Recurrent Kernel Machines: Computing with In-
finite Echo State Networks

Michiel Hermans, Benjamin Schrauwen!

1Department of Electronics and Information Systems, Ghent University, Sint-Pietersnieuwstraat

41, 9000 Ghent, Belgium.

Keywords: Reservoir computing, Kernel machines, Echo state networks, Support

Vector Machines, Recurrent neural networks

Abstract

Echo State Networks are large, random recurrent neural networks with a single trained
linear readout layer. Despite the untrained nature of the recurrent weights, they are ca-
pable of performing universal computations on temporal input data, which makes them
interesting for both theoretical research and practical applications. The key to their suc-
cess lies in the fact that the network computes a broad set of nonlinear, spatiotemporal
mappings of the input data, on which linear regression or classification can easily be
performed. One could consider the reservoir as a spatiotemporal kernel, in which the
mapping to a high-dimensional space is computed explicitly. In this paper, we build
on this idea and extend the concept of ESNs to infinite sized recurrent neural networks,
which can be considered as recursive kernels that subsequently can be used to create
recursive SVMs. We present the theoretical framework, provide several practical exam-

ples of recursive kernels, and apply them to typical temporal tasks.

1 Introduction

Many schemes for training recurrent neural networks have been studied in the past, as
they are powerful computational entities with a wide application domain. Presently,
two main lines of research exist. The first focuses on gradient based techniques to
train all the parameters in the network, of which the most well-known example is
backpropagation-through-time (Rumelhart et al., 1986). Though often powerful, this
approach is limited by problems such as slow convergence, many local optima, bifur-
cations, and high computational costs (Pearlmutter, 1995; Suykens et al., 2008).

The second approach is to use large, randomly initiated neural networks. The internal
parameters remain completely untrained, and instead an instantaneous linear readout
layer is trained to optimally project the hidden state of the network onto the desired
output via linear regression. This approach does not suffer from the problems typically
found in error gradient methods.

Originally, this idea had been separately developed for sigmoid nodes (Jaeger, 2001)
and spiking neurons (Maass et al., 2002), where the respective approaches were called
Echo State Networks (ESN) and Liquid State Machines (LSM), but there are no lim-
itations to the types of networks one could use (Fernando and Sojakka, 2003; Jones
et al., 2007). Indeed, the network does not even have to be a true neural network in the
common sense: any nonlinear, dynamical system with the right properties (most impor-
tantly: ‘fading memory’ (Jaeger, 2001)) can potentially be used in this approach. The
umbrella term that encompasses all variants of this approach is Reservoir Computing
(RC) (Lukosevicius and Jaeger, 2009; Verstraeten et al., 2007), where the dynamical
system is considered a ‘reservoir of rich non-linear dynamics’.

This approach often performs very well on real-life problems such as speech recog-
nition (Skowronski and Harris, 2007; Verstraeten et al., 2006), phoneme recognition
(Triefenbach et al., 2010), robot navigation (Antonelo et al., 2008), time series predic-
tion (wyffels and Schrauwen, 2010), and even yields state-of-the-art performance on
the modeling of a chaotic attractor (Jaeger and Haas, 2004). At first, this was consid-
ered to be surprising, as the networks are random, and as such the neuron responses are
random functions of the history of the input data. Subsequently, a new point of view

emerged which roughly states that if there exists a sufficiently broad set of functions

on the input data stream, it is always possible to approach the desired output by finding
the optimal combination of those functions. Indeed, as the size of the network goes to
infinity, it has been shown theoretically that all possible functions on the input data can
be approximated arbitrarily well (Maass et al., 2002, 2007; Schéfer and Zimmerman,
2000).

A link has often been made between Reservoir Computing and kernel machines (Schmid-
huber et al., 2007; Shi and Han, 2007), since both techniques essentially map the input
data to a high-dimensional space, called feature-space, in which classification or re-
gression is then performed linearly. In the case of reservoirs, this mapping is performed
explicitly, as the hidden state of the reservoir is mapped directly onto the output. For
kernel machines, such as Support Vector Machines (SVMs) (Boser et al., 1992), this
mapping is not computed explicitly but performed via the so called kernel trick. Here,
it is possible to define a dot product between two representations in feature space as
a function which operates on two data points (called a kernel function). One can then
use certain data points of a training set as so-called support vectors to define a linear
map within feature space. Next, one can use quadratic programming approaches to
find optimal support vectors and their corresponding weights. Interestingly, for certain
simple kernel functions (such as the Gaussian RBF kernel), feature space is infinite-
dimensional. There is a link between this infinite dimensional feature space and ap-
plying infinite-sized neural networks, as specified in Neal (1996) and Williams (1998).
Specifically it is possible to associate a kernel function with an infinite feedforward
neural network. In this work we extend this idea to recurrent networks, and we define
the associated kernel functions.

Usually when one applies SVMs on temporal problems, time is artificially represented
in space by using a sliding time window of the data as input. This technique is related
to the Markov property, which states that temporal dependencies are limited to a finite
history of the time series. One important difference between RC and SVMs is the fact
that the ‘kernel’ in reservoirs is explicitly temporal: the states will depend on the recent
history of the input, and not just the current input. This allows reservoirs to process
information that is explicitly coded in time. In this paper, we shall derive a way to
extend the concept of infinite neural networks to infinite recurrent neural networks. As

such, we shall essentially bridge the gap between two machine learning techniques, and

define the ‘ultimate’ Echo State Network in the form of a kernel function that operates
recursively on timeseries. We show the connection between the dynamics of ESNs and
the evolution in the recursion in the kernels of the associated infinite neural networks,
and demonstrate this by investigating performance on temporal tasks.

We have structured this paper as follows. In the Sections 2 and 3 we shall respectively
elaborate on ESNs and explain the concept of an infinite recurrent network and its as-
sociated kernel function. Next in section 4, we shall present a method to introduce
recurrence in the previous definition, and give some important examples of recursive
kernels. After this, we investigate the link between known properties of the dynamics
in ESNs, and parameters of the recursive kernels in Section 5. To validate our results,
we test the recursive kernels by applying them on two temporal problems in Section 6.

Finally, in Section 7 we discuss the results and draw overall conclusions.

2 Echo State Networks

One of the most widespread variants of Reservoir Computing are Echo State Networks.
Essentially, a recurrent network with randomly drawn internal connections and ran-
domly drawn connections from input to hidden nodes is constructed, and the hidden

state of the network evolves according to
a(t+1)=f(Wa(t)+ Vs(t+ 1)) (1)

y(t+1) =Ua(t + 1), 2)

where [is the activation function, a is the hidden state vector, s(t) is the input signal at
time ¢, and W and V are the internal connections and the input-to-network connections
respectively. The output weights U are the only weights that are trained, and used to
project the hidden state onto the output y(¢). Typically, the function f is a sigmoid
function like the hyperbolic tangent. In that case it is straightforward to characterize
the dynamics by linearizing equation 2 around the origin. What is found is that the lin-
earized system is asymptotically stable when the largest singular value of W is smaller
than one (Jaeger, 2001). In practice, one rather uses the spectral radius p of the sys-
tem, as this gives a better indication of the dynamics of the system. If p is greater than

one, the hidden state in the linearized system will start to grow exponentially. In the

4

nonlinear version, this growth will be quenched by the saturating parts of the sigmoid
function. Usually the system will either go to a fixed point, start to oscillate, or become
chaotic.

The rule of thumb for initializing reservoir weights is to keep the spectral radius smaller
than or equal to onel. Ifitis close to one, the network states will only decay to the fixed
point slowly, and as such, they will depend on a relatively long history of the input. If
the spectral radius is significantly smaller than one, the states will only depend on a
short history of the input. When it is greater than one, the states can in principle depend
on the entire history of the input, which is usually considered undesirable.

