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Abstract

Finite gaussian mixture models are widely used in statistics thanks to their great flexibility. 

However, parameter estimation for gaussian mixture models with high dimensionality can be 

challenging because of the large number of parameters that need to be estimated. In this letter, we 

propose a penalized likelihood estimator to address this difficulty. The ℓ1-type penalty we impose 

on the inverse covariance matrices encourages sparsity on its entries and therefore helps to reduce 

the effective dimensionality of the problem. We show that the proposed estimate can be efficiently 

computed using an expectation-maximization algorithm. To illustrate the practical merits of the 

proposed method, we consider its applications in model-based clustering and mixture discriminant 

analysis. Numerical experiments with both simulated and real data show that the new method is a 

valuable tool for high-dimensional data analysis.

1 Introduction

In finite gaussian mixture models, a p-dimensional random vector X = (X(1), …, X(p)) is 

assumed to come from a mixture distribution,

(1.1)

where (μ, Σ) is a multivariate normal distribution with mean vector μ and covariance 

matrix Σ, and πks are nonnegative proportions such that π1 + ⋯ + πM = 1. Gaussian mixture 

models are among the most popular statistical modeling tools and are routinely used for 

density estimation, clustering, are discriminant analysis among others (see, e.g., Fraley & 

Raftery, 2002; McLachlan & Peel, 2000).

Despite its great flexibility, the practical use of gaussian mixture models in modeling high-

dimensional data is often hampered by difficulty in parameter estimation. The number of 

parameters required to specify a covariance matrix quickly grows with the dimensionality. 
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The problem is exacerbated in mixture models where multiple covariance matrices are to be 

estimated. Without any parameter restriction, each cluster must have at least (p + 1) 

observations to ensure the existence of the maximum likelihood estimate (MLE; Symons, 

1981). As a result, it is well known that the usual MLE can be notoriously unstable, if well 

defined at all, when the data are of moderate or high dimensionality when compared with the 

sample size. To address this issue, a variety of parameter-reduction techniques have been 

developed. In particular, Banfield and Raftery (1993) suggest reparameterizing Σk through 

its eigenvalue decomposition and assume that through this parameterization, some 

parameters are shared across clusters. Extensive studies within the same framework can also 

be found in Celeux and Govaert (1995). Later work has since demonstrated that through 

parameter sharing across clusters, the problem of estimating a large number of parameters 

can be alleviated for data of moderate dimensions. The challenge, however, persists for high-

dimensional data, as the number of parameters remains of the order of p2 even if a common 

covariance matrix is assumed for all clusters.

In this letter, we propose a new technique to address this challenge. Built on recent advances 

in estimating covariance matrices of high-dimensional multivariate gaussian distributions, 

we propose a penalized likelihood estimate for high-dimensional gaussian mixture models. 

The ℓ1 type of penalty we employ encourages sparsity of the inverse covariance matrices and 

therefore can help reduce the effective dimensionality of the problem. We show that the 

proposed estimate can be conveniently computed using an EM algorithm. Moreover, a BIC 

type of criterion is introduced to select the tuning parameter as well as the number of 

clusters. Numerical experiments, both simulated and real data examples, are presented to 

demonstrate the merits of the proposed method.

Our method could prove useful for a variety of statistical problems. For illustration purposes, 

we consider in particular model-based clustering (Fraley & Raftery, 2002) and mixture 

discriminant analysis (Hastie & Tibshirani, 1996), two notable methods that take advantage 

of the flexibility of finite gaussian mixture models in clustering and classification, 

respectively. We demonstrate that with the proposed ℓ1 penalized estimator, both approaches 

can be substantially improved when dealing with high-dimensional problems.

