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Abstract

The problem of multimodal clustering arises whenever the data are gathered
with several physically different sensors. Observations from different modalities
are not necessarily aligned in the sense there there is no obvious way to associate
or to compare them in some common space. A solution may consist in consider-
ing multiple clustering tasks independently for each modality. The main difficulty
with such an approach is to guarantee that the unimodal clusterings are mutually
consistent. In this paper we show that multimodal clustering can be addressed
within a novel framework, namely conjugate mixture models. These models ex-
ploit the explicit transformations that are often available between an unobserved
parameter space (objects) and each one of the observation spaces (sensors). We
formulate the problem as a likelihood maximization task and we derive the associ-
ated conjugate expectation-maximization algorithm. The convergence properties
of the proposed algorithm are thoroughly investigated. Several local/global opti-
mization techniques are proposed in order to increase its convergence speed. Two
initialization strategies are proposed and compared. A consistent model-selection
criterion is proposed. The algorithm and its variants are tested and evaluated within
the task of 3D localization of several speakers using both auditory and visual data.

1 Introduction

The unsupervised clustering of multimodal data is a key capability whenever the goal
is to group observations that are gathered using several physically different sensors.
A typical example is the computational modelling of biological multisensory percep-
tion. This includes the issues of how a human detects objects that are both seen and
touched (Pouget et al., 2002; Ernst and Banks, 2002), seen and heard (Anastasio et al.,
2000; King, 2004, 2005) or how a human localizes one source of sensory input in a
natural environment in the presence of competing stimuli and of a variety of noise

1This work was supported by the Perception-on-Purpose project, under EU grant FP6-IST-2004-
027268.
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sources (Haykin and Chen, 2005). More generally, multisensory fusion (Hall and Mc-
Mullen, 2004; Mitchell, 2007) is highly relevant in various other research domains, such
as target tracking (Smith and Singh, 2006) based on radar and sonar data (Naus and
van Wijk, 2004; Coiras et al., 2007), mobile robot localization with laser rangefinders
and cameras (Castellanos and Tardos, 1999), robot manipulation and object recognition
using both tactile and visual data (Allen, 1995; Joshi and Sanderson, 1999), underwa-
ter navigation based on active sonar and underwater cameras (Majumder et al., 2001),
audio-visual speaker detection (Beal et al., 2003; Perez et al., 2004; Fisher III and Dar-
rell, 2004), speech recognition (Heckmann et al., 2002; Nefian et al., 2002; Shao and
Barker, 2008), and so forth.

When the data originates from a single object, finding the best estimates for the
object’s characteristics is usually referred to as a pure fusion task and it reduces to
combining multisensor observations in some optimal way (Beal et al., 2003; Kushal
et al., 2006; Smith and Singh, 2006). For example, land and underwater robots fuse data
from several sensors to build a 3D map of the ambient space irrespective of the number
of objects present in the environment (Castellanos and Tardos, 1999; Majumder et al.,
2001). The problem is much more complex when several objects are present and when
the task implies their detection, identification, and localization. In this case one has to
consider two processes simultaneously: (i) segregation (Fisher III et al., 2001) which
assigns each observation either to an object or to an outlier category and (ii) estimation
which computes the parameters of each object based on the group of observations that
were assigned to that object. In other words, in addition to fusing observations from
different sensors, multimodal analysis requires the assignment of each observation to
one of the objects.

This observation-to-object association problem can be cast into a probabilistic frame-
work. Recent multisensor data fusion methods able to handle several objects are based
on particle filters (Checka et al., 2004; Chen and Rui, 2004; Gatica-Perez et al., 2007).
Notice, however, that the dimensionality of the parameter space grows exponentially
with the number of objects, causing the number of required particles to increase dramat-
ically and augmenting computational costs. A number of efficient sampling procedures
were suggested (Chen and Rui, 2004; Gatica-Perez et al., 2007) to keep the problem
tractable. Of course this is done at the cost of loss in model generality, and hence
these attempts are strongly application-dependent. Another drawback of such mod-
els is that they cannot provide estimates of accuracy and importance of each modality
with respect to each object. The sampling and distribution estimation are performed
in the parameter space, but no statistics are gathered for the observation spaces. Re-
cently (Hospedales and Vijayakumar, 2008) extended the single-object model of (Beal
et al., 2003) to multiple objects: several single-object models are incorporated into the
multiple-object model and the number of objects is selected by an additional hidden
node, which thus accounts for model selection. We remark that this method also suffers
from exponential growth in the number of possible models.

In the case of unimodal data, the problems of grouping observations and of associat-
ing groups with objects can be cast into the framework of standard data clustering which
can be solved using a variety of parametric or non-parametric techniques. The problem
of clustering multimodal data raises the difficult question of how to group together ob-
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servations that belong to different physical spaces with different dimensionalities, e.g.,
how to group visual data with auditory data? When the observations from two differ-
ent modalities can be aligned pairwise, a natural solution is to consider the Cartesian
product of two unimodal spaces. Unfortunately, such an alignment is not possible in
most practical cases. Different sensors operate at different frequency rates and hence
the number of observations gathered with one sensor can be quite different from the
number of observations gathered with another sensor. Consequently, there is no obvi-
ous way to align the observations pairwise. Considering all possible pairs would result
in a combinatorial blow-up and typically create abundance of erroneous observations
corresponding to inconsistent solutions.

Alternatively, one may consider several unimodal clusterings, provided that the rela-
tionships between a common object space and several observation spaces can be explic-
itly specified. Multimodal clustering then results in a number of unimodal clusterings
that are jointly governed by the same unknown parameters characterizing the object
space.

The original contribution of this paper is to show how the problem of clustering mul-
timodal data can be addressed within the framework of mixture models (McLachlan and
Peel, 2000). We propose a variant of the EM algorithm (Dempster et al., 1977; McLach-
lan and Krishnan, 1996) specifically designed to estimate object-space parameters that
are indirectly observed in several sensor spaces. The convergence properties of the pro-
posed algorithm are thoroughly investigated and several efficient implementations are
described in detail. The proposed model is composed of a number of modality-specific
mixtures. These mixtures are jointly governed by a set of common object-space pa-
rameters (which will be referred to as the tying parameters), thus insuring consistency
between the sensory data and the object space being sensed. This is done using ex-
plicit transformations from the unobserved parameter space (object space) to each of
the observed spaces (sensor spaces). Hence, the proposed model is able to deal with
observations that live in spaces with different physical properties such as dimension-
ality, space metric, sensor sampling rate, etc. We believe that linking the object space
with the sensor spaces based on object-space-to-sensor-space transformations has more
discriminative power than existing multisensor fusion techniques and hence performs
better in terms of multiple object identification and localization. To the best of our
knowledge, there has been no attempt to use a generative model, such as ours, for the
task of multimodal data interpretation.

In Section 2 we formally introduce the concept of conjugate mixture models. Stan-
dard Gaussian mixture models (GMM) are used to model the unimodal data. The pa-
rameters of these Gaussian mixtures are governed by the object parameters through a
number of object-space-to-sensor-space transformations (one transformation for each
sensing modality). Through the paper we will assume a very general class of transfor-
mations, namely non-linear Lipschitz continuous functions (see below). In Section 3
we cast the multimodal data clustering problem in the framework of maximum likeli-
hood and we explicitly derive the expectation and maximization steps of the associated
EM algorithm. While the E-step of the proposed algorithm is standard, the M-step im-
plies non-linear optimization of the expected complete-data log-likelihood with respect
to the object parameters. We investigate efficient local and global optimization meth-
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ods. More specifically, in Section 4 we prove that, provided that the object-to-sensor
functions as well as their first derivatives are Lipschitz continuous, the gradient of the
expected complete-data log-likelihood is Lipschitz continuous as well. The immediate
consequence is that a number of recently proposed optimization algorithms specifically
designed to solve Lipschitzian global optimization problems can be used within the
M-step of the proposed algorithm (Zhigljavsky and Žilinskas, 2008). Several of these
algorithms combine a local maximum search procedure with an initializing scheme to
determine, at each iteration, good initial values from which the local search should be
performed. This implies that the proposed EM algorithm has guaranteed convergence
properties. Section 5 discusses several possible local search initialization schemes,
leading to different convergence speeds. In Section 6 we propose and compare two
possible strategies to initialize the EM algorithm. Section 7 is devoted to a consistent
criterion to determine the number of objects. Section 8 illustrates the proposed method
with the task of audiovisual object detection and localization using binocular vision and
binaural hearing. Section 10 analyses in detail the performances of the proposed model
under various practical conditions with both simulated and real data. Finally, Section 11
the paper and provides directions for future work.

2 Mixture Models for Multimodal Data

We consider N objects n = 1 . . . N . Each object n is characterized by a parameter
vector of dimension d, denoted by sn ∈ S ⊆ Rd. The set s = {s1, . . . , sn, . . . , sN}
corresponds to the unknown tying parameters. The objects are observed with a number
of physically different sensors. Although, for the sake of clarity, we will consider two
modalities, generalization is straightforward. Therefore, the observed data consists of
two sets of observations denoted respectively by f = {f 1, . . . ,fm, . . . ,fM} and g =
{g1, . . . , gk, . . . , gK} lying in two different observation spaces of dimensions r and p,
fm ∈ F ⊆ R r and gk ∈ G ⊆ Rp.

One key ingredient of our approach is that we consider the transformations:{
F : S→ F
G : S→ G (1)

that map S respectively into the observation spaces F and G. These transformations are
defined by the physical and geometric properties of the sensors and they are supposed
to be known. We treat the general case when both F and G are non-linear.