The property of the network to depend on the recent history of the input signals is collo-
quially called ‘fading memory’ (Boyd and Chua, 1985), and also ‘Echo State Property’
(Jaeger, 2001), and is the key to the success of RC. One can tune the memory depth
of the system by tuning the spectral radius of the connection matrix, where usually a
tradeoff has to be made between precision and the length of memory.

The other two main parameters that are identified as being of importance for ESNs are
the scaling of input weights, and the scaling of an optional bias term (not explicitly
shown in equation (2)). The input scaling will determine how far the hidden states are
pushed away from the linear part of the activation function by the input, in other words:
it will determine the overall nonlinearity of the reservoir. Typically, an increase in non-
linearity is detrimental to the memory depth of the system, as the quenching parts of
the activation function will decrease the ‘effective’ spectral radius (Verstraeten et al.,
2007), i.e., the mean spectral radius of the Jacobian of the system. The bias term is
necessary for certain tasks where the desired output is a not just an odd function? of the
input.

It should be mentioned that many ESN implementations also include leaky integrators
in each neuron (Jaeger et al., 2007). This allows to tune the inherent time scale of the
dynamics of the reservoir, which is another parameter of importance, but we shall not

discuss this in detail in this paper.

1In fact the optimal value is heavily task-dependent, and in many cases a spectral radius much smaller
than one, or in some cases even much greater than one will be optimal.
2 A function f(x) is odd when f(—x) = —f(z). This is the case for hyperbolic tangents, the non-

linearity of choice in ESNs

hidden
nodes

input nodes
10103/ 931€1S UsppIy

input nodes
10129A 21815 Ulapply

finite neural network infinite neural network

Figure 1: Schematic display of a finite versus an infinite neural network.

As we will show, all of these properties have counterparts in recursive kernels associ-
ated with infinite neural networks. Specifically, it is possible to identify a parameter
that has a meaning equivalent to the spectral radius.

In the next section, we will elaborate on the concept of infinite neural networks and give

a formal definition of the associated kernel function.

3 Infinite neural networks

In this section, we first derive the kernel corresponding to an infinite feedforward neural
network. In the next section we shall extend this notion to recursive neural networks by
introducing recursive kernels.
The state of the i-th hidden neuron in a feedforward neural network is typically given
by

a; = f (wi,a), 3)

in which w; is the vector of input weights for the i-th neuron (optionally including a
bias term, associated with an extra input dimension which remains constant), u is the
input vector, and f is the activation function. In a multi-layered perceptron, f (w;, u) =
f (w; - u), with f usually a sigmoid activation function. For radial basis function net-
works, the equation becomes f (w;,u) = f (||w; — u||?), with f usually an exponential
function.

Extending the hidden layer to an infinite layer is straightforward, as has been shown in

Williams (1998) and Neal (1996): all possible neurons correspond to all possible sets of

input weights (and bias terms), hence the neurons of the hidden layer will form a con-
tinuum that maps each point in the space of input weights to a neuron state, depending
on the input vector. This concept is depicted schematically in Figure 1.

Obviously, such a mapping can never be performed explicitly. However, it is possible
to define a dot product in the Hilbert-space that corresponds to the infinite-dimensional
hidden state. This dot product is the corresponding kernel function for that type of

network:
lc(u,v):/Q dwP(w)f(u,w)f(v,w), 4)

where (), is the space in which w is defined and P(w) is the probability distribution of
the input weights. Notice that this kernel is not always well-defined and is not necessar-
ily positive definite. Whether or not this can be a useful kernel function, i.e., whether
it fulfills the Mercer condition (Vapnik, 1995), will depend on P and f. Also, only a
limited number of cases will give an analytically tractable solution.

Notice that equation 4 is similar to the typical procedure used in Gaussian Processes
(Rasmussen and Williams, 2006), where the parameters are integrated out over a cer-

tain prior distribution function.

3.1 Gaussian radial basis function networks

One example of the previously introduced kernel type uses normalized Gaussian radial

basis functions as activation functions, and a ‘distribution’ (which is in this case an
improper prior) P(w) = 1:

1 —|lw —ul]? = ||lw — v|?
k(u,v):(2m2) /Q dwexp(I ”202” I))

which can be shown (Williams, 1998) to be equal to a Gaussian kernel: k(u,v) =

w|z

_ _ 2
exp(IIZUQVII)

3.2 Error function networks

Another important example has also been elaborated on in Williams (1998). It is pos-

sible to calculate an analytical solution for equation (4) if the neurons are perceptrons

with an error function: erf(z) = == [" exp(—t?)dt, as nonlinearity. The distribution of

the input weights is assumed Gaussian, with a covariance matrix 3. Bias is taken into

7

Figure 2: Shape of the error function compared to that of the hyperbolic tangent. The
argument of the error function has been rescaled to match a slope of one around the

origin.

account by concatenating the input vectors with a constant element equal to one. The
error function has a sigmoid shape similar to the hyperbolic tangent (save for a different
slope around the origin). The shape of both functions is plotted in Figure 2. This kernel
can serve as a scaffold to extend typical ESNs to the infinite domain. The kernel, which
we shall denote as the arcsine kernel throughout the rest of this paper, has the following

expression:

-
k(u,v) = 2 arcsin | 2 uv . (6)
T V(1 +2uXu’) (14 2vEVT)

If we assume that ¥ is diagonal, with o2 on the diagonal and o7 as the final element

(corresponding to the variance of the bias distribution), this reduces to

2) 92 2 T 9 2
k(u,v) = — arcsin ouv_t 2% . (7)
m V(1 +202uu’ + 202) (1 + 202vvT + 202)

3.3 Linear rectifier function networks

Another important example that is analytically tractable is a feedforward network with
powers of linear rectifier functions as activation functions. First worked out in Cho and

Saul (2010), the setup is the same as the previous one, using a Gaussian distribution of

weights, and an activation function f(z) = max{0, z}?. The resulting kernel function

is given by
1
kp(u,v) = —[[uf["|[v]["J,(6), (8)
with
1 O\’ [(m—0
— (=1)? (sin®) P | — =
F0) = (=1)" (sin) (mea&) (sine)’ ©)
and 6 is the angle between u and v:
6 = arccos <l) . (10)
[[alf[vl

It is interesting to mention that these kernels can be ‘stacked’ on top of each other in or-
der to make successively more complex representations of the input data. Interestingly,
this ‘stacking’ is the infinite-dimensional equivalent of a multi-layered neural network.
The work done in Cho and Saul (2010) counts as an important inspiration for the work

in this paper.

4 Recursive kernels

4.1 Definition

To define a recursive kernel that is associated with an infinite recurrent network, we
first mention that, for any kernel function & (u, v) fulfilling the Mercer condition, there
exists an implicit map ® such that k(u,v) = ®(u) - ®(v). In our case, ® obviously
corresponds to the infinite-dimensional hidden state. We now wish to define a kernel
function that recursively operates on two discrete time series x(n) and y(n), n € Z.
This means that the implicit map ® will have two arguments: the recursive map of the
timeseries up until the current time step, and the current sample in the time series. To
avoid confusion, we shall use the symbol x rather than k to denote recursive kernels
throughout this paper. The recursive kernel function at the n-th time step is then given

by

Fn(%,y) = @ (x(n), @ (x(n=1),@(--)) - (y(n),2(y(n-1),®(--))),
(1)

where we abbreviated the left side of this equation as follows:
kn(X,y) = k(x(n),x(n —1),x(n —2),--- ,y(n),y(n —1),y(n —2),---). (12)

9

Often, ® will map to an infinite dimensional space, and it might seem strange that
there is both a finite and an infinite dimensional argument. However, since the kernel
functions usually depend on norms and dot products, which are well-defined in both
cases, this does not pose any difficulties for the actual mathematical derivation in spe-
cific cases, as we shall see below.

