
ar
X

iv
:1

10
7.

51
94

v2
 [

m
at

h.
O

C
]

 6
 O

ct
 2

01
1

Accelerated Multiplicative Updates and Hierarchical ALS Algorithms

for Nonnegative Matrix Factorization

Nicolas Gillis1 and François Glineur2

Abstract

Nonnegative matrix factorization (NMF) is a data analysis technique used in a great variety
of applications such as text mining, image processing, hyperspectral data analysis, computational
biology, and clustering. In this paper, we consider two well-known algorithms designed to solve
NMF problems, namely the multiplicative updates of Lee and Seung and the hierarchical alternating
least squares of Cichocki et al. We propose a simple way to significantly accelerate these schemes,
based on a careful analysis of the computational cost needed at each iteration, while preserving
their convergence properties. This acceleration technique can also be applied to other algorithms,
which we illustrate on the projected gradient method of Lin. The efficiency of the accelerated
algorithms is empirically demonstrated on image and text datasets, and compares favorably with
a state-of-the-art alternating nonnegative least squares algorithm.

Keywords: nonnegative matrix factorization, algorithms, multiplicative updates, hierarchical al-
ternating least squares.

1 Introduction

Nonnegative matrix factorization (NMF) consists in approximating a nonnegative matrix M as a low-
rank product of two nonnegative matrices W and H, i.e., given a matrix M ∈ R

m×n
+ and an integer

r < min{m,n}, find two matrices W ∈ R
m×r
+ and H ∈ R

r×n
+ such that WH ≈M .

With a nonnegative input data matrix M , nonnegativity constraints on the factors W and H
are well-known to lead to low-rank decompositions with better interpretation in many applications
such as text mining (Shahnaz et al., 2006), image processing (Lee & Seung, 1999), hyperspectral data
analysis (Pauca et al., 2006), computational biology (Devarajan, 2008), and clustering (Ding et al.,
2005). Unfortunately, imposing these constraints is also known to render the problem computationally
difficult (Vavasis, 2009).

Since an exact low-rank representation of the input matrix does not exist in general, the quality
of the approximation is measured by some criterion, typically the sum of the squares of the errors on
the entries, which leads to the following minimization problem:

min
W∈Rm×r ,H∈Rr×n

||M −WH||2F such that W ≥ 0 and H ≥ 0, (NMF)

where ||A||F = (
∑

i,j A
2
ij)

1
2 denotes the Frobenius norm of matrix A. Most NMF algorithms are

iterative, and exploit the fact that (NMF) reduces to an efficiently solvable convex nonnegative least

1University of Waterloo, Department of Combinatorics and Optimization, Waterloo, Ontario N2L 3G1, Canada.
E-mail: ngillis@uwaterloo.ca. This work was carried out when the author was a Research fellow of the Fonds de la
Recherche Scientifique (F.R.S.-FNRS) at Université catholique de Louvain.

2Université catholique de Louvain, CORE and ICTEAM Institute, B-1348 Louvain-la-Neuve, Belgium. E-mail:
francois.glineur@uclouvain.be. This text presents research results of the Belgian Program on Interuniversity Poles of
Attraction initiated by the Belgian State, Prime Minister’s Office, Science Policy Programming. The scientific responsi-
bility is assumed by the authors.

1

http://arxiv.org/abs/1107.5194v2

squares problem (NNLS) when one of the factors W or H is fixed. Actually, it seems that nearly all
algorithms proposed for NMF adhere to the following general framework

(0) Select initial matrices (W (0),H(0)) (e.g., randomly). Then for k = 0, 1, 2, . . . , do

(a) Fix H(k) and find W (k+1) ≥ 0 such that ||M −W (k+1)H(k)||2F < ||M −W (k)H(k)||2F .

(b) Fix W (k+1) and find H(k+1) ≥ 0 such that ||M −W (k+1)H(k+1)||2F < ||M −W (k+1)H(k)||2F .

More precisely, at each iteration, one of the two factors is fixed and the other is updated in such
a way that the objective function is reduced, which amounts to a two-block coordinate descent
method. Notice that the role of matrices W and H is perfectly symmetric: if one transposes in-
put matrix M , the new matrix MT has to be approximated by a product HTW T , so that any formula
designed to update the first factor in this product directly translates into an update for the sec-
ond factor in the original problem. Formally, if the update performed in step (a) is described by
W (k+1) = update(M,W (k),H(k)), an algorithm preserving symmetry will update the factor in step
(b) according to H(k+1) = update(MT ,H(k)T ,W (k+1)T)T . In this paper, we only consider such sym-
metrical algorithms, and focus on the update of matrix W .

This update can be carried out in many different ways: the most natural possibility is to compute
an optimal solution for the NNLS subproblem, which leads to a class of algorithms called alternat-
ing nonnegative least squares (ANLS), see, e.g., H.Kim & Park (2008). However, this computation,
which can be performed with active-set-like methods (H.Kim & Park, 2008; J.Kim & Park, 2008), is
relatively costly. Therefore, since an optimal solution for the NNLS problem corresponding to one
factor is not required before the update of the other factor is performed, several algorithms only com-
pute an approximate solution of the NNLS subproblem, sometimes very roughly, but with a cheaper
computational cost, leading to an inexact two-block coordinate descent scheme. We now present two
such procedures: the multiplicative updates of Lee and Seung and the hierarchical alternating least
squares of Cichocki et al.

