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As neural activity is transmitted through the nervous system, neuronal
noise degrades the encoded information and limits performance. It is
therefore important to know how information loss can be prevented.
We study this question in the context of neural population codes. Us-
ing Fisher information, we show how information loss in a layered net-
work depends on the connectivity between the layers. We introduce an
algorithm, reminiscent of the water filling algorithm for Shannon infor-
mation that minimizes the loss. The optimal connection profile has a
center-surround structure with a spatial extent closely matching the neu-
rons’ tuning curves. In addition, we show how the optimal connectivity
depends on the correlation structure of the trial-to-trial variability in the
neuronal responses. Our results explain how optimal communication
of population codes requires the center-surround architectures found in
the nervous system and provide explicit predictions on the connectivity
parameters.

1 Introduction

Neural information often passes through many different brain areas. Con-
sider, for instance, a task where a subject has to reach for a visual target.
Information about the target location will have to be transmitted across
many stages: retina, lateral geniculate nucleus, visual, premotor, and motor
cortices. Due to a variety of noise sources, single neurons are highly variable
and unreliable at every stage (Dean, 1981; Shadlen & Newsome, 1998; Faisal,
Selen, & Wolpert, 2008). It is believed that robustness against single-neuron
variability is engendered by population codes, in which many neurons
are activated by a given stimulus. Population codes have been studied ex-
tensively. In particular, the role of the tuning curve shape and the neural
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noise model (Seung & Sompolinsky, 1993; Zhang & Sejnowski, 1999; Bethge,
Rotermund, & Pawelzik, 2002), as well as the effect of correlations in the
trial-to-trial variability of different neurons, have been studied in detail
(Abbott & Dayan, 1999; Sompolinsky, Yoon, Kang, & Shamir, 2002; Wu,
Amari, & Nakahara, 2002; Shamir & Sompolinsky, 2004). Moreover, several
algorithms have been proposed to read out population codes (Lee, Rohrer, &
Sparks, 1988; Oram, Foldiak, Perrett, & Sengpiel, 1998), including neurally
plausible networks (Deneve, Latham, & Pouget, 1999).

Yet although it is well known how much information is available in a
given population and how it can be read out, it is not known how informa-
tion is preserved when it is transmitted between processing stages. Only
a few studies have addressed the transmission of population codes (Ham-
aguchi, Okada, Yamana, & Aihara, 2005; Hamaguchi, Okada, & Aihara,
2007), and none have quantified transmission quality. The transmission
quality is of functional importance: in the reaching task, each processing
stage presumably uses a population code. Suboptimal transmission would
lead to decreased performance and, hence, errors in the perceived target
location or increased reaction times.

In this study, we use Fisher information (FI) to quantify how information
about a stimulus feature degrades as activity is transmitted between layers.
Next, we use these results to find the synaptic weight profile that minimizes
information loss, and we find it to be center-surround (Mexican hat), with a
width approximately matched to the neurons’ tuning width. The generality
of our results is confirmed using numerical simulations of networks of
integrate-and-fire neurons.

2 Population Coding in Layered Networks

As a concrete example of information propagation across a hierarchy of
processing areas, we analyze the transmission of population-coded infor-
mation between two layers. We consider the network shown in Figure 1A.
Each of the two layers consists of a homogeneous population of N neurons
encoding an angular variable labeled θ , which could represent, for instance,
orientation. The response of each neuron i in the input layer depends on the
difference between its preferred orientation φi and θ , resulting in a popula-
tion activity bump on each trial (see Figure 1A, top). Neurons in the output
layer receive activity of the input layer through a synaptic weight matrix.
The neurons in the output layer are noisy as well.