An assignment variable is associated with each observation, thus indicating the ob-
ject that generated the observation: A = {A1, . . . , Am, . . . , AM} andB = {B1, . . . , Bk,
. . . , BK}. Hence, the segregation process is cast into a hidden variable problem. The
notation Am = n (resp. Bk = n) means that the observation fm (resp. gk) was
generated by object n. In order to account for erroneous observations, an additional
N + 1-th fictitious object is introduced to represent an outlier category. The notation
Am = N + 1 (resp. Bk = N + 1) means that fm (resp. gk) is an outlier. Note that we
will also use the following standard convention: upper case letters for random variables
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(A andB) and lower case letters for their realizations (a and b). The usual conditional
independence assumption leads to:

P (f, g|a, b) =
M∏
m=1

P (fm|am)
K∏
k=1

P (gk|bk). (2)

In addition, all assignment variables are assumed to be independent, i.e.:

P (a, b) =
M∏
m=1

P (am)
K∏
k=1

P (bk). (3)

As discussed in Section 11, more general cases could be considered. However, we focus
on the independent case for it captures most of the features relevant to the conjugate
clustering task and because more general dependence structures could be reduced to
the independent case via the use of appropriate variational approximation techniques
(Jordan et al., 1998; Celeux et al., 2003).

Next we define the following probability density functions, for all n = 1 . . . N,N +
1, for all fm ∈ F and for all gk ∈ G:

P F
n (fm) = P (fm|Am = n), (4)
PG
n (gk) = P (gk|Bk = n). (5)

More specifically, the likelihoods for an observation to belong to an object n are
Gaussian distributions whose means F(sn) and G(sn) correspond to the object’s pa-
rameter vector sn mapped to the observations spaces by the transformations F and G:

P F
n (fm) = N (fm; F(sn),Σn), (6)
PG
n (gk) = N (gk; G(sn),Γn), (7)

with:

N (fm; F(sn),Σn) =
1

(2π)r/2|Σn|1/2
exp

(
−1

2
‖fm −F(sn)‖2Σn

)
, (8)

where the notation ‖v−w‖2Σ stands for the Mahalanobis distance (v−w)>Σ−1(v−w)
and > stands for the transpose of a matrix. The likelihoods of outliers are taken as two
uniform distributions:

P F
N+1(fm) = U(fm;V ), (9)
PG
N+1(gk) = U(gk;U), (10)

where V and U denote the respective support volumes. We also define the prior proba-
bilities π = (π1, . . . , πn, . . . , πN+1) and λ = (λ1, . . . , λn, . . . , λN+1):

πn = P (Am = n), ∀m = 1 . . .M, (11)
λn = P (Bk = n), ∀k = 1 . . . K. (12)

5



Figure 1: Graphical representation of the conjugate mixture model. Circles denote ran-
dom variables, plates (rectangles) around them represent multiple similar nodes, their
number being given in the plates.

Therefore, fm and gk are distributed according to two (N + 1)-component mix-
ture models, where each mixture is made of N Gaussian components and one uniform
component:

P (fm) =
N∑
n=1

πnN (fm; F(sn),Σn) + πN+1U(fm;V ), (13)

P (gk) =
N∑
n=1

λnN (gk; G(sn),Γn) + λN+1U(gk;U). (14)

The log-likelihood of the observed data can then be written as:

L(f, g,θ) =
M∑
m=1

log

(
N∑
n=1

πnN (fm; F(sn),Σn) + πN+1U(fm;V )

)
+

+
K∑
k=1

log

(
N∑
n=1

λnN (gk; G(sn),Γn) + λN+1U(gk;U)

)
(15)

where:

θ = {π1, . . . , πN , πN+1, λ1, . . . , λN , λN+1, s1, . . . , sN ,Σ1, . . . ,ΣN ,Γ1, . . . ,ΓN}
(16)

denotes the set of all unknown parameters to be estimated using a maximum likelihood
principle.

The graphical representation of our conjugate mixture model is shown in Figure 1.
We adopted the graphical notation introduced in (Bishop, 2006) to represent similar
nodes in a more compact way: the M (resp. K) similar nodes are indicated with a
plate. The two sensorial modalities are linked by the tying parameters s1, . . . sN shown
in between the two plates.

3 Generalized EM for Clustering Multimodal Data

Given the probabilistic model just described, we wish to determine the parameter vec-
tors associated with the objects that generated observations in two different sensory
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spaces. It is well known that direct maximization of the observed-data log-likelihood (15)
is difficult to achieve. The expectation-maximization (EM) algorithm (Dempster et al.,
1977; McLachlan and Krishnan, 1996) is a standard approach to maximize likelihood
functions of type (15). It is based on the following representation, for two arbitrary
values of the parameters θ and θ̃:

L(f, g,θ) = Q(θ, θ̃) +H(θ, θ̃), (17)
with Q(θ, θ̃) = E[logP (f, g,A,B;θ) | f, g; θ̃], (18)
and H(θ, θ̃) = −E[logP (A,B | f, g;θ)|f, g; θ̃], (19)

where the expectations are taken over the hidden variables A and B. Each iteration q
of EM proceeds in two steps:

• Expectation. For the current values θ(q) of the parameters, compute the condi-
tional expectation with respect to variablesA andB:

Q(θ,θ(q)) =
∑

a∈{1...N+1}M

∑
b∈{1...N+1}K

P (a, b|f, g; θ(q)) logP (f, g,a, b; θ)

(20)

• Maximization. Update the parameter set θ(q) by maximizing (20) with respect to
θ:

θ(q+1) = argmax
θ

Q(θ,θ(q)) (21)

It is well known that the EM algorithm increases the target function L(f, g,θ) in
(15), i.e., the sequence of estimates {θ(q)}q∈N satisfies L(f, g,θ(q+1)) ≥ L(f, g,θ(q)).
Standard EM deals with the parameter estimation of a single mixture model, and a
closed form solution for (21) exists in this case. When the maximization (21) is difficult
to achieve, various generalizations of EM are proposed. The M step can be relaxed by
requiring just an increase rather than an optimum. This yields Generalized EM (GEM)
procedures (McLachlan and Krishnan, 1996) (see (Boyles, 1983) for a result on the
convergence of this class of algorithms). The GEM algorithm searches for some θ(q+1)

such that Q(θ(q+1),θ(q)) ≥ Q(θ(q),θ(q)). Therefore it provides a sequence of estimates
that still verifies the non-decreasing likelihood property although the convergence speed
is likely to decrease. In the case of conjugate mixture models, we describe in more detail
the specific forms of the E and M steps in the following sections.

3.1 The Expectation Step

Using (3)-(12) the conditional expectation (20) can be decomposed as:

Q(θ,θ(q)) = QF(θ,θ(q)) +QG(θ,θ
(q)), (22)
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with

QF(θ,θ(q)) =
M∑
m=1

N+1∑
n=1

α(q)
mn log

(
πnP (fm|Am = n; θ)

)
, (23)

QG(θ,θ
(q)) =

K∑
k=1

N+1∑
n=1

β
(q)
kn log

(
λnP (gk|Bk = n; θ)

)
, (24)

where α(q)
mn and β(q)

kn denote the posterior probabilities α(q)
mn = P (Am = n|fm;θ(q)) and

β
(q)
kn = P (Bk = n|gk;θ(q)). Their expressions can be derived straightforwardly from

Bayes’ theorem, ∀n = 1 . . . N :

α(q)
mn =

π
(q)
n N (fm;F(s

(q)
n ),Σ

(q)
n )

N∑
i=1

π
(q)
i N (fm;F(s

(q)
i ),Σ

(q)
i ) + V −1π

(q)
N+1

, (25)

β
(q)
kn =

λ
(q)
n N (gk; G(s

(q)
n ),Γ

(q)
n )

N∑
i=1

λ
(q)
i N (gk;G(s

(q)
i ),Γ

(q)
i ) + U−1λ

(q)
N+1

. (26)

and α(q)
m,N+1 = 1 −

N∑
n=1

α
(q)
mn and β(q)

k,N+1 = 1 −
N∑
n=1

β
(q)
kn . Using (6)-(10) the expressions

above further lead to:

QF(θ,θ(q)) =− 1

2

M∑
m=1

N∑
n=1

α(q)
mn

(
‖fm −F(sn)‖2Σn + log((2π)r|Σn|π−2n )

)
−

− 1

2

M∑
m=1

α
(q)
m,N+1 log(V 2π−2N+1), (27)

QG(θ,θ
(q)) =− 1

2

K∑
k=1

N∑
n=1

β
(q)
kn

(
‖gk − G(sn)‖2Γn + log((2π)p|Γn|λ−2n )

)
−

− 1

2

K∑
k=1

β
(q)
k,N+1 log(U2λ−2N+1). (28)

3.2 The Maximization Step

In order to carry out the maximization (21) of the conditional expectation (20), its
derivatives with respect to the model parameters are set to zero. This leads to the stan-
dard update expressions for priors, more specifically ∀n = 1, . . . , N + 1:

π(q+1)
n =

1

M

M∑
m=1

α(q)
mn, (29)

λ(q+1)
n =

1

K

K∑
k=1

β
(q)
kn . (30)
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The covariance matrices are governed by the tying parameters s(q+1)
n ∈ S through

the functions F and G, ∀n = 1, . . . , N :

Σ(q+1)
n (s(q+1)

n ) =
1

M∑
m=1

α
(q)
mn

M∑
m=1

α(q)
mn(fm −F(s(q+1)

n ))(fm −F(s(q+1)
n ))>, (31)

Γ(q+1)
n (s(q+1)

n ) =
1

K∑
k=1

β
(q)
kn

K∑
k=1

β
(q)
kn (gk − G(s(q+1)

n ))(gk − G(s(q+1)
n ))>. (32)

For every n = 1, . . . , N , s(q+1)
n is the parameter vector such that:

s(q+1)
n = argmax

s
Q(q)
n (s), (33)

where

Q(q)
n (s) = −

M∑
m=1

α(q)
mn(‖fm −F(s)‖2Σn(s) + log |Σn(s)|)−

−
K∑
k=1

β
(q)
kn (‖gk − G(s)‖2Γn(s) + log |Γn(s)|). (34)

We stress that the covariances Σn(s) and Γn(s) in (31) and (32) are considered as
functions of s ∈ S. Hence, at each iteration of the algorithm, the overall update of the
tying parameters can be split intoN identical optimization tasks of the form (34). These
tasks can be solved in parallel. In general, F and G are non-linear transformations
and hence there is no simple closed-form expression for the estimation of the tying
parameters.