In their seminal papers, Lee & Seung (1999, 2001) introduce the multiplicative updates:

W (k+1) = MU(M,W (k),H(k)) = W (k) ◦
[MH(k)T]

[W (k)H(k)H(k)T]
,

where ◦ (resp. [.]
[.]
) denotes the component-wise product (resp. division) of matrices, and prove that each

update monotonically decreases the Frobenius norm of the error ||M−WH||F , i.e., satisfies the descrip-
tion of steps (a) and (b). This technique was actually originally proposed by Daube-Witherspoon & Muehllehner
(1986) to solve NNLS problems. The popularity of this algorithm came along with the popularity of
NMF and many authors have studied or used this algorithm or variants to compute NMF’s, see, e.g.,
Berry et al. (2007); Cichocki et al. (2009) and the references therein. In particular, the MATLABR©

Statistics Toolbox implements this method.
However, MU have been observed to converge relatively slowly, especially when dealing with dense

matrices M , see Han et al. (2009); Gillis & Glineur (2008) and the references therein, and many other
algorithms have been subsequently introduced which perform better in most situations. For example,
Cichocki et al. (2007); Cichocki & Phan (2009) and, independently, several other authors (Ho, 2008;
Gillis & Glineur, 2008; Li & Zhang, 2009) proposed a technique called hierarchical alternating least
squares (HALS)1, which successively updates each column of W with an optimal and easy to compute
closed-form solution. In fact, when fixing all variables but a single column W:p of W , the problem
reduces to

min
W:p≥0

||M −WH||2F = ||(M −
∑

l 6=p

W:lHl:)−W:pHp:||
2
F =

m
∑

i=1

||(Mi: −
∑

l 6=p

WilHl:)−WipHp:||
2
F .

1Ho (2008) refers to HALS as rank-one residue iteration (RRI), and Li & Zhang (2009) as FastNMF.

2

Because each row of W only affects the corresponding row of the product WH, this problem can be
further decoupled into m independent quadratic programs in one variable Wip, corresponding to the
ith row of M . The optimal solution W ∗

ip of these subproblems can be easily written in closed-form

W ∗
ip = max

(

0,
(Mi: −

∑

l 6=pWilHl:)H
T
p:

Hp:HT
p:

)

= max
(

0,
Mi:H

T
p: −

∑

l 6=pWilHl:H
T
p:

Hp:HT
p:

)

, 1 ≤ i ≤ m.

Hence HALS updates successively the columns of W , so that W (k+1) = HALS(M,W (k),H(k)) can be
computed in the following way:

W (k+1)
:p = max

(

0,
A:p −

∑p−1
l=1 W

(k+1)
:l Blp −

∑r
l=p+1W

(k)
:l Blp

Bpp

)

,

successively for p = 1, 2, . . . , r, where A = MH(k)T and B = H(k)H(k)T . This amounts to approxi-
mately solving each NNLS subproblem in W with a single complete round of an exact block-coordinate
descent method with r blocks of m variables corresponding to the columns of W (notice that any other
ordering for the update of the columns of W is also possible).

Other approaches based on iterative methods to solve the NNLS subproblems include projected
gradient descent (Lin, 2007a) or Newton-like methods (Dhillon et al., 2007; Cichocki et al., 2006); see
also Cichocki et al. (2009) and the references therein.

We first analyze in Section 2 the computational cost needed to update the factors W in MU and
HALS, then make several simple observations leading in Section 3 to the design of accelerated versions
of these algorithms. These improvements can in principle be applied to any two-block coordinate
descent NMF algorithm, as demonstrated in Section 3.4 on the projected gradient method of Lin
(2007a). We mainly focus on MU, because it is by far the most popular NMF algorithm, and on
HALS, because it is very efficient in practice. Section 4 studies convergence of the accelerated variants
to stationary points, and shows that they preserve the properties of the original schemes. In Section 5,
we experimentally demonstrate a significant acceleration in convergence on several image and text
datasets, with a comparison with the state-of-the-art ANLS algorithm of J.Kim & Park (2008).

2 Analysis of the Computational Cost of Factor Updates

In order to make our analysis valid for both dense and sparse input matrices, let us introduce a
parameter K denoting the number of nonzero entries in matrix M (K = mn when M is dense).
Factors W and H are typically stored as dense matrices throughout the execution of the algorithms.
We assume that NMF achieves compression, which is often a requirement in practice. This means
that storing W and H must be cheaper than storing M : roughly speaking, the number of entries in
W and H must be smaller than the number of nonzero entries in M , i.e., r(m+ n) ≤ K.

Descriptions of Algorithms 1 and 2 below provide separate estimates for the number of floating
point operations (flops) in each matrix product computation needed to update factor W in MU and
HALS. One can check that the proposed organization of the different matrix computations (and, in
particular, the ordering of the matrix products) minimizes the total computational cost (for example,
starting the computation of the MU denominator WHHT with the product WH is clearly worse than
with HHT).