The purpose of this study is to determine which synaptic weight ma-
trix minimizes information loss. Should the activity in the output layer be
narrower (sharpening) or wider than the input? Narrow tuning curves in
principle contribute to accuracy (Zhang & Sejnowski, 1999), but sharpen-
ing also induces correlations (Seriès, Latham, & Pouget, 2004) and leads to
lower overall activity. Wide tuning curves, however, smear the input, re-
ducing selectivity but also increase overall activity. In the presence of noise
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Figure 1: The network architecture and a schematic of the algorithm to find the
weights that optimally preserve information. (A) Architecture of the two-layer
network. The stimulus (vertical arrow) is encoded in the population activity
of the input layer (top). Due to trial-to-trial variability, the activity of the pop-
ulation on any given trial represents the stimulus with only limited accuracy.
Neurons in the output layer (bottom) pool the activity of the input layer through
a set of synaptic weights (middle, black), and also receive noise (middle, gray).
The algorithm optimizes the synaptic weights to maximize the coding accu-
racy in the output layer. (B) Schematic of the weight optimization procedure.
(Top left) From the population activity (solid line), the spatial derivative is cal-
culated (dashed line) and Fourier-transformed. In the Fourier domain, only the
strong Fourier modes that exceed a certain threshold are selected and are trans-
mitted by the weights (right). In the illustrated case, the threshold is constant;
in general, it is spatial frequency dependent. Transformed back into the spatial
domain, the optimal weight profile typically resembles a center-surround struc-
ture. The bottom panel shows the net current received by neurons in the output
layer, which is the convolution of the input activity with the weights.

in the output layer, it is a priori not obvious what the optimal resolution of
this trade-off will be.

For mathematical tractability, we start analyzing this problem with a
rate description of the neural activity, but then we extend our results to
simulations with spiking neurons. We denote the firing rate of neuron i in
the input layer as r in

i . Its average across trials is given by f (θ − φi ), where
f specifies the tuning curve shape, which is the same for all neurons. Our
theory is valid for any tuning curve shape; for the figures, we use

f (φi − θ ) = rpexp
[

cos 2(φi − θ ) − 1
a2

]
≡ fi (θ ), (2.1)
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where φi = (−1 + 2i−1
N )90◦, i = 1, . . . , N is the preferred orientation of cell

i, and rp and a are the peak firing rate of the cell and tuning curve width,
respectively.

Trial-to-trial response variability in the input neurons in principle can
be correlated (the so-called noise correlation), which affects the informa-
tion content. Under the assumption of gaussian noise, the noise correlation
is fully quantified by a covariance matrix C0. The structure of the noise
correlation can be dependent on the similarity between the tuning of dif-
ferent cells, that is, [C0]i j = C0(φi − φ j ), but is assumed independent of the
stimulus. Our theory allows for any functional form of C0 that meets this
condition. For the figures, we use correlations that decay exponentially with
the difference in preferred angle,

[C0]i j = C0(φi − φ j ) = (σ 2
0 − c0)δi j + c0 exp

[
−2|φi − φ j |

ρ0

]
, (2.2)

where σ 2
0 , c0, and ρ0 are the firing rate variance of the neurons, peak corre-

lation, and correlation length, respectively.
The firing rate of neuron j in the output layer on a given trial is

rout
j = g

(
I j

)
= g

(
1
N

N∑
i=1

Wjir in
i + η j

)
, (2.3)

where Ij is the current to neuron j and g(. . .) represents an instantaneous
nonlinearity that maps the input current of a neuron into its firing rate. The
magnitude of the synaptic weight between an input and an output neuron
is assumed to depend on the difference between their preferred angles
only, Wi j = W(|φi − φ j |), so that activity in the input and output layers is
aligned (Salinas & Abbott, 1994). The term η j represents external noise in
the current, such as coming from other inputs, synapses, or voltage-gate
channels. It is assumed to be unrelated to the stimulus and the activity of
the previous layer. Again allowing for correlations in noise, it is modeled as
zero-mean gaussian noise current with covariance matrix C1, which in the
figures is parameterized as in equation 2.2, by σ 2

1 , c1, and ρ1.