3.3 Generalized EM for Conjugate Mixture Models

The initial parameters selection of the proposed EM algorithm for conjugate mixture
models uses the procedure Initialize that is given in Section 6. The maximization step
uses two procedures, referred to as Choose and Local Search which are explained in
detail in Sections 4 and 5. To determine the number of objects we define the procedure
Select that is derived in Section 7. The overall EM procedure is outlined below:

1. Apply procedure Initialize to initialize the parameter vector:
θ(0) = {π(0)

1 , . . . , π
(0)
N+1, λ

(0)
1 , . . . , λ

(0)
N+1, s

(0)
1 , . . . , s

(0)
N ,Σ

(0)
1 , . . . ,Σ

(0)
N ,Γ

(0)
1 , . . . ,Γ

(0)
N };

2. E step: compute Q(θ,θ(q)) using equations (25) to (28);

3. M step: estimate θ(q+1) using the following sub-steps:

(a) The priors. Compute π(q+1)
1 , . . . , π

(q+1)
N+1 and λ

(q+1)
1 , . . . , λ

(q+1)
N+1 using (29)

and (30);
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(b) The tying parameters. For each n = 1 . . . N :

• Apply procedure Choose to determine an initial value, denoted by s̃(0)n ,
as proposed in Section 5;

• Apply procedure Local Search to each Q(q)
n (s) as defined in (34) start-

ing from s̃(0)n and set the result to s(q+1)
n using the eq. (35) specified

below;

(c) The covariance matrices. For every n = 1 . . . N , use (31) and (32) to com-
pute Σ

(q+1)
n and Γ

(q+1)
n ;

4. Check for convergence: Terminate, otherwise go to Step 2;

5. Apply procedure Select, use (62) specified below to determine the best N ;

This algorithm uses the following procedures:

• Initialize: this procedure aims at providing the initial parameter values θ(0). Its
performance has a strong impact on the time required for the algorithm to con-
verge. In Section 6 we propose different initialization strategies based on single-
space cluster detection.

• Select: this procedure applies the BIC-like criterion to determine the number of
objects N . In Section 7 propose the consistent criterion for the case of conjugate
mixture models.

• Choose: the goal of this procedure is to provide at each M step initial values
s̃
(0)
1 , . . . , s̃

(0)
N which are likely to be close to the global maxima of the functions

Q
(q)
n (s) in (34). The exact form of this procedure is important to ensure the ability

of the subsequent Local Search procedure to find these global maxima. We will
use results on global search algorithms (Zhigljavsky and Žilinskas, 2008) and
propose different variants in Section 5.

• Local Search: an important requirement of this procedure is that it finds a local
maximum of the Q(q)

n (s)’s starting from any arbitrary point in S. In this work, we
will consider procedures that consist in iterating a local update of the form (ν is
the iteration index):

s̃n
(ν+1) = s̃n

(ν) + H(q,ν)
n ∇Q(q)

n (s̃n
(ν)), (35)

with H(q,ν)
n being a positive definite matrix that may vary with ν. When the gra-

dient ∇Q
(q)
n (s) is Lipschitz continuous with some constant L(q)

n , an appropriate
choice that guarantees the increase of Q(q)

n (s̃(ν)) at each iteration ν, is to choose
H(q,ν)
n such that it verifies ‖H (q,ν)

n ‖ ≤ 2/L
(q)
n .

Different choices for H(q,ν)
n are possible and they correspond to different opti-

mization methods that belong, in general, to the variable metric class. For exam-
ple H(q,ν)

n = 2

L
(q)
n

I leads to gradient ascent, while taking H(q,ν)
n as a scaled inverse

of the Hessian matrix would lead to a Newton-Raphson optimization step. Other
possibilities include Levenberg-Marquardt and quasi-Newton methods.
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4 Analysis of the Local Search Procedure

Each instance of (34) for n = 1, . . . , N can be solved independently. In this section
we focus on providing a set of conditions under which each iteration of our algorithm
guarantees that the objective function Q(q)

n (s) in (34) is increased. We start by rewrit-
ing (34) more conveniently in order to perform the optimization with respect to s ∈ S.
To simplify the notation, the iteration index q is sometimes omitted. We simply write
Qn(s) for Q(q)

n (s).

Let ᾱn =
∑M

m=1 α
(q)
mn and β̄n =

∑K
k=1 β

(q)
kn denote the average object weights in

each one of the two modalities. We introduce αn = ᾱ−1n (α
(q)
1n , . . . , α

(q)
Mn) and βn =

β̄−1n (β
(q)
1n , . . . , β

(q)
Kn) the discrete probability distributions obtained by normalizing the

object weights. We denote by F and G the random variables that take their values in
the discrete sets {f 1, . . . ,fm, . . . ,fM} and {g1, . . . , gk, . . . , gK}. It follows that the
expressions for the optimal variances (31) and (32) as functions of s, can be rewritten
as:

Σ(q+1)
n (s) =Eαn [

(
F −F(s)

)(
F −F(s)

)>
], (36)

Γ(q+1)
n (s) =Eβn [

(
G− G(s)

)(
G− G(s)

)>
], (37)

where Eαn and Eβn denote the expectations with respect to the distributions αn and βn.
Using some standard projection formula, it follows that the covariances are:

Σ(q+1)
n (s) =Vf + vfv

>
f , (38)

Γ(q+1)(s) =Vg + vgv
>
g , (39)

where Vf and Vg are the covariance matrices of F and G respectively under distribu-
tions αn and βn, and vf and vg are vectors defined by:

vf = Eαn [F ]−F(s), (40)
vg = Eβn [G]− G(s). (41)

For convenience we omit the index n for Vf , Vg, vf and vg. Let f̄n = Eαn [F ] and
ḡn = Eβn [G]. This yields:

f̄n = ᾱ−1n

M∑
m=1

α(q)
mnfm, (42)

ḡn = β̄−1n

K∑
k=1

β
(q)
kn gk, (43)

Vf = ᾱ−1n

M∑
m=1

α(q)
mnfmf

>
m − f̄nf̄

>
n , (44)

Vg = β̄−1n

K∑
k=1

β
(q)
kn gkg

>
k − ḡnḡ>n . (45)
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Next we derive a simplified expression for Qn(s) in (34) in order to investigate its
properties. Notice that one can write (34) as the sum Qn(s) = Qn,F(s) + Qn,G(s),
with:

Qn,F(s) = −
M∑
m=1

α(q)
mn(‖fm −F(s)‖2

Σ
(q+1)
n (s) + log |Σ(q+1)

n (s)|), (46)

and a similar expression for Qn,G(s). Eq. (46) can be written:

Qn,F(s) = −ᾱn(Eαn [(F −F(s))>Σ(q+1)
n (s)−1(F −F(s))] + log |Σ(q+1)

n (s)|). (47)

The first term of (47) can be further divided into two terms:

Eαn [(F −F(s))>Σ(q+1)
n (s)−1(F −F(s))] =

=Eαn [(F − f̄n)>Σ(q+1)
n (s)−1(F − f̄n)] + v>f Σ(q+1)

n (s)
−1
vf . (48)

The Sherman-Morrison formula applied to (38) leads to

Σ(q+1)
n (s)−1 = V−1f − V−1f vfv

>
f V−1f /(1 +Dn,F(s)), (49)

with:
Dn,F(s) = ‖F(s)− f̄n‖2Vf

. (50)

It follows that (48) can be written as the sum of:

Eαn [(F − f̄n)>Σ(q+1)
n (s)−1(F − f̄n)] = Cf −

Dn,F(s)

1 +Dn,F(s)
, (51)

and of

v>f Σ(q+1)
n (s)

−1
vf =

Dn,F(s)

1 +Dn,F(s)
. (52)

Hence the first term of (47), namely (48) is equal to Cf which is constant with respect
to s. Moreover, applying the matrix determinant lemma to the second term of (47) we
successively obtain:

log |Σ(q+1)
n (s)| = log |Vf + vfv

>
f | = log |Vf |+ log(1 + v>f V−1f vf ) =

= log |Vf |+ log(1 +Dn,F(s)). (53)

It follows that there is only one term depending on s in (47):

Qn,F(s) = −ᾱn (Cf + log |Vf |+ log(1 +Dn,F(s))) . (54)

Repeating the same derivation for the second sensorial modality we obtain the following
equivalent form of (34):

Qn(s) = −ᾱn log(1 +Dn,F(s))− β̄n log(1 +Dn,G(s)) + C, (55)

where C is some constant not depending on s.