To specify how we define a recursive kernel, we base ourselves again on neural net-

works. Notice that we can rewrite equation (2) as followsS:

fowa() +vs@) = 7 [wivy |27). (13

s(1)
which means that the ‘input’ of the network in the current time step is the concatenation
of the input signal and the previous hidden state. If we extend this idea to our situation,
we finally arrive at the main realization of this paper that makes the definition of a recur-
sive kernel possible: the input vector of ® can be chosen to be simply the concatenation

of the current input vector with the previous recursive mapping, i.e:

@ (x(n), @ (x(n—1),® () = @([x(n) | @ (x(n -V} () |). (4

This will allow us to easily extend the definition of most common kernel functions into
recursive equivalents. Especially, it is possible to find recursive versions of all kernel
functions in which

k(u,v) = f (JJu—v[?), (15)

or

k(u,v) = f(u-v). (16)

The first case can be worked out as follows. If u and v are concatenations of two

vectors, i.e u = [u;|ug] and v = [vy|vs], we can write
ku,v) = f ([lug = vil]* + Jug — v2|?) . (17)

in our case, when u; and v; correspond to the current inputs x(n) and y(n), and us and

v, to the recursive maps, this becomes

kn(%,y) = f (Ix(n) = y()[I* + Kot (3, %) + K (v, y) = 260-1(x,y)) - (18)

3 This way of thinking of recurrent neural networks can probably be attributed to EIman (Elman, 1990)

10

Equivalently, we find that the second case leads to

kn(X,y) = [(x(n) - y(n) + fn1(x,y)) . (19)

Note that we don’t need to have an explicit infinite-dimensional form of the kernel to

work out its recursive version. All that is necessary is the kernel function.

4.2 Examples

Here we will give a small number of examples of the recursive forms of some of the
most commonly used kernel functions. Later on, we shall find that the parameter o
in the previously mentioned kernel functions is in fact the parameter that will deter-
mine the dynamics of the recursive kernels. However, we wish to define this parameter
separately from the scaling of the data. Therefore, we will scale the two parts of the con-
catenated vector in equation 14 differently. We shall use o for the infinite-dimensional
state vector, and o; for the current input.

We provide the following list of recursive kernels for the sake of reference throughout

the rest of this paper.
e Linear kernel
The linear kernel has a trivial recursive extension: k(u,v) = u - v, gives
fin(X,y) = 07%(n) - y (n) + 01 (X,y)- (20)

This kernel is especially useful as the linear approximation of the recursive arc-
sine kernel (see paragraph 6.3). It is also obvious that the scaling term o will have
to be smaller than one to ensure asymptotic stability. Another property that can
be observed clearly in this kernel is the fading memory property of the recursive

kernels. We can write the kernel as follows:
kn(X,y) = 07 Y 0%x(n—j) - y(n—j), (1)
=0

which clearly shows how the dependency on the previous input samples drops of

exponentially as they lay further in the past.

¢ Polynomial kernel

Another example, the polynomial kernel: k(u,v) = (u-v)?, gives

(X, y) = [07x(n) - y(n) + 0k (x,y)] " (22)

11

e Gaussian kernel
The Gaussian kernel, which is very important in many applications, is given by
I . . .
k(u,v) = exp (—%) . If we extend this to a recursive kernel function, we

get:

A— (_ Ix(n) - y<n>||2) . (nn_w;y) - 1) .

2
207

Notice that here we use a different definition for the two scaling parameters, more

akin to the regular definition of kernel width.

e Arcsine kernel
More complicated kernels, like the arcsine kernel, require the recursive calcula-
tion of the kernels applied on the time series individually. The recursive version

is given by

En(X,y) = - arcsin

2 (2 (o7x(n) - y(n) + 0%kp_1(x,y) + Uz?)) (24)

In(X)gn(y)
with
gn(x) =142 (07| x(n)[]* + 0%Kn-1(x,%) +03) , (25)
and
En(X,X) = %arcsin (1 — gn}X)) , (26)

and similar for s, (y,y).

e Linear rectifier kernel

The recursive extension of this kernel is as follows:

1 P
(%, ¥) = — (hn ()1 (y)) * Ty (6n), 27)
with
i (%) = Fipn1 (%, %) + [|x(n) %, (28)
and
0,, = arccos <,€p’”_1(x7 x) + x(n) y(n)>) (29)
hn () o ()
and
1
(%, %) = — (hn(x))" J,(0). (30)

5 Stability analysis of recursive kernels

Before we can continue to practical examples, we need to do a stability analysis on the
recursive kernels previously derived. More importantly, we will have to find a connec-
tion with the property of fading memory, as is known from Reservoir Computing to be
important for good computational performance. In precise terms: when the input of
both time series goes to zero, we wish that the recursive kernel always converges to a
unique fixed point rather than behaving chaotically or going to a limit cycle. If possi-
ble, we also wish to identify the speed (in terms of number of time steps) in which the
kernel function would converge to this fixed point, as this will give an indication of the
memory depth of the system.

Suppose ko(x,y) is the output value of the kernel at n = 0, which can be any value
within the range allowed by the kernel function. We shall now define the input series
x(n) and y(n) to be equal to zero for n > 0, such that specifically their norms or dot
products no longer change. The recursive kernel then reduces to an iterated function,
which can be analyzed mathematically or visually with a cobweb diagram. We shall use
the Banach fixed point theorem to prove the existence of this fixed point for recursive

Gaussian kernels and recursive arcsine kernels.

5.1 Stability of the recursive Gaussian RBF kernel

Banach’s fixed point theorem (Banach, 1922) states that, given X a non-empty, com-
plete metric space with a distance metric d, the contractive mapping f has one and only

one fixed point c* if there exists a number 0 < ¢ < 1 such that

d(f(a), f(b)) < qd(a,b), (31)

with a and b any two elements from X. As a metric, we use d(a,b) = |a — b|. The
space upon which the kernel is defined is [0, 1]. We can then write the condition for the

recursive Gaussian kernel as:

a—1 b—1
exp(p >—exp(7>‘§q|a—b|. (32)

13

The function exp (“3') increases monotonically, so if we assume @ > b, we can omit

the absolute value operator. This allows us to rewrite the condition as follows

a—1 b—1
exp(=) —qga < exp (7) — qb. (33)

This condition is automatically fulfilled if we can show that the function

exp ((a —1)/0%) — qa

decreases monotonically, or that the derivative is non-positive in [0, 1]:
1 —1
—2exp(a 5)—qg(). (34)
o o

The exponent in this equation is always smaller or equal to one. This means that, as

long as ¢ > 1, there always exists a ¢ < 1 that fulfills this condition. If 0 < 1, the
condition will no longer hold for all a € [0, 1], and the fixed point at « = 1 will become
unstable.

Clearly, for o > 1 the stable fixed point is @ = 1. We are interested in the speed of
convergence asymptotically close to this fixed point, as this will give us an upper limit
to how long a perturbation in the input still influences the kernel function. We find that,
if we linearize around ¢ = 1, the distance between two orbits recedes with a factor
1/0?. Associating this with an exponential decay time 7 gives us a typical time scale

for the kernel. Assuming k,, = exp(—n/T)kg, we get 7 = . This means that, for

_1
21n(o)
o = 1 the fading memory of the system goes to infinity, and the definition no longer
applies when o < 1.