2.1 Information in the Input Layer. We use the Fisher information to
quantify how accurately the stimulus is represented in both layers (Cover
& Thomas, 1991; Kay, 1993). Under the above noise and homogeneity as-
sumptions, the Fisher information in the input layer is

J in =
N∑

i, j=1

f ′
i (θ )[C−1

0 ]i j f ′
j (θ ), (2.4)
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where f ′
i (θ ) is the derivative of the tuning curve of neuron i with respect

to the stimulus angle θ . But the FI is more elegantly formulated in spatial
frequency space (Sompolinsky et al., 2002; Wu et al., 2002). We use the fol-
lowing convention for the Fourier transform: h̃n = (1/N)

∑N
j=1 e−2π i jn/Nh j

and the inverse transform h j = ∑N−1
n=0 e2π i jn/N h̃n. The Fisher information

becomes

J in =
N−1∑
n=0

| f̃ ′(n)|2
C̃0(n)

, (2.5)

where C̃0(n) is the nth Fourier component of the noise correlation matrix
and f̃ ′(n) is the Fourier components of the derivative of the tuning curve
(Sompolinsky et al., 2002). Defining the signal-to-noise ratios at spatial
frequency n as J (n) = | f̃ ′(n)|2/C̃0(n),

J in =
N−1∑
n=0

J (n). (2.6)

The FI is thus a sum of the signal-to-noise ratios at every spatial frequency.
For a given spatial frequency, the signal is the squared magnitude of the
Fourier mode of the derivative of the tuning curve, while the noise is
the corresponding Fourier mode of the covariance matrix. Because typical
neuronal tuning curves are smooth and broad, only low spatial frequen-
cies carry power and, hence, information. Note, however, that the zero
mode of the signal carries no information. The zero mode corresponds to
the change in average network activity with respect to the stimulus, as
f̃ ′
0 = (1/N)

∑N
j=1 f ′

j . This quantity is effectively 0 for networks with broad
tuning curves and many neurons (N ≥ 100).

2.2 Information in the Output Layer. Next, we calculate the informa-
tion in the output layer. Because the currents are the linear sum of gaussian
distributed firing rates and gaussian noise sources (see equation 2.3), the
currents have again a gaussian distribution with mean

Ii (θ ) = 1
N

∑
j

Wi j f j (θ )

and covariance matrix

[CI ]i j = 1
N2

∑
kl

Wik[C0]kl Wl j + [C1]i j .
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The frequency components are transmitted independently, and the FI in
the currents is calculated as above:

Jout =
N−1∑
n=0

J (n)
[ |W̃(n)|2

|W̃(n)|2 + T(n)

]
, (2.7)

where W̃(n) and C̃1(n) are the Fourier components of the weight profile
and of the covariance matrix of the external noise, and T(n) is defined as
T(n) = C̃1(n)/C̃0(n).

This expression has a straightforward interpretation. Compared to the FI
in the input layer, equation 2.6, the output information at every frequency
is attenuated by a factor between 0 and 1 (the term in the square brackets).
The output information is therefore always less than or equal to the input
information. If there is no external noise in the output layer, C1 = 0, then
T(n) = 0 and the attenuation factors are exactly 1. In that case, no informa-
tion is lost between the two layers, and save for the completely flat profile,
any profile will suffice to transmit the population code perfectly.

From the currents, the firing rate follows from the nonlinearity g() (see
equation 2.3). In general, the output firing rate distribution will not be
gaussian, but as long as the nonlinearity is invertible (e.g., a sigmoid or a
power law with positive argument), the FI in the output rates equals the FI
in the current.

2.3 Optimal Connectivity. Using the above results, we optimize the
connectivity between the input and output layers so that it minimizes the
information loss between the input and the output layers. The loss is mini-
mal if the attenuation factor in equation 2.7 approaches 1 for all frequencies.
This can be trivially achieved if the weights strongly amplify all spatial fre-
quencies, that is, if |W̃(n)|2 is sufficiently large. This is, for instance, the
case if the weight matrix is a large multiple of the identity matrix. In that
case, the noise in the output layer becomes negligible compared to the input,
and the FI in the output layer approaches the FI of the input layer. However,
this solution yields unphysiologically large currents and high firing rates
in the output layer. Clearly a constraint in the magnitude of the weights has
to be imposed.

It is reasonable to constrain the magnitude of the weights by impos-
ing that the spatial average of |W(φi − φ j )|2 be of order unity, that is,
1
N

∑
i |W(φi )|2 = q , with q a constant of order unity. The square prevents the

constraint from being satisfied through a cancellation between positive (ex-
citatory) and negative (inhibitory) weights. Other types of constraints gave
comparable results (see simulations below). The constrained optimization
effectively introduces competition between the different frequency modes
of the weights. Rather than amplifying all modes, the optimal weights trans-
mit only the most informative spatial frequencies. Assigning power in the
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weakly informative spatial frequencies would not significantly increase the
transmitted information, but, due to the constraint, it would take power
away from the informative modes.