Using this form of Qn(s), we can now investigate the properties of its gradient
∇Qn(s). It appears that under some regularity assumptions on F and G, the gradient
∇Qn(s) is bounded and Lipschitz continuous. The corresponding theorem is formu-
lated and proved. First we establish as a lemma some technical results, required to prove
the theorem. In what follows, for any matrix V, the matrix norm used is the operator
norm ‖V‖ = sup

‖v‖=1

‖Vv‖. For simplicity, we further omit the index n.
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Lemma 1. Let V be a symmetric positive definite matrix. Then the function

ϕ(v) = ‖Vv‖/(1 + v>Vv)

is bounded by ϕ(v) ≤ Cϕ(V) with Cϕ(V) =
√
‖V‖/2 and is Lipschitz continuous:

∀v, ṽ ‖ϕ(v)− ϕ(ṽ)‖ ≤ Lϕ(V)‖v − ṽ‖,

where Lϕ(V) = ‖V‖(1 + µ(V)/2) is the Lipschitz constant and µ(V) = ‖V‖‖V−1‖ is
the condition number of V.

Proof: We start by introducing w = Vv so that ϕ(v) = ϕ̃(w) = ‖w‖/(1 +
w>V−1w). As soon asw>V−1w ≥ λmin‖w‖2 (where we denoted by λmin the smallest
eigenvalue of V−1, so that in fact λmin = ‖V‖−1), to find the maximum of ϕ̃(w) we
should maximize the expression t/(1 + λmint

2) for t = ‖w‖ ≥ 0. It is reached at the
point t∗ = λ

−1/2
min . Substituting this value into the original expressions gives ϕ(v) ≤√

‖V‖/2.

To compute the Lipschitz constant Lϕ we consider the derivative:

‖∇ϕ̃′(w)‖ =

∥∥(1 +w>V−1w)w − 2‖w‖2V−1w
∥∥

‖w‖(1 +w>V−1w)2
≤ 1 +

2‖V−1‖‖w‖2

(1 +w>V−1w)2
,

from where we find that ‖∇ϕ̃′(w)‖ ≤ 1+µ(V)/2, and so Lϕ = ‖V‖(1+µ(V)/2). �

This lemma yields the following main result for the gradient ∇Q:

Theorem 1. Assume functions F and G and their derivatives F ′ and G ′ are Lipschitz
continuous with constants LF , LG , L′F and L′G respectively. Then the gradient ∇Q is
bounded and Lipschitz continuous with some constant L.

Proof: From (55) the gradient ∇Q can be written as:

∇Q(s) = ∇QF(s) + ∇QG(s) =

=
2ᾱF ′>(s)V−1f (f̄ −F(s))

1 +DF(s)
+

2β̄G ′>(s)V−1g (ḡ − G(s))

1 +DG(s)
. (56)

It follows from Lemma 1 that ‖∇QF(s)‖ ≤ 2LF ᾱCϕ(V−1f ) and ‖∇QG(s)‖ ≤ 2LGβ̄Cϕ(V−1g ).
The norm of the gradient is then bounded by:

‖∇Q(s)‖ ≤ 2LF ᾱCϕ(V−1f ) + 2LGβ̄Cϕ(V−1g ). (57)

Considering the norm ‖∇QF(s)−∇QF(s̃)‖, we introduce v1 = f̄ −F(s) and v2 =
f̄ −F(s̃). Then we have:

‖∇QF(s)−∇QF(s̃)‖ ≤ 2ᾱ

(∥∥∥∥∥(F ′(s)−F ′(s̃))>V−1f v1
1 + ‖v1‖2Vf

∥∥∥∥∥ +

+

∥∥∥∥∥F ′
>(s̃)V−1f v2

1 + ‖v2‖2Vf

−
F ′>(s̃)V−1f v1
1 + ‖v1‖2Vf

∥∥∥∥∥
)
. (58)
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Using Lemma 1 with V−1f we have:

‖∇QF(s)−∇QF(s̃)‖ ≤ 2ᾱ
(
L′FCϕ(V−1f ) + L2

FLϕ(V−1f )
)
‖s− s̃‖.

The same derivations can be performed for ∇QG(s), so that finally we get:

‖∇QG(s)−∇QG(s̃)‖ ≤ L‖s− s̃‖, (59)

where the Lipschitz constant is given by:

L = 2ᾱ
(
L′FCϕ(V−1f ) + L2

FLϕ(V−1f )
)

+ 2β̄
(
L′GCϕ(V−1g ) + L2

GLϕ(V−1g )
)
. (60)

�

To actually construct the non-decreasing sequence in (35), we make use of the fol-
lowing fundamental result on variable metric gradient ascent algorithms.

Theorem 2 ((Polyak, 1987)). Let the function Q : Rd → R be differentiable on Rd

and its gradient ∇Q be Lipschitz continuous with constant L. Let the matrix H be
positive definite, such that ‖H‖ ≤ 2

L
. Then the sequence Q(s̃(ν)), defined by s̃(ν+1) =

s̃(ν) + H∇Q(s̃(ν)) is non-decreasing.

This result shows that for any functions F and G that verify the conditions of Theo-
rem 1, using (35) with H = 2

L
I, we are able to construct a non-decreasing sequence and

an appropriate Local Search procedure. Notice however, that its guaranteed theoretical
convergence speed is linear. It can be improved in several ways.

First, the optimization direction can be adjusted. For certain problems, the matrix
H can be chosen as in variable metric algorithms, such as Newton-Raphson method,
quasi-Newton methods or Levenberg-Marquardt method, provided that it satisfies the
conditions of Theorem 2. Second, the optimization step size can be increased based on
local properties of the target function. For example, at iteration ν, if when considering
the functionsF and G on some restricted domain S(ν) there exist smaller local Lipschitz
constants L(ν)

F , L(ν)
G , L′(ν)F and L′(ν)G , H can be set to H = 2

L(ν) I with L(ν) smaller than L.
It follows that ‖s̃(ν+1) − s̃(ν)‖ ≤ 2

L(ν)‖∇Q(s̃(ν))‖, which means that one can take the
local constants, L(ν)

F , L(ν)
G , L′(ν)F and L′(ν)G if they are valid in the ball Bρ(ν)(s̃(ν)) with

ρ(ν) =
2

L(ν)

(
2L

(ν)
F ᾱCϕ(V−1f ) + 2L

(ν)
G β̄Cϕ(V−1g )

)
. (61)

5 Global Search and the Choose Procedure

Theorem 1 allows us to use the improved global random search techniques for Lipschitz
continuous functions (Zhigljavsky, 1991). These algorithms are known to converge, in
the sense that generated point sequences fall infinitely often into an arbitrarily small
neighbourhood of the optimal points set. For more details and convergence conditions
see Theorem 3.2.1 and the discussion that follows in (Zhigljavsky, 1991). A proper

14



choice of the initial value s̃(0) not only guarantees to find the global maximum, but can
also be used to increase the convergence speed. A basic strategy is to draw samples
in S, according to some sequence of distributions over S, that verifies the convergence
conditions of global random search methods. However, the speed of convergence of
such an algorithm is quite low.

Global random search methods can also be significantly improved by taking into
account some specificities of the target function. Indeed, in our case, function (55) is
made of two parts for which the optimal points are known and are respectively f̄ and
ḡ. If there exists s̃(0) such that s̃(0) ∈ F−1(f̄) ∩ G−1(ḡ), then it is the global maximum
and the M step solution is found. Otherwise, one can sample S in the vicinity of the set
F−1(f̄) ∪ G−1(ḡ) to focus on a subspace that is likely to contain the global maximum.
This set is, generally speaking, a union of two manifolds. For sampling methods on
manifolds we refer to (Zhigljavsky, 1991). An illustration of this technique is given in
Section 8.

Another possibility is to use a heuristic that function (55) does not change much
after one iteration of the EM algorithm. Then, the initial point s̃(0) for the current
iteration can be set to the optimal value computed at the previous iteration. However,
in general, this simple strategy does not yield the global maximum, as can be seen from
the results in Section 9.

6 Algorithm Initialization and the Initialize Procedure

In this section we focus on the problem of selecting the initial values θ(0) for the model
parameters. As it is often the case with iterative optimization algorithms, the closer
θ(0) is to the optimal parameter values, the less time the algorithm would require to
converge. Within the framework of conjugate mixture models we formulate two ini-
tialization strategies, namely the Observation Space Candidates (OSC) strategy and the
Parameter Space Candidates (PSC) strategy, that attempt to find a good initialization.

The Observation Space Candidates strategy consists in searching for cluster centers
in single modality spaces F and G to further map them into the parameter space S, and
select the best candidates. More specifically, we randomly select an observation fm (or
gk) and run the mean shift algorithm (Comaniciu and Meer, 2002) in the corresponding
space to find local modes of the distribution, which are called candidates. The sets of
candidate points {f̂ i}i∈I and {ĝj}j∈J are further rarefied, that is if ‖f̂ i1 − f̂ i2‖ ≤ εf
for some i1 6= i2 and for some threshold ε > 0, we eliminate one of these points. These
rarefied sets are then mapped to S. If one of the observation space mappings, for exam-
ple F , is non-injective, for each f̂ i we need to select a point si ∈ F−1(f̂ i) that is the
best in some sense. We consider observations density in the other observation spaces
around an image of si as the optimality measure of si. This can be estimated through
calculation of the k-th nearest neighbour distance (k-NN) in the corresponding obser-
vation space. The final step is to choose N points out of these candidates to initialize
the cluster centers {s1, . . . , sN}, so that the inter-cluster distances are maximized. This
can be done using, for example, hierarchical clustering. The variances Σ1, . . . ,ΣN and
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Γ1, . . . ,ΓN are then calculated by standard empirical variance formulas based on ob-
servations, that are closest to the corresponding class center. The priors π1, . . . , πN+1

and λ1, . . . , λN+1 are set to be equal.