Figure 3 shows a cobweb diagram of the iterated map for the three situations. For
o < 1 all orbits still converge to a fixed point, but there is an unstable zone in which
orbits diverge. Notice that 0! is equivalent with the spectral radius p in Echo State
Networks. When p < 1, it will similarly dictate the speed at which the reservoir states
converge to their fixed points. In the linear approximation, (asymptotically close to the
fixed point around the origin), a spectral radius equal to one corresponds to the edge of
stability. When the spectral radius is greater than one, the states will either converge to
another fixed point, start to oscillate or become chaotic. However, another stable region
then exists when the states are pushed into the saturating parts of their nonlinearity,

corresponding with the stable region around the second fixed point in the right panel of

Figure 3.

14

o>1 c=1 o<1

1 1 1 ‘

|

s 0.8 s 08 s 08 |
o S S
= = =

= 06 =06 =06 |
| | I

g |
S S S

= 04 04 = 04 I

0.2 0.2 0.2 I

|

0 0 0 |

0 0.5 1 0 0.5 1 0 0.5 1

a a a

Figure 3: Cobweb plots for 0 > 1, 0 = 1, and 0 < 1 associated with the recursive
Gaussian RBF kernel. The gray lines are example orbits that converge to a stable fixed
point. The dashed line in the right panel shows the separation between the stable and
unstable region. Left of the dashed line, all orbits will converge, but on the right, they

will diverge until they reach the stable region.

5.2 Stability of the recursive arcsine kernel

The case of the recursive arcsine kernel is more complicated, since each iteration will
require mapping x, (X, X), k,(y,y), and k,(X,y), i.e. the iterative function is a map-
ping of the form R3 — R3. However, the iterative map r,1(X,X) = f(r,(x, X)), does
not depend on k,(y,y), and k,(x,y). Therefore we shall first focus on the behavior of
this map, and further on look at the behavior of x,(x,y).
We will again focus on the situation where x(n), y(n) = 0 for n > 0, and, for simplic-
ity we shall assume 0, = 0. We need to consider the case where the starting point of the
recursion is in the range [0, 1], since the right side of equation 26 is positive and smaller
than one. The recursive formula can be written as
2 1

a — - arcsin (1 — m) . (35)

The same line of reasoning as before applies: this function rises monotonically in [0, 1],

so we only need to look at its derivative. The condition becomes:

2 20° <0 (36)
TV 1+ 4ac?(1 + 2a0?) -

This expression reaches the highest value in its range for a = 0, which leads to the

condition that

o < @ (37)

If this condition holds, the fixed point will be a = 0.

We have now proved that for 0 < /7/2, the contractive mapping determined by

15

o< JT/2 o= 7/2 o> Jr/2

o
)
2)-1)
o
®

o
o

o
o
arcsin(l — (14 2a0?)~7)
o
o

Zarcsif(l — (1+ 2a0?)7?)

o
IS

2 arcsin(1 — (
o
'S

o
[N
2
T
o
)
2
T
o
)

o
o
o

|
|
[
|
L
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

o

Figure 4: Cobweb plots for 0 < \/7/2, 0 = \/7/2, and 0 > /7 /2, associated with
the recursive arcsine kernel. The gray lines are example orbits that converge to a stable
fixed point. The dashed line in the right panel shows the separation between the stable
and unstable region. On the right of the dashed line, all orbits will converge. On the

left, they will diverge until they reach the stable region.

Kn(x,x) will have a unique stable fixed point. To prove that this also applies to the con-

tractive mapping of r,,(x,y) we start by realizing that ,,(x,y) = \/kn (X, X)rn(y,y) cos(6),
with 6 the angle between the two infinite-dimensional mappings4. Asboth k,(x, x) and
kn(y,y) converge to zero, so will k,(X,y).

It seems that again, an edge of stability as in RC can be defined. This time it is in

fact defined by the distribution of recursive weights for the infinite-dimensional neural
network. An interesting remark is the fact that the value of /7 /2 is the inverse of the
amplification of the error function around the origin. If another sigmoid nonlinearity
were to be used to define a recursive kernel, the edge of stability would be given by o
equal to the inverse of the slope round the origin.

Again, we show cobweb plots for the evolution of «,(x,x). We can see that a = O is a

stable fixed point for as long as ¢ < /7/2 and becomes unstable for o > /7 /2, and

another stable fixed point forms.

4This equality derives from the property that for any two vectors u and u, the inner product is given by
u-v = /||u||?||v]|? cos 6. In the case of the kernel functions, the vectors are the infinite-dimensional

mappings, and the inner product and norms are respectively given by £, (X,y), £, (X, X), and £, (y,y).

16

5.3 Spectral radius

We have now analyzed the stability of the recursive kernels by considering them as
iterated functions, but this is not directly related to ESNs. It is possible to formally
link the concept of the spectral radius with the definition given by equation 4, and as
such generalize the definition of spectral radius. We will do this for the case where the
activation function f(u, w) is of the form f(u - w).

To start, we estimate equation (4) by a Monte-Carlo sampling:

N
k(u,v) ~ %Zf(u-wﬂf(v-wi), (38)
=1

where each w; is randomly drawn from the distribution P(w). Notice that, since we
consider this an approximation of the dot product of two hidden state vectors, we can

write f(u - w;) = a, which gives us

N =
1 al a
E(u,v) = — » aja) = =, 39
W)~ y2 2NN 5%
This means we can define finite Monte-Carlo approximations of the infinite dimensional

hidden states. If we wish to make a recurrent equivalent of these sampled Monte-Carlo

states, we get the following equation

N
an(t+1) = f (%N waa;a)) , (40)

with w;; signifying the j-th element of the vector w;, or more precisely the element on
the i-th row and j-th column of the matrix W. Notice that this equation is nothing more
than the update equation of a reservoir system. This means that reservoirs indeed can
be considered as finite approximations of infinite sized kernels.
The spectral radius of the connection matrix of this system is given by
W

- 2W) _N), (41
with p(W) the spectral radius of W. Let us now assume that P(w) = [[. P(w;), i.e.
all elements are drawn independently and from the same distribution, and furthermore

we assume the distribution has zero mean and variance 2. In that case it can be proved

(Geman, 1986) that
i "YW
N—oco /N

17

(42)

such that we find that the corresponding spectral radius for infinite-sized neural net-
works is p < 0.

This result confirms our earlier finding that o is the parameter in recursive arcsine ker-
nels that corresponds to the spectral radius (apart from the factor /7 /2 which comes

from the slope of the error function).

6 Recurrent kernel machines for applications

6.1 SVMs

Before considering tasks, we shall first explain how we apply recursive kernels in
SVMs. For the first two tasks we considered, we decided to use least squares sup-
port vector machines (LS-SVM) (Suykens et al., 2002). Contrary to the more com-
mon SVM, the LS-SVM uses a quadratic loss-function instead of the hinge loss and
is conceptually easier, as training is reduced to finding the solution to a system of lin-
ear equations. Essentially there are three main reasons we chose LS-SVMs rather than

SVMs:

e Two out of the three tasks we considered are regression tasks, in which the error
metric to evaluate performance is the quadratic error, and this is the error metric
LS-SVMs minimize in the first place with ridge regression in the dual space. For

classification tasks, normal SVMs would be the more natural choice.

e We attempted to use LIBSVM? for the NARMA-task (specified later), as it allows
to work with precalculated kernels. We examined the two variants for regression
problems; v-SVR and e-SVR, but neither gave performance that even came close
to that of LS-SVMs. Likely this is due to the L;-norm optimization which is

apparently unsuited for this task.

e Reservoir Computing also uses a quadratic loss function for training the output
weights. This allowed us to compare the performance of recurrent neural net-
works in an RC context to their kernel machine equivalents and truly consider

them to be the dual version of the normal reservoir training algorithm for.