In spatial frequency space, the constraint is

N−1∑
n=0

|W̃(n)|2 = q .

Full details of the resulting multidimensional constrained optimization pro-
cess, schematically illustrated in Figure 1B, can be found in the appendix.
There, it is shown that the optimal weights are given by

|W̃(n)|2 =
√

T(n)
[√

J (n)/λ −
√

T(n)
]

+
(2.8)

where [x]+ = max(0,x), and the constant λ is given by

1√
λ

=
∑

n′ |W̃(n′)|2 + T(n′)∑
n′

√
J (n′)T(n′)

, (2.9)

and the sum over n′ runs over all frequency modes where the weights are
non-0. Equations 2.8 and 2.9 have to be solved self-consistently due to the
thresholding nonlinearity in equation 2.8, which appears because power
can only be positive. In equation 2.8, the ratio of noises, T(n), acts as an
threshold on the weights.

Note that because both synaptic weights and correlation functions are
translationally invariant, the optimal solution for the synaptic weights is
very general. In particular, because our calculation is nonparametric, equa-
tion 2.8 describes the optimal connectivity profile for any tuning curve
shape and any correlation profile.

2.4 Optimal Connectivity Profiles. We examine the optimal weight
profiles that follow from the above calculation for a few illustrative cases.
Consider first the simple case in which both noises are each uncorrelated,
that is, [C0]i j = σ 2

0 δi j and [C1]i j = σ 2
1 δi j , which yields T(n) = T = σ 2

1 /σ 2
0 . The

optimal weights are |W̃(n)|2 = [α| f̃ ′(n)| − T]+, where α is a constant given

by α = q T
∑′

n 1∑′
n | f̃ ′(n′)| . In other words, the weights in spatial frequency space

are a thresholded version of the tuning curve derivative. Optimal weight
profiles in this case are shown in Figure 2A for three different widths of
the input tuning curve: When the input tuning curves are very narrow, the
intermediate frequencies are most informative, giving the optimal weight
profile an oscillatory character. For medium and wide tuning curves, the
low-frequency modes are most informative, yielding a smoother weight
profile.
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Figure 2: Exact optimization of synaptic weights in the firing rate model.
(A) Input layer activity (top), optimal synaptic weights (middle), and out-
put synaptic current (bottom) for three different tuning curve widths: nar-
row (a = 1/6, left), medium (a = 1/3, center), and wide tuning (a = 1, right).
Other parameters: q = 2, c0 = c1 = 0, sigma0 = σ1 = 2 Hz2, rp = 20 Hz, N = 501.
(B) Output width of optimal synaptic weights (solid) and output currents
(dashed) as a function of tuning width in the input layer. Output and input
widths are approximately matched. (C–F) Noise correlations sharpen the opti-
mal weights. Three cases were considered: No noise correlations (black), noise
correlation in the input layer only, and uncorrelated external noise (light gray
empty circles; c0 = 0.2 and ρ0 = 1), and identical correlation structure in input
layer and external noise (dark gray filled circles; c0 = c1 = 0.2 and ρ0 = ρ1 = 1).
C, Tuning curve in the input layer (solid) and correlation structure (dotted
lines). (D) Correlations strongly reduce the Fisher information in the input
layer (light and dark gray overlapping), compared to the uncorrelated case
(black). Inset, Effective threshold for the synaptic weights T(n) (black and dark
gray overlapping). (E) The optimal weights in the spatial frequency domain.
In the absence of correlations, the weights amplify only the most informa-
tive, low-frequency modes (black). The effective threshold across frequencies
is the same when the input and external correlations are equal, as in the case
where correlations are absent. But since correlations decrease the information
at the lowest-frequency modes (see panel D), more weight is devoted to higher
frequencies (dark gray). Finally, when the external noise is uncorrelated, the
low-frequency thresholds decrease (D, inset). The information in the lowest fre-
quencies can now be transmitted with smaller weights, allowing further empha-
sis of higher frequencies (light gray). (F) After inverse Fourier transformation,
the optimal weights are narrower when correlations are present. (C–F). Param-
eters as in A, width a = 0.85. We displayed the highest frequencies as negative
(n = N − m → n = −m) to highlight the symmetry of the Fourier transforms.
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In Figure 2B, the width of the connectivity profile and the output width
are plotted as a function of the tuning curve width. The width was calculated
as the full width at half maximum. In general, the width of the optimal
connectivity approximately matches that of the input tuning curve. The
width has a complicated dependence on the Fourier components. As a
result, the width can be either narrower or wider than the input, even in
this highly idealized scenario. The optimal weights depend on the noise as
well. If, for instance, the postsynaptic noise is small, the optimal weights will
transmit intermediate spatial frequencies. If, in contrast, the postsynaptic
noise is large, the threshold is high and the weights are concentrated around
the large, low-frequency modes, yielding broader weight profiles.