MU and HALS possess almost exactly the same computational cost (the difference being a typically
negligible mr flops). It is particularly interesting to observe that

3

Algorithm 1 MU update for W (k)

1: A = MH(k)T ; → 2Kr flops

2: B = H(k)H(k)T ; → 2nr2 flops
3: C = W (k)B; → 2mr2 flops
4: W (k+1) = W (k) ◦ [A]

[C] ; → 2mr flops

% Total: r(2K + 2nr + 2mr + 2m) flops

Algorithm 2 HALS update for W (k)

1: A = MH(k)T ; → 2Kr flops

2: B = H(k)H(k)T ; → 2nr2 flops
3: for i = 1, 2, . . . , r do

4: C:k =
∑p−1

l=1 W
(k+1)
:l Blk +

∑r
l=p+1W

(k)
:l Blk; → 2m(r − 1) flops

5: W:k = max
(

0, A:k−C:k
Bkk

)

; → 3m flops

6: end for

% Total: r(2K + 2nr + 2mr +m) flops

1. Steps 1. and 2. in both algorithms are identical and do not depend on the matrix W (k);

2. Recalling our assumption K ≥ r(m+n), computation of MH(k)T (step 1.) is the most expensive
among all steps.

Therefore, this time-consuming step should be performed sparingly, and we should take full advantage

of having computed the relatively expensive MH(k)T and H(k)H(k)T matrix products. This can be
done by updating W (k) several times before the next update of H(k), i.e., by repeating steps 3. and

4. in MU (resp. steps 3. to 6. in HALS) several times after the computation of matrices MH(k)T and

H(k)H(k)T . In this fashion, better solutions of the corresponding NNLS subproblems will be obtained
at a relatively cheap additional cost.

The original MU and HALS algorithms do not take advantage of this fact, and alternatively update
matrices W and H only once per (outer) iteration. An important question for us is now: how many
times should we update W per outer iteration?, i.e., how many inner iterations of MU and HALS
should we perform? This is the topic of the next section.

3 Stopping Criterion for the Inner Iterations

In this section, we discuss two different strategies for choosing the number of inner iterations: the
first uses a fixed number of inner iterations determined by the flop counts, while the second is based
on a dynamic stopping criterion that checks the difference between two consecutive iterates. The first
approach is shown empirically to work better. We also describe a third hybrid strategy that provides
a further small improvement in performance.

3.1 Fixed Number of Inner Iterations

Let us focus on the MU algorithm (a completely similar analysis holds for HALS, as both methods
differ only by a negligible number of flops). Based on the flops counts, we estimate how expensive the
first inner update of W would be relatively to the next ones (all performed while keeping H fixed),

4

which is given by the following factor ρW (the corresponding value for H will be denoted by ρH)

ρW =
2Kr + 2nr2 + 2mr2 + 2mr

2mr2 + 2mr
= 1 +

K + nr

mr +m
.

(

ρH = 1 +
K +mr

nr + n

)

.

Values of ρW and ρH for several datasets are given in Section 5, see Tables 1 and 2.
Notice that for K ≥ r(m + n), we have ρW ≥ 2 r

r+1 so that the first inner update of W is at
least about twice as expensive as the subsequent ones. For a dense matrix, K is equal to mn and we
actually have that ρW = 1 + n(m+r)

m(r+1) ≥ 1 + n
r+1 , which is typically quite large since n is often much

greater than r. This means for example that, in our accelerated scheme, W could be updated about
1 + ρW times for the same computational cost as two independent updates of W in the original MU.

A simple and natural choice consists in performing inner updates of W and H a fixed number of
times, depending on the values of ρW and ρH . Let us introduce a parameter α ≥ 0 such that W is
updated (1 + αρW) times before the next update of H, and H is updated (1 + αρH) times before
the next update of W . Let us also denote the corresponding algorithm MUα (MU0 reduces to the
original MU). Therefore, performing (1 + αρW) inner updates of W in MUα has approximately the
same computational cost as performing (1 + α) updates of W in MU0.

In order to find an appropriate value for parameter α, we have performed some preliminary tests
on image and text datasets. First, let us denote e(t) the Frobenius norm of the error ||M −WH||F
achieved by an algorithm within time t, and define

E(t) =
e(t)− emin

e(0) − emin
, (3.1)

where e(0) is the error of the initial iterate (W (0),H(0)), and emin is the smallest error observed
among all algorithms across all initializations. Quantity E(t) is therefore a normalized measure of
the improvement of the objective function (relative to the initial gap) with respect to time; we have
0 ≤ E(t) ≤ 1 for monotonically decreasing algorithms (such as MU and HALS). The advantage of
E(t) over e(t) is that one can meaningfully take the average over several runs involving different
initializations and datasets, and display the average behavior of a given algorithm.

Figure 1 displays the average of this function E(t) for dense (on the left) and sparse (on the right)
matrices using the datasets described in Section 5 for five values of α = 0, 0.5, 1, 2, 4. We observe
that the original MU algorithm (α = 0) converges significantly less rapidly than all the other tested
variants (especially in the dense case). The best value for parameter α seems to be 1.

Figure 2 displays the same computational experiments for HALS2. HALS with α = 0.5 performs
the best. For sparse matrices, the improvement is harder to discern (but still present); an explanation
for that fact will be given at the end of Section 3.3.

