ratios of normalizing constants via a simple identity: A theoretical
exploration. Statistica Sinica. 1996; 6:831–860.

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of state calculations by
fast computing machines. J Chem Phys. 1953; 21:1087–1092.

Neal, R. Number 118 in Lecture Notes in Statistics. Springer; 1996. Bayesian Learning for Neural
Networks.

Neal, R. The harmonic mean of the likelihood: Worst Monte Carlo method ever. Radford Neal’s blog.
2008. http://radfordneal.wordpress.com/2008/08/17/the-harmonic-mean-of-the-likelihood-worst-
monte-carlo-method-ever/

Newton MA, Raftery AE. Approximate Bayesian inference with the weighted likelihood bootstrap.
Journal of the Royal Statistical Society Series B (Methodological). 1994; 56(1):3–48.

Paninski L. Estimation of entropy and mutual information. Neural Computation. 2003; 15:1191–1253.

Ahmadian et al. Page 35

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://radfordneal.wordpress.com/2008/08/17/the-harmonic-mean-of-the-likelihood-worst-monte-carlo-method-ever/
http://radfordneal.wordpress.com/2008/08/17/the-harmonic-mean-of-the-likelihood-worst-monte-carlo-method-ever/

Paninski L. Maximum likelihood estimation of cascade point-process neural encoding models.
Network: Computation in Neural Systems. 2004; 15:243–262.

Paninski L, Ahmadian Y, Ferreira D, Koyama S, Rahnama Rad K, Vidne M, Vogelstein J, Wu W. A
new look at state-space models for neural data. Journal of Computational Neuroscience. 2010 In
press.

Paninski L, Fellows M, Shoham S, Hatsopoulos N, Donoghue J. Superlinear population encoding of
dynamic hand trajectory in primary motor cortex. J Neurosci. 2004; 24:8551–8561. [PubMed:
15456829]

Paninski, L.; Iyengar, S.; Kass, R.; Brown, E. Stochastic Methods in Neuroscience. Oxford University
Press; 2008. Statistical models of spike trains.

Pillow J, Ahmadian Y, Paninski L. Model-based decoding, information estimation, and change-point
detection in multi-neuron spike trains. Neural Computation. 2010 In press.

Pillow J, Shlens J, Paninski L, Sher A, Litke A, Chichilnisky E, Simoncelli E. Spatiotemporal
correlations and visual signaling in a complete neuronal population. Nature. 2008

Reid RC, Victor JD, Shapley RM. The use of m-sequences in the analysis of visual neurons: Linear
receptive field properties. Visual Neuroscience. 1997; 14(6):1015– 1027. [PubMed: 9447685]

Rieke, F.; Warland, D.; de Ruyter van Steveninck, R.; Bialek, W. Spikes: Exploring the neural code.
MIT Press; Cambridge: 1997.

Robert, C.; Casella, G. Monte Carlo Statistical Methods. Springer; 2005.

Roberts G, Rosenthal J. Optimal scaling of discrete approximations to Langevin diffusions. J R Statist
Soc B. 1998; 160:255–268.

Roberts G, Rosenthal J. Optimal scaling for various Metropolis-Hastings algorithms. Statistical
Science. 2001; 16:351–367.

Roberts GO, Tweedie RL. Exponential convergence of Langevin diffusions and their discrete
approximations. Biometrika. 1996; 2:341–363.

Sanger T. Theoretical considerations for the analysis of population coding in motor cortex. Neural
Computation. 1994; 6:12–21.

Shephard N, Pitt MK. Likelihood analysis of non-Gaussian measurement time series. Biometrika.
1997; 84(3):653–667.

Shlens J, Field GD, Gauthier JL, Grivich MI, Petrusca D, Sher A, Litke AM, Chichilnisky EJ. The
Structure of Multi-Neuron Firing Patterns in Primate Retina. J Neurosci. 2006; 26(32):8254–8266.
[PubMed: 16899720]

Shoham S, Paninski L, Fellows M, Hatsopoulos N, Donoghue J, Normann R. Optimal decoding for a
primary motor cortical brain-computer interface. IEEE Transactions on Biomedical Engineering.
2005; 52:1312–1322. [PubMed: 16041995]

Simoncelli, E.; Paninski, L.; Pillow, J.; Schwartz, O. The Cognitive Neurosciences. 3. MIT Press;
2004. Characterization of neural responses with stochastic stimuli.