Next, we address the optimal transmission strategy in the presence of
noise correlations. Although in some cases, noise correlations can increase
the information of neural codes (Oram et al., 1998; Averbeck, Latham, &
Pouget, 2006), they typically reduce it, as they limit the potential for aver-
aging out noise by pooling over neurons (Britten, Shadlen, Newsome, &
Movshon, 1992; Zohary, Shadlen, & Newsome, 1994), which is reflected in a
saturation of the FI in the presence of limited-range correlations (Sompolin-
sky et al., 2002; Wu et al., 2002). Noise correlations affect the optimal weights
in two ways. First, correlations change the amount of information present
at each spatial frequency in the input layer (see Figure 2D). In particular,
limited-range correlations reduce the signal-to-noise ratio at low spatial
frequencies, which are the most informative. Second, noise correlations in
the input lower the effective thresholds T(n), so that less power is required
in the low-frequency weights (see equation 2.8). Thus, in the presence of
limited range correlations, the optimal weights emphasize the intermediate
frequencies more than for uncorrelated noise, leading to a narrower profile
(see Figure 2E and 2F).

Although the precise shape of the optimal weight profile depends on
detailed properties of the population firing statistics (see equation 2.8), it
has several general properties. Because there is no information about the
stimulus in the average activity of the population, the optimal weights are
balanced: their zero-frequency mode (the area under the weight profile)
is 0. Second, if the tuning curves are not too narrow, most information
is in the lowest spatial frequencies, which are amplified the most by the
optimal profile. In summary, the optimal weights have the most power in
the low-frequency modes and none at 0, which implies that they have a
center-surround or Mexican hat structure.

3 Application to Spiking Networks

The calculation in the previous section made a number of assumptions that
might not hold for spiking neuron models. In particular, the noise will not
be gaussian nor independent of the stimulus. Moreover, it is more natural
to constrain the peak firing rate in the output layer rather than the sum of
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Figure 3: Optimal connectivity in a network of spiking integrate-and-fire neu-
rons. (A) Snapshot of 1 second of the activity in the input (top) and output
(bottom) layers (optimal connectivity). (B) Error of the optimal linear estima-
tor of the stimulus as a function of the width of the connectivity profile for
various levels of surround inhibition. The error in the estimator in the input
layer is shown by the solid gray line. Without inhibition, estimation is sub-
optimal for all widths (dotted curve). With balanced inhibition (solid curve),
the error reduces considerably and approaches the input error. The width of
the optimal profile is similar to but slightly larger than the tuning curve width
(arrow). Stronger inhibition (dashed curve) works well if the width is matched
to the tuning curve width, but the error is large when the profile is mistuned.
(C) Three examples of the input and output bumps of activity. (i) Narrow connec-
tivity with strong inhibition. In this case, the strong inhibition leads to narrow
and highly variable activity in the output. (ii) Balanced inhibition at the optimal
width. Input and output activity profiles are very similar in the optimal case.
(iii) Wide connectivity with no inhibition. The output layer blurs in activity pro-
file. (D) The optimal width (top) as a function of the duration of the decoding
time window. For shorter windows, a broader connectivity is optimal. The min-
imal error (bottom) decreases as the square root of the decoding time window.

the weights squared. To test the generality of the results, we simulated a
two-layer network of spiking integrate-and-fire neurons (see Figure 3A).