3.2 Dynamic Stopping Criterion for Inner Iterations

In the previous section, a fixed number of inner iterations is performed. One could instead consider
switching dynamically from one factor to the other based on an appropriate criterion. For example,
it is possible to use the norm of the projected gradient as proposed by Lin (2007a). A simpler and
cheaper possibility is to rely solely on the norm of the difference between two iterates. Noting W (k,l)

the iterate after l updates of W (k) (while H(k) is being kept fixed), we stop inner iterations as soon as

||W (k,l+1) −W (k,l)||F ≤ ǫ||W (k,1) −W (k,0)||F , (3.2)

2Because HALS involves a loop over the columns of W and rows of H , we observed that an update of HALS is
noticeably slower than an update of MU when using MATLABR©(especially for r ≫ 1), despite the quasi-equivalent
theoretical computational cost. Therefore, to obtain fair results, we adjusted ρW and ρH by measuring directly the ratio
between time spent for the first update and the next one, using the cputime function of MATLABR©.

5

Figure 1: Average of functions E(t) for MU using different values of α: (left) dense matrices, (right)
sparse matrices, computed over 4 image datasets and 6 text datasets, using two different values for
the rank for each dataset and 10 random initializations, see Section 5.

Figure 2: Average of functions E(t) for HALS using different values of α: (left) dense matrices, (right)
sparse matrices. Same settings as in Figure 1.

i.e., as soon as the improvement of the last update becomes negligible compared to the one obtained
with the first update, but without any a priori fixed maximal number of inner iterations.

Figures 3 shows the results for MU with different values of ǫ (we also include the original MU and
MU with α = 1 presented in the previous section to serve as a comparison). Figures 4 displays the
same experiment for HALS.

In both cases, we observe that the dynamic stopping criterion is not able to outperform the
approach based on a fixed number of inner iterations (α = 1 for MU, α = 0.5 for HALS). Moreover,
in the experiments for HALS with sparse matrices, it is not even able to compete with the original
algorithm.

6

Figure 3: Average of functions E(t) for MU using different values of ǫ, with α = 0 and α = 1 for
reference (see Section 3.1): (left) dense matrices, (right) sparse matrices. Same settings as in Figure 1.

Figure 4: Average of functions E(t) for HALS using different values of ǫ, with α = 0 and α = 0.5 for
reference (see Section 3.1): (left) dense matrices, (right) sparse matrices. Same settings as in Figure 1.

3.3 A Hybrid Stopping Criterion

We have shown in the previous section that using a fixed number of inner iterations works better than a
stopping criterion based solely on the difference between two iterates. However, in some circumstances,
we have observed that inner iterations become ineffective before their maximal count is reached, so
that it would in some cases be worth switching earlier to the other factor.

This occurs in particular when the numbers of rows m and columns n of matrix M have different
orders of magnitude. For example, assume without loss of generality that m ≪ n, so that we have
ρW ≫ ρH . Hence, on the one hand, matrix W has significantly less entries than H (mr ≪ nr),
and the corresponding NNLS subproblem features a much smaller number of variables; on the other
hand, ρW ≫ ρH so that the above choice will lead many more updates of W performed. In other

7

words, many more iterations are performed on the simpler problem, which might be unreasonable.
For example, for the CBCL face database (cf. Section 5) with m = 361, n = 2429 and r = 20, we
have ρH ≈ 18 and ρW ≈ 123, and this large number of inner W -updates is typically not necessary to
obtain an iterate close to an optimal solution of the corresponding NNLS subproblem.

Therefore, to avoid unnecessary inner iterations, we propose to combine the fixed number of inner
iterations proposed in Section 3.1 with the supplementary stopping criterion described in Section 3.2.
This safeguard procedure will stop the inner iterations before their maximum number ⌊1 + αρW ⌋ is
reached when they become ineffective (depending on parameter ǫ, see Equation (3.2)). Algorithm 3
displays the pseudocode for the corresponding accelerated MU, as well as a similar adaptation for
HALS. Figures 5 and 6 displays the numerical experiments for MU and HALS respectively.

Algorithm 3 Accelerated MU and HALS

Require: Data matrix M ∈ R
m×n
+ and initial iterates (W (0),H(0)) ∈ R

m×r
+ × R

r×n
+ .

1: for k = 0, 1, 2, . . . do

2: Compute A = MH(k)T and B = H(k)H(k)T ; W (k,0) = W (k);
3: for l = 1 : ⌊1 + αρW ⌋ do
4: Compute W (k,l) using either MU or HALS (cf. Algorithms 1 and 2);

5: if ||W (k,l) −W (k,l−1)||F ≤ ǫ||W (k,1) −W (k,0)||F then

6: break;
7: end if

8: end for

9: W (k+1) = W (k,l);
10: Compute H(k+1) from H(k) and W (k+1) using a symmetrically adapted version of steps 2-9;
11: end for

Figure 5: Average of functions E(t) for MU using different values of α and ǫ: (left) dense matrices,
(right) sparse matrices. Same settings as in Figure 1.

In the dense case, this safeguard procedure slightly improves performance. We also note that the
best values of parameter α now seem to be higher than in the unsafeguarded case (α = 2 versus
α = 1 for MU, and α = 1 versus α = 0.5 for HALS). Worse performance of those higher values of α

8

Figure 6: Average of functions E(t) for HALS using different values of α and ǫ: (left) dense matrices,
(right) sparse matrices. Same settings as in Figure 1.

in the unsafeguarded scheme can be explained by the fact that additional inner iterations, although
sometimes useful, become too costly overall if they are not stopped when becoming ineffective.