Our investigation here is related to recent studies on parameter estimation in high-

dimensional multivariate gaussian distribution, which can also be viewed as a special case of 

finite gaussian mixture models (see equation 1.1) with M = 1. A number of methods have 

been introduced in the past several years to estimate the covariances matrix with high-

dimensional data (Ledoit & Wolf, 2004; Huang, Liu, Pourahmadi, & Liu, 2006; Li & Gui, 

2006; Yuan & Lin, 2007; Banerjee, El Ghaoui, & d’Aspremont, 2008; Bickel & Levina, 

2008a, 2008b; Rothman, Bickel, Levina, & Zhu, 2008; d’Aspremont, Banerjee, & El 

Ghaoui, 2008; El Karoui, 2008; Fan, Fan, & Lv, 2008; Friedman, Hastie, & Tibshirani, 

2008; Lam & Fan, 2009; Levina, Rothman, & Zhu, 2008; Rothman, Bickel, Levina, & Zhu, 

2008; Yuan, 2008; Deng & Yuan, 2009; Rothman, Levina, & Zhu, 2009, among others). A 

common strategy is to work with the sample covariance matrix, which is readily computable 

regardless of the dimensionality (see Bickel & Levina, 2008a). For the more general finite 

gaussian mixture model, we no longer have the luxury of such an initial estimate, and 

regularization as employed here becomes critical. We thus adopt the idea of a penalized 
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likelihood estimate from Yuan and Lin (2007) and apply an ℓ1-type penalty on the off-

diagonal entries of the inverse covariance matrices.

The rest of the letter is organized as follows. In sections 2 and 3, we introduce the proposed 

penalized likelihood estimator and discuss how it can be efficiently computed in practice. 

Section 4 presents numerical studies to demonstrate the practical merits of the proposed 

method. Applications of the new method to model-based clustering and mixture discriminant 

analysis are discussed in section 5. We conclude with some comments and discussions in 

section 6.

2 Methodology

We start with the case when the number of clusters, M, is known a priori. In this case, the 

log likelihood for a sample X1, …, Xn of n independent copies of X is given by

(2.1)

where Θ = {(πk, μk, Σk) : k = 1, …, M} is the collection of all unknown parameters, and ϕ(·|

μ, Σ) is the density function of a multivariate gaussian distribution with mean vector μk and 

covariance matrix Σk.

The usual MLE can be computed by maximizing L(data|Θ) with respect to Θ. Without any 

constraints on the parameter, Θ includes a total of Mp(p + 1)/2 free parameters, which can 

be prohibitive from both a statistical and computational point of view when p is moderate or 

large when compared with the sample size n. To address this problem, we suggest exploiting 

potential sparsity in the covariance matrix. Sparsity can be found in multiple ways for 

covariance matrix estimation. In particular, we consider sparsity on the entries of the inverse 

covariance matrix. In the case of multivariate gaussian distribution, the inverse covariance 

matrix collects all the partial correlations, and a zero entry of the inverse covariance matrix 

corresponds to the conditional independence between the corresponding variables given the 

remaining ones. This relationship naturally connects with the so-called gaussian graphical 

models (Whittaker, 1990; Lauritzen, 1996) and makes this type of sparsity particularly 

suitable for many applications. Similar interpretation can also be given to the gaussian 

mixture models where each cluster can be viewed as instances of a particular gaussian 

graphical model. For this purpose, we suggest using the following penalized likelihood 

estimate for gaussian mixture models,

(2.2)

where Σ ≻ 0 indicates that Σ is a symmetric and positive-definite matrix, λ ≥ 0 is a tuning 

parameter, and ‖A‖ℓ1 = Σi≠j |aij|. Obviously when M = 1 the estimate defined above reduces 

to the so-called graph lasso estimate of Yuan and Lin (2007).
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Thus far, we have treated the number of clusters M and the tuning parameter λ as fixed. In 

practice, the choice is critical in determining the performance of our method. A commonly 

used strategy to choose these parameters is the multifold cross-validation(CV). In CV, the 

data are first split into training and testing sets. For each pair of tuning parameters (M, λ), 

we compute the penalized likelihood estimate on the training data and then evaluate its 

performance on the testing data. The split, estimation, and evaluation are repeated many 

times to obtain a score for each pair of tuning parameters. The pair associated with the 

optimal score is then used for computing the final estimate based on all data. Despite its 

general applicability and competitive performance, a major drawback of CV is the intensive 

computation it requires. To overcome this problem, we suggest a BIC type of criterion as an 

alternative to the CV score.