We use a network consisting of 128 current-based integrate-and-fire
neurons per layer with periodic boundary conditions. The biophysical
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parameters of the neurons are 100 M� input resistance Rm, 20 ms time
constant τ , −60 mV reset and resting potential Vr, −50 mV firing thresh-
old and 1 ms refractory period (van Rossum, Turrigiano, & Nelson, 2002).
The dynamics are τm

dV
dt = −(V(t) − Vr ) + Rm Iin, where Iin is the input cur-

rent consisting of both synaptic current and noise currents. On top of that,
the input layer also receives a static profile of current injections with a
gaussian shape according to equation 2.1, with a full width at half max-
imum of 60 degrees. After a spike, the membrane potential resets to the
resting potential, where it remains clamped for 1 ms (absolute refractory
period).

All neurons are injected with a gaussian-distributed, low-pass-filtered
noisy background current with positive mean (mean 55 pA, standard de-
viation 70 pA, filter time constant 2 ms). This noise current mimics the
intrinsic noise in the neurons and unspecific input from other neurons. The
noise prevents synchronization of the neural activity and ensures that firing
statistics, response latencies, and membrane potential distributions mimic
those found in vivo, yielding so-called rate-mode propagation (Knight,
1972; Gerstner, 2000; van Rossum et al., 2002). We note that in more syn-
chronous modes of activity, such as the synfire chain, information quan-
tification is much more complicated because information can be coded in
spike timing and packet size (Hamaguchi et al., 2005).

The synapses are modeled as current sources, which are positive (nega-
tive) for excitatory AMPA (inhibitory GABA) synapses; both have simple
exponential decay with a 5 ms time constant. Conductance-based synapses
lead to very similar results but do not allow us to make as precise claims
about balance as the current-based synapses. The synapses have a release
probability of 50%. For simplicity, neurons can make both excitatory and
inhibitory synapses.

3.1 Parameterization of the Connectivity Profile. The output layer is
driven by the input layer through excitatory and inhibitory synapses via
a weight matrix. A full optimization of the weight matrix is not feasible
in the simulations. Instead, the synaptic connections between layers are
parameterized by a rectified cosine with a uniform inhibitory surround. The
connection strength between a neuron at position i and a neuron at position j
in the next layer equals Wi j = Acos( φi j

φw
90◦) wherever |φi j | = |φi − φ j | ≤ φw,

while Wi j = −c
∑

i [Wi j ]+ otherwise. For a purely excitatory profile, c = 0,
while for a balanced profile c is adjusted such that

∑
i Wi j = 0. Other weight

profiles such as a difference of gaussians give very similar results; the
parameterization used allows a straightforward adjustment of width φw,
inhibition strength c, and amplitude A. The amplitude A is calibrated for
every choice of connectivity profile, so that the peak firing rates in the
input and output layer are identical (50 Hz). This is important as the gain
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influences the transmission quality: the more output spikes are produced,
the more accurate the estimate can be. The calibration prevents this effect.

3.2 Measuring Information Transmission in Spiking Networks. Al-
though these simulations have the advantage of being realistic, measuring
the true FI in simulations of spiking neurons is computationally prohibitive
for nongaussian, correlated noise. The quality of the transmission is calcu-
lated as follows. A long-lasting stimulus is applied, and after removal of
the onset transient, the population activity of a layer of interest is sliced
into 25 ms time bins. We estimated the position of the stimulus using an
optimal linear discriminator, which provides a lower bound on the Fisher
information (Shamir & Sompolinsky, 2004; Seriès et al., 2004). On each trial,
spike counts were used as the input to the discriminator. On half the trials,
the stimulus had an angle +φ (7◦), while on the other trial, the angle was
−φ. A linear discriminator had to distinguish these two stimuli by calcu-
lating the dot product between the weights of the discriminator v and the
firing rates of the population for either stimulus, z±φ = v.r(±φ). Because
of symmetry, the discriminator weights can be written as a discrete Fourier
series vi = ∑n

k=1 ak sin(2π ik/N). The output of the discriminator was, on
average, different between the two stimuli, but fluctuated on each trial,
thereby limiting the discrimination. The quality of the discriminator was
characterized by its signal-to-noise ratio (SNR). The discriminator weights
were optimized by numerically minimizing the SNR with respect to the
Fourier coefficients ak (eight Fourier coefficients proved sufficient; using
more did not improve the SNR). This optimization was done indepen-
dently for every setting of the connectivity. The SNR of the discriminator is
converted to the standard deviation in the angle estimate, which equals the
inverse square root of the Fisher information estimate (Seriès et al., 2004;
Shamir & Sompolinsky, 2004).