Smith AC, Frank LM, Wirth S, Yanike M, Hu D, Kubota Y, Graybiel AM, Suzuki WA, Brown EN.
Dynamic Analysis of Learning in Behavioral Experiments. J Neurosci. 2004; 24(2):447–461.
[PubMed: 14724243]

Smith AC, Wirth S, Suzuki WA, Brown EN. Bayesian Analysis of Interleaved Learning and Response
Bias in Behavioral Experiments. J Neurophysiol. 2007; 97(3):2516–2524. [PubMed: 17182907]

Smith, RL. Monte Carlo techniques for generating random feasible solutions to mathematical
programs. Presented at the ORSA/TIMS conference; Washington D. C. 1980.

Snyder, D.; Miller, M. Random Point Processes in Time and Space. Springer-Verlag; 1991.

Stanley, G.; Boloori, A. Decoding in neural systems: stimulus reconstruction from nonlinear encoding.
Proceedings of the Annual EMBS International Conference; 2001. p. 23

Strong S, Koberle R, de Ruyter van Steveninck R, Bialek W. Entropy and information in neural spike
trains. Physical Review Letters. 1998; 80:197–202.

Theunissen F, David S, Singh N, Hsu A, Vinje W, Gallant J. Estimating spatio-temporal receptive
fields of auditory and visual neurons from their responses to natural stimuli. Network:
Computation in Neural Systems. 2001; 12:289–316.

Ahmadian et al. Page 36

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tierney, L. Technical Report. Vol. 560. School of Statistics, University of Minnesota; 1991. Markov
chains for exploring posterior distributions.

Tierney L, Kadane JB. Accurate approximations for posterior moments and marginal densities. Journal
of the American Statistical Association. 1986; 81(393):82–86.

Truccolo W, Eden U, Fellows M, Donoghue J, Brown E. A point process framework for relating
neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects. Journal
of Neurophysiology. 2005; 93:1074–1089. [PubMed: 15356183]

Tyler DE. Statistical analysis for the angular central Gaussian distribution on the sphere. Biometrika.
1987; 74:579–859.

Vogelstein, J.; Babadi, B.; Watson, B.; Yuste, R.; Paninski, L. Fast nonnegative deconvolution via
tridiagonal interior-point methods, applied to calcium fluorescence data. Statistical analysis of
neural data (SAND) conference; 2008.

Wallstrom G, Liebner J, Kass RE. An implementation of Bayesian adaptive regression splines (BARS)
in C with S and R wrappers. Journal of Statistical Software. 2007; 26(1):1–21. [PubMed:
19777145]

Warland D, Reinagel P, Meister M. Decoding visual information from a population of retinal ganglion
cells. Journal of Neurophysiology. 1997; 78:2336–2350. [PubMed: 9356386]

Wu W, Black MJ, Mumford D, Gao Y, Bienenstock E, Donoghue J. Modeling and decoding motor
cortical activity using a switching Kalman filter. IEEE Transactions on Biomedical Engineering.
2004; 51:933–942. [PubMed: 15188861]

Yu BM, Cunningham JP, Santhanam G, Ryu SI, Shenoy KV, Sahani M. Gaussian-Process Factor
Analysis for Low-Dimensional Single-Trial Analysis of Neural Population Activity. J
Neurophysiol. 2009; 102(1):614–635. [PubMed: 19357332]

Zhang K, Ginzburg I, McNaughton B, Sejnowski T. Interpreting neuronal population activity by
reconstruction: Unified framework with application to hippocampal place cells. Journal of
Neurophysiology. 1998; 79:1017–1044. [PubMed: 9463459]

Ahmadian et al. Page 37

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
Illustration of Bayesian decoding paradigm. (A) Bayesian decoding performs inference

about the stimulus using the observed spike times and a specified encoding model. (B)

Schematic of the encoding model (“Generalized Linear Model”) used for the decoding

examples shown in this paper. The model parameters (ki and hij) can be easily fit using

maximum likelihood. Once fit, the model provides a description of the data likelihood, p(r|

x), which is combined with the prior p(x) to estimate x.