In the sparse case, the improvement is rather limited (if not absent) and most accelerated variants
provide similar performances. In particular, as already observed in Sections 3.1 and 3.2, the accelerated
variant of HALS does not perform very differently from the original HALS on sparse matrices. We
explain this by the fact that HALS applied on sparse matrices is extremely efficient and one inner
update already decreases the objective function significantly. To illustrate this, Figure 7 shows the
evolution of the relative error

Ek(l) =
||M −W (k,l)H(k)||F − ekmin

||M −W (k,0)H(k)||F − ekmin

of the iterate W (k,l) for a sparse matrix M , where3 ekmin = minW≥0 ||M − WH(k)||F . Recall that
(W (k,0),H(k)) denotes the solution obtained after k outer iterations (starting from randomly generated
matrices). For k = 1 (resp. k = 20), the relative error is reduced by a factor of more than 87% (resp.
97%) after only one inner iteration.

3.4 Application to Lin’s Projected Gradient Algorithm

The accelerating procedure described in the previous sections can potentially be applied to many other
NMF algorithms. To illustrate this, we have modified Lin’s projected gradient algorithm (PG) (Lin,
2007a) by replacing the original dynamic stopping criterion (based on the stationarity conditions) by
the hybrid strategy described in Section 3.3. It is in fact straightforward to see that our analysis is
applicable in this case, since Lin’s algorithm also requires the computation of HHT and MHT when
updating W , because the gradient of the objective function in (NMF) is given by ∇W ||M −WH||2F =
2WHHT − 2MHT . This is also a direct confirmation that our approach can be straightforwardly
applied to many more NMF algorithms than those considered in this paper.

Figure 8 displays the corresponding computational results, comparing the original PG algorithm
(as available from Lin (2007a)) with its dynamic stopping criterion (based on the norm of the projected
gradient) and our variants, based on a (safeguarded) fixed number of inner iterations. It demonstrates

3We have used the active-set algorithm of J.Kim & Park (2008) to compute the optimal value of the NNLS subproblem.

9

Figure 7: Evolution of the relative error Ek(l) of the iterates of inner iterations in MU and HALS,
solving the NNLS subproblem minW≥0 ||M −WH(k)||F with r = 40 for the classic text dataset (cf.
Table 2).

that our accelerated schemes perform significantly better, both in the sparse and dense cases (notice
that in the sparse case, most accelerated variants perform similarly). The choice α = 0.5 gives the best
results, and the safeguard procedure does not help much; the reason being that PG converges relatively

Figure 8: Average of functions E(t) for the projected gradient algorithm of Lin (2007a), and its
modification using a fixed number of inner iterations. Same settings as Figure 1.

slowly (we will see in Section 5 that its accelerated variant converges slower than the accelerated MU).

4 Convergence to Stationary Points

In this section, we briefly recall convergence properties of both MU and HALS, and show that they
are inherited by their accelerated variants.

10

4.1 Multiplicative Updates

It was shown by Daube-Witherspoon & Muehllehner (1986) and later by Lee & Seung (1999) that a

single multiplicative update of W (i.e., replacing W by W ◦ [MHT]
[WHHT]

while H is kept fixed) guarantees

that the objective function ||M − WH||2F does not increase. Since our accelerated variant simply
performs several updates of W while H is unchanged (and vice versa), we immediately obtain that
the objective function ||M −WH||2F is non-increasing under the iterations of Algorithm 3.

Unfortunately, this property does not guarantee convergence to a stationary point of (NMF), and
this question on the convergence of the MU seems to be still open, see Lin (2007b). Furthermore, in
practice, rounding errors might set some entries in W or H to zero, and then multiplicative updates
cannot modify their values. Hence, it was observed that despite their monotonicity, MU do not
necessarily converge to a stationary point, see Gonzales & Zhang (2005).

However, Lin (2007b) proposed a slight modification of MU in order to obtain the convergence to
a stationary point. Roughly speaking, MU is recast as a rescaled gradient descent method and the
step length is modified accordingly. Another even simpler possibility is proposed by Gillis & Glineur
(2008) who proved the following theorem (see also (Gillis, 2011, §4.1) where the influence of parameter
δ is discussed):

Theorem 1 (Gillis & Glineur (2008)). For any constant δ > 0, M ≥ 0 and any4 (W,H) ≥ δ,
||M −WH||F is nonincreasing under

W ← max
(

δ,W ◦
[MHT]

[WHHT]

)

, H ← max
(

δ,H ◦
[W TM]

[W TWH]

)

, (4.1)

where the max is taken component-wise. Moreover, every limit point of the corresponding (alternated)
algorithm is a stationary point of the following optimization problem

min
W≥δ,H≥δ

||M −WH||2F .

The proof of Theorem 1 only relies on the fact that the limit points of the updates (4.1) are fixed
points (there always exists at least one limit point because the objective function is bounded below
and non-increasing under updates (4.1)). Therefore, one can easily check that the proof still holds
when a bounded number of inner iterations is performed, i.e., the theorem applies to our accelerated
variant (cf. Algorithm 3).