3.3 Effect of Connectivity on Information Transmission. First, we re-
search the effect of the connectivity profile on transmission quality. Previ-
ously the connectivity profile in the simulations was parameterized by the
width of the excitatory center and the strength of the inhibition. In Figure 3B
the trial-to-trial standard deviation in the stimulus angle (a lower bound on
the inverse square root of the FI) is plotted as a function of the width of the
connectivity profile and various levels of inhibition. Compare the error to
the error in the input layer (the gray line).

First, we used an excitatory-only weight profile. The error in the output
layer (the dotted curve) is substantially higher than in the error in the
input. The error in the output is largest for wide weight profiles, as in this
case, the output activity is smeared, (see Figure 3C, example iii). Next, we
tested profiles with a balanced inhibitory surround. Now, neurons away
from the center of the stimulus will experience a net inhibition, preventing
them from firing. Adding surround inhibition substantially improves the
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accuracy in the output layer. For a balanced, center-surround profile (solid
curve in Figure 3B) with a half-width approximately matching the width
of the activity profile (arrow), the error is minimal. The information loss
between the layers is remarkably small (compare the gray to solid black
curve). In line with the analytical results on the width of input and output
(see Figure 2B), the output activity profile is in the optimal case very similar
to the input profile (example ii in Figure 3C).

The exact amount of inhibition required turned out not to be critical as
long as the width of the profile is matched to that of the tuning curve. A
three-fold increase in the inhibition yields similar performance for a pro-
file with an optimally tuned width (see the dashed curve in Figure 3B).
However, strong inhibition decreases performance if the weight and tun-
ing widths are mismatched (e.g., Figure 3C, example 1). These simulation
results are in line with the theoretical analysis above: in order to preserve
information, the connectivity profile needs to amplify spatial frequencies
that convey the most information, while filtering out the high and zero
spatial frequencies.

To compare this to the theory, we use the derived algorithm to calculate
the optimal profile for the tuning curve used in the simulation. We adjusted
the constraint parameter q so that the peak output firing rate equaled the
peak input firing rate. The theoretically optimal profile had a width of
64 degrees, close to the numerical optimum. Using this profile, the standard
deviation in angle estimate in the output was 2.73 degrees, which equals
the minimal error found numerically.

Next, we examined the role of the readout window on the accuracy and
the shape of the optimal profile. We used readout windows (t) of 5, 10, 25,
50, 100, and 500 ms. A longer readout time gives a more accurate estimate
because noise is averaged out more. The error in the readout decreased
approximately as err ∝ 1/

√
t, as expected from averaging uncorrelated

noise (see Figure 3D, bottom). The width of the optimal profile is weakly
dependent on the time bin (see Figure 3D, top). For short time windows,
a slightly wider profile is optimal. This is similar to findings that optimal
tuning curves are broader for short integration times to ensure that it still
captures the few spikes in the network (Brunel & Nadal, 1998; Bethge et al.,
2002). For longer time bins, the noise is more gaussian, and the optimal
width converges to a smaller value.

4 Discussion

We have considered a scenario where information is processed in stages
and thus needs to be represented in multiple brain regions. Based on the
Fisher information, our results show that the information encoded by a
population of broadly tuned neurons is best transmitted through center-
surround connectivity profiles. The width of the center-surround profile
roughly matches the width of the tuning curves in the input population,
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and as a result, the tuning width in the output layer approximately matches
that of the input layer. Thus, the tuning width in deeper layers cannot be
sharpened or widened arbitrarily without a cost; instead, it is dictated by
the input.