The Parameter Space Candidates strategy consists in mapping all the observations
to the parameter space S, and performing subsequent clustering in that space. More
specifically, for every observation fm and gk we find an optimal point from the corre-
sponding preimage F−1(fm) and G−1(gk). The optimality condition is the same as in
the previous strategy, that is we compare the local observation densities using k-NN dis-
tances. Then one proceeds with selecting local modes in space S using the mean-shift
algorithm, and initializing N cluster centers {s1, . . . , sN} from all the candidates thus
calculated. The estimation of variances and priors is exactly the same as in the previous
strategy.

The second strategy proved to be better when performing simulations (see Sec-
tion 10). This can be explained by possible errors in finding the preimage of an obser-
vation space point in the parameter space. Thus mapping a rarefied set of candidates to
the parameter space is less likely to make a good guess in that space than mapping all
the observations and finding the candidates directly in the parameter space.

7 Estimating the Number of Components and the Select
Procedure

To choose the N that best corresponds to the data, we perform model selection based
on a criterion that resembles the BIC criterion (Schwarz, 1978). We consider the score
function of the form

BICN = −2L(f, g, θ̂N) +DN log(M +K), (62)

where θ̂N is the ML estimate obtained by the proposed EM algorithm, L(f, g,θ) is
given by (15) and DN = N

(
d+ 2 + 1

2
(r2 + p2 + r + p)

)
is the dimensionality of the

model.

As in the case of (non-conjugate) Gaussian mixture models, we cannot derive the
criterion from the Laplace approximation of the probability P (f, g|N = N0) because
of the Hessian matrix of L(f, g,θ) that is not necessarily positive definite (Aitkin and
Rubin, 1985; Quinn et al., 1987). Nevertheless, we can use the same arguments as
those used in (Keribin, 2000) for Gaussian mixture models to show that the criterion is
consistent, i.e. if N∗ is the number of components in the real model that generated f and
g, then

NBIC → N∗ a.s., when M,K →∞, (63)

provided variances Σ1, . . . ,ΣN ,Γ1, . . . ,ΓN are non-degenerate and the sequence M
M+K

has only one accumulation point (i.e. has a limit).

The BIC-like criterion (62) shows good performance on both simulated and real
data (see Section 10), choosing correctly the number of objects in all the cases.

16



8 Clustering Using Auditory and Visual Data

We illustrate the method in the case of audiovisual (AV) objects. Objects could be
characterized both by their locations in space and by their auditory status, i.e., whether
they are emitting sounds or not. These object characteristics are not directly observable
and hence they need to be inferred from sensor data, e.g., cameras and microphones.
These sensors are based on different physical principles, they operate with different
bandwidths and sampling rates, and they provide different types of information. On
one side, light waves convey useful visual information only indirectly, on the premise
that they reflect onto the objects’ surfaces. A natural scene is composed of many ob-
jects/surfaces and hence the task of associating visual data with objects is a difficult
one. On the other side, acoustic waves convey auditory information directly from the
emitter to the receiver but the observed data is perturbed by the presence of reverbera-
tions, of other sound sources, and of background noise. Moreover, very different meth-
ods are used to extract information from these two sensor types. A wide variety of
computer vision principles exist for extracting 3D points from a single image or from
a pair of stereoscopic cameras (Forsyth and Ponce, 2003) but practical methods are
strongly dependent on the lighting conditions and on the properties of the objects’ sur-
faces (presence or absence of texture, color, shape, reflectance, etc.). Similarly, various
algorithms were developed to locate sound sources using a microphone pair based on
interaural time differences (ITD) and on interaural level differences (ILD) (Wang and
Brown, 2006; Christensen et al., 2007), but these cues are difficult to interpret in natural
settings due to the presence of background noise and of other reverberant objects. A
notable improvement consists in the use a larger number of microphones (Dibiase et al.,
2001). Nevertheless, the extraction of 3D sound source positions from several micro-
phone observations results in inaccurate estimates. We show below that our method can
be used to combine visual and auditory observations to detect and localize objects. A
typical example where the conjugate mixture models framework may help is the task of
locating several speaking persons.

Using the same notations as above, we consider two sensor spaces. The multimodal
data consists of M visual observations f and of K auditory observations g. We consider
data that are recorded over a short time interval [t1, t2], such that one can reasonably
assume that the AV objects have a stationary spatial location. Nevertheless, it is not
assumed here that the AV objects, e.g., speakers, are static: lip movements, head and
hand gestures are tolerated. We address the problem of estimating the spatial locations
of all the objects that are both seen and heard. Let N be the number of objects and
in this case each object is described by a three dimensional parameter vector sn =
(xn, yn, zn)>.

The AV data are gathered using a pair of stereoscopic cameras and a pair of omnidi-
rectional microphones, i.e., binocular vision and binaural hearing. A visual observation
vector fm = (um, vm, dm)> corresponds to a 2D image location (um, vm) and to an
associated binocular disparity dm. Considering a projective camera model (Faugeras,
1993) it is straightforward to define an invertible function F : R3 → R3 that maps
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s = (x, y, z)> onto f = (u, v, d)>:

F(s) =

(
x

z
,
y

z
,
1

z

)>
and F−1(f) =

(
u

d
,
v

d
,

1

d

)>
. (64)

This model corresponds to a rectified camera pair (Hartley and Zisserman, 2000) and it
can be easily generalized to more complex binocular geometries (Hansard and Horaud,
2008, 2007). Without loss of generality one can use a sensor-centered coordinate system
to represent the object locations.

Similarly one can use the auditory equivalent of disparity, namely the interau-
ral time difference (ITD) widely used by auditory scene analysis methods (Wang and
Brown, 2006). The function G : R3 → R maps s = (x, y, z)> onto a 1D audio obser-
vation:

g = G(s) =
1

c

(
‖s− sM1‖ − ‖s− sM2‖

)
. (65)

Here c is the sound speed and sM1 and sM2 are the 3D locations of the two microphones
in the sensor-centered coordinate system. Each isosurface defined by (65) is repre-
sented by one sheet of a two-sheet hyperboloid in 3D. Hence, each audio observation g
constrains the location of the auditory source to lie onto a 2D manifold.

In order to perform audiovisual clustering based on the conjugate EM algorithm,
Theorem 1 (Section 4) must hold for both (64) and (65), namely the functions F and G
and their derivatives are Lipschitz continuous. We prove the following theorem:

Theorem 3. The functions F , F ′, G and G ′ are Lipschitz continuous with constants
LF = z−1min

√
3, L′F = z−2min, LG = ‖sM1 − sM2‖(cR)−1 and L′G = 3(cR)−1 in the

domain S = {|z| > zmin > 1} ∩
{

min{‖s− sM1‖, ‖s− sM2‖} > R > 1
}
.

Proof: The derivatives of F and G are given by:

F ′(s) =
1

z

 1 0 −x/z
0 1 −y/z
0 0 −1/z

 (66)

G ′(s) =
1

c

(
s− sM1

‖s− sM1‖
− s− sM2

‖s− sM2‖

)
. (67)

The eigenvalues ofF ′(s) are 1/z and−1/z2, so ‖F ′(s)‖ ≤ max{z−1, z−2} ≤ z−1min,
from which it follows that LF can be taken as LF = z−1min

√
3. Also ‖F ′(s)−F ′(s̃)‖ ≤

max{|z−1 − z̃−1|, |z−2 − z̃−2|} ≤ z−2min‖s− s̃‖, so that L′F can be set to L′F = z−2min.

Introducing e1 = s−sM1

‖s−sM1
‖ and e2 = s−sM2

‖s−sM2
‖ , it comes ‖e1‖ = ‖e2‖ = 1 and

G ′(s) = 1
c
(e1−e2). Provided that ‖s− sM1‖ and ‖s− sM2‖ are both greater than R, it

follows ‖G ′(s)‖ = 1
c
‖e1−e2‖ ≤ ‖sM1−sM2‖(cR)−1 and so LG = ‖sM1−sM2‖(cR)−1.

Then, the second derivative of G is given by

G ′′(s) =
1

c‖s− sM1‖
(I− e1e>1 )− 1

c‖s− sM2‖
(I− e2e>2 ).

18



so that ‖G ′′(s)‖ ≤
∣∣∣ 1
c‖s−sM1‖

− 1
c‖s−sM2‖

∣∣∣ + sup
‖v‖=1

2e1e>1 v
cmin{‖s−sM1‖,‖s−sM2‖}

≤ 3(cR)−1,

and L′G can be set to L′G = 3(cR)−1. �

This result shows that under some natural conditions (The AV objects should not
be too close to the sensors) the conjugate EM algorithm described in Section 3.3 can
be applied. The constant L given by Lemma 1 guarantees a certain (worst-case) con-
vergence speed. In practice, we can use the techniques mentioned in Sections 4 and 5
to accelerate the algorithm. First, to speed up the local optimization step, local Lips-
chitz constants can be computed based on the current value of parameter s̃(ν). Equa-
tion (61) gives the largest possible step size ρ(ν), so setting z

(ν)
min = z(ν) − ρ(ν) and

R(ν) = min{‖s̃(ν)−sM2‖, ‖s̃(ν)−sM1‖}−ρ(ν), provides local Lipschitz constants that
insure the update not to quit S(ν) = {|z| > z

(ν)
min} ∩

{
min{‖s − sM1‖, ‖s − sM2‖} >

R(ν)
}

. Second, we propose four possibilities to set the initial object parameter values

s̃(0)n : (i) it can be taken to be the previously estimated object position s(q−1)n , (ii) it can be
set to F−1(f̄) (as soon as F is injective in S), (iii) it can be found through sampling of
the manifold G−1(ḡ) by selecting the sampled value which gives the largest Q value, or
(iv) similarly through sampling directly in S. Comparisons are reported in the following
sections.