5Freely available from http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

18

e Finally, we also consider a classification task for which normal SVMs would
seem the more natural choice. However, as we have to deal with a very large
dataset, common SVMs render impractical, and we will use the Newton-Raphson
approximation of a quadratic hinge-loss function (more details in paragraph 6.5).
Although not strictly LS-SVMs, their resulting systems of equations are equiva-

lent.

An LS-SVM for regression operates as follows. Given a training set of N input features
x; with corresponding output targets y;, the system outputs a value g(x) for an input

vector x defined as

N
§(x) =Y aik(xi,x) + B, (43)
i=1
where the parameters «; and (3 are found by solving the system
0 1} 0
=10 (44)
1y K+)| |« y
with 1y = [1;---; 1], K; ; = k(x;,x;) and y = [y1;- - - ; yn]. A scaled unity matrix is
added to the Gramm-matrix for regularization, with regularization parameter .
For recursive kernels, we redefine the SVM as
N
g(t) = Z ik (x(t: t — 00),%x;(0 : —00)) + b, (45)
i=1

in which x(¢ : t — c0) denotes the full history of the input signal up to a time ¢ and
x;(0 : —o0) is the i-th support vector, in this case also an infinitely long time series.
Obviously, the recursion will for practical reasons need to be cut off at a certain point,
and we need to specify a maximum recursion depth 7. For this we use the following

criterion:
ko(x;(0 0 —7),%;(0 : =7)) & Ko(x:(0 : —00),x;(0 : —00)), (46)

1.e., there should be only a small relative difference between the ‘correct’ value (with an

infinite recursion depth) and the practically attainable value. This is easily attainable by

choosing a recursion depth which is much larger than the typical timescale 7 = —ﬁ(p).

However, in reality it seems this criterion is too strict, and shorter recursion depths

19

already give reasonable estimates for the asymptotic values. Finally this leads to the

following approximation for SVMs using recursive kernels:
N
() =Y aur(x(t: t = 7),%(0: =7)) + 5, (47)
i=1

6.2 Relation between ESNs and recurrent kernel machines

Here we explain the relation between a classic ESN readout layer and the LS-SVM with
recurrent kernels. For this it is interesting to first consider the case where we would
train a finite ESN the same way we train an LS-SVM. We select a set of time series
x;(0 : —7) as support vectors. Calculating the associated kernel function between two
time series can now be done explicitly as an inner product of the hidden states. This has

the following implications:

e First of all, there is no point in storing the support vectors as time series, as the
hidden state of the final time step is known explicitly. If a; is the last hidden
state caused by time series x;(0 : —7), and a(t) is the hidden state caused by

x(t : —o0), the kernel function between these two is nothing but a; - a(t).

e At any time ¢ the output of the system can be written as

gt) = Zaiai-a(t)—f—ﬁ

= a'ATa(t)+p
ul

= u-a(t)+ 0,

where A = [a, ay, - - - , ay], the concatenation of the hidden states of the support
vectors. Essentially this show that in the case of a finite ESN a kernel machine

would simply lead to a single linear readout layer as in normal ESN training.

It is possible to show that the readout weights u and bias 3 obtained in this matter are
exactly the same readout weights which would be obtained by constructing the linear
readout weights in the classic way via ridge regression, and using the support vectors as
training data. This stems from the fact that both training methods solve the same system

of equations. Where classic reservoir training does this directly (in primal space), the

20

LS-SVM method does this via the dual representation of the problem. For more details
we refer to e.g. chapter 3 in Suykens et al. (2002) or chapter 6 in Bishop (2006). This
result stays valid for arbitrarily large network sizes, which shows explicitly that LS-
SVMs using recurrent kernels are truly the equivalent of infinite ESNs trained with a

finite training set.

6.3 Fading memory
6.3.1 Memory function and memory capacity

The first property we consider is the so-called memory capacity. This task is fully
academical, and is meant as a way to study fading memory in RC by investigating how
well a certain input signal can be linearly reproduced after a delay. Assume s(t) to be an
1.1.d. variable, drawn from some distribution. Formally, one defines a memory function

(Jaeger, 2001) as
(k) = cov (s(t — k), 5(t))?
var(s(t — k))var(5,(¢))’

with §x () the optimal linear reconstruction of the signal s(¢ — k). The memory func-

(48)

tion m(k) is a number between 0 and 1, and essentially indicates the time window of
the past that is ‘visible’ to the network.

To quantify the total memory present in a network one defines the memory capacity
M = Y777 m(k). It is a well known fact that this number is bounded by the number
of neurons NV in the reservoir (Ganguli et al., 2008; Jaeger, 2001). A linear reservoir
has the best possible memory, whereas any nonlinearity necessarily has a reducing ef-
fect(Ganguli et al., 2008; Jaeger, 2001).

For infinite ESNs, the memory capacity will obviously not be limited by the number
of neurons. However, as mentioned in the introduction, any usable kernel machine will
only have a training set which is limited in size. As kernels are defined on timeseries,
training data in our case will consist of a set of (potentially infinitely long) time series.
An SVM that would reconstruct the signal from & time steps ago will use a construction

as follows:

N
ar(t) = alPrki(s(t - —00), 2), (49)
=1

21

where s(t : —00) is the input time series up to a time ¢, z; are (potentially infinitely long)
time series that serve as support vectors, N is the total number of support vectors, and
a§’“) are optimal weights for reconstructing the signal from £ time steps ago. Notice that
we omitted the output bias term 3. This is justified as we will assume zero mean for the
input signal, which does not change the overall conclusion of this section. Also notice

that in this setup we wish to optimize covariance, which is equivalent with minimizing

the mean square error and hence using a quadratic loss function is fully justified.

6.3.2 Linear approximation

It is possible to show that, in the case of a linear kernel (as defined in paragraph 4.2), the
memory capacity is equal to the number of support vectors. Notice that if we linearize
the equation for the recursive arcsine kernel around x,y ~ 0, assuming no bias we
in fact end up with the linear kernel. To see this, we start by examining equation 25.
Since we assume that the time series x and y are infinitesimally small, both ||x||* and
Kn—1(x,x) will be close to zero, and g, (x) ~ 1. The first order approximation of the

arcsine function around zero is given by arcsin(z) ~ z, such that we end up with

(X,) = % (207x(n) - y(n) + 20" k01 (x,¥)) (50)

Using the same reasoning as in the example of the linear kernel in paragraph 4.2, we

can write this as an infinite sum. For simplicity we take o; = 0 and we end up with:

wey) = 3 () et it)

- m
=0 \ ,
M

= VZW(n — i)y(n — i),

with « acting as the square of the ‘spectral radius’ of the system. We now need to
(k)

determine the «;"’ which minimize the mean squared error (in which we assume the

regularisation parameter A = 0):

Ey = <lwza§’“>zwzi<—j>s<t—ﬁ —s<t—k>] > (51)

notice that we can write the first term under the square brackets as
N [e'e) [e'e)
Y o> i z(—g)s(t— §) = yen” D AV zs(t—),
i=1 j=0 §j=0

22

(k)

1 9

in which ay is a column vector associated with elements «; ", z; is a column vector

with elements z;(—j). We can now write

By = Ya’ (Z D g (st — j)s(t - l)>t> o

j—O 1=0

—2y0y " ZZJ s(t—j)s(t —k)), + (s(t —k)*), .