Our findings have implications for the interpretation of neural connec-
tivity. In sensory systems, center-surround architecture has been interpreted
as a contrast enhancement mechanism and as a way to minimize redun-
dancy at early states of the visual processing stream by removing stimulus
correlations (Atick & Redlich, 1990). However, it has been unclear why con-
trast enhancement would be needed at every stage. Our results suggests
that the abundance of center-surround connectivity in many parts of the
nervous system (Hartline, Wagner, & Ratcliff, 1956; Hubel & Wiesel, 1962;
Enroth-Cugell & Robson, 1966; Trappenberg, Dorris, Munoz, & Klein, 2001)
is important for accurate population code processing throughout the ner-
vous system and is dictated by the need to filter out the uninformative high
and zero spatial-frequency modes.

We note that our result on the optimal weight profile is reminiscent of
the water-filling algorithm used to maximize the transmission of Shannon
information in a temporal signal with a power-limited transmitter (Cover &
Thomas, 1991). In both cases, signals are transmitted independently through
different (spatial resp. temporal) frequency channels, each channel is cor-
rupted with channel-specific noise, and there is a limit to the total power.
Although the exact results are mathematically distinct, the constraints and
the Shannon and Fisher information are different; in both cases, the most
informative frequencies are transmitted, while other frequencies are thresh-
olded out.

We believe that quantifying information transmission between popula-
tions presents an important concept that should be contrasted to the prob-
lem of how to read out a given population. A read-out algorithm can be
thought of as a map from high-dimensional population activity to a low-
dimensional encoded quantity, such as stimulus orientation. But in the ner-
vous system, although the encoded quantity is processed as activity flows
through, say, the sensory-motor stream, subsequent stages do not read out
the previous one. Instead, the high-dimensional nature of the encoding pro-
cess is preserved until the very last stages, where a small set of muscles is
driven by the corresponding motor neurons.

While this study considers only the transmission of activity, the ulti-
mate goal is to understand information processing. The findings here are
also applicable to computing networks. In an earlier study using recur-
rent networks to implement an optimal read-out algorithm, the width
of the connectivity profile had to be set approximately equal to the tun-
ing curve width (Deneve et al., 1999). Another study found that spiking
feedforward networks employing a width-matched center-surround con-
nectivity accurately computed with population codes (van Rossum &
Renart, 2004). Finally, in a man-made readout of population codes, matching
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the connectivity to the activity profile was found to give good performance
(Georgopoulos, Taira, & Lukashin, 1993). Our results help to explain those
findings and might also be of use for recurrent networks.

Appendix: Optimal Connectivity Profile

The optimal connectivity profile is found by maximizing equation 2.7 sub-
ject to the constraint

∑
n |W̃(n)|2 = q . This can be performed by using La-

grange multipliers. Define the Lagrangian

L =
∑

n

J (n)|W̃(n)|2
|W̃(n)|2 + T(n)

− λ

(∑
n

|W̃(n)|2 − q

)
,

where λ is the Lagrange multiplier. Imposing ∂L/∂|W̃(n)| = 0 results in

|W̃(n)|2 =
√

T(n)
[√

J (n)/λ −
√

T(n)
]

+
. (A.1)

The rectification appears because |W̃(n)|2 > 0, and λ has to be chosen so that
the constraint is satisfied. We solve these equations self-consistently. Given
an initial arbitrary value of λ, one calculates |W̃(n)|2 using equation A.1. Let
us denote by {n′} those frequency modes for which |W̃(n)|2 > 0. Imposing
the constraint, we obtain

1√
λ

= q + ∑
n′ T(n′)∑

n′
√

J (n′)T(n′)
.

This new value is used to calculate the updated |W̃(n)|2, and this procedure
is repeated until λ no longer changes, at which point

∑
n′ |W̃(n)|2 = q . Sub-

stituting this final value for λ into equation A.1 results in the solution for
the optimal weights in equation 2.8. The final weight matrix is retrieved by
transforming back into real space using

W(φi − φ j ) =
N−1∑
n=0

ein(φi −φ j )wn.

Note that formally, our solution specifies only the squared magnitude of
the weights, that is, their power spectrum. Thus, any solution obtained
by multiplying the |W̃(n)| by any phase eiβn is also a solution. However,
because we require the weight profile to be an even function, the Fourier
coefficients can only be real.
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