Ahmadian et al. Page 38

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Comparison of isotropic and non-isotropic Markov jumps for the Gaussian RWM and hit-

and-run chains. In the RWM case, the circle and the ellipse are level sets of the Gaussian

proposal distributions for jumping from the dot at their center. In isotropic (non-isotropic)

hit-and-run, the jump direction n is generated by normalizing a vector sampled from an

isotropic (non-isotropic) Gaussian distribution centered at the origin. The non-isotropic

distributions were constructed using the Hessian, Eq. (9), in the Laplace approximation, so

that the ellipse is described by xTJx = const. When the underlying distribution, π(x), is

highly non-isotropic, it is disadvantageous to jump isotropically, as it reduces the average

jump size and slows down the chain. In RWM, the proposal jump scale can not be much

larger than the scale of the narrow “waist” of the underlying distribution, lest the rejection

rate gets large (as most proposals will fall in the dark region of small π(x)) and the chain

gets stuck. For hit-and-run, there is no jump scale to be set by the user, and the jump size in

a given direction, n, is set by the scale of the “slice” distribution Eq. (25). Thus in the

isotropic case the average jump size will effectively be a uniform average over the scales of

π(x) along its principal axes. In the non-isotropic case, however, the jump size will be

determined mainly by the scale of the “longer” dimensions, as the non-isotropic distribution

gives more weight to these.

Ahmadian et al. Page 39

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Comparison of different MCMC algorithms in sampling from a non-isotropic truncated

Gaussian distribution. This distribution can arise as a posterior distribution resulting from a

non-isotropic Gaussian likelihood and a uniform prior with square boundaries (at the frame

borders). Panels (a–c) show 50-sample chains for a Gibbs, isotropic hit-and-run, and

isotropic random walk Metropolis (RWM) samplers, respectively. The grayscale indicates

the height of the probability density. As seen in panel (a), the narrow, non-isotropic

likelihood can significantly hamper the mixing of the Gibbs chain as it chooses its jump

directions unfavorably. The hit-and-run chain, on the other hand, mixes much faster as it

samples the direction randomly and hence can move within the narrow high likelihood

region with relative ease. The mixing of the RWM chain is relatively slower due to its

rejections (note that there are fewer than 50 distinct dots in panel (c) due to rejections; the

acceptance rate was about 0.4 here). For illustrative purposes, the hit-and-run direction and

the RWM proposal distributions were taken to be isotropic here, which is disadvantageous,

as explained in the text (also see Fig. 2).

Ahmadian et al. Page 40

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
The estimated autocorrelation function for the hit-and-run, Gaussian random-walk

metropolis, and HMC chains, based on 7 separate chains in each case. The chains were

sampling from a posterior distribution over a 50-dimensional stimulus (x) space with white

noise Gaussian (a) and uniform (b) priors with contrast c = 1 (see Eqs. (10)–(11)), and with

GLM likelihood (see Eqs. (3)–(4)) based on the response of two simulated ganglion cells.

The GLM nonlinearity was exponential and the stimulus filters ki(t) were taken to be weak

“delta functions” with heights ±0.1. For the HMC, we used L = 5 leapfrog steps in the

Gaussian prior case, and L = 1 steps (corresponding to MALA) in the at prior case. The

autocorrelation was calculated for a certain one-dimensional projection of x. In general, in

the Gaussian prior case, HMC was superior by an order of magnitude. For uniform priors,

however, hit-and-run was seen to mix faster than the other two chains over a wide range of

parameters such as the stimulus filter strength (unless the filter was strong enough so that the

likelihood determined the shape of the posterior, confining its effective support away from

the edges of the at prior). This is mainly because hit-and-run is better in escaping from the

sharp, high-dimensional corners of the prior support . Here, MALA need not be slower

than RWM, and its larger autocorrelation in the plot is because its jump size was chosen

suboptimally, according to a rule (Roberts and Rosenthal, 1998) that is optimal only for

smooth distributions. For both priors, using non-isotropic proposal or direction distributions

improved the mixing of all three chains.