Following Yuan and Lin (2007), the degrees of freedom for each estimated covariance 

matrix using the ℓ1 type of regularization can be approximated by the number of nonzero 

entries in the upper half of the inverse covariance matrix. Therefore, the total number of 

degrees of freedom can be approximated by

(2.3)

where p represents the degrees of freedom associated with the unknown mean and Σ̂k is the 

penalized likelihood estimate associated with tuning parameters (M, λ). For each pair of (M, 
λ), the corresponding BIC score function is defined as

(2.4)

Let (M̂, λ̂) be the pair with the smallest BIC score, and we let Θ̂ (M̂, λ̂) be our final 

estimate.

3 Computation

Direct computation of Θ̂ as defined by equation 2.2 can be quite complicated because the 

objective function is nonconvex and the optimization problem is of rather high 

dimensionality. Fortunately, we show here that it can be efficiently done using an 

expectation-maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977). To this end, 

we consider the following “missing data” formulation. Let τ be a random variable indicating 

which cluster X comes from such that

(3.1)

and
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(3.2)

If we can observe the “complete data” (Xi, τi), i = 1, …, n, we can follow the same strategy 

as before and estimate Θ by the ℓ1 penalized log likelihood, which can be given by

(3.3)

Now that we can observe only Xis, we may treat τis as missing data, and the following EM 

algorithm can therefore be employed. We proceed in an iterative fashion. Each iteration 

consists of the E-step and the M-step. Let Θ(t) be the estimate of Θ at the tth iteration. In the 

E-step, we compute the conditional expectation of τi given Xi and the current estimate of Θ. 

In particular, from Bayes’ rule,

(3.4)

This leads to construction of the so-called Q function,

where Θk = {πk, μk, Σk} and Θ(t) is defined in a similar manner.

In the M-step, we update the estimate of Θ by maximizing the Q function, which can be 

done by maximizing Qk with respect to Θk separately. More specifically, the updated value 

of Θk can be given by

(3.5)

and

(3.6)
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Moreover,

(3.7)

where

The optimization problem of equation 3.7 is in a similar form as the graph lasso of Yuan and 

Lin (2007) and can be computed efficiently using a newly developed algorithm by Friedman 

et al. (2008).

To sum up, we have the following algorithm to compute Θ̂ as defined by equation 2.2:

Step 1: Initialize Θ(0).

Step 2: For each iteration, update the estimate for each mixture component 

individually.

• E-step: Calculate the distribution of unknown variables by equation 3.4

• M-step: update parameters by equations 3.6, 3.7, and 3.5.

Step 3: Go back to step 2 until a certain convergence criterion is met.

Following the same argument as that of Dempster et al. (1977), it is not hard to see that in 

each iteration, the objective function of equation 2.2 decreases. Furthermore, the algorithm 

converges, and to its minimizer, Θ̂. We note that the choice of a good initial value may 

greatly reduce the number of iterations. Our experience suggests that the estimators given by 

Banfield and Raftery (1993) are often a good starting point.

4 Simulation Studies

To assess the finite sample performance of the proposed method, we now conduct several 

sets of simulation studies.