It is important to realize that this is not merely a theoretical issue and that this observation can
really play a crucial role in practice. To illustrate this, Figure 9 shows the evolution of the normalized
objective function (cf. Equation (3.1)) using δ = 0 and δ = 10−16 starting from the same initial
matrices W (0) and H(0) randomly generated (each entry uniformly drawn between 0 and 1). We
observe that, after some number of iterations, the original MU (i.e., with δ = 0) get stuck while the
variant with δ = 10−16 is still able to slightly improve W and H. Notice that this is especially critical
on sparse matrices (see Figure 9, right) because many more entries of W and H are expected to be
equal to zero at stationarity. For this reason, in this paper, all numerical experiments with MU use
the updates from Equation (4.1) with δ = 10−16 (instead of the original version with δ = 0).

4.2 Hierarchical Alternating Least Squares

HALS is an exact block-coordinate descent method where blocks of variables (columns of W and
rows of H) are optimized in a cyclic way (first the columns of W , then the rows of H, etc.). Clearly,
exact block-coordinate descent methods always guarantee the objective function to decrease. However,
convergence to a stationary point requires additional assumptions. For example, Bertsekas (1999a,b)
(Proposition 2.7.1) showed that if the following three conditions hold:

4(W,H) ≥ δ means that W and H are component-wise larger than δ.

11

Figure 9: Functions E(t) for δ = 0 and δ = 10−16 on the (dense) ORL face dataset (cf. Table 1) and
the (sparse) classic text dataset (cf. Table 2) with r = 40.

• each block of variables belongs to a closed convex set (which is the case here since the blocks of
variables belong either to R

m
+ or Rn

+),

• the minimum computed at each iteration for a given block of variables is uniquely attained;

• the function is monotonically nonincreasing in the interval from one iterate to the next;

then exact block-coordinate descent methods converge to a stationary point. The second and the third
requirements are satisfied as long as no columns of W and no rows of H become completely equal to
zero (subproblems are then strictly convex quadratic programs, whose unique optimal solutions are
given by the HALS updates, see Section 1). In practice, if a column of W or a row of H becomes
zero5, we reinitialize it to a small positive constant (we used 10−16). We refer the reader to Ho (2008)
and Gillis & Glineur (2008) for more details on the convergence issues related to HALS.

Because our accelerated variant of HALS is just another type of exact block-coordinate descent
method (the only difference being that the variables are optimized in a different order: first several
times the columns of W , then several times the rows of H, etc.), it inherits all the above properties.
In fact, the statement of the above-mentioned theorem in (Bertsekas, 1999b, p.6) mentions that ‘the
order of the blocks may be arbitrary as long as there is an integer K such that each block-component is
iterated at least once in every group of K contiguous iterations’, which clearly holds for our accelerated
algorithm with a fixed number of inner iterations and its hybrid variant6.

5 Numerical Experiments

In this section, we compare the following algorithms, choosing for our accelerated MU, HALS and
PG schemes the hybrid stopping criterion and the best compromise for values for parameters α and ǫ
according to tests performed in Section 3.

1. (MU) The multiplicative updates algorithm of Lee & Seung (2001).

5In practice, this typically only happens if the initial factors are not properly chosen, see Ho (2008).
6Note however that the accelerated algorithms based solely on the dynamic stopping criterion (Section 3.2) might not

satisfy this requirement, because the number of inner iterations for each outer iteration can in principle grow indefinitely
in the course of the algorithm.

12

2. (A-MU) The accelerated MU with a safeguarded fixed number of inner iterations using α = 2
and ǫ = 0.1 (cf. Algorithm 3).

3. (HALS) The hierarchical alternating least squares algorithm of Cichocki et al. (2007).

4. (A-HALS) The accelerated HALS with a safeguarded fixed number of inner iterations using
α = 0.5 and ǫ = 0.1 (cf. Algorithm 3).

5. (PG) The projected gradient method of Lin (2007a).

6. (A-PG) The modified projected gradient method of Lin (2007a) using α = 0.5 and ǫ = 0 (cf.
Section 3.4).

7. (ANLS) The alternating nonnegative least squares algorithm7 of J.Kim & Park (2008), which
alternatively optimizes W and H exactly using a block-pivot active set method. Kim and Park
showed that their method typically outperforms other tested algorithms (in particular MU and
PG) on synthetic, images and text datasets.

All tests were run using MATLABR© 7.1 (R14), on a 3GHz IntelR© CoreTM2 dual core processor.
We present numerical results on images datasets (dense matrices, Section 5.1) and on text datasets
(sparse matrices, Section 5.2). Code for all algorithms but ANLS is available at

http://sites.google.com/site/nicolasgillis/.

5.1 Dense Matrices - Images Datasets

Table 1 summarizes the characteristics of the different datasets.

Table 1: Image datasets.
Data # pixels m n r ⌊ρW ⌋ ⌊ρH⌋

ORL1 112 × 92 10304 400 30, 60 358, 195 13, 7
Umist2 112 × 92 10304 575 30, 60 351, 188 19, 10
CBCL3 19× 19 361 2429 30, 60 12, 7 85, 47
Frey2 28× 20 560 1965 30, 60 19, 10 67, 36

⌊x⌋ denotes the largest integer smaller than x.
1 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
2 http://www.cs.toronto.edu/~roweis/data.html
3 http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html

For each dataset, we use two different values for the rank (r = 30, 60) and initialize the algorithms
with the same 50 random factors (W (0),H(0)) (using i.i.d. uniform random variables on [0, 1])8. In
order to assess the performance of the different algorithms, we display individually for each dataset
the average over all runs of the function E(t) defined in Equation (3.1), see Figure 10.