Ahmadian et al. Page 41

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.
Comparison of MAP and posterior mean estimates, for a pair of ON and OFF RGC’s (see

the main text), for different values of the stimulus filter amplitude (||k|| = 0.5, 1, and 2.4 from

left to right) and contrast c = 1 (defined after Eq. (11) – the product c||k|| represents the scale

of the filtered stimulus input term to the GLM nonlinearity (see the main text for the full

description of the GLM parameters used in this simulation). The stimulus (black traces in

the first row panels and dotted traces in other rows) consists of a 500 ms interval of

uniformly distributed white noise, refreshed every 10 ms. Thus the stimulus space is 50

dimensional. The dashed horizontal lines mark the boundaries of the flat prior distribution of

the stimulus intensity on each 10 ms subinterval. They are set at , corresponding to

intensity variance of 1 and zero mean. Dots on the top row show the spikes of the ON (gray)

and the OFF (black) cell. The solid traces in the middle row are the MAP estimates, and the

solid traces in the bottom rows show the posterior means estimated from 10000 samples of a

hit-and-run chain (after burning 2500 samples). The shaded regions in the second and third

rows are error bars showing the estimated marginal posterior uncertainties about the

stimulus value. For the MAP (second rows), these are calculated as the square root of the

diagonal of the inverse Hessian, J−1, but they have been cut-off where they would have

encroached on the zero prior region beyond the horizontal dashed lines. For the posterior

mean (third rows), the error bars represent one standard deviation about the mean, and are

calculated as the square root of the diagonal of the covariance matrix, which is itself

estimated from the MCMC chain (the standard error of the posterior mean estimate due to

the finite sample size of the MCMC were much smaller than these error bars, and are not

shown). Note that the errorbars of the mean are in general smaller than those for the MAP,

and that all estimate uncertainties decrease as the stimulus filter amplitude grows.

Ahmadian et al. Page 42

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6.
Comparison of MAP and posterior mean estimates, for 10 identical and independent pairs of

ON and OFF RGC’s, for different values of the stimulus filter. The stimulus and all GLM

parameters are the same as in Fig. 5, except for the number of pairs of RGC. The increase in

the number of cells leads to the sharpening of the likelihood, leading to smaller error bars on

the estimates, and a more accurate Laplace approximate and smaller disparity between the

two estimates. Here a 20000 sample long MALA chain (after burning 5000 samples) was

used to estimate the posterior mean.

Ahmadian et al. Page 43

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7.
Comparison of mean squared error (〈||x̂ − x||2〉 /d) of MAP and posterior mean estimates for

uniform (left panel) and Gaussian (right panel) white-noise stimulus distributions as a

function of the stimulus filter strength times contrast. In the left panel, the data points at ||k||

= 0 were obtained for very small but non-zero ||k||. As seen here, for flat priors, MAP has a

higher average squared error than the posterior mean, except for large values of the stimulus

filter where both estimates converge to the true value. For Gaussian priors, on the other

hand, the Laplace approximation is accurate and therefore the posterior mean and MAP are

very close. Thus their efficiency (e.g., as measured by the inverse of their mean squared

error) is very similar even for small values of the stimulus filter, and the fact that the

computational cost of calculating MAP is much lower makes it the preferable estimate here.