If we now use the fact that the signal values s(t) are i.i.d. such that (s(t1), s(t2)), =

6264, 1,» With ¢ equal to signal variance, we can reduce this expression further to

o0
B, = §272061<T (Z ’yszijT> o — 2§2’Yk+104 TZk —|—g2

~
V/

= ¢? [72oszZozk — 27k+10szzk + 1}

After deriving F/ w.r.t. the elements of oy, we find that the optimal weights are given
by
ax = ’yk’1Z’1zk.

Next, we can insert this result in equation 48. We find that
cov (s(t — k), 5,(t)) = var (5,(t)) = vz ' Z 7 7,

which leads to

m(k) = v 2y Z7 7.

Summation over k then gives us the memory capacity:

M = Z kg V2 7 (52)
=0

= 7~ Zv%zkzk> (53)

— (D)= (54)

with tr(...) indicating the trace of the matrix.
This result is interesting as it highlights the equivalence of the number of support vectors
with the number of nodes. ESNs have their hidden state as degree of freedom. The fact

that Memory Capacity is fundamentally limited by the number of nodes is a reflection

23

of this fact: the total amount of ‘information’ (not used in the information theoretical
sense) that can be coded into the states of n hidden nodes is equal to n. For recursive
SVMs, this role is taken over by the number of support vectors. Each support vector
will correspond to a single ‘node’ in an SVM. Obviously, the advantage of SVMs in this
case is the fact that the support vectors are not random but rather contain meaningful

information of the distribution of the input data.

6.4 Nonlinear auto-regressive moving average

The second task we consider is the so called NARMA-task, or Nonlinear Auto Re-
gressive Moving Average, which has been used for benchmarking in many papers that
consider time-series processing (Atiya and Parlos, 2000; Jaeger, 2003; Steil, 2005). The
task is a single input single output system, with input u(t), i.i.d. numbers drawn from a
uniform distribution between 0 and 0.5. The desired output y(t) is then constructed as
follows:

y(t+1) = 0.3y(t) + 0.05y(t) ¥ y(t — i) + Lou(t)u(t — 9) +0.1. (55)

i=0
As error metric to evaluate performance on this task we used the Normalized Root Mean

Square Error, or NRMSE, defined as

_) = 5());
NRMSE = varg(@) (56)

in which (¢) is the output of the trained system.

6.4.1 Experiments and results

To compare different effects and results, we performed four experiments.

e First of all, we used a classic windowed Gaussian RBF kernel as a reference value
to compare our results against. We optimized both the window length and kernel
width by a two dimensional grid search. Using a validation set, we found the
optimal window length to be 27 frames and the kernel width o = 5, although per-
formance does not change much for a relatively broad range around this optimal

value o.

24

e Secondly, we measured the performance of the recursive Gaussian RBF-kernel in
relation to its corresponding spectral radius p = o~'. We limited the recursion

depth to 50 frames, although a shorter time would likely give very similar results.

e Thirdly we did the same for the arcsine kernel in relation to its corresponding

2

spectral radius p = =

o. We again used a recursion depth of 50 frames.

e Finally, as arcsine kernels are strongly related to ESNs, we used the opportunity
to compare their performances. We also measured the performance of ESNs with
error function nonlinearities for an increasing number of nodes and in relation to

the corresponding spectral radius.

In all of the above experiments we used a training set of 500 frames, a validation set of
2000 frames used to determine the optimal regularization parameter, and a test set of
5000 frames. For the recursive kernels and the ESNs performance in relation to input
scaling has a broad, shallow optimum (data not shown), but nevertheless the scaling fac-
tors were optimized by a grid search at a corresponding spectral radius of 0.9, leading to
o; = 0.1 for the arcsine kernels and the ESNs, and o; = 0.4 for the recursive Gaussian
RBEF. For the arcsine kernels and ESNs, bias did not seem to improve performance and
was therefore set to 0. All results were found by averaging over 100 different trials with
newly generated data and-or reservoirs.

Results of the experiments are shown in figure 5. Optimal performance can be found
around p = 0.9. Performance of the ESNs gradually increases with the number of
nodes, converging slowly to the performance of the arcsine kernel. As p becomes
greater than one, performance rapidly deteriorates. The recursive Gaussian RBF kernel
performs best, and both recursive kernels perform better than the classic time window

RBF kernel.

6.5 Phoneme recognition

The second task we consider is a speech recognition task in which the goal is to classify
phonemes, which are the smallest segmental unit of sound employed to form meaning-
ful contrasts between utterances. We use the internationally renowned TIMIT speech

corpus (Garofolo et al., 1993) which consists of 5040 English spoken sentences from

25

N =16

N =31
——F N =63
— N =125
— N = 250
— N =500
— N = 1000
— N = 2000

— arcsine kernel

0.1F = = = recursive RBF

....... Opt. Wind. RBF

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
p

Figure 5: Mean NRMSE of the NARMA-task for different setups in relation to the
corresponding spectral radius p. The thin, light to dark grey lines are NRMSEs for
ESNs with increasing numbers of nodes /N (specified in the legend). The thick black
line is for the arcsine kernel, i.e. for N — oo. The dashed line is the performance of
the recursive Gaussian RBF kernel, and the dotted line (independent of p) is the mean

NRMSE for optimized windowed Gaussian RBF kernels.

630 different speakers representing 8 dialect groups. About 70% of the speakers are
male and 30% are female.

The speech is labeled by hand for each of the 61 existing phonemes, which was re-
duced to 39 symbols as proposed by Lee and Hon (1989). The TIMIT corpus has a
predefined train and test set with different speakers. The speech has been preprocessed
using Mel Frequency Cepstral Coefficient (MFCC) analysis (S.Davis and Mermelstein,
1980), which is performed on 25 ms Hamming windowed speech frames and subse-
quent speech frames are shifted over 10 ms with respect to each other. Each frame
contains a 39-dimensional feature vector, consisting of the log-energy and the first 12

MFCC coefficients, and their first and second derivatives (the so-called A and AA pa-

26

rameters).

6.5.1 One vs. one classifiers

In order to classify each frame into one of the 39 possible classes, we use a voting
system that starts from a set of 741 one vs. one classifiers. Each of these classifiers is
trained to distinguish between two specific phonemes, and as there are 39 classes there
are (39 x 38)/2 = 741 one vs. one classifiers. Each one vs. one classifier is only trained
on data labeled with its corresponding phonemes and outputs either 1 or —1 (the sign
of the output value). Final classification is performed by letting the classifiers each cast

a vote.

6.5.2 Training method

One of the difficulties of using SVMs to train on TIMIT is the fact that the dataset is very
large. The training set consists of 1,124,823 frames, and the test set of 353,390 frames.
The number of frames per one vs. one classifier is of the order 10* to 10°. Traditional
SVM methods for classification would run into practical computational problems for
such large datasets.

Various methods for handling large datasets exist. We use a technique based on Newton
optimization (Chapelle, 2007). As explaining the algorithm in detail would go beyond
the scope of this paper we shall explain it only briefly and refer to Chapter 2 of Botton
et al. (2007) for specific details.

Classic SVMs use a hinge loss function. Optimizing this system is a convex problem
with a unique solution, and therefore solvable with quadratic programming techniques.
An LS-SVM on the other hand, has the advantage that the solution can be found by
solving a single system of linear equations. There are however two strong downsides of
using a quadratic loss function for classification problems. First of all, a quadratic error
will assign a high loss to some vectors which are in fact classified correctly. Secondly,
all the data in the training set will serve as support vectors, making the end solution
non-sparse. To solve this problem, we use a loss function of the form max(0, 1 —y;7;)?,
with y; the target (—1 or 1), and y; the output of the SVM. Essentially this is a quadratic
hinge loss function. If we optimize this system using the Newton-Raphson method, this

comes down to solving the problem using a quadratic loss-function, and next selecting

27

datapoints with y;7; < 1 as support vectors. This process is repeated until the set of
support vectors no longer changes. Next, one can train on successively larger datasets,
and use the previously found set of support vectors as initial values.