9 Experiments with Simulated Data

Our algorithm is first illustrated on simulated data. For simplicity we consider (u, d)
and (x, z) coordinates so that F ⊆ R2 and S ⊆ R2. Notice however that this pre-
serves the projective nature of the mapping F , it does not qualitatively affect the re-
sults and allows to better understand the algorithm performance. We consider three
objects defined in S by sn, n = 1, 2, 3. We simulated three cases: well-separated
objects (GoodSep), partially occluded objects (PoorSep) and poor precision in visual
observations for well-separated objects (PoorPrec). The ground-truth object locations
(x, z) for the GoodSep and PoorPrec cases are the same, namely s1 = (−300, 1000),
s2 = (10, 800) and s3 = (500, 1500). In the PoorSep case, the coordinates are re-
spectively s1 = (−300, 1000), s2 = (10, 800) and s3 = (100, 1500). The data in
both observation spaces F and G was simulated from a mixture model with three Gaus-
sian components and a uniform component that models the outliers. The means of the
Gaussian components are computed using F(sn) and G(sn), n = 1, 2, 3. An example
of simulated data for the three mentioned configurations is shown in Figure 2, i.e., (u, d)
locations of the visual observations and ITD values of the auditory observations.

Initialization. We compared two strategies, Observation Space Candidates (OSC)
and Parameter Space Candidates (PSC) that are proposed in Section 6. Their per-
formance is summarized in Figure 3. It shows the mean and variance of the likelihood
valueL(f, g,θ) for initial parameters θ(0)OSC and θ(0)PSC chosen by OSC and PSC strategies
respectively. For the total number of clusters N = 1, . . . , 5 and different object config-
urations, we calculate the statistics based on 10 initializations. The analysis shows that
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Figure 2: Simulated data in visual (top) and audio (bottom) observation spaces for three
cases: (a) well-separated objects, (b) partially occluded objects, and (c) poor precision
of visual observations. The small squares correspond to the ground-truth parameter
values. Each one of the two mixtures models (associated with each sensorial modality)
contains four components: three objects and one outlier class.

the PSC strategy performs at least as well as the OSC strategy, or even better in some
cases. Our explanation is that mappings from observation spaces to parameter space are
subject to absolute (and in our case bounded) noise. Mapping all the observations and
calculating a candidate point in the parameter space has an averaging effect and reduces
the absolute error, compared to the strategy with candidate calculation being performed
in an observation space with subsequent mapping to the parameter space. Therefore in
what follows, all the results are obtained based on the PSC initialization strategy.

Optimization. We compared several versions of the algorithm based on various Choose
and Local Search strategies. For the initial values s̃n(0), we considered the following
possibilities: the optimal value computed at a previous run of the algorithm (IP), the
value predicted from visual data (IV), the value predicted from audio data (IA) and the
value obtained by global random search (IG). More specifically:

• When initializing from visual data (IV), the average value f̄n, calculated in the
current E-step of the algorithm for every n, was mapped to the parameter space
and s̃n(0) set to s̃n(0) = F−1(f̄n) using the injectivity of F .

• When initializing from audio data (IA), G−1(ḡn) defines a manifold. The gen-
eral strategy here would be to find the optimal point that lies on this surface. We
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Figure 3: Means and variances of log-likelihood values L(f, g,θ) for initial parameters
θ
(0)
OSC and θ(0)PSC chosen by Observation Space Candidates (OSC, red) and Parameter

Space Candidates (PSC, blue) strategies respectively, for different numbers of clusters
N and different data configurations.

achieved this through random search based on a uniform sampling on the corre-
sponding part of the hyperboloid (see (Zhigljavsky, 1991) for details on sampling
from an arbitrary distribution on a manifold); in our experiments we used 50
samples to select the one providing the largest Q (likelihood) value.

• The most general initialization scheme (IG) was implemented using global ran-
dom search in the whole parameter space S; 200 samples were used in this case.

Local optimization was performed either using basic gradient ascent (BA) or the
locally accelerated gradient ascent (AA). The latter used the local Lipschitz constants
to augment the step size, as described in Section 4.

Each algorithm run consisted of 70 iterations of the EM algorithm with 10 non-
decreasing iterations during the M step.

To check the convergence speed of different versions of the algorithm for the three
object configurations we compared the likelihood evolution graphs that are presented in
Figure 4. Each graph contains several curves that correspond to five different versions
of the algorithm. The acronyms we use to refer to the different versions (for example,
IPAA) consist of two parts encoding the initialization (IP) and the local optimization
(AA) types. The black dashed line on each graph shows the ‘ground truth’ likelihood
level, that is the likelihood value for the parameters used to generate the data. The
meaning of the acronyms is recalled in Table 1.

As expected, the simplest version IPBA that uses none of the proposed acceleration
techniques appears to be the slowest. The other variants using basic gradient ascent are
then not reported. Predicting a single object parameter value from visual observations
(IVAA) does not give any improvement over IPAA, where s̃(0) is taken from the previ-
ous EM iteration. When s̃(0) is obtained by sampling the hyperboloid predicted from
audio observations (IAAA), a significant impact on the convergence speed is observed,
especially on early stages of the algorithm, where the predicted value can be quite far
from the optimal one. However, ‘blind’ sampling of the whole parameter space does not
bring any advantage: it is much less efficient regarding the number of samples required
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Table 1: Acronyms used for five variants of the conjugate EM algorithm. Variants
correspond to different choices for the Choose and Local search procedures.

Acronym s̃(0) initialization (Choose) Local optimization (Search)
IPBA previous iteration value basic gradient ascent
IGAA global random search accelerated gradient ascent
IVAA predicted value from visual data accelerated gradient ascent
IPAA previous iteration value accelerated gradient ascent
IAAA audio predicted manifold sampling accelerated gradient ascent

for the same precision. This suggests that in the general case, the best strategy would be
to sample the manifoldsF−1(f̄n) and G−1(ḡn) with possible small perturbations to find
the best s̃(0) estimate and to perform an accelerated gradient ascent afterwards (IAAA).
We note that IAAA succeeds in all the cases to find parameter values that are well-fitted
to the model in terms of likelihood function (likelihood is greater or equal than that of
real parameter values).

Parameter evolution trajectories for the IAAA version of the algorithm in the Good-
Sep case are shown in Figures 5-6. The estimate changes are reflected by the node
sizes (from smaller to bigger) and colours (from darker to lighter). The final values are
very close to the real cluster centers in all three audio, visual and object spaces. The
convergence speed is quite dependent on the initialization. In the provided example
the algorithm spent almost a half of useful iterations to disentangle the estimates trying
to decide which one corresponds to which class. Another possibility here would be to
predict the initial values through sampling in the audio domain. We demonstrate this
strategy further when working with real data.

We compared the performance of our algorithm for the three object configurations.
For each of them, we computed absolute and relative errors for the object parameter
estimations in the different coordinate systems (object, audio and visual spaces). The
averages were taken over 10 runs of the algorithm for different PSC initializations, as
described above. The results are reported in Table 2. We give object location estimates
ŝ = (x̂, ẑ), f̂ = (û, d̂) and ĝ in parameter, visual and audio spaces respectively. It
appears that the localization precision is quite high. In a realistic setting such as that of
Section 10, the measurement unit can be set to a millimeter. In that case, the observed
precision, in a well-separated objects configuration, it is at worse about 6cm. However,
precision in the z coordinate is quite sensible to the variance of the visual data and
the object configuration. To get a better idea of the relationship between the variance
in object space and the variance in visual space, F−1 can be replaced by its linear
approximation given by a first order Taylor expansion. Assuming then that visual data
are distributed according to some probability distribution with mean µF and variance
ΣF , it follows that through the linear approximation of F−1, the variance in object

space is ∂F−1(µF )

∂f
ΣF

∂F−1(µF )

∂f

>
. Then, the z coordinate covariance for an object n is

approximately proportional to the d covariance for the object multiplied by z4n. For
distant objects, a very high precision in d is needed to get a satisfactory precision in
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Table 2: IAAA algorithm: object location estimates in parameter, visual and audio
spaces for GoodSep, PoorSep and PoorPrec object configurations. The estimates are
calculated based on ten runs of the algorithm with PSC initializations.