First, these results confirm what was already observed by previous works: PG performs better
than MU (Lin, 2007a), ANLS performs better than MU and PG (J.Kim & Park, 2008), and HALS

7Code is available at http://www.cc.gatech.edu/~hpark/.
8Generating initial matrices (W (0),H(0)) randomly typically leads to a very large initial error e(0) = ||M −

W (0)H(0)||F . This implies that E(t) will get very small after one step of any algorithm. To avoid this large initial
decrease, we have scaled the initial matrices such that argminα ||M −αW (0)H(0)||F=1; this simply amount to multiply-
ing W and H by an appropriate constant, see Gillis & Glineur (2008).

13

http://sites.google.com/site/nicolasgillis/
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cs.toronto.edu/~roweis/data.html
http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html
http://www.cc.gatech.edu/~hpark/

Figure 10: Average of functions E(t) for different image datasets: ORL (top left), Umist (top right),
CBCL (bottom left) and Frey (bottom right).

performs the best (Ho, 2008). Second, they confirm that the accelerated algorithms indeed are more
efficient: A-MU (resp. A-PG) clearly outperforms MU (resp. PG) in all cases, while A-HALS is, by far,
the most efficient algorithm for the tested databases. It is interesting to notice that A-MU performs
better than A-PG, and only slightly worse than ANLS, often decreasing the error as fast during the
first iterations.

5.2 Sparse Matrices - Text Datasets

Table 2 summarizes the characteristics of the different datasets.

The factorization rank r was set to 10 and 20. For the comparison, we used the same settings as
for the dense matrices. Figure 11 displays for each dataset the evolution of the average of functions
E(t) over all runs. Again the accelerated algorithms are much more efficient. In particular, A-MU
and A-PG converge initially much faster than ANLS, and also obtain better final solutions9. A-MU,
HALS and A-HALS have the fastest initial convergence rates, and HALS and A-HALS generate the

9We also observe that ANLS no longer outperforms the original MU and PG algorithms, and only sometimes generates
better solutions.

14

Table 2: Text mining datasets (Zhong & Ghosh, 2005) (sparsity is given in %: 100 ∗#zeros/(mn)).

Data m n r #nonzero sparsity ⌊ρW ⌋ ⌊ρH⌋

classic 7094 41681 10, 20 223839 99.92 12, 9 2, 1
sports 8580 14870 10, 20 1091723 99.14 18, 11 10, 6
reviews 4069 18483 10, 20 758635 98.99 35, 22 8, 4
hitech 2301 10080 10, 20 331373 98.57 25, 16 5, 4
ohscal 11162 11465 10, 20 674365 99.47 7, 4 7, 4
la1 3204 31472 10, 20 484024 99.52 31, 21 3, 2

best solutions in all cases. Notice that A-HALS does not always obtain better final solutions than
HALS (still this happens on half of the datasets), because HALS already performs remarkably well
(see discussion at the end of Section 3.3). However, the initial convergence of A-HALS is in all cases
at least as fast as that of HALS.

6 Conclusion

In this paper, we considered the multiplicative updates of Lee & Seung (2001) and the hierarchical
alternating least squares algorithm of Cichocki et al. (2007). We introduced accelerated variants of
these two schemes, based on a careful analysis of the computational cost spent at each iteration,
and preserve the convergence properties of the original algorithms. The idea behind our approach
is based on taking better advantage of the most expensive part of the algorithms, by repeating a
(safeguarded) fixed number of times the cheaper part of the iterations. This technique can in principle
be applied to most NMF algorithms; in particular, we showed how it can substantially improve the
projected gradient method of Lin (2007a). We then experimentally showed that these accelerated
variants, despite the relative simplicity of the modification, significantly outperform the original ones,
especially on dense matrices, and compete favorably with a state-of-the-art algorithm, namely the
ANLS method of J.Kim & Park (2008). A direction for future research would be to choose the number
of inner iterations in a more sophisticated way, with the hope of further improving the efficiency of
A-MU, A-PG and A-HALS. Finally, we observed that HALS and its accelerated version are the most
efficient variants for solving NMF problems, sometimes by far.

Acknowledgments

We would like to thank the anonymous reviewers for their insightful comments, which helped to improve the
paper.

References

Berry, M.W., Browne, M., Langville, A.N., Pauca, P.V. & Plemmons, R.J. (2009). Algorithms and Applications
for Approximate Nonnegative Matrix Factorization. Computational Statistics and Data Analysis, 52, 155–173.

Bertsekas, D.P. (1999a). Nonlinear Programming: Second Edition. Athena Scientific, Massachusetts.

Bertsekas, D.P. (1999b). Corrections for the book Nonlinear Programming: Second Edition. Athena Scientific,
Massachusetts. Available at http://www.athenasc.com/nlperrata.pdf.

Cichocki, A., Zdunek, R. & Amari, S. (2006). Non-negative Matrix Factorization with Quasi-Newton Optimiza-
tion. Lecture Notes in Artificial Intelligence, Springer, 4029, 870–879.