We trained each one vs. one classifier on a subset of 10* samples and chose a separate
validation set of 2000 samples, both randomly drawn from the total training dataset
associated with the corresponding labels. If the total amount of samples in the set was
smaller than 12000, we randomly drew 1000 samples as validation set and used the rest

for training.

6.5.3 Subsampling and parameter optimization

We tested on both classic windowed Gaussian RBF kernels, recursive Gaussian RBF
kernels, and arcsine kernels. For both recursive kernels we also investigate the effect
of subsampling the MFCC-data. It was found in Triefenbach et al. (2010) that large
recurrent neural networks perform better on phone recognition if the nodes are leaky
integrators, i.e. when the effective timescale of the network dynamics is slowed down.
Rather than incorporating this into our kernels, we subsampled the data by a factor of
2, 3 and 5. This essentially means that we speed up the data rather than slowing down
the dynamics of our system. For the non-subsampled variants of the data we classify on
the third frame of the time window or recursion depth, i.e. the SVM needs to classify
the phoneme of two frames in the past. For the subsampled versions, we classify on the
second frame (effectively the third, fourth and sixth frame in the respective unsubsam-
pled datasets). Rather than optimizing the parameters for each one vs. one classifier, we
looked for globally optimal parameters by randomly selecting 250 from the 820 classi-
fiers and trained them on a small training, validation, and test set of 1000 samples each,
drawn randomly from the corresponding full training set and measured the average test
error over a relevant range of parameters. The window size of the Gaussian RBF kernel
was determined this way. Recursion depths of the recursive kernels were determined by
making sure the kernel value differed on average less than one percent from its asymp-
totic value. We chose a bias equal to zero for the arcsine kernels to reduce the number

of parameters to optimize.

28

Table 1: Results on TIMIT. Results found in literature are listed under the line.

FER N, 7 o o;
Windowed RBF 31.5% 1465 9 16
Rec. RBF 30.6% 1386 10 1 22
Rec. RBF 2x subs. 294% 1499 10 1 12.5
Rec. RBF 3x subs. 28.7% 1504 10 1 16.5
Rec. RBF 5x subs. 28.5% 1100 5 0.8 8
Arcsine 30.5% 1105 15 1.75\/7;r 0.026
Arcsine 2x subs. 293% 1511 8 2.25*/7% 0.035
Arcsine 3 X subs. 28.6% 1377 8 2‘/7’? 0.04
Arcsine 5 subs. 289% 1210 8 2*/777 0.045
HMM(Cheng et al., 2009) 39.3%
PA(Crammer, 2010) 30.0%
DROP(Crammer, 2010) 29.2%

PAC-Bayes 1-frame(Kesher et al., 2011) 27.7%
PAC-Bayes 9-frame(Kesher et al., 2011) 26.5%
Online LM-HMM(Cheng et al., 2009) 25.0%

6.5.4 Results

Typically, the performance on the TIMIT dataset is evaluated based on the phoneme er-
ror rate. However, this requires an additional mechanism such as an HMM to segment
the frames into groups corresponding to phonemes. As we are only interested in the
relative performance of the kernels, we limited ourselves to only measuring the frame
error rate (FER), i.e. the percentage of input windows which were classified incorrectly.
The result (FER), average number of support vectors per one vs. one classifier (N),
window size / recursion depth (7), and optimal parameters ¢ and o; as defined in sub-
section 4.2 for each variant are shown in Table 1. FER for the subsampled versions of
the testset were determined by labeling the missing frames with the nearest classified
frame in the case of subsampling 3 x and 5x. In the case of 2x subsampling, the FER
was calculated twice by using the classification of both the previous and next frame as

label for the missing frames, and we took the average of both FER’s. The fact that most

29

literature doesn’t mention FER makes it hard to compare our results to the state of the
art, but some papers actually do mention FER, and to give some idea of our performance
in general we have included some representative results in the table.

All the techniques with recursive kernels outperform the classical windowed Gaussian
RBF kernels, even without subsampling, and it is obvious that subsampling gives a
boost in performance. Remarkably, we found that the optimal spectral radius of the
arcsine kernels is greater than one. Upon examining the necessary recursion depth we
found that these kernels do indeed only depend on a finite history of the input time se-
ries. This is due to the relatively high variance of the input, which pushes the kernels
into the saturating part of their nonlinearity.

It is interesting to note that in the case of the unsubsampled dataset we find that the
number of support vectors is lower for the recursive kernels than for the windowed ker-
nels. This seems to suggest that the recursive kernels are better at capturing the inherent
structure of the speech data 6,
In Triefenbach et al. (2010), the same task was studied by (among other techniques)
using a very large reservoir of 20,000 nodes. The FER found for this setup was 29.1%
(FER is not mentioned in the paper, but we know from personal communication with

the authors), which is comparable to our own results.

7 Conclusions

In this paper we described a straightforward method to define a kernel function that is
associated with a recurrent neural network with an infinite number of hidden nodes. We
link this result with findings which have been made in the domain of Reservoir Com-
puting, which employs large, randomly initiated neural networks. In our case (with
analog sigmoid nodes), such networks are commonly called Echo State Networks. In-
finite sized neural networks can be considered as ESNs without a random factor, and
determined solely by the data and a small number of parameters.

It is possible to associate the parameters of the recursive kernel functions with properties

known to play an important role in the dynamics of ESNs. Specifically, it is possible to

6This comparison would be unfair for the subsampled datasets as these are smaller.

30

define a ‘spectral radius’ for recursive kernels, which determines the dynamical regime
of both recurrent networks and recursive kernels. A second important parameter in
Reservoir Computing, defined as the memory capacity, which is fundamentally limited
by the number of nodes, has an equivalent for recursive kernels. For these, memory
capacity is fundamentally limited by the number of support vectors.

We tested the performance of recursive kernels on two benchmarks in which relevant
information is specifically coded in time. We found that for the tasks investigated, recur-
sive kernels perform better than classical Gaussian RBF kernels operating on a sliding
time window of the input signal. This result suggests that the recursive nonlinearity
and the fading memory of the recursive kernels are better suited to capture the temporal
nature of the data than an artificial time window.

One of the main arguments we wish to convey in this paper is that there is a direct
link between Reservoir Computing and kernel machines, and that it is possible to view
reservoirs as primal space approximations of an infinite-sized recursive kernel. More
precisely, the random weights can be considered as Monte-Carlo samples from a con-
tinuous distribution. Indeed, we found that performance of reservoirs in function of
network size asymptotically approaches that of the recursive kernels (using the same
amount of training data).

Many potential directions for future work remain. One of the most interesting questions
that remain is why fading memory seems to work better than time windows for certain
tasks. One potential explanation is the fact that the fading dependence on input history
is a more natural representation of the dependencies required for the task than an artifi-
cially cut-off time window. Hence one can argue that a fading memory acts as a natural
regularizer on time-series processing tasks. Interestingly, we also tried to apply recur-
sive kernels on synthetic time-series prediction and generation (where the input was
defined by a differential equation), but we found that windowed kernels perform better
or as good as recursive kernels. Here, it seems a windowed approach still is preferable
over the fading memory approach. This can partially be explained by the Takens em-
bedding theorem (Takens et al., 1981), which states that all information for integrating
an n-th order differential equation is embedded in a time window of 2n + 1 frames.
Another interesting line of research would be trying to construct principle component

approximations of the feature space of the recursive kernels (known as the Nystrom

31

approximation). This would allow to make a finite approximation, conform classical

reservoirs, but which depend on the underlying structure of the data.