We begin with the case where the number of clusters is known in advance. In particular, we 

fix M = 2 in the first set of simulations. The sample size is set to be 100, whereas the 

dimension p is set to be 30, 50, 100, or 300. The tuning parameter λ is determined by either 

five-fold CV or the BIC criterion defined by equation 2.4. For simplicity, we fix the mean 

vector of each mixture component to be 0p and three consider covariance structures:

Model 1: The covariance matrix for both clusters follows an AR(1) model:

(4.1)
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Model 2: Both covariance matrices are diagonal:

(4.2)

Model 3: The two covariance matrices follow the AR(1) and AR(2) models, 

respectively:

(4.3)

and

(4.4)

We compare the proposed estimate with the method of Banfield and Raftery (1993) and 

MLE if applicable. This method of Banfield and Raftery has been implemented in the R 

package mclust, and the MLE can be computed using EM algorithm (see McLachlan & 

Peel, 2000).We examine these estimate through several criteria: the averaged spectral norm 

of the difference between the estimating inverse covariance matrix and the truth

(4.5)

where ‖A‖ is the largest singular value of matrix A; the averaged Frobenius norm of the 

difference

(4.6)

and the average Kullback-Leibler (KL) loss,

(4.7)

where
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(4.8)

The results, averaged over 100 runs for each case, are reported in Tables 1, 2, and 3 for the 

three models, respectively. It is clear from these results that the proposed method 

outperforms the other two methods for all three models. The superior performance becomes 

more evident when the dimension increases. We also note the similar behavior of the 

penalized likelihood estimates tuned with either CV or BIC. This observation is of great 

practical importance because BIC is much more efficient to compute than the CV. For this 

reason, we shall use BIC as the tuning criterion in the rest of the letter unless otherwise 

indicated.

To investigate the effect of the sample size, we repeat the experiment with sample sizes n = 

200 and 400 and dimension fixed at p = 100. The estimation errors, again averaged over 100 

runs, are reported in Table 4. It is clear from Table 4 that the increasing sample sizes leads to 

improved estimation for the proposed method under all metrics.

To further demonstrate the merits of the proposed method, we report in Table 5 the averaged 

percentage of zero off-diagonal entries of inverse covariance matrices and in Table 6 

computing times for Mclust and the proposed method. The results from Table 5 show that 

the proposed method’s superior performance may be attributed to its ability to exploit 

sparsity in the inverse covariance matrices. The EM algorithm generally converges very 

quickly, and we set the number of iterations to be limited by 20 throughout the simulations. 

We also used Mclust to generate initial estimates for the algorithm. The reported computing 

time for the proposed estimate does not include that for Mclust for comparison purposes. It 

is evident from Table 6 that the proposed method can be efficiently computed.

We now consider a more complicated setting where the number of clusters also needs to be 

selected. We consider the true number of clusters, M, to be either 2 or 3. The sample size n 
is fixed at 100, whereas the dimension p is set to be 50. When M = 2, we used model 3 as 

our data-generating mechanism. When M = 3, the last cluster has the same covariance 

matrix as the first cluster in model 2. The experiment was repeated 100 times for each value 

of M. The results are summarized in Table 7.

To gain further insight, Figure 1 shows the smallest BIC scores for each value of the number 

of clusters for one typical simulated data set with M = 2 and M = 3, respectively.

5 Applications

The proposed method for estimating high-dimensional gaussian mixture models could be 

useful for a variety of applications. For illustration purposes, we consider here model-based 

clustering and the mixture discriminant analysis.
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5.1 Model-Based Clustering

Gaussian mixture models have been one of the more popular tools for clustering (Fraley & 

Raftery, 2002). They provide a principled statistical approach to the practical questions that 

arise in clustering. To demonstrate the potential of our method in clustering high-

dimensional inputs, we apply it to handwritten digit data (LeCun et al., 1990). The data set, 

collected by the U.S. Postal Service, consists of scanned digits from handwritten ZIP codes 

on envelopes. Every handwritten digit image has been digitalized to a 16 × 16 image with 

the intensity value of each pixel normalized to range from −1 and 1. We focus here on the 

digits 6 and 9. There are 834 images of digit 6 and 821 of digit 9. For each digit, we fix a 

gaussian mixture model using the proposed method with both the number of clusters and the 

tuning parameter λ jointly chosen by minimizing the BIC score. The minimal BIC score 

associated with each value of the number of clusters is given in Figure 2, which suggests that 

there are four clusters for digit 6 but only two for digit 9. The typical examples from each 

cluster in Figure 3 show that the clustering based on our method is indeed meaningful.