Cichocki, A., Zdunek, R. & Amari, S. (2007). Hierarchical ALS Algorithms for Nonnegative Matrix and 3D
Tensor Factorization. Lecture Notes in Computer Science, Springer, 4666, 169–176.

15

http://www.athenasc.com/nlperrata.pdf

Figure 11: Average of functions E(t) for text datasets: classic (top left), sports (top right), reviews
(middle left), hitech (middle right), ohscal (bottom left) and la1 (bottom right).

Cichocki, A., & Phan, A.H. (2009). Fast local algorithms for large scale Nonnegative Matrix and Tensor
Factorizations. IEICE Transactions on Fundamentals of Electronics, Vol. E92-A No.3, 708–721.

16

Cichocki, A., Amari, S., Zdunek, R. & Phan, A.H. (2009). Non-negative Matrix and Tensor Factorizations:
Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. Wiley-Blackwell.

Daube-Witherspoon, M.E. &Muehllehner, G. (1986). An iterative image space reconstruction algorithm suitable
for volume ECT. IEEE Trans. Med. Imaging, 5, 61–66.

Devarajan, K. (2008). Nonnegative Matrix Factorization: An Analytical and Interpretive Tool in Computational
Biology. PLoS Computational Biology, 4(7), e1000029.

Dhillon, I.S., Kim, D. & Sra, S. (2007). Fast Newton-type Methods for the Least Squares Nonnegative Matrix
Approximation problem. Proc. of SIAM Conf. on Data Mining, 343–354.

Ding, C., He, X. & Simon, H.D. (2005). On the Equivalence of Nonnegative Matrix Factorization and Spectral
Clustering. Proc. of SIAM Conf. on Data Mining, 606–610.

Gillis, N. (2011). Nonnegative Matrix Factorization: Complexity, Algorithms and Applications. Université
catholique de Louvain, PhD Thesis.

Gillis, N. & Glineur, F. (2008). Nonnegative Factorization and The Maximum Edge Biclique Problem. CORE

Discussion paper 2008/64.

Gonzales, E.F. & Zhang, Y. (2005). Accelerating the Lee-Seung algorithm for non-negative matrix factorization.
Technical report, Department of Computational and Applied Mathematics, Rice University.

Han, J., Han, L., Neumann, M. & U. Prasad (2009). On the rate of convergence of the image space reconstruction
algorithm. Operators and Matrices, 3(1), 41–58.

Ho, N.-D. (2008). Nonnegative Matrix Factorization - Algorithms and Applications. Université catholique de
Louvain, PhD Thesis.

Kim, H. & Park, K. (2008). Non-negative Matrix Factorization Based on Alternating Non-negativity Con-
strained Least Squares and Active Set Method. SIAM J. Matrix Anal. Appl., 30(2), 713–730.

Kim, J. & Park, H. (2008). Toward Faster Nonnegative Matrix Factorization: A New Algorithm and Compar-
isons. Proc. of IEEE Int. Conf. on Data Mining, 353–362.

Lee, D.D. & Seung, H.S. (1999). Learning the Parts of Objects by Nonnegative Matrix Factorization. Nature,
401, 788–791.

Dee, D.D. & Seung, H.S. (2001). Algorithms for Non-negative Matrix Factorization. Advances in Neural
Information Processing, 13.

Li, L. & Zhang, Y.-J. (2009). FastNMF: highly efficient monotonic fixed-point nonnegative matrix factorization
algorithm with good applicability. J. Electron. Imaging, 18, 033004.

Lin, C.-J. (2007a). Projected Gradient Methods for Nonnegative Matrix Factorization. Neural Computation,
MIT press, 19, 2756–2779.

Lin, C.-J. (2007b). On the Convergence of Multiplicative Update Algorithms for Nonnegative Matrix Factor-
ization. IEEE Trans. on Neural Networks, 18(6), 1589–1596.

Pauca, P.V., Piper, J. & Plemmons, R.J. (2006). Nonnegative matrix factorization for spectral data analysis.
Linear Algebra and its Applications, 406(1), 29–47.

Shahnaz, F., Berry, M.W., Langville, A.N., Pauca, V.P. & Plemmons, R.J. (2006). Document clustering using
nonnegative matrix factorization. Information Processing and Management, 42, 373–386.

Vavasis, S.A. (2009). On the Complexity of Nonnegative Matrix Factorization. SIAM Journal on Optimization,
20(3), 1364 – 1377.

Zhong, S. & Ghosh, J. (2005). Generative model-based document clustering: a comparative study. Knowledge
and Information Systems, 8(3), 374–384.

17

	1 Introduction
	2 Analysis of the Computational Cost of Factor Updates
	3 Stopping Criterion for the Inner Iterations
	3.1 Fixed Number of Inner Iterations
	3.2 Dynamic Stopping Criterion for Inner Iterations
	3.3 A Hybrid Stopping Criterion
	3.4 Application to Lin's Projected Gradient Algorithm

	4 Convergence to Stationary Points
	4.1 Multiplicative Updates
	4.2 Hierarchical Alternating Least Squares

	5 Numerical Experiments
	5.1 Dense Matrices - Images Datasets
	5.2 Sparse Matrices - Text Datasets

	6 Conclusion