Acknowledgments

This work was partially funded by a Ph.D. grant of the Institute for the Promotion of
Innovation through Science and Technology in Flanders (IWT-Vlaanderen), and the

European FP7 project ORGANIC.

References

Antonelo, E. A., Schrauwen, B., and Stroobandt, D. (2008). Event detection and local-
ization for small mobile robots using reservoir computing. Neural Networks, 21:862—

871.

Atiya, A. F. and Parlos, A. G. (2000). New results on recurrent network training: Uni-
fying the algorithms and accelerating convergence. IEEE Transactions on Neural

Networks, 11:697.

Banach, S. (1922). Sur les opérations dans les ensembles abstraits et leur application

aux équations intégrales. Fund. Math., 3:133—-181.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science

and Statistics). Springer.

Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A training algorithm for opti-
mal margin classifiers. In COLT ’92: Proceedings of the fifth annual workshop on
Computational learning theory, pages 144—152, New York, NY, USA. ACM.

Botton, L., Chappelle, O., DeCoste, D., and Weston, J. (2007). Large Scale Kernel
Machines. The MIT Press, Cambridge, Masschusetts.

Boyd, S. and Chua, L. O. (1985). Fading memory and the problem of approximating
nonlinear operators with volterra series. IEEE Transactions on Circuits and Systems,

32(11):1150-1171.

32

Chapelle, O. (2007). Large-scale Kernel Machines, chapter 2: Training a Support Vec-
tor Machine in the Primal, pages 29-51. MIT Press.

Cheng, C.-C., Sha, F., and Saul, L. (2009). A fast online algorithm for large margin
training of online continuous density hidden markov models. In Interspeech 2009,

pages 668-671.

Cho, Y. and Saul, L. K. (2010). Large margin classification in infinite neural networks.

Neural Computation, 22(10):2678-2697.

Crammer, K. (2010). Efficient online learning with individual learning-rates for

phoneme sequence recognition. In Proceedings of ICASSP 201 1.
Elman, J. (1990). Finding structure in time. Cognitive Science, 14:179-211.

Fernando, C. and Sojakka, S. (2003). Pattern recognition in a bucket. In Proceedings
of the 7th European Conference on Artificial Life, pages 588-597.

Ganguli, S., Huh, D., and Sompolinsky, H. (2008). Memory traces in dynamical sys-
tems. Proceedings of the National Academy of Sciences of the United States of Amer-
ica, 105(48):18970-18975.

Garofolo, J., of Standards, N. 1., (US, T., Consortium, L. D., Science, 1., Office, T.,
States, U., and Agency, D. A. R. P. (1993). TIMIT Acoustic-phonetic Continuous

Speech Corpus. Linguistic Data Consortium.

Geman, S. (1986). The spectral radius of large random matrices. The Annals of Proba-

bility, 14(4):1318-1328.

Jaeger, H. (2001). The “echo state” approach to analysing and training recurrent neural
networks. Technical Report GMD Report 148, German National Research Center for

Information Technology.

Jaeger, H. (2003). Adaptive nonlinear system identification with echo state networks.

In Advances in Neural Information Processing Systems, pages 593—-600.

Jaeger, H. and Haas, H. (2004). Harnessing nonlinearity: predicting chaotic systems

and saving energy in wireless telecommunication. Science, 308:78-80.

33

Jaeger, H., Lukosevicius, M., and Popovici, D. (2007). Optimization and applications

of echo state networks with leaky integrator neurons. Neural Networks, 20:335-352.

Jones, B., Stekel, D., Rowe, J., and Fernando, C. (2007). Is there a liquid state machine
in the bacterium Escherichia Coli? In IEEE Symposium on Artificial Life, pages
187-191.

Kesher, J., McAllester, D., and Hazan, T. (2011). Pac-bayesian approach for minimiza-
tion of phoneme error rate. In To appear in the Proceedings of ICASSP 201 1.

Lee, K.-F. and Hon, H.-W. (1989). Speaker-independent phone recognition using hid-
den markov models. Acoustics, Speech and Signal Processing, IEEE Transactions

on,37(11):1641 —1648.

Lukosevicius, M. and Jaeger, H. (2009). Reservoir computing approaches to recurrent

neural network training. Computer Science Review, 3(3):127-149.

Maass, W., Joshi, P., and Sontag, E. D. (2007). Computational aspects of feedback in
neural circuits. PLOS Computational Biology, 3(1):e165, 1-20.

Maass, W., Natschlédger, T., and Markram, H. (2002). Real-time computing without sta-
ble states: A new framework for neural computation based on perturbations. Neural

Computation, 14(11):2531-2560.
Neal, R. M. (1996). Bayesian Learning for Neural Networks. Springer.

Pearlmutter, B. (1995). Gradient calculations for dynamic recurrent neural networks:

A survey. Neural Networks, IEEE Transactions on, 6(5):1212—1228.

Rasmussen, C. E. and Williams, C. K. 1. (2006). Gaussian Processes for machine

learning. MIT Press.

Rumelhart, D., Hinton, G., and Williams, R. (1986). Learning internal representations

by error propagation. MIT Press, Cambridge, MA.

Schifer, A. M. and Zimmerman, H. G. (2006). Recurrent neural networks are universal

approximators. Lecture Notes in Computer Science, 4131:632-640.

34

Schmidhuber, J., Wierstra, D., Gagliolo, M., and Gomez, F. (2007). Training recurrent
networks by evolino. Neural Computation, 19:757-779.

S.Davis and Mermelstein, P. (1980). Comparison of parametric representations for
monosyllabic word recognition in continuously spoken sentences. IEEE Transactions

on Acoustics, Speech & Signal Processing, 28:357-366.

Shi, Z. and Han, M. (2007). Support vector echo-state machine for chaotic time-series

prediction. /[EEE Transactions on Neural Networks, 18(2):359-372.

Skowronski, M. D. and Harris, J. G. (2007). Automatic speech recognition using a

predictive echo state network classifier. Neural Networks, 20(3):414-423.

Steil, J. J. (2005). Stability of backpropagation-decorrelation efficient O(N) recurrent
learning. In Proceedings of ESANN’05, Brugge.

Suykens, J., Moor, B. D., and Vandewalle, J. (2008). Toward optical signal processing
using photonic reservoir computing. Optics Express, 16(15):11182—-11192.

Suykens, J., Van Gestel, T., De Brabanter, J., De Moor, B., and Vandewalle, J. (2002).
Least Squares Support Vector Machines. World Scientific Publishing.

Takens, F., Rand, D. A., and L.-S., Y. (1981). Detecting strange attractors in turbulence.
In Dynamical Systems and Turbulence, volume 898 of Lecture Notes in Mathematics,

pages 366-381. Springer-Verlag.

Triefenbach, F., Jalalvand, A., Schrauwen, B., and Martens, J.-P. (2010). Phoneme
recognition with large hierarchical reservoirs. In Advances in Neural Information

Processing Systems 23, pages 2307-2315.

Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer-Verlag, New
York.

Verstraeten, D., Schrauwen, B., d’Haene, M., and Stroobandt, D. (2007). An exper-
imental unification of reservoir computing methods. Neural Networks, 20(3):391-

403.

35

Verstraeten, D., Schrauwen, B., and Stroobandt, D. (2006). Reservoir-based techniques
for speech recognition. In Proceedings of the World Conference on Computational

Intelligence, pages 1050—1053.

Williams, C. K. A. (1998). Computation with infinite neural networks. Neural Compu-
tation, 10:1203-1216.

wyffels, F. and Schrauwen, B. (2010). A comparative study of reservoir computing

strategies for monthly time series prediction. Neurocomputing, 73:1958—1964.

36