Ahmadian et al. Page 44

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 8.
The top six panels show the posterior mean (solid curve) the MAP (dashed curve) estimates

of the stimulus input to 3 pairs of ON and OFF RGC’s given their spike trains from multi-

electrode array recordings. The GLM parameters used in this example were fit to data from

the same recordings – see Pillow et al. (2008) for the full description of the fit GLM

parameters. The jagged black traces are the actual inputs. The bottom panel shows the

recorded spike trains. The posterior means were estimated using an HMC chain with 15000

samples (after an initial 3750 samples were burnt). The gray error-bars around the blue

curve are represent its marginal standard deviations which were estimated using the MCMC

itself (the error-bars for the MAP, e.g. based on the Hessian, would not be distinguishable in

this figure, and are not shown). The closeness of the posterior mean to the MAP is an

indication of the accuracy of the Laplace approximation. (This decoding example also

appeared briefly in Paninski et al. (2010); see also Pillow et al. (2010))

Ahmadian et al. Page 45

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 9.
Estimation of threshold crossing times using MCMC sampling. The spike trains are

generated by an inhomogenous Poisson process with a rate λ(t) = exp(xt + b) that depends on

a changing hidden variable xt (times are in arbitrary units). Having observed a particular

spike train (bottom row of the top panel), the goal is to estimate the first or the last time that

xt crosses a threshold from below. The top and the middle plots show the true xt (black

jagged lines) and the threshold (the dashed horizontal lines). The top plot also shows the

posterior marginal median for xt (curvy line) given the observed spike train, and its

corresponding posterior marginal 90% confidence interval (shaded area). In Smith et al.

(2007), these marginal statistics were used to estimate the crossing times. However, a more

systematic way of estimating these times is to directly use their (non-marginal) posterior

statistics. The middle plot also shows three posterior samples of xt (curvy lines) obtained

using an HMC Markov chain. The first and last crossing times are well-defined for these

three curves, and are marked by black and gray dots, respectively. For each MCMC sample

curve, we calculated these crossing times, and then we tabulated the statistics of these times

across all samples. The bottom panel shows the MCMC-based posterior histograms of these

crossing times thus obtained. The two separated peaks corresponds to the first and the last

crossing times. The posterior mean and variance of the crossing times can then be calculated

from these histograms.

Ahmadian et al. Page 46

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 10.
Comparison of Laplace approximation to Mutual Information per stimulus dimension IL/d,

and the correction, δI/d (see Eq. (47)), based on the MCMC estimate of the true value, for a

pair of ON and OFF RGCs, as a function of the magnitude of the filtered stimulus input c||

k||, where c is the contrast, and ||k|| is the norm of the stimulus filter. The computationally

inexpensive Laplace approximation for the mutual information is accurate for moderately

strong stimulus filters which give rise to sharp likelihoods. Furthermore, at c||k|| = 0, the

likelihood has no dependence on x and the posterior is equal to the Gaussian prior, for which

the Laplace approximation is exact. Thus for very small |k| also, IL becomes exact and the

error, δI, has a maximum around c||k|| ≈ 2.5.

Ahmadian et al. Page 47

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 11.
Effect of parameter uncertainty on the posterior estimate for Gaussian white-noise stimuli.

Panel (a) is a plot of (where d = 50 is the stimulus dimension) vs. relative

uncertainty, α, in the stimulus filter ki(t). α is defined through ,

where ε(t) is a standard Gaussian white-noise. Unlike in Sec. 4, (the maximum

likelihood fit for ki(t)) was taken to have a time width spreading over a few stimulus frames.

Furthermore, its magnitude was taken to be large enough to give rise to a sharp posterior,

satisfying Eq. (8) and thus E(x|r, θ) ≈ xMAP(r, θ). For each value of α, 100 samples of ε(t)

were generated, and the MAP was decoded for each using the corresponding ki(t) and the

fixed spike train. The sample average of those MAPs was taken as the estimate for 〈xMAP〉θ

≈ E(x|r). Panel (b) shows 〈xMAP〉θ (solid trace) for α = 0 (top plot) and α = 1 (bottom plot)

and the true stimulus (dotted trace). It is seen that the main effect of the finite uncertainty is

a shrinkage of the estimate towards zero, i.e., the mean of the prior Gaussian distribution.

Ahmadian et al. Page 48

Neural Comput. Author manuscript; available in PMC 2016 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