Ground Truth Estimates Mean Absolute Error Relative Error
Parameter Space s = (x, z) ŝ = (x̂, ẑ) ea = ‖ŝ− s‖ er = ‖ŝ− s‖/‖s‖

G
oo

dS
ep Object 1 (−300, 1000) (−300.13, 997.81) 2.2 2.1 · 10−3

Object 2 (10, 800) (9.28, 804.46) 4.52 5.7 · 10−3

Object 3 (500, 1500) (513.56, 1555.23) 56.86 3.5 · 10−2

Po
or

Se
p Object 1 (−300, 1000) (−307.47, 1028.38) 29.35 2.8 · 10−2

Object 2 (10, 800) (14.19, 895.69) 95.79 1.2 · 10−1

Object 3 (100, 1500) (105.02, 1447.49) 52.75 3.5 · 10−2

Po
or

Pr
ec Object 1 (−300, 1000) (−208.86, 698.51) 314.97 0.3

Object 2 (10, 800) (8.44, 703.97) 96.04 1.2 · 10−1

Object 3 (500, 1500) (507.65, 1533.8) 34.66 2.2 · 10−2

Visual Space f = (u, d) f̂ = (û, d̂) ea = ‖f̂ − f‖ er = ‖f̂ − f‖/‖f‖

G
oo

dS
ep Object 1 (−0.3, 0.001) (−0.3008, 0.001) 7.87 · 10−4 2.6 · 10−3

Object 2 (0.0125, 0.00125) (0.0115, 0.00124) 9.59 · 10−4 7.6 · 10−2

Object 3 (0.3333, 0.00067) (0.3302, 0.00064) 31.21 · 10−4 9.3 · 10−3

Po
or

Se
p Object 1 (−0.3, 0.001) (−0.299, 0.001) 1.02 · 10−3 3.4 · 10−3

Object 2 (0.0125, 0.00125) (0.0159, 0.00112) 3.36 · 10−3 2.6 · 10−1

Object 3 (0.6667, 0.00067) (0.7131, 0.00238) 4.95 · 10−3 7.4 · 10−2

Po
or

Pr
ec Object 1 (−0.3, 0.001) (−0.299, 0.0014) 10.8 · 10−4 3.5 · 10−3

Object 2 (0.0125, 0.00125) (0.012, 0.00142) 5.38 · 10−4 4.3 · 10−2

Object 3 (0.3333, 0.00067) (0.331, 0.00065) 23.56 · 10−4 7.1 · 10−3

Audio Space g ĝ ea = |ĝ − g| er = |ĝ − g|/|g|

G
oo

dS
ep Object 1 −49.71 −49.8 0.09 1.9 · 10−3

Object 2 −8.22 −8.35 0.13 1.6 · 10−2

Object 3 34.75 34.37 0.38 1.1 · 10−2

Po
or

Se
p Object 1 −49.71 −49.59 0.12 2.3 · 10−3

Object 2 −8.22 −7.76 0.46 5.6 · 10−2

Object 3 −0.66 −0.02 0.65 9.7 · 10−1

Po
or

Pr
ec Object 1 −49.71 −49.49 0.22 4.4 · 10−3

Object 2 −8.22 −8.28 0.06 7.6 · 10−3

Object 3 34.75 34.47 0.29 8.3 · 10−3
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Figure 4: Likelihood function evolution for five variants of the algorithm in three cases.
Top-left: well-separated objects; top-right: poorly separated objects; bottom: well-
separated object but poor observation precision.

z. At the same time we observe that the likelihood of the estimate configuration often
exceeds the likelihood for real parameter values. This suggests that the model performs
well for the given data, but cannot get better precision than that imposed by the data.

Selection. To select the optimal number of clusters N we applied the BIC crite-
rion (62) to the models, trained for that N . The BIC score graphs are shown on Fig-
ure 7. The total number of objects N is correctly determined in all the 3 cases of object
configurations, from which we conclude that the BIC criterion provides reliable model
selection in our case.

10 Experiments with Real Data

In this section we evaluate the effectiveness of our algorithms in estimating the 3D
locations of AV objects, i.e., a person localization task. The examples used below are
from a database of realistic AV scenarios described in detail in (Arnaud et al., 2008).

The experimental setup consists of a mannequin equipped with a pair of micro-
phones fixed into its ears and a pair of stereoscopic cameras mounted onto its forehead
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Figure 5: IAAA algorithm: parameter evolution and assignment results for the GoodSep
case in audio and visual spaces (note the scale change which corresponds to a zoom on
the cluster centers). The initialization (white stars) is based on the PSC strategy. Ground
truth means are marked with squares. The evolution is shown by circles from smaller
to bigger, from darker to brighter. Observations assignments are depicted by different
markers (◦, ∗ and× for the three object classes) in visual space and are colour-coded in
audio space. Due to the zoom, outliers are not visible on these figures.
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scenario visible
persons

speaking
persons

visual back-
ground

audio
noise

occluded
speakers

audio
overlap

meeting 3 5 yes yes no yes
cocktail
party 3 3 yes yes yes yes

Table 3: Summary of the main characteristics of the two scenarios used to evaluate the
multimodal clustering algorithm.

(this device was developed within the POP2 project). Each data set comprises two audio
tracks, two image sequences, as well as the calibration information. All the recordings
were performed in an ordinary room with no special adjustments to its acoustics or
appearance. Thus the data contain both visual background information, and auditory
noise, reverberations in particular. This configuration best mimics what a person would
hear and see in a standard indoor environment.

We tested our multimodal clustering method with two scenarios: a meeting and a
cocktail party, Table 3:

• The meeting scenario3 is a recording of a discussion held by five persons sitting
around a table, only three of them being visible. It lasts 25 seconds and contains a
total of about 8000 visual and 600 audio observations. The three visible persons
perform head and body movements while taking speech turns. Sometimes two
persons (visible or not) speak simultaneously.

• The cocktail party scenario4 shows a dynamic scene with three persons walking
in a room and taking speech turns. Occasionally, one speaker is hidden by another
person and two persons may speak simultaneously. Speakers may go in and out of
the two cameras field of view. Moreover, there are sounds emitted by the persons’
steps. The recording lasts 30 seconds and contains a total of about 12500 visual
and 3400 audio observations.

10.1 Preprocessing and Algorithm Initialization

Visual observations, f , are obtained as follows. First we detect points of interest (POI)
in both the left and right images and we select those points that correspond to a mov-
ing scene object. Second we perform stereo matching such that a disparity value is
associated with each matched point.

In practice we used the POI detector described in (Harris and Stephens, 1988). This
detector is known to have high repeatability in the presence of texture and to be pho-
tometric invariant. We analyse each image point detected this way and we select those
points associated with a significant motion pattern. Motion patterns are obtained in

2http://perception.inrialpes.fr/POP/
3http://perception.inrialpes.fr/CAVA_Dataset/Site/data.html#M1
4http://perception.inrialpes.fr/CAVA_Dataset/Site/data.html#CTMS3
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a straightforward manner. A temporal intensity variance σt is estimated at each POI.
Assuming stable lighting conditions, the POI belongs to a static scene object if its tem-
poral intensity variance is low and non-zero due to a camera noise only. For image
points belonging to a dynamic scene object, the local variance is higher and depends
on the texture of the moving object and on the motion speed. In our experiments, we
estimated the local temporal intensity variance σt at each POI, from a collection of 5
consecutive frames. The point is labelled “motion” if σt > 5 (for 8-bit gray-scale im-
ages), otherwise it is labelled as “static”. The motion-labelled points are then matched
and the associated disparities are estimated using standard stereo methods. In practice
the results shown in this paper are obtained with the method described in (Hansard and
Horaud, 2007) using the INTEL’s OpenCV camera calibration software 5. Overall, this
provides the (u, v, d)> to (x, y, z)> mapping (64). Examples are shown on Figure 8. Al-
ternatively, we could have used the spatiotemporal point detector described in (Laptev,
2005). This methods is designed to detect points in a video stream having large local
variance in both the spatial and temporal domains, thus representing abrupt events in
the stream. However, such points are quite rare in our dataset.

Auditory observations, g, are obtained as follows. Our method uses interaural
time differences (ITD) which are detected through the analysis of the cross-correlogram
of the filtered left- and right-microphone one-dimensional signals for every frequency
band (Christensen et al., 2007). Like any other audio-visual fusion method, one needs to
perform audio-visual calibration, namely to estimate the positions of the microphones
and the positions and orientations of the cameras in a common world coordinate system.
This is done using the method described in (Arnaud et al., 2008).

In order to initialize the algorithm’s parameter values we used the Parameter Space
Candidates (PSC) initialization strategy described in Section 6. Although real-data dis-
tributions do not strictly correspond to the case of Gaussian mixtures, the initialization
strategy that we have adopted remains relevant. This originates from the fact that param-
eter space sampling with configuration restrictions plays the role of a global optimiza-
tion method similar to Monte-Carlo sampling in the method of generations (Zhigljavsky
and Žilinskas, 2008). It helps to avoid local maxima and allows to quickly find a set
of appropriate initial parameters. Local distribution density modes occur to be good
candidates to initialize cluster centers. As in the case of simulated data, we used the
BIC score, i.e., Section 7 to select the optimal number of audio-visual clusters.

10.2 Results and Discussion

The experimental validation described below was performed with two goals in mind.
Firstly, we wanted to check that our method was stable and robust with real data gath-
ered in complex situations, that it correctly finds the number of clusters and that it
efficiently determines the model’s parameters, i.e., the 3D positions of the audio-visual
objects composing a scene. Secondly, we wanted to test the model’s capability to deal
with dynamic changes in the scene, yet in the presence of acoustic noise/reverberations

5http://www.intel.com/technology/computing/opencv
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(a) Meeting: There are five speakers but only three are visible.

(b) Cocktail party: The three speakers walk in the room.