5.2 Mixture Discriminant Analysis

We now turn to classification, where the mixture discriminant analysis (MDA) introduced by 

Hastie and Tibshirani (1996) provides a much more flexible alternative to linear or quadratic 

discriminant analysis. The idea here is to model each class distribution using a gaussian 

mixture model and then classify an instance according to Bayes’ rule. Unlike the usual linear 

or quadratic discriminant analysis, MDA is able to produce more general nonlinear 

classification boundaries. The main difficulty of using MDA in classification with high-

dimensional inputs remains how to fit high-dimensional gaussian mixture models where our 

method could be a valuable tool. To demonstrate the merit of such practice, we apply this 

strategy to the handwritten digit data. We again focus on the digits 6 and 9 and investigate 

automatic classification between these two classes. For evaluation purposes, we randomly 

select 80% of the combined images as the training set and use the remaining 20% as the 

testing set. Gaussian mixture models were fit with tuning parameters determined by BIC for 

the digits 6 and 9, respectively, on the training set, and the resulting classifier is applied to 

the testing data to obtain a test error. This procedure was repeated—splitting the data, fitting 

the mixture model, and evaluating the test error—100 times. With the proposed method, the 

average test error rate is 0.26% with a standard error 0.029%. Note that the direct MLE as 

employed in the original mixture discriminant analysis is rather unstable for this example 

due to its high dimensionality. Generalization with the proposals of Banfield and Raftery 

(1993) has been investigated by Fraley and Raftery (2002, 2007) and implemented in R. For 

comparison purpose, we ran a similar analysis using this method as well. It yields an error 

rate of 0.42% with a standard error of 0.03%.

6 Discussion

We have developed a penalized likelihood estimator for high-dimensional gaussian graphical 

models. By imposing an ℓ1 penalty on the inverse covariance matrices, the proposed 

estimator encourages sparsity and therefore could be useful for high-dimensional cases. We 

show that the estimate can be efficiently computed by an EM algorithm. Simulation studies 

show that the method is quite promising in extending the scope of the gaussian mixture 
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model in handling high-dimensional data. Its usefulness is further assessed in the context of 

model-based clustering and mixture discriminant analysis. These empirical successes 

warrant a more thorough theoretical study of the proposed method, which we leave for 

future research.

The proposed methods can be easily extended in several directions. We have used a single 

tuning parameter λ in defining our estimator 2.2. In many applications, the sparsity of 

precision matrices may vary a lot from cluster to cluster. In these cases, one may adopt 

different tuning parameters for different precision matrices, leading to the following 

extension:

Moreover, other penalty functions such as hard thresholding or SCAD (Fan & Li, 2001) 

could also be used in place of the ℓ1 type of penalty.
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Figure 1. 
BIC score versus number of clusters.
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Figure 2. 
Number of clusters selected for the handwritten digit data.
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Figure 3. 
Clustering of the digits 6 and 9. Images from each column are randomly chosen from a 

particular cluster: the first four columns correspond to the four selected clusters of digit 6, 

and the last two correspond to digit 9.
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Table 6

Computing time in Seconds for Mclust and the Proposed Method (PLE).

n Method Model 1 Model 2 Model 3

100 Mclust 0.235 0.188 0.186

PLE 0.812 0.503 0.114

200 Mclust 0.824 0.845 0.828

PLE 0.595 1.47 0.208

400 Mclust 3.667 3.635 3.655

PLE 5.129 2.815 0.425

Notes: Averaged over 100 runs. Numbers in parentheses represent the standard errors.
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Table 7

Frequency That Mclust and the Proposed Method (PLE) Identify the Correct Number of Clusters.

Method M = 2 M = 3

Mclust 47% 56%

PLE 100% 100%

Note: Averaged over 100 runs.
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