Figure 8: This figure illustrates how the audio-visual data are preprocessed. Visual
points of interest (POI) associated with scene motion are matched between the left
and right images. The histograms of the interaural time difference (ITD) observations
correspond to a “segment” of 0.3 seconds. The audio-visual calibration allows us to
filter out auditory data that falls outside the field of view of the two cameras. Notice
the large number of auditory perturbations corresponding to noise, reverberations, as
well as to speakers that are outside the visual field of view. In these examples, there are
two simultaneous speakers: (a) S1 and S4 and (b) S1 and S2. Notice that S4 is easily
eliminated because its associated ITD falls outside the visual field of view.
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and visually occluded persons, etc. Below we provide a detailed account of the results
obtained with the meeting and cocktail-party audio-visual sequences.

The audio-visual recordings are split into “segments”, each segment lasts 0.3 sec-
onds. At 25 frames/second this corresponds to approximately eight video frames. The
initialization method described in Section 6 and the model selection method described
in Section 7 are combined and applied to the first segment in order to find initial pa-
rameter values and to estimate the number of components (the number of audio-visual
objects) to be used by the conjugate EM algorithm. Consequently, the parameters esti-
mated for one segment are used to initialize the parameters for the next segment, while
the number of components remains constant.

• Quasi-static scene. The meeting situation corresponds to the well-separated case
which is referred to as GoodSep in the previous section. The initialization strategy
performs well and the candidate configuration obtained by the initialization step
is relatively close to the optimal one found by the EM algorithm described in
detail in Section 3.3. In fact, the likelihood evolution reported in Figure 9 shows
that convergence is reached in about 20 iterations of EM, which is three times
faster than in the simulated GoodSep case reported in Figure 4. The 3D position
estimates are quite accurate, in particular the natural alignment of the speakers
along the table is clearly seen in the XZ plane. Even though in practice, the data
are not piecewise Gaussian and the outliers are not uniformly distributed, our
method performs quite well, which illustrates its robustness when dealing with
real-data distributions. Figure 10 shows sequential results obtained in this case.
The speech sources are correctly detected even in the case when two persons are
simultaneously active.

• Dynamic scene. The cocktail party situation corresponds to the partially occluded
case which is referred to as PoorSep in the previous section. In this case, the
locations of the audio-visual objects varies over time, as well as their number.
Nevertheless, we assume that these changes are rather slow. We did not attempt
to tune our algorithm to the dynamic case. Hence, we use the same initialization
strategy as in the quasi-static case which is briefly summarized above. Figure 11
shows the results obtained in this case.

Overall, the proposed method performs well on data collected in a natural environ-
ment. The initialization strategy and the model selection criterion proved to be robust to
noise and to minor deviations from the Gaussian distribution assumption. It possesses
the features of a global optimization method which enables to find initial parameter val-
ues that are close to optimal ones. In both examples, the parameter initialization and
model selection were performed on the first audio-visual data segment. This certainly
biases the overall results. Indeed, in both cases, the initialization and model selection
algorithms dealt with a case were the objects were well separated. One could rerun
initialization and model selection on every data segment, at the cost of a less efficient
procedure.

The conjugate clustering method automatically weights the auditory and visual
modalities, in terms of precision and amount of observations, to infer the parameter
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Figure 9: An example of applying the proposed EM algorithm to a time interval of
20 seconds of the meeting scenario. The results are shown in the visual and auditory
observation spaces as well as in the parameter space. The initial parameter values are
shown with three stars while the parameter evolution trajectories are shown with circles
of increasing size. The final observation-to-cluster assignments are shown in color: red,
blue, and green for the three Gaussian components and light-blue for the outlier compo-
nent. The log-likelihood curve (bottom-right) shows that the algorithm converged after
20 iterations.
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(a) frames 1001-1010 (b) frames 1011-1020

(c) frames 1021-1030 (d) frames 1031-1040

(e) frames 1041-1050 (f) frames 1051-1060

Figure 10: Results obtained in the case of the meeting scenario shown overlapped onto
the left image. Sixty frames (1001 to 1060) were split into six segments. Parameter
initialization and model selection were performed on the first segment (frames 1-10)
and are not shown. The “visual” covariance matrices associated with the 3 Gaussian
components are projected onto the image plane. The white dots correspond to the pro-
jected 3D locations estimated by the algorithm. The blue, green, and red colors encode
the observation-to-cluster assignments and the active speaker is marked with a corre-
sponding symbol. The algorithm correctly estimates speech sources, even in the case
when two speakers are active.
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(a) frames 181-190 (b) frames 191-200

(c) frames 201-210 (d) frames 211-220

(e) frames 221-230 (f) frames 231-240

Figure 11: Results obtained in the case of the cocktail party scenario shown overlapped
onto the left image. As in the previous case, sixty frames (181 to 240) were split into
six segments. Parameter initialization and model selection were performed on the first
segment (frames 1-10) and are not shown. As expected, well separated objects, (a)-(c),
are correctly handled. While partial occlusion, (d)-(e) is also handled correctly, the
algorithm fails to deal with a complete occlusion, (f).
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values. We noticed that, in general, the visual data are considered by the algorithm as
more reliable. This can be explained by the fact that, in practice, the auditory signals
are contaminated with noise and reverberations. This typically smooths the histogram
peaks in the ITD domain and adds false peaks, as can be seen in Figures 10 and 11. As
reverberations are natural for most of the environments and sound sources, we added
auditory cluster variances to model the local smoothing effect, as well as an outlier cat-
egory to treat false peaks. In general, if the data is gathered using a small time interval,
reverberations and noise have higher effect, the observations are scattered and auditory
spatial localization is poor. At the same time, widening the time interval would result in
sharper peaks for sound sources that are smoothed due to reverberations and dynamics
of the scene, and hence the auditory temporal localization will be less accurate. Thus
the auditory data are typically sparse both in time and space. The temporal discontinu-
ity of the auditory data together with the lack of resolution makes it less reliable than
the visual data.

Although our multimodal clustering model has no built-in dynamic capability, as
is the case with target-tracking methods based on the Kalman filter, the implemented
algorithm performs quite well in the case of partial visual occlusions, as illustrated in
the cocktail party scenario.

11 Conclusions

We proposed a novel framework to cluster heterogeneous data gathered with physi-
cally different sensors. Our approach differs from other existing approaches in that it
combines in a single statistical model a number of clustering tasks while ensuring the
consistency of their results. In addition, the fact that the clustering is performed in ob-
servation spaces allows one to get useful statistics on the data, which is an advantage
of our approach over particle filtering models. The task of simultaneous clustering in
spaces of different nature, related through known functional dependencies to a common
parameter space, was formulated as a likelihood maximization problem. Using the ideas
underlying the classical EM algorithm we built the conjugate EM algorithm to perform
the multimodal clustering task, while keeping attractive convergence properties. The
analysis of the conjugate EM algorithm and, more specifically, of the optimization task
arising in the M-step, revealed several possibilities to increase the convergence speed.
We proposed to decompose the M-step into two procedures, namely the Local Search
and Choose procedures, which allowed us to derive a number of acceleration strategies.
We exhibited appealing properties of the target function which induced several imple-
mentations of these procedures resulting in a significantly improved convergence speed.
We introduced the Initialize and Select procedures to efficiently choose initial parame-
ter values and determine the number of clusters in a consistent manner respectively. A
non trivial audio-visual localization task was considered to illustrate the conjugate EM
performance on both simulated and real data. Simulated data experiments allowed us
to assess the average method behaviour in various configurations. They showed that the
obtained clustering results were precise as regards the observation spaces under con-
sideration. They also illustrated the theoretical dependency between the precisions in

34



observation and parameter spaces. Real data experiments then showed that the observed
data precision was high enough to guarantee high precision in the parameter space.

One of the strong points of the formulated model is that it is open to different useful
extensions. It can be easily extended to an arbitrary number J of observation spaces
F1, . . . ,FJ . The main results, including Local Search and Choose acceleration strate-
gies stay valid with minor changes. The sum of two terms, related to spaces F and
G, would have to be replaced by a sum of J terms corresponding to F1, . . . ,FJ in the
formulas of Section 3.

In particular, adding Gaussian priors on parameters (i.e., priors, covariance matri-
ces and objet locations) would not essentially change the formulae. For a large class
of dynamics equations, the update expressions (29)-(32) for priors and variances will
remain in closed form, whereas the function Q(q)

n (s) in (34) will receive an additional
term logP (s). For instance, multimodal dynamic inference of parameter values for
Brownian dynamics (van Kampen, 2007) can be performed by means of the formulated
model. Gaussian priors would add a quadratic term similar to the others in (34), that can
be viewed as an ‘observation’ from the ambient space modality. Thus the optimization
algorithm would not require any changes and would give an unbiased estimate.

Also, the assumption that assignment variables a and b are independent could be
relaxed. An appropriate approach to perform inference in a non independent case would
be to consider variational approximations (Jordan et al., 1998) and in particular a vari-
ational EM (VEM) framework. The general idea would be to approximate the joint
distribution P (a) by a distribution from a restricted class of probability distributions

that factorize as P̃ (a) =
M∏
m=1

P̃ (am). For any such distribution, our model would be

applicable without any changes so that for a variational version of the conjugate EM
algorithm, all the results from Section 3 would hold.

It appears that as a generalization of Gaussian mixture models, our model has larger
modelling capabilities. It is entirely based on a mathematical framework in which each
step is theoretically well-founded. Its ability to provide good results in a non trivial
multimodal clustering task is particularly promising for applications requiring the inte-
gration of several heterogenous information sources. Therefore, it has advantages over
other methods that include ad-hoc processing while being open to incorporation of more
task dependent information.